1 /* 2 * Scheduler topology setup/handling methods 3 */ 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 7 #include "sched.h" 8 9 DEFINE_MUTEX(sched_domains_mutex); 10 11 /* Protected by sched_domains_mutex: */ 12 cpumask_var_t sched_domains_tmpmask; 13 cpumask_var_t sched_domains_tmpmask2; 14 15 #ifdef CONFIG_SCHED_DEBUG 16 17 static __read_mostly int sched_debug_enabled; 18 19 static int __init sched_debug_setup(char *str) 20 { 21 sched_debug_enabled = 1; 22 23 return 0; 24 } 25 early_param("sched_debug", sched_debug_setup); 26 27 static inline bool sched_debug(void) 28 { 29 return sched_debug_enabled; 30 } 31 32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33 struct cpumask *groupmask) 34 { 35 struct sched_group *group = sd->groups; 36 37 cpumask_clear(groupmask); 38 39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40 41 if (!(sd->flags & SD_LOAD_BALANCE)) { 42 printk("does not load-balance\n"); 43 if (sd->parent) 44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45 " has parent"); 46 return -1; 47 } 48 49 printk(KERN_CONT "span=%*pbl level=%s\n", 50 cpumask_pr_args(sched_domain_span(sd)), sd->name); 51 52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53 printk(KERN_ERR "ERROR: domain->span does not contain " 54 "CPU%d\n", cpu); 55 } 56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 57 printk(KERN_ERR "ERROR: domain->groups does not contain" 58 " CPU%d\n", cpu); 59 } 60 61 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62 do { 63 if (!group) { 64 printk("\n"); 65 printk(KERN_ERR "ERROR: group is NULL\n"); 66 break; 67 } 68 69 if (!cpumask_weight(sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: empty group\n"); 72 break; 73 } 74 75 if (!(sd->flags & SD_OVERLAP) && 76 cpumask_intersects(groupmask, sched_group_span(group))) { 77 printk(KERN_CONT "\n"); 78 printk(KERN_ERR "ERROR: repeated CPUs\n"); 79 break; 80 } 81 82 cpumask_or(groupmask, groupmask, sched_group_span(group)); 83 84 printk(KERN_CONT " %d:{ span=%*pbl", 85 group->sgc->id, 86 cpumask_pr_args(sched_group_span(group))); 87 88 if ((sd->flags & SD_OVERLAP) && 89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 90 printk(KERN_CONT " mask=%*pbl", 91 cpumask_pr_args(group_balance_mask(group))); 92 } 93 94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96 97 if (group == sd->groups && sd->child && 98 !cpumask_equal(sched_domain_span(sd->child), 99 sched_group_span(group))) { 100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101 } 102 103 printk(KERN_CONT " }"); 104 105 group = group->next; 106 107 if (group != sd->groups) 108 printk(KERN_CONT ","); 109 110 } while (group != sd->groups); 111 printk(KERN_CONT "\n"); 112 113 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115 116 if (sd->parent && 117 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118 printk(KERN_ERR "ERROR: parent span is not a superset " 119 "of domain->span\n"); 120 return 0; 121 } 122 123 static void sched_domain_debug(struct sched_domain *sd, int cpu) 124 { 125 int level = 0; 126 127 if (!sched_debug_enabled) 128 return; 129 130 if (!sd) { 131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132 return; 133 } 134 135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136 137 for (;;) { 138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139 break; 140 level++; 141 sd = sd->parent; 142 if (!sd) 143 break; 144 } 145 } 146 #else /* !CONFIG_SCHED_DEBUG */ 147 148 # define sched_debug_enabled 0 149 # define sched_domain_debug(sd, cpu) do { } while (0) 150 static inline bool sched_debug(void) 151 { 152 return false; 153 } 154 #endif /* CONFIG_SCHED_DEBUG */ 155 156 static int sd_degenerate(struct sched_domain *sd) 157 { 158 if (cpumask_weight(sched_domain_span(sd)) == 1) 159 return 1; 160 161 /* Following flags need at least 2 groups */ 162 if (sd->flags & (SD_LOAD_BALANCE | 163 SD_BALANCE_NEWIDLE | 164 SD_BALANCE_FORK | 165 SD_BALANCE_EXEC | 166 SD_SHARE_CPUCAPACITY | 167 SD_ASYM_CPUCAPACITY | 168 SD_SHARE_PKG_RESOURCES | 169 SD_SHARE_POWERDOMAIN)) { 170 if (sd->groups != sd->groups->next) 171 return 0; 172 } 173 174 /* Following flags don't use groups */ 175 if (sd->flags & (SD_WAKE_AFFINE)) 176 return 0; 177 178 return 1; 179 } 180 181 static int 182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183 { 184 unsigned long cflags = sd->flags, pflags = parent->flags; 185 186 if (sd_degenerate(parent)) 187 return 1; 188 189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190 return 0; 191 192 /* Flags needing groups don't count if only 1 group in parent */ 193 if (parent->groups == parent->groups->next) { 194 pflags &= ~(SD_LOAD_BALANCE | 195 SD_BALANCE_NEWIDLE | 196 SD_BALANCE_FORK | 197 SD_BALANCE_EXEC | 198 SD_ASYM_CPUCAPACITY | 199 SD_SHARE_CPUCAPACITY | 200 SD_SHARE_PKG_RESOURCES | 201 SD_PREFER_SIBLING | 202 SD_SHARE_POWERDOMAIN); 203 if (nr_node_ids == 1) 204 pflags &= ~SD_SERIALIZE; 205 } 206 if (~cflags & pflags) 207 return 0; 208 209 return 1; 210 } 211 212 static void free_rootdomain(struct rcu_head *rcu) 213 { 214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215 216 cpupri_cleanup(&rd->cpupri); 217 cpudl_cleanup(&rd->cpudl); 218 free_cpumask_var(rd->dlo_mask); 219 free_cpumask_var(rd->rto_mask); 220 free_cpumask_var(rd->online); 221 free_cpumask_var(rd->span); 222 kfree(rd); 223 } 224 225 void rq_attach_root(struct rq *rq, struct root_domain *rd) 226 { 227 struct root_domain *old_rd = NULL; 228 unsigned long flags; 229 230 raw_spin_lock_irqsave(&rq->lock, flags); 231 232 if (rq->rd) { 233 old_rd = rq->rd; 234 235 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236 set_rq_offline(rq); 237 238 cpumask_clear_cpu(rq->cpu, old_rd->span); 239 240 /* 241 * If we dont want to free the old_rd yet then 242 * set old_rd to NULL to skip the freeing later 243 * in this function: 244 */ 245 if (!atomic_dec_and_test(&old_rd->refcount)) 246 old_rd = NULL; 247 } 248 249 atomic_inc(&rd->refcount); 250 rq->rd = rd; 251 252 cpumask_set_cpu(rq->cpu, rd->span); 253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254 set_rq_online(rq); 255 256 raw_spin_unlock_irqrestore(&rq->lock, flags); 257 258 if (old_rd) 259 call_rcu_sched(&old_rd->rcu, free_rootdomain); 260 } 261 262 static int init_rootdomain(struct root_domain *rd) 263 { 264 memset(rd, 0, sizeof(*rd)); 265 266 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 267 goto out; 268 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 269 goto free_span; 270 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 271 goto free_online; 272 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 273 goto free_dlo_mask; 274 275 init_dl_bw(&rd->dl_bw); 276 if (cpudl_init(&rd->cpudl) != 0) 277 goto free_rto_mask; 278 279 if (cpupri_init(&rd->cpupri) != 0) 280 goto free_cpudl; 281 return 0; 282 283 free_cpudl: 284 cpudl_cleanup(&rd->cpudl); 285 free_rto_mask: 286 free_cpumask_var(rd->rto_mask); 287 free_dlo_mask: 288 free_cpumask_var(rd->dlo_mask); 289 free_online: 290 free_cpumask_var(rd->online); 291 free_span: 292 free_cpumask_var(rd->span); 293 out: 294 return -ENOMEM; 295 } 296 297 /* 298 * By default the system creates a single root-domain with all CPUs as 299 * members (mimicking the global state we have today). 