xref: /openbmc/linux/kernel/sched/topology.c (revision 4cfb908054456ad8b6b8cd5108bbdf80faade8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static int __init sched_debug_setup(char *str)
17 {
18 	sched_debug_verbose = true;
19 
20 	return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23 
24 static inline bool sched_debug(void)
25 {
26 	return sched_debug_verbose;
27 }
28 
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34 
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 				  struct cpumask *groupmask)
37 {
38 	struct sched_group *group = sd->groups;
39 	unsigned long flags = sd->flags;
40 	unsigned int idx;
41 
42 	cpumask_clear(groupmask);
43 
44 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 	printk(KERN_CONT "span=%*pbl level=%s\n",
46 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 
48 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 	}
51 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53 	}
54 
55 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 		unsigned int flag = BIT(idx);
57 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 
59 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 		    !(sd->child->flags & flag))
61 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 			       sd_flag_debug[idx].name);
63 
64 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 		    !(sd->parent->flags & flag))
66 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 			       sd_flag_debug[idx].name);
68 	}
69 
70 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71 	do {
72 		if (!group) {
73 			printk("\n");
74 			printk(KERN_ERR "ERROR: group is NULL\n");
75 			break;
76 		}
77 
78 		if (cpumask_empty(sched_group_span(group))) {
79 			printk(KERN_CONT "\n");
80 			printk(KERN_ERR "ERROR: empty group\n");
81 			break;
82 		}
83 
84 		if (!(sd->flags & SD_OVERLAP) &&
85 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86 			printk(KERN_CONT "\n");
87 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88 			break;
89 		}
90 
91 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92 
93 		printk(KERN_CONT " %d:{ span=%*pbl",
94 				group->sgc->id,
95 				cpumask_pr_args(sched_group_span(group)));
96 
97 		if ((sd->flags & SD_OVERLAP) &&
98 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 			printk(KERN_CONT " mask=%*pbl",
100 				cpumask_pr_args(group_balance_mask(group)));
101 		}
102 
103 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 
106 		if (group == sd->groups && sd->child &&
107 		    !cpumask_equal(sched_domain_span(sd->child),
108 				   sched_group_span(group))) {
109 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110 		}
111 
112 		printk(KERN_CONT " }");
113 
114 		group = group->next;
115 
116 		if (group != sd->groups)
117 			printk(KERN_CONT ",");
118 
119 	} while (group != sd->groups);
120 	printk(KERN_CONT "\n");
121 
122 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 
125 	if (sd->parent &&
126 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128 	return 0;
129 }
130 
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133 	int level = 0;
134 
135 	if (!sched_debug_verbose)
136 		return;
137 
138 	if (!sd) {
139 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 		return;
141 	}
142 
143 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 
145 	for (;;) {
146 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147 			break;
148 		level++;
149 		sd = sd->parent;
150 		if (!sd)
151 			break;
152 	}
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155 
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160 	return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163 
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170 
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174 		return 1;
175 
176 	/* Following flags need at least 2 groups */
177 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 	    (sd->groups != sd->groups->next))
179 		return 0;
180 
181 	/* Following flags don't use groups */
182 	if (sd->flags & (SD_WAKE_AFFINE))
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191 	unsigned long cflags = sd->flags, pflags = parent->flags;
192 
193 	if (sd_degenerate(parent))
194 		return 1;
195 
196 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197 		return 0;
198 
199 	/* Flags needing groups don't count if only 1 group in parent */
200 	if (parent->groups == parent->groups->next)
201 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 
203 	if (~cflags & pflags)
204 		return 0;
205 
206 	return 1;
207 }
208 
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