300 */ 301 struct root_domain def_root_domain; 302 303 void init_defrootdomain(void) 304 { 305 init_rootdomain(&def_root_domain); 306 307 atomic_set(&def_root_domain.refcount, 1); 308 } 309 310 static struct root_domain *alloc_rootdomain(void) 311 { 312 struct root_domain *rd; 313 314 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 315 if (!rd) 316 return NULL; 317 318 if (init_rootdomain(rd) != 0) { 319 kfree(rd); 320 return NULL; 321 } 322 323 return rd; 324 } 325 326 static void free_sched_groups(struct sched_group *sg, int free_sgc) 327 { 328 struct sched_group *tmp, *first; 329 330 if (!sg) 331 return; 332 333 first = sg; 334 do { 335 tmp = sg->next; 336 337 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 338 kfree(sg->sgc); 339 340 kfree(sg); 341 sg = tmp; 342 } while (sg != first); 343 } 344 345 static void destroy_sched_domain(struct sched_domain *sd) 346 { 347 /* 348 * If its an overlapping domain it has private groups, iterate and 349 * nuke them all. 350 */ 351 if (sd->flags & SD_OVERLAP) { 352 free_sched_groups(sd->groups, 1); 353 } else if (atomic_dec_and_test(&sd->groups->ref)) { 354 kfree(sd->groups->sgc); 355 kfree(sd->groups); 356 } 357 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 358 kfree(sd->shared); 359 kfree(sd); 360 } 361 362 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 363 { 364 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 365 366 while (sd) { 367 struct sched_domain *parent = sd->parent; 368 destroy_sched_domain(sd); 369 sd = parent; 370 } 371 } 372 373 static void destroy_sched_domains(struct sched_domain *sd) 374 { 375 if (sd) 376 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 377 } 378 379 /* 380 * Keep a special pointer to the highest sched_domain that has 381 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 382 * allows us to avoid some pointer chasing select_idle_sibling(). 383 * 384 * Also keep a unique ID per domain (we use the first CPU number in 385 * the cpumask of the domain), this allows us to quickly tell if 386 * two CPUs are in the same cache domain, see cpus_share_cache(). 387 */ 388 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 389 DEFINE_PER_CPU(int, sd_llc_size); 390 DEFINE_PER_CPU(int, sd_llc_id); 391 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 392 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 393 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 394 395 static void update_top_cache_domain(int cpu) 396 { 397 struct sched_domain_shared *sds = NULL; 398 struct sched_domain *sd; 399 int id = cpu; 400 int size = 1; 401 402 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 403 if (sd) { 404 id = cpumask_first(sched_domain_span(sd)); 405 size = cpumask_weight(sched_domain_span(sd)); 406 sds = sd->shared; 407 } 408 409 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 410 per_cpu(sd_llc_size, cpu) = size; 411 per_cpu(sd_llc_id, cpu) = id; 412 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 413 414 sd = lowest_flag_domain(cpu, SD_NUMA); 415 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 416 417 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 418 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 419 } 420 421 /* 422 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 423 * hold the hotplug lock. 424 */ 425 static void 426 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 427 { 428 struct rq *rq = cpu_rq(cpu); 429 struct sched_domain *tmp; 430 431 /* Remove the sched domains which do not contribute to scheduling. */ 432 for (tmp = sd; tmp; ) { 433 struct sched_domain *parent = tmp->parent; 434 if (!parent) 435 break; 436 437 if (sd_parent_degenerate(tmp, parent)) { 438 tmp->parent = parent->parent; 439 if (parent->parent) 440 parent->parent->child = tmp; 441 /* 442 * Transfer SD_PREFER_SIBLING down in case of a 443 * degenerate parent; the spans match for this 444 * so the property transfers. 445 */ 446 if (parent->flags & SD_PREFER_SIBLING) 447 tmp->flags |= SD_PREFER_SIBLING; 448 destroy_sched_domain(parent); 449 } else 450 tmp = tmp->parent; 451 } 452 453 if (sd && sd_degenerate(sd)) { 454 tmp = sd; 455 sd = sd->parent; 456 destroy_sched_domain(tmp); 457 if (sd) 458 sd->child = NULL; 459 } 460 461 sched_domain_debug(sd, cpu); 462 463 rq_attach_root(rq, rd); 464 tmp = rq->sd; 465 rcu_assign_pointer(rq->sd, sd); 466 destroy_sched_domains(tmp); 467 468 update_top_cache_domain(cpu); 469 } 470 471 /* Setup the mask of CPUs configured for isolated domains */ 472 static int __init isolated_cpu_setup(char *str) 473 { 474 int ret; 475 476 alloc_bootmem_cpumask_var(&cpu_isolated_map); 477 ret = cpulist_parse(str, cpu_isolated_map); 478 if (ret) { 479 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 480 return 0; 481 } 482 return 1; 483 } 484 __setup("isolcpus=", isolated_cpu_setup); 485 486 struct s_data { 487 struct sched_domain ** __percpu sd; 488 struct root_domain *rd; 489 }; 490 491 enum s_alloc { 492 sa_rootdomain, 493 sa_sd, 494 sa_sd_storage, 495 sa_none, 496 }; 497 498 /* 499 * Return the canonical balance CPU for this group, this is the first CPU 500 * of this group that's also in the balance mask. 501 * 502 * The balance mask are all those CPUs that could actually end up at this 503 * group. See build_balance_mask(). 504 * 505 * Also see should_we_balance(). 506 */ 507 int group_balance_cpu(struct sched_group *sg) 508 { 509 return cpumask_first(group_balance_mask(sg)); 510 } 511 512 513 /* 514 * NUMA topology (first read the regular topology blurb below) 515 * 516 * Given a node-distance table, for example: 517 * 518 * node 0 1 2 3 519 * 0: 10 20 30 20 520 * 1: 20 10 20 30 521 * 2: 30 20 10 20 522 * 3: 20 30 20 10 523 * 524 * which represents a 4 node ring topology like: 525 * 526 * 0 ----- 1 527 * | | 528 * | | 529 * | | 530 * 3 ----- 2 531 * 532 * We want to construct domains and groups to represent this. The way we go 533 * about doing this is to build the domains on 'hops'. For each NUMA level we 534 * construct the mask of all nodes reachable in @level hops. 535 * 536 * For the above NUMA topology that gives 3 levels: 537 * 538 * NUMA-2 0-3 0-3 0-3 0-3 539 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 540 * 541 * NUMA-1 0-1,3 0-2 1-3 0,2-3 542 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 543 * 544 * NUMA-0 0 1 2 3 545 * 546 * 547 * As can be seen; things don't nicely line up as with the regular topology. 