214 
215 void rebuild_sched_domains_energy(void)
216 {
217 	mutex_lock(&sched_energy_mutex);
218 	sched_energy_update = true;
219 	rebuild_sched_domains();
220 	sched_energy_update = false;
221 	mutex_unlock(&sched_energy_mutex);
222 }
223 
224 #ifdef CONFIG_PROC_SYSCTL
225 static int sched_energy_aware_handler(struct ctl_table *table, int write,
226 		void *buffer, size_t *lenp, loff_t *ppos)
227 {
228 	int ret, state;
229 
230 	if (write && !capable(CAP_SYS_ADMIN))
231 		return -EPERM;
232 
233 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
234 	if (!ret && write) {
235 		state = static_branch_unlikely(&sched_energy_present);
236 		if (state != sysctl_sched_energy_aware)
237 			rebuild_sched_domains_energy();
238 	}
239 
240 	return ret;
241 }
242 
243 static struct ctl_table sched_energy_aware_sysctls[] = {
244 	{
245 		.procname       = "sched_energy_aware",
246 		.data           = &sysctl_sched_energy_aware,
247 		.maxlen         = sizeof(unsigned int),
248 		.mode           = 0644,
249 		.proc_handler   = sched_energy_aware_handler,
250 		.extra1         = SYSCTL_ZERO,
251 		.extra2         = SYSCTL_ONE,
252 	},
253 	{}
254 };
255 
256 static int __init sched_energy_aware_sysctl_init(void)
257 {
258 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
259 	return 0;
260 }
261 
262 late_initcall(sched_energy_aware_sysctl_init);
263 #endif
264 
265 static void free_pd(struct perf_domain *pd)
266 {
267 	struct perf_domain *tmp;
268 
269 	while (pd) {
270 		tmp = pd->next;
271 		kfree(pd);
272 		pd = tmp;
273 	}
274 }
275 
276 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
277 {
278 	while (pd) {
279 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
280 			return pd;
281 		pd = pd->next;
282 	}
283 
284 	return NULL;
285 }
286 
287 static struct perf_domain *pd_init(int cpu)
288 {
289 	struct em_perf_domain *obj = em_cpu_get(cpu);
290 	struct perf_domain *pd;
291 
292 	if (!obj) {
293 		if (sched_debug())
294 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
295 		return NULL;
296 	}
297 
298 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
299 	if (!pd)
300 		return NULL;
301 	pd->em_pd = obj;
302 
303 	return pd;
304 }
305 
306 static void perf_domain_debug(const struct cpumask *cpu_map,
307 						struct perf_domain *pd)
308 {
309 	if (!sched_debug() || !pd)
310 		return;
311 
312 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
313 
314 	while (pd) {
315 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
316 				cpumask_first(perf_domain_span(pd)),
317 				cpumask_pr_args(perf_domain_span(pd)),
318 				em_pd_nr_perf_states(pd->em_pd));
319 		pd = pd->next;
320 	}
321 
322 	printk(KERN_CONT "\n");
323 }
324 
325 static void destroy_perf_domain_rcu(struct rcu_head *rp)
326 {
327 	struct perf_domain *pd;
328 
329 	pd = container_of(rp, struct perf_domain, rcu);
330 	free_pd(pd);
331 }
332 
333 static void sched_energy_set(bool has_eas)
334 {
335 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
336 		if (sched_debug())
337 			pr_info("%s: stopping EAS\n", __func__);
338 		static_branch_disable_cpuslocked(&sched_energy_present);
339 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
340 		if (sched_debug())
341 			pr_info("%s: starting EAS\n", __func__);
342 		static_branch_enable_cpuslocked(&sched_energy_present);
343 	}
344 }
345 
346 /*
347  * EAS can be used on a root domain if it meets all the following conditions:
348  *    1. an Energy Model (EM) is available;
349  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
350  *    3. no SMT is detected.
351  *    4. the EM complexity is low enough to keep scheduling overheads low;
352  *    5. schedutil is driving the frequency of all CPUs of the rd;
353  *    6. frequency invariance support is present;
354  *
355  * The complexity of the Energy Model is defined as:
356  *
357  *              C = nr_pd * (nr_cpus + nr_ps)
358  *
359  * with parameters defined as:
360  *  - nr_pd:    the number of performance domains
361  *  - nr_cpus:  the number of CPUs
362  *  - nr_ps:    the sum of the number of performance states of all performance
363  *              domains (for example, on a system with 2 performance domains,
364  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
365  *
366  * It is generally not a good idea to use such a model in the wake-up path on
367  * very complex platforms because of the associated scheduling overheads. The
368  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
369  * with per-CPU DVFS and less than 8 performance states each, for example.