548 * When we iterate a domain in child domain chunks some nodes can be 549 * represented multiple times -- hence the "overlap" naming for this part of 550 * the topology. 551 * 552 * In order to minimize this overlap, we only build enough groups to cover the 553 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 554 * 555 * Because: 556 * 557 * - the first group of each domain is its child domain; this 558 * gets us the first 0-1,3 559 * - the only uncovered node is 2, who's child domain is 1-3. 560 * 561 * However, because of the overlap, computing a unique CPU for each group is 562 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 563 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 564 * end up at those groups (they would end up in group: 0-1,3). 565 * 566 * To correct this we have to introduce the group balance mask. This mask 567 * will contain those CPUs in the group that can reach this group given the 568 * (child) domain tree. 569 * 570 * With this we can once again compute balance_cpu and sched_group_capacity 571 * relations. 572 * 573 * XXX include words on how balance_cpu is unique and therefore can be 574 * used for sched_group_capacity links. 575 * 576 * 577 * Another 'interesting' topology is: 578 * 579 * node 0 1 2 3 580 * 0: 10 20 20 30 581 * 1: 20 10 20 20 582 * 2: 20 20 10 20 583 * 3: 30 20 20 10 584 * 585 * Which looks a little like: 586 * 587 * 0 ----- 1 588 * | / | 589 * | / | 590 * | / | 591 * 2 ----- 3 592 * 593 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 594 * are not. 595 * 596 * This leads to a few particularly weird cases where the sched_domain's are 597 * not of the same number for each cpu. Consider: 598 * 599 * NUMA-2 0-3 0-3 600 * groups: {0-2},{1-3} {1-3},{0-2} 601 * 602 * NUMA-1 0-2 0-3 0-3 1-3 603 * 604 * NUMA-0 0 1 2 3 605 * 606 */ 607 608 609 /* 610 * Build the balance mask; it contains only those CPUs that can arrive at this 611 * group and should be considered to continue balancing. 612 * 613 * We do this during the group creation pass, therefore the group information 614 * isn't complete yet, however since each group represents a (child) domain we 615 * can fully construct this using the sched_domain bits (which are already 616 * complete). 617 */ 618 static void 619 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 620 { 621 const struct cpumask *sg_span = sched_group_span(sg); 622 struct sd_data *sdd = sd->private; 623 struct sched_domain *sibling; 624 int i; 625 626 cpumask_clear(mask); 627 628 for_each_cpu(i, sg_span) { 629 sibling = *per_cpu_ptr(sdd->sd, i); 630 631 /* 632 * Can happen in the asymmetric case, where these siblings are 633 * unused. The mask will not be empty because those CPUs that 634 * do have the top domain _should_ span the domain. 635 */ 636 if (!sibling->child) 637 continue; 638 639 /* If we would not end up here, we can't continue from here */ 640 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 641 continue; 642 643 cpumask_set_cpu(i, mask); 644 } 645 646 /* We must not have empty masks here */ 647 WARN_ON_ONCE(cpumask_empty(mask)); 648 } 649 650 /* 651 * XXX: This creates per-node group entries; since the load-balancer will 652 * immediately access remote memory to construct this group's load-balance 653 * statistics having the groups node local is of dubious benefit. 654 */ 655 static struct sched_group * 656 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 657 { 658 struct sched_group *sg; 659 struct cpumask *sg_span; 660 661 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 662 GFP_KERNEL, cpu_to_node(cpu)); 663 664 if (!sg) 665 return NULL; 666 667 sg_span = sched_group_span(sg); 668 if (sd->child) 669 cpumask_copy(sg_span, sched_domain_span(sd->child)); 670 else 671 cpumask_copy(sg_span, sched_domain_span(sd)); 672 673 return sg; 674 } 675 676 static void init_overlap_sched_group(struct sched_domain *sd, 677 struct sched_group *sg) 678 { 679 struct cpumask *mask = sched_domains_tmpmask2; 680 struct sd_data *sdd = sd->private; 681 struct cpumask *sg_span; 682 int cpu; 683 684 build_balance_mask(sd, sg, mask); 685 cpu = cpumask_first_and(sched_group_span(sg), mask); 686 687 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 688 if (atomic_inc_return(&sg->sgc->ref) == 1) 689 cpumask_copy(group_balance_mask(sg), mask); 690 else 691 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 692 693 /* 694 * Initialize sgc->capacity such that even if we mess up the 695 * domains and no possible iteration will get us here, we won't 696 * die on a /0 trap. 697 */ 698 sg_span = sched_group_span(sg); 699 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 700 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 701 } 702 703 static int 704 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 705 { 706 struct sched_group *first = NULL, *last = NULL, *sg; 707 const struct cpumask *span = sched_domain_span(sd); 708 struct cpumask *covered = sched_domains_tmpmask; 709 struct sd_data *sdd = sd->private; 710 struct sched_domain *sibling; 711 int i; 712 713 cpumask_clear(covered); 714 715 for_each_cpu_wrap(i, span, cpu) { 716 struct cpumask *sg_span; 717 718 if (cpumask_test_cpu(i, covered)) 719 continue; 720 721 sibling = *per_cpu_ptr(sdd->sd, i); 722 723 /* 724 * Asymmetric node setups can result in situations where the 725 * domain tree is of unequal depth, make sure to skip domains 726 * that already cover the entire range. 727 * 728 * In that case build_sched_domains() will have terminated the 729 * iteration early and our sibling sd spans will be empty. 