370  */
371 #define EM_MAX_COMPLEXITY 2048
372 
373 extern struct cpufreq_governor schedutil_gov;
374 static bool build_perf_domains(const struct cpumask *cpu_map)
375 {
376 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
377 	struct perf_domain *pd = NULL, *tmp;
378 	int cpu = cpumask_first(cpu_map);
379 	struct root_domain *rd = cpu_rq(cpu)->rd;
380 	struct cpufreq_policy *policy;
381 	struct cpufreq_governor *gov;
382 
383 	if (!sysctl_sched_energy_aware)
384 		goto free;
385 
386 	/* EAS is enabled for asymmetric CPU capacity topologies. */
387 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
388 		if (sched_debug()) {
389 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
390 					cpumask_pr_args(cpu_map));
391 		}
392 		goto free;
393 	}
394 
395 	/* EAS definitely does *not* handle SMT */
396 	if (sched_smt_active()) {
397 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
398 			cpumask_pr_args(cpu_map));
399 		goto free;
400 	}
401 
402 	if (!arch_scale_freq_invariant()) {
403 		if (sched_debug()) {
404 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
405 				cpumask_pr_args(cpu_map));
406 		}
407 		goto free;
408 	}
409 
410 	for_each_cpu(i, cpu_map) {
411 		/* Skip already covered CPUs. */
412 		if (find_pd(pd, i))
413 			continue;
414 
415 		/* Do not attempt EAS if schedutil is not being used. */
416 		policy = cpufreq_cpu_get(i);
417 		if (!policy)
418 			goto free;
419 		gov = policy->governor;
420 		cpufreq_cpu_put(policy);
421 		if (gov != &schedutil_gov) {
422 			if (rd->pd)
423 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
424 						cpumask_pr_args(cpu_map));
425 			goto free;
426 		}
427 
428 		/* Create the new pd and add it to the local list. */
429 		tmp = pd_init(i);
430 		if (!tmp)
431 			goto free;
432 		tmp->next = pd;
433 		pd = tmp;
434 
435 		/*
436 		 * Count performance domains and performance states for the
437 		 * complexity check.
438 		 */
439 		nr_pd++;
440 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
441 	}
442 
443 	/* Bail out if the Energy Model complexity is too high. */
444 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
445 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
446 						cpumask_pr_args(cpu_map));
447 		goto free;
448 	}
449 
450 	perf_domain_debug(cpu_map, pd);
451 
452 	/* Attach the new list of performance domains to the root domain. */
453 	tmp = rd->pd;
454 	rcu_assign_pointer(rd->pd, pd);
455 	if (tmp)
456 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
457 
458 	return !!pd;
459 
460 free:
461 	free_pd(pd);
462 	tmp = rd->pd;
463 	rcu_assign_pointer(rd->pd, NULL);
464 	if (tmp)
465 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
466 
467 	return false;
468 }
469 #else
470 static void free_pd(struct perf_domain *pd) { }
471 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
472 
473 static void free_rootdomain(struct rcu_head *rcu)
474 {
475 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
476 
477 	cpupri_cleanup(&rd->cpupri);
478 	cpudl_cleanup(&rd->cpudl);
479 	free_cpumask_var(rd->dlo_mask);
480 	free_cpumask_var(rd->rto_mask);
481 	free_cpumask_var(rd->online);
482 	free_cpumask_var(rd->span);
483 	free_pd(rd->pd);
484 	kfree(rd);
485 }
486 
487 void rq_attach_root(struct rq *rq, struct root_domain *rd)
488 {
489 	struct root_domain *old_rd = NULL;
490 	struct rq_flags rf;
491 
492 	rq_lock_irqsave(rq, &rf);
493 
494 	if (rq->rd) {
495 		old_rd = rq->rd;
496 
497 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
498 			set_rq_offline(rq);
499 
500 		cpumask_clear_cpu(rq->cpu, old_rd->span);
501 
502 		/*
503 		 * If we dont want to free the old_rd yet then
504 		 * set old_rd to NULL to skip the freeing later
505 		 * in this function:
506 		 */
507 		if (!atomic_dec_and_test(&old_rd->refcount))
508 			old_rd = NULL;
509 	}
510 
511 	atomic_inc(&rd->refcount);
512 	rq->rd = rd;
513 
514 	cpumask_set_cpu(rq->cpu, rd->span);
515 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
516 		set_rq_online(rq);
517 
518 	rq_unlock_irqrestore(rq, &rf);
519 
520 	if (old_rd)
521 		call_rcu(&old_rd->rcu, free_rootdomain);
522 }
523 
524 void sched_get_rd(struct root_domain *rd)
525 {
526 	atomic_inc(&rd->refcount);
527 }
528 
529 void sched_put_rd(struct root_domain *rd)
530 {
531 	if (!atomic_dec_and_test(&rd->refcount))
532 		return;
533 
534 	call_rcu(&rd->rcu, free_rootdomain);
535 }
536 
537 static int init_rootdomain(struct root_domain *rd)
538 {
539 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
540 		goto out;
541 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
542 		goto free_span;
543 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
544 		goto free_online;
545 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
546 		goto free_dlo_mask;
547 
548 #ifdef HAVE_RT_PUSH_IPI
549 	rd->rto_cpu = -1;
550 	raw_spin_lock_init(&rd->rto_lock);
551 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
552 #endif
553 
554 	rd->visit_gen = 0;
555 	init_dl_bw(&rd->dl_bw);
556 	if (cpudl_init(&rd->cpudl) != 0)
557 		goto free_rto_mask;
558 
559 	if (cpupri_init(&rd->cpupri) != 0)
560 		goto free_cpudl;
561 	return 0;
562 
563 free_cpudl:
564 	cpudl_cleanup(&rd->cpudl);
565 free_rto_mask:
566 	free_cpumask_var(rd->rto_mask);
567 free_dlo_mask:
568 	free_cpumask_var(rd->dlo_mask);
569 free_online:
570 	free_cpumask_var(rd->online);
571 free_span:
572 	free_cpumask_var(rd->span);
573 out:
574 	return -ENOMEM;
575 }
576 
577 /*
578  * By default the system creates a single root-domain with all CPUs as
579  * members (mimicking the global state we have today).