730 * Domains should always include the CPU they're built on, so 731 * check that. 732 */ 733 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 734 continue; 735 736 sg = build_group_from_child_sched_domain(sibling, cpu); 737 if (!sg) 738 goto fail; 739 740 sg_span = sched_group_span(sg); 741 cpumask_or(covered, covered, sg_span); 742 743 init_overlap_sched_group(sd, sg); 744 745 if (!first) 746 first = sg; 747 if (last) 748 last->next = sg; 749 last = sg; 750 last->next = first; 751 } 752 sd->groups = first; 753 754 return 0; 755 756 fail: 757 free_sched_groups(first, 0); 758 759 return -ENOMEM; 760 } 761 762 763 /* 764 * Package topology (also see the load-balance blurb in fair.c) 765 * 766 * The scheduler builds a tree structure to represent a number of important 767 * topology features. By default (default_topology[]) these include: 768 * 769 * - Simultaneous multithreading (SMT) 770 * - Multi-Core Cache (MC) 771 * - Package (DIE) 772 * 773 * Where the last one more or less denotes everything up to a NUMA node. 774 * 775 * The tree consists of 3 primary data structures: 776 * 777 * sched_domain -> sched_group -> sched_group_capacity 778 * ^ ^ ^ ^ 779 * `-' `-' 780 * 781 * The sched_domains are per-cpu and have a two way link (parent & child) and 782 * denote the ever growing mask of CPUs belonging to that level of topology. 783 * 784 * Each sched_domain has a circular (double) linked list of sched_group's, each 785 * denoting the domains of the level below (or individual CPUs in case of the 786 * first domain level). The sched_group linked by a sched_domain includes the 787 * CPU of that sched_domain [*]. 788 * 789 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 790 * 791 * CPU 0 1 2 3 4 5 6 7 792 * 793 * DIE [ ] 794 * MC [ ] [ ] 795 * SMT [ ] [ ] [ ] [ ] 796 * 797 * - or - 798 * 799 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 800 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 801 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 802 * 803 * CPU 0 1 2 3 4 5 6 7 804 * 805 * One way to think about it is: sched_domain moves you up and down among these 806 * topology levels, while sched_group moves you sideways through it, at child 807 * domain granularity. 808 * 809 * sched_group_capacity ensures each unique sched_group has shared storage. 810 * 811 * There are two related construction problems, both require a CPU that 812 * uniquely identify each group (for a given domain): 813 * 814 * - The first is the balance_cpu (see should_we_balance() and the 815 * load-balance blub in fair.c); for each group we only want 1 CPU to 816 * continue balancing at a higher domain. 817 * 818 * - The second is the sched_group_capacity; we want all identical groups 819 * to share a single sched_group_capacity. 820 * 821 * Since these topologies are exclusive by construction. That is, its 822 * impossible for an SMT thread to belong to multiple cores, and cores to 823 * be part of multiple caches. There is a very clear and unique location 824 * for each CPU in the hierarchy. 825 * 826 * Therefore computing a unique CPU for each group is trivial (the iteration 827 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 828 * group), we can simply pick the first CPU in each group. 829 * 830 * 831 * [*] in other words, the first group of each domain is its child domain. 832 */ 833 834 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 835 { 836 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 837 struct sched_domain *child = sd->child; 838 struct sched_group *sg; 839 840 if (child) 841 cpu = cpumask_first(sched_domain_span(child)); 842 843 sg = *per_cpu_ptr(sdd->sg, cpu); 844 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 845 846 /* For claim_allocations: */ 847 atomic_inc(&sg->ref); 848 atomic_inc(&sg->sgc->ref); 849 850 if (child) { 851 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 852 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 853 } else { 854 cpumask_set_cpu(cpu, sched_group_span(sg)); 855 cpumask_set_cpu(cpu, group_balance_mask(sg)); 856 } 857 858 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 859 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 860 861 return sg; 862 } 863 864 /* 865 * build_sched_groups will build a circular linked list of the groups 866 * covered by the given span, and will set each group's ->cpumask correctly, 867 * and ->cpu_capacity to 0. 868 * 869 * Assumes the sched_domain tree is fully constructed 870 */ 871 static int 872 build_sched_groups(struct sched_domain *sd, int cpu) 873 { 874 struct sched_group *first = NULL, *last = NULL; 875 struct sd_data *sdd = sd->private; 876 const struct cpumask *span = sched_domain_span(sd); 877 struct cpumask *covered; 878 int i; 879 880 lockdep_assert_held(&sched_domains_mutex); 881 covered = sched_domains_tmpmask; 882 883 cpumask_clear(covered); 884 885 for_each_cpu_wrap(i, span, cpu) { 886 struct sched_group *sg; 887 888 if (cpumask_test_cpu(i, covered)) 889 continue; 890 891 sg = get_group(i, sdd); 892 893 cpumask_or(covered, covered, sched_group_span(sg)); 894 895 if (!first) 896 first = sg; 897 if (last) 898 last->next = sg; 899 last = sg; 900 } 901 last->next = first; 902 sd->groups = first; 903 904 return 0; 905 } 906 907 /* 908 * Initialize sched groups cpu_capacity. 909 * 910 * cpu_capacity indicates the capacity of sched group, which is used while 911 * distributing the load between different sched groups in a sched domain. 912 * Typically cpu_capacity for all the groups in a sched domain will be same 913 * unless there are asymmetries in the topology. If there are asymmetries, 914 * group having more cpu_capacity will pickup more load compared to the 915 * group having less cpu_capacity. 916 */ 917 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 918 { 919 struct sched_group *sg = sd->groups; 920 921 WARN_ON(!sg); 922 923 do { 924 int cpu, max_cpu = -1; 925 926 sg->group_weight = cpumask_weight(sched_group_span(sg)); 927 928 if (!(sd->flags & SD_ASYM_PACKING)) 929 goto next; 930 931 for_each_cpu(cpu, sched_group_span(sg)) { 932 if (max_cpu < 0) 933 max_cpu = cpu; 934 else if (sched_asym_prefer(cpu, max_cpu)) 935 max_cpu = cpu; 936 } 937 sg->asym_prefer_cpu = max_cpu; 938 939 next: 940 sg = sg->next; 941 } while (sg != sd->groups); 942 943 if (cpu != group_balance_cpu(sg)) 944 return; 945 946 update_group_capacity(sd, cpu); 947 } 948 949 /* 950 * Initializers for schedule domains 951 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 952 */ 953 954 static int default_relax_domain_level = -1; 955 int sched_domain_level_max; 956 957 static int __init setup_relax_domain_level(char *str) 958 { 959 if (kstrtoint(str, 0, &default_relax_domain_level)) 960 pr_warn("Unable to set relax_domain_level\n"); 961 962 return 1; 963 } 964 __setup("relax_domain_level=", setup_relax_domain_level); 965 966 static void set_domain_attribute(struct sched_domain *sd, 967 struct sched_domain_attr *attr) 968 { 969 int request; 970 971 if (!attr || attr->relax_domain_level < 0) { 972 if (default_relax_domain_level < 0) 973 return; 974 else 975 request = default_relax_domain_level; 976 } else 977 request = attr->relax_domain_level; 978 if (request < sd->level) { 979 /* Turn off idle balance on this domain: */ 980 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 981 } else { 982 /* Turn on idle balance on this domain: */ 983 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 984 } 985 } 986 987 static void __sdt_free(const struct cpumask *cpu_map); 988 static int __sdt_alloc(const struct cpumask *cpu_map); 989 990 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 991 const struct cpumask *cpu_map) 992 { 993 switch (what) { 994 case sa_rootdomain: 995 if (!atomic_read(&d->rd->refcount)) 996 free_rootdomain(&d->rd->rcu); 997 /* Fall through */ 998 case sa_sd: 999 free_percpu(d->sd); 1000 /* Fall through */ 1001 case sa_sd_storage: 1002 __sdt_free(cpu_map); 1003 /* Fall through */ 1004 case sa_none: 1005 break; 1006 } 1007 } 1008 1009 static enum s_alloc 1010 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1011 { 1012 memset(d, 0, sizeof(*d)); 1013 1014 if (__sdt_alloc(cpu_map)) 1015 return sa_sd_storage; 1016 d->sd = alloc_percpu(struct sched_domain *); 1017 if (!d->sd) 1018 return sa_sd_storage; 1019 d->rd = alloc_rootdomain(); 1020 if (!d->rd) 1021 return sa_sd; 1022 return sa_rootdomain; 1023 } 1024 1025 /* 1026 * NULL the sd_data elements we've used to build the sched_domain and 1027 * sched_group structure so that the subsequent __free_domain_allocs() 1028 * will not free the data we're using. 1029 */ 1030 static void claim_allocations(int cpu, struct sched_domain *sd) 1031 { 1032 struct sd_data *sdd = sd->private; 1033 1034 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1035 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1036 1037 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1038 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1039 1040 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1041 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1042 1043 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1044 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1045 } 1046 1047 #ifdef CONFIG_NUMA 1048 static int sched_domains_numa_levels; 1049 enum numa_topology_type sched_numa_topology_type; 1050 static int *sched_domains_numa_distance; 1051 int sched_max_numa_distance; 1052 static struct cpumask ***sched_domains_numa_masks; 1053 static int sched_domains_curr_level; 1054 #endif 1055 1056 /* 1057 * SD_flags allowed in topology descriptions. 1058 * 1059 * These flags are purely descriptive of the topology and do not prescribe 1060 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1061 * function: 1062 * 1063 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1064 * SD_SHARE_PKG_RESOURCES - describes shared caches 1065 * SD_NUMA - describes NUMA topologies 1066 * SD_SHARE_POWERDOMAIN - describes shared power domain 1067 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1068 * 1069 * Odd one out, which beside describing the topology has a quirk also 1070 * prescribes the desired behaviour that goes along with it: 1071 * 1072 * SD_ASYM_PACKING - describes SMT quirks 1073 */ 1074 #define TOPOLOGY_SD_FLAGS \ 1075 (SD_SHARE_CPUCAPACITY | \ 1076 SD_SHARE_PKG_RESOURCES | \ 1077 SD_NUMA | \ 1078 SD_ASYM_PACKING | \ 1079 SD_ASYM_CPUCAPACITY | \ 1080 SD_SHARE_POWERDOMAIN) 1081 1082 static struct sched_domain * 1083 sd_init(struct sched_domain_topology_level *tl, 1084 const struct cpumask *cpu_map, 1085 struct sched_domain *child, int cpu) 1086 { 1087 struct sd_data *sdd = &tl->data; 1088 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1089 int sd_id, sd_weight, sd_flags = 0; 1090 1091 #ifdef CONFIG_NUMA 1092 /* 1093 * Ugly hack to pass state to sd_numa_mask()... 1094 */ 1095 sched_domains_curr_level = tl->numa_level; 1096 #endif 1097 1098 sd_weight = cpumask_weight(tl->mask(cpu)); 1099 1100 if (tl->sd_flags) 1101 sd_flags = (*tl->sd_flags)(); 1102 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1103 "wrong sd_flags in topology description\n")) 1104 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1105 1106 *sd = (struct sched_domain){ 1107 .min_interval = sd_weight, 1108 .max_interval = 2*sd_weight, 1109 .busy_factor = 32, 1110 .imbalance_pct = 125, 1111 1112 .cache_nice_tries = 0, 1113 .busy_idx = 0, 1114 .idle_idx = 0, 1115 .newidle_idx = 0, 1116 .wake_idx = 0, 1117 .forkexec_idx = 0, 1118 1119 .flags = 1*SD_LOAD_BALANCE 1120 | 1*SD_BALANCE_NEWIDLE 1121 | 1*SD_BALANCE_EXEC 1122 | 1*SD_BALANCE_FORK 1123 | 0*SD_BALANCE_WAKE 1124 | 1*SD_WAKE_AFFINE 1125 | 0*SD_SHARE_CPUCAPACITY 1126 | 0*SD_SHARE_PKG_RESOURCES 1127 | 0*SD_SERIALIZE 1128 | 0*SD_PREFER_SIBLING 1129 | 0*SD_NUMA 1130 | sd_flags 1131 , 1132 1133 .last_balance = jiffies, 1134 .balance_interval = sd_weight, 1135 .smt_gain = 0, 1136 .max_newidle_lb_cost = 0, 1137 .next_decay_max_lb_cost = jiffies, 1138 .child = child, 1139 #ifdef CONFIG_SCHED_DEBUG 1140 .name = tl->name, 1141 #endif 1142 }; 1143 1144 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1145 sd_id = cpumask_first(sched_domain_span(sd)); 1146 1147 /* 1148 * Convert topological properties into behaviour. 1149 */ 1150 1151 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1152 struct sched_domain *t = sd; 1153 1154 for_each_lower_domain(t) 1155 t->flags |= SD_BALANCE_WAKE; 1156 } 1157 1158 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1159 sd->flags |= SD_PREFER_SIBLING; 1160 sd->imbalance_pct = 110; 1161 sd->smt_gain = 1178; /* ~15% */ 1162 1163 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1164 sd->imbalance_pct = 117; 1165 sd->cache_nice_tries = 1; 1166 sd->busy_idx = 2; 1167 1168 #ifdef CONFIG_NUMA 1169 } else if (sd->flags & SD_NUMA) { 1170 sd->cache_nice_tries = 2; 1171 sd->busy_idx = 3; 1172 sd->idle_idx = 2; 1173 1174 sd->flags |= SD_SERIALIZE; 1175 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1176 sd->flags &= ~(SD_BALANCE_EXEC | 1177 SD_BALANCE_FORK | 1178 SD_WAKE_AFFINE); 1179 } 1180 1181 #endif 1182 } else { 1183 sd->flags |= SD_PREFER_SIBLING; 1184 sd->cache_nice_tries = 1; 1185 sd->busy_idx = 2; 1186 sd->idle_idx = 1; 1187 } 1188 1189 /* 1190 * For all levels sharing cache; connect a sched_domain_shared 1191 * instance. 1192 */ 1193 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1194 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1195 atomic_inc(&sd->shared->ref); 1196 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1197 } 1198 1199 sd->private = sdd; 1200 1201 return sd; 1202 } 1203 1204 /* 1205 * Topology list, bottom-up. 1206 */ 1207 static struct sched_domain_topology_level default_topology[] = { 1208 #ifdef CONFIG_SCHED_SMT 1209 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1210 #endif 1211 #ifdef CONFIG_SCHED_MC 1212 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1213 #endif 1214 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1215 { NULL, }, 1216 }; 1217 1218 static struct sched_domain_topology_level *sched_domain_topology = 1219 default_topology; 1220 1221 #define for_each_sd_topology(tl) \ 1222 for (tl = sched_domain_topology; tl->mask; tl++) 1223 1224 void set_sched_topology(struct sched_domain_topology_level *tl) 1225 { 1226 if (WARN_ON_ONCE(sched_smp_initialized)) 1227 return; 1228 1229 sched_domain_topology = tl; 1230 } 1231 1232 #ifdef CONFIG_NUMA 1233 1234 static const struct cpumask *sd_numa_mask(int cpu) 1235 { 1236 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1237 } 1238 1239 static void sched_numa_warn(const char *str) 1240 { 1241 static int done = false; 1242 int i,j; 1243 1244 if (done) 1245 return; 1246 1247 done = true; 1248 1249 printk(KERN_WARNING "ERROR: %s\n\n", str); 1250 1251 for (i = 0; i < nr_node_ids; i++) { 1252 printk(KERN_WARNING " "); 1253 for (j = 0; j < nr_node_ids; j++) 1254 printk(KERN_CONT "%02d ", node_distance(i,j)); 1255 printk(KERN_CONT "\n"); 1256 } 1257 printk(KERN_WARNING "\n"); 1258 } 1259 1260 bool find_numa_distance(int distance) 1261 { 1262 int i; 1263 1264 if (distance == node_distance(0, 0)) 1265 return true; 1266 1267 for (i = 0; i < sched_domains_numa_levels; i++) { 1268 if (sched_domains_numa_distance[i] == distance) 1269 return true; 1270 } 1271 1272 return false; 1273 } 1274 1275 /* 1276 * A system can have three types of NUMA topology: 1277 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1278 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1279 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1280 * 1281 * The difference between a glueless mesh topology and a backplane 1282 * topology lies in whether communication between not directly 1283 * connected nodes goes through intermediary nodes (where programs 1284 * could run), or through backplane controllers. This affects 1285 * placement of programs. 1286 * 1287 * The type of topology can be discerned with the following tests: 1288 * - If the maximum distance between any nodes is 1 hop, the system 1289 * is directly connected. 1290 * - If for two nodes A and B, located N > 1 hops away from each other, 1291 * there is an intermediary node C, which is < N hops away from both 1292 * nodes A and B, the system is a glueless mesh. 1293 */ 1294 static void init_numa_topology_type(void) 1295 { 1296 int a, b, c, n; 1297 1298 n = sched_max_numa_distance; 1299 1300 if (sched_domains_numa_levels <= 1) { 1301 sched_numa_topology_type = NUMA_DIRECT; 1302 return; 1303 } 1304 1305 for_each_online_node(a) { 1306 for_each_online_node(b) { 1307 /* Find two nodes furthest removed from each other. */ 1308 if (node_distance(a, b) < n) 1309 continue; 1310 1311 /* Is there an intermediary node between a and b? */ 1312 for_each_online_node(c) { 1313 if (node_distance(a, c) < n && 1314 node_distance(b, c) < n) { 1315 sched_numa_topology_type = 1316 NUMA_GLUELESS_MESH; 1317 return; 1318 } 1319 } 1320 1321 sched_numa_topology_type = NUMA_BACKPLANE; 1322 return; 1323 } 1324 } 1325 } 1326 1327 void sched_init_numa(void) 1328 { 1329 int next_distance, curr_distance = node_distance(0, 0); 1330 struct sched_domain_topology_level *tl; 1331 int level = 0; 1332 int i, j, k; 1333 1334 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1335 if (!sched_domains_numa_distance) 1336 return; 1337 1338 /* 1339 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1340 * unique distances in the node_distance() table. 1341 * 1342 * Assumes node_distance(0,j) includes all distances in 1343 * node_distance(i,j) in order to avoid cubic time. 1344 */ 1345 next_distance = curr_distance; 1346 for (i = 0; i < nr_node_ids; i++) { 1347 for (j = 0; j < nr_node_ids; j++) { 1348 for (k = 0; k < nr_node_ids; k++) { 1349 int distance = node_distance(i, k); 1350 1351 if (distance > curr_distance && 1352 (distance < next_distance || 1353 next_distance == curr_distance)) 1354 next_distance = distance; 1355 1356 /* 1357 * While not a strong assumption it would be nice to know 1358 * about cases where if node A is connected to B, B is not 1359 * equally connected to A. 1360 */ 1361 if (sched_debug() && node_distance(k, i) != distance) 1362 sched_numa_warn("Node-distance not symmetric"); 1363 1364 if (sched_debug() && i && !find_numa_distance(distance)) 1365 sched_numa_warn("Node-0 not representative"); 1366 } 1367 if (next_distance != curr_distance) { 1368 sched_domains_numa_distance[level++] = next_distance; 1369 sched_domains_numa_levels = level; 1370 curr_distance = next_distance; 1371 } else break; 1372 } 1373 1374 /* 1375 * In case of sched_debug() we verify the above assumption. 1376 */ 1377 if (!sched_debug()) 1378 break; 1379 } 1380 1381 if (!level) 1382 return; 1383 1384 /* 1385 * 'level' contains the number of unique distances, excluding the 1386 * identity distance node_distance(i,i). 1387 * 1388 * The sched_domains_numa_distance[] array includes the actual distance 1389 * numbers. 1390 */ 1391 1392 /* 1393 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1394 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1395 * the array will contain less then 'level' members. This could be 1396 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1397 * in other functions. 1398 * 1399 * We reset it to 'level' at the end of this function. 1400 */ 1401 sched_domains_numa_levels = 0; 1402 1403 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1404 if (!sched_domains_numa_masks) 1405 return; 1406 1407 /* 1408 * Now for each level, construct a mask per node which contains all 1409 * CPUs of nodes that are that many hops away from us. 1410 */ 1411 for (i = 0; i < level; i++) { 1412 sched_domains_numa_masks[i] = 1413 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1414 if (!sched_domains_numa_masks[i]) 1415 return; 1416 1417 for (j = 0; j < nr_node_ids; j++) { 1418 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1419 if (!mask) 1420 return; 1421 1422 sched_domains_numa_masks[i][j] = mask; 1423 1424 for_each_node(k) { 1425 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1426 continue; 1427 1428 cpumask_or(mask, mask, cpumask_of_node(k)); 1429 } 1430 } 1431 } 1432 1433 /* Compute default topology size */ 1434 for (i = 0; sched_domain_topology[i].mask; i++); 1435 1436 tl = kzalloc((i + level + 1) * 1437 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1438 if (!tl) 1439 return; 1440 1441 /* 1442 * Copy the default topology bits.. 1443 */ 1444 for (i = 0; sched_domain_topology[i].mask; i++) 1445 tl[i] = sched_domain_topology[i]; 1446 1447 /* 1448 * .. and append 'j' levels of NUMA goodness. 1449 */ 1450 for (j = 0; j < level; i++, j++) { 1451 tl[i] = (struct sched_domain_topology_level){ 1452 .mask = sd_numa_mask, 1453 .sd_flags = cpu_numa_flags, 1454 .flags = SDTL_OVERLAP, 1455 .numa_level = j, 1456 SD_INIT_NAME(NUMA) 1457 }; 1458 } 1459 1460 sched_domain_topology = tl; 1461 1462 sched_domains_numa_levels = level; 1463 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1464 1465 init_numa_topology_type(); 1466 } 1467 1468 void sched_domains_numa_masks_set(unsigned int cpu) 1469 { 1470 int node = cpu_to_node(cpu); 1471 int i, j; 1472 1473 for (i = 0; i < sched_domains_numa_levels; i++) { 1474 for (j = 0; j < nr_node_ids; j++) { 1475 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1476 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1477 } 1478 } 1479 } 1480 1481 void sched_domains_numa_masks_clear(unsigned int cpu) 1482 { 1483 int i, j; 1484 1485 for (i = 0; i < sched_domains_numa_levels; i++) { 1486 for (j = 0; j < nr_node_ids; j++) 1487 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1488 } 1489 } 1490 1491 #endif /* CONFIG_NUMA */ 1492 1493 static int __sdt_alloc(const struct cpumask *cpu_map) 1494 { 1495 struct sched_domain_topology_level *tl; 1496 int j; 1497 1498 for_each_sd_topology(tl) { 1499 struct sd_data *sdd = &tl->data; 1500 1501 sdd->sd = alloc_percpu(struct sched_domain *); 1502 if (!sdd->sd) 1503 return -ENOMEM; 1504 1505 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1506 if (!sdd->sds) 1507 return -ENOMEM; 1508 1509 sdd->sg = alloc_percpu(struct sched_group *); 1510 if (!sdd->sg) 1511 return -ENOMEM; 1512 1513 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1514 if (!sdd->sgc) 1515 return -ENOMEM; 1516 1517 for_each_cpu(j, cpu_map) { 1518 struct sched_domain *sd; 1519 struct sched_domain_shared *sds; 1520 struct sched_group *sg; 1521 struct sched_group_capacity *sgc; 1522 1523 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1524 GFP_KERNEL, cpu_to_node(j)); 1525 if (!sd) 1526 return -ENOMEM; 1527 1528 *per_cpu_ptr(sdd->sd, j) = sd; 1529 1530 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1531 GFP_KERNEL, cpu_to_node(j)); 1532 if (!sds) 1533 return -ENOMEM; 1534 1535 *per_cpu_ptr(sdd->sds, j) = sds; 1536 1537 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1538 GFP_KERNEL, cpu_to_node(j)); 1539 if (!sg) 1540 return -ENOMEM; 1541 1542 sg->next = sg; 1543 1544 *per_cpu_ptr(sdd->sg, j) = sg; 1545 1546 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1547 GFP_KERNEL, cpu_to_node(j)); 1548 if (!sgc) 1549 return -ENOMEM; 1550 1551 #ifdef CONFIG_SCHED_DEBUG 1552 sgc->id = j; 1553 #endif 1554 1555 *per_cpu_ptr(sdd->sgc, j) = sgc; 1556 } 1557 } 1558 1559 return 0; 1560 } 1561 1562 static void __sdt_free(const struct cpumask *cpu_map) 1563 { 1564 struct sched_domain_topology_level *tl; 1565 int j; 1566 1567 for_each_sd_topology(tl) { 1568 struct sd_data *sdd = &tl->data; 1569 1570 for_each_cpu(j, cpu_map) { 1571 struct sched_domain *sd; 1572 1573 if (sdd->sd) { 1574 sd = *per_cpu_ptr(sdd->sd, j); 1575 if (sd && (sd->flags & SD_OVERLAP)) 1576 free_sched_groups(sd->groups, 0); 1577 kfree(*per_cpu_ptr(sdd->sd, j)); 1578 } 1579 1580 if (sdd->sds) 1581 kfree(*per_cpu_ptr(sdd->sds, j)); 1582 if (sdd->sg) 1583 kfree(*per_cpu_ptr(sdd->sg, j)); 1584 if (sdd->sgc) 1585 kfree(*per_cpu_ptr(sdd->sgc, j)); 1586 } 1587 free_percpu(sdd->sd); 1588 sdd->sd = NULL; 1589 free_percpu(sdd->sds); 1590 sdd->sds = NULL; 1591 free_percpu(sdd->sg); 1592 sdd->sg = NULL; 1593 free_percpu(sdd->sgc); 1594 sdd->sgc = NULL; 1595 } 1596 } 1597 1598 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1599 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1600 struct sched_domain *child, int cpu) 1601 { 1602 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1603 1604 if (child) { 1605 sd->level = child->level + 1; 1606 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1607 child->parent = sd; 1608 1609 if (!cpumask_subset(sched_domain_span(child), 1610 sched_domain_span(sd))) { 1611 pr_err("BUG: arch topology borken\n"); 1612 #ifdef CONFIG_SCHED_DEBUG 1613 pr_err(" the %s domain not a subset of the %s domain\n", 1614 child->name, sd->name); 1615 #endif 1616 /* Fixup, ensure @sd has at least @child cpus. */ 1617 cpumask_or(sched_domain_span(sd), 1618 sched_domain_span(sd), 1619 sched_domain_span(child)); 1620 } 1621 1622 } 1623 set_domain_attribute(sd, attr); 1624 1625 return sd; 1626 } 1627 1628 /* 1629 * Build sched domains for a given set of CPUs and attach the sched domains 1630 * to the individual CPUs 1631 */ 1632 static int 1633 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1634 { 1635 enum s_alloc alloc_state; 1636 struct sched_domain *sd; 1637 struct s_data d; 1638 struct rq *rq = NULL; 1639 int i, ret = -ENOMEM; 1640 1641 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1642 if (alloc_state != sa_rootdomain) 1643 goto error; 1644 1645 /* Set up domains for CPUs specified by the cpu_map: */ 1646 for_each_cpu(i, cpu_map) { 1647 struct sched_domain_topology_level *tl; 1648 1649 sd = NULL; 1650 for_each_sd_topology(tl) { 1651 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1652 if (tl == sched_domain_topology) 1653 *per_cpu_ptr(d.sd, i) = sd; 1654 if (tl->flags & SDTL_OVERLAP) 1655 sd->flags |= SD_OVERLAP; 1656 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1657 break; 1658 } 1659 } 1660 1661 /* Build the groups for the domains */ 1662 for_each_cpu(i, cpu_map) { 1663 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1664 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1665 if (sd->flags & SD_OVERLAP) { 1666 if (build_overlap_sched_groups(sd, i)) 1667 goto error; 1668 } else { 1669 if (build_sched_groups(sd, i)) 1670 goto error; 1671 } 1672 } 1673 } 1674 1675 /* Calculate CPU capacity for physical packages and nodes */ 1676 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1677 if (!cpumask_test_cpu(i, cpu_map)) 1678 continue; 1679 1680 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1681 claim_allocations(i, sd); 1682 init_sched_groups_capacity(i, sd); 1683 } 1684 } 1685 1686 /* Attach the domains */ 1687 rcu_read_lock(); 1688 for_each_cpu(i, cpu_map) { 1689 rq = cpu_rq(i); 1690 sd = *per_cpu_ptr(d.sd, i); 1691 1692 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1693 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1694 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1695 1696 cpu_attach_domain(sd, d.rd, i); 1697 } 1698 rcu_read_unlock(); 1699 1700 if (rq && sched_debug_enabled) { 1701 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1702 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1703 } 1704 1705 ret = 0; 1706 error: 1707 __free_domain_allocs(&d, alloc_state, cpu_map); 1708 return ret; 1709 } 1710 1711 /* Current sched domains: */ 1712 static cpumask_var_t *doms_cur; 1713 1714 /* Number of sched domains in 'doms_cur': */ 1715 static int ndoms_cur; 1716 1717 /* Attribues of custom domains in 'doms_cur' */ 1718 static struct sched_domain_attr *dattr_cur; 1719 1720 /* 1721 * Special case: If a kmalloc() of a doms_cur partition (array of 1722 * cpumask) fails, then fallback to a single sched domain, 1723 * as determined by the single cpumask fallback_doms. 1724 */ 1725 static cpumask_var_t fallback_doms; 1726 1727 /* 1728 * arch_update_cpu_topology lets virtualized architectures update the 1729 * CPU core maps. It is supposed to return 1 if the topology changed 1730 * or 0 if it stayed the same. 1731 */ 1732 int __weak arch_update_cpu_topology(void) 1733 { 1734 return 0; 1735 } 1736 1737 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1738 { 1739 int i; 1740 cpumask_var_t *doms; 1741 1742 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1743 if (!doms) 1744 return NULL; 1745 for (i = 0; i < ndoms; i++) { 1746 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1747 free_sched_domains(doms, i); 1748 return NULL; 1749 } 1750 } 1751 return doms; 1752 } 1753 1754 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1755 { 1756 unsigned int i; 1757 for (i = 0; i < ndoms; i++) 1758 free_cpumask_var(doms[i]); 1759 kfree(doms); 1760 } 1761 1762 /* 1763 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1764 * For now this just excludes isolated CPUs, but could be used to 1765 * exclude other special cases in the future. 1766 */ 1767 int sched_init_domains(const struct cpumask *cpu_map) 1768 { 1769 int err; 1770 1771 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1772 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1773 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1774 1775 arch_update_cpu_topology(); 1776 ndoms_cur = 1; 1777 doms_cur = alloc_sched_domains(ndoms_cur); 1778 if (!doms_cur) 1779 doms_cur = &fallback_doms; 1780 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1781 err = build_sched_domains(doms_cur[0], NULL); 1782 register_sched_domain_sysctl(); 1783 1784 return err; 1785 } 1786 1787 /* 1788 * Detach sched domains from a group of CPUs specified in cpu_map 1789 * These CPUs will now be attached to the NULL domain 1790 */ 1791 static void detach_destroy_domains(const struct cpumask *cpu_map) 1792 { 1793 int i; 1794 1795 rcu_read_lock(); 1796 for_each_cpu(i, cpu_map) 1797 cpu_attach_domain(NULL, &def_root_domain, i); 1798 rcu_read_unlock(); 1799 } 1800 1801 /* handle null as "default" */ 1802 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1803 struct sched_domain_attr *new, int idx_new) 1804 { 1805 struct sched_domain_attr tmp; 1806 1807 /* Fast path: */ 1808 if (!new && !cur) 1809 return 1; 1810 1811 tmp = SD_ATTR_INIT; 1812 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1813 new ? (new + idx_new) : &tmp, 1814 sizeof(struct sched_domain_attr)); 1815 } 1816 1817 /* 1818 * Partition sched domains as specified by the 'ndoms_new' 1819 * cpumasks in the array doms_new[] of cpumasks. This compares 1820 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1821 * It destroys each deleted domain and builds each new domain. 1822 * 1823 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1824 * The masks don't intersect (don't overlap.) We should setup one 1825 * sched domain for each mask. CPUs not in any of the cpumasks will 1826 * not be load balanced. If the same cpumask appears both in the 1827 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1828 * it as it is. 1829 * 1830 * The passed in 'doms_new' should be allocated using 1831 * alloc_sched_domains. This routine takes ownership of it and will 1832 * free_sched_domains it when done with it. If the caller failed the 1833 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1834 * and partition_sched_domains() will fallback to the single partition 1835 * 'fallback_doms', it also forces the domains to be rebuilt. 1836 * 1837 * If doms_new == NULL it will be replaced with cpu_online_mask. 1838 * ndoms_new == 0 is a special case for destroying existing domains, 1839 * and it will not create the default domain. 1840 * 1841 * Call with hotplug lock held 1842 */ 1843 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1844 struct sched_domain_attr *dattr_new) 1845 { 1846 int i, j, n; 1847 int new_topology; 1848 1849 mutex_lock(&sched_domains_mutex); 1850 1851 /* Always unregister in case we don't destroy any domains: */ 1852 unregister_sched_domain_sysctl(); 1853 1854 /* Let the architecture update CPU core mappings: */ 1855 new_topology = arch_update_cpu_topology(); 1856 1857 n = doms_new ? ndoms_new : 0; 1858 1859 /* Destroy deleted domains: */ 1860 for (i = 0; i < ndoms_cur; i++) { 1861 for (j = 0; j < n && !new_topology; j++) { 1862 if (cpumask_equal(doms_cur[i], doms_new[j]) 1863 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1864 goto match1; 1865 } 1866 /* No match - a current sched domain not in new doms_new[] */ 1867 detach_destroy_domains(doms_cur[i]); 1868 match1: 1869 ; 1870 } 1871 1872 n = ndoms_cur; 1873 if (doms_new == NULL) { 1874 n = 0; 1875 doms_new = &fallback_doms; 1876 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1877 WARN_ON_ONCE(dattr_new); 1878 } 1879 1880 /* Build new domains: */ 1881 for (i = 0; i < ndoms_new; i++) { 1882 for (j = 0; j < n && !new_topology; j++) { 1883 if (cpumask_equal(doms_new[i], doms_cur[j]) 1884 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1885 goto match2; 1886 } 1887 /* No match - add a new doms_new */ 1888 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1889 match2: 1890 ; 1891 } 1892 1893 /* Remember the new sched domains: */ 1894 if (doms_cur != &fallback_doms) 1895 free_sched_domains(doms_cur, ndoms_cur); 1896 1897 kfree(dattr_cur); 1898 doms_cur = doms_new; 1899 dattr_cur = dattr_new; 1900 ndoms_cur = ndoms_new; 1901 1902 register_sched_domain_sysctl(); 1903 1904 mutex_unlock(&sched_domains_mutex); 1905 } 1906 1907