580  */
581 struct root_domain def_root_domain;
582 
583 void __init init_defrootdomain(void)
584 {
585 	init_rootdomain(&def_root_domain);
586 
587 	atomic_set(&def_root_domain.refcount, 1);
588 }
589 
590 static struct root_domain *alloc_rootdomain(void)
591 {
592 	struct root_domain *rd;
593 
594 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
595 	if (!rd)
596 		return NULL;
597 
598 	if (init_rootdomain(rd) != 0) {
599 		kfree(rd);
600 		return NULL;
601 	}
602 
603 	return rd;
604 }
605 
606 static void free_sched_groups(struct sched_group *sg, int free_sgc)
607 {
608 	struct sched_group *tmp, *first;
609 
610 	if (!sg)
611 		return;
612 
613 	first = sg;
614 	do {
615 		tmp = sg->next;
616 
617 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
618 			kfree(sg->sgc);
619 
620 		if (atomic_dec_and_test(&sg->ref))
621 			kfree(sg);
622 		sg = tmp;
623 	} while (sg != first);
624 }
625 
626 static void destroy_sched_domain(struct sched_domain *sd)
627 {
628 	/*
629 	 * A normal sched domain may have multiple group references, an
630 	 * overlapping domain, having private groups, only one.  Iterate,
631 	 * dropping group/capacity references, freeing where none remain.
632 	 */
633 	free_sched_groups(sd->groups, 1);
634 
635 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
636 		kfree(sd->shared);
637 	kfree(sd);
638 }
639 
640 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
641 {
642 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
643 
644 	while (sd) {
645 		struct sched_domain *parent = sd->parent;
646 		destroy_sched_domain(sd);
647 		sd = parent;
648 	}
649 }
650 
651 static void destroy_sched_domains(struct sched_domain *sd)
652 {
653 	if (sd)
654 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
655 }
656 
657 /*
658  * Keep a special pointer to the highest sched_domain that has
659  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
660  * allows us to avoid some pointer chasing select_idle_sibling().
661  *
662  * Also keep a unique ID per domain (we use the first CPU number in
663  * the cpumask of the domain), this allows us to quickly tell if
664  * two CPUs are in the same cache domain, see cpus_share_cache().
665  */
666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
667 DEFINE_PER_CPU(int, sd_llc_size);
668 DEFINE_PER_CPU(int, sd_llc_id);
669 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
671 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
673 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
674 
675 static void update_top_cache_domain(int cpu)
676 {
677 	struct sched_domain_shared *sds = NULL;
678 	struct sched_domain *sd;
679 	int id = cpu;
680 	int size = 1;
681 
682 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
683 	if (sd) {
684 		id = cpumask_first(sched_domain_span(sd));
685 		size = cpumask_weight(sched_domain_span(sd));
686 		sds = sd->shared;
687 	}
688 
689 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
690 	per_cpu(sd_llc_size, cpu) = size;
691 	per_cpu(sd_llc_id, cpu) = id;
692 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
693 
694 	sd = lowest_flag_domain(cpu, SD_NUMA);
695 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
696 
697 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
698 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
699 
700 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
701 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
702 }
703 
704 /*
705  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
706  * hold the hotplug lock.
707  */
708 static void
709 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
710 {
711 	struct rq *rq = cpu_rq(cpu);
712 	struct sched_domain *tmp;
713 
714 	/* Remove the sched domains which do not contribute to scheduling. */
715 	for (tmp = sd; tmp; ) {
716 		struct sched_domain *parent = tmp->parent;
717 		if (!parent)
718 			break;
719 
720 		if (sd_parent_degenerate(tmp, parent)) {
721 			tmp->parent = parent->parent;
722 
723 			if (parent->parent) {
724 				parent->parent->child = tmp;
725 				if (tmp->flags & SD_SHARE_CPUCAPACITY)
726 					parent->parent->groups->flags |= SD_SHARE_CPUCAPACITY;
727 			}
728 
729 			/*
730 			 * Transfer SD_PREFER_SIBLING down in case of a
731 			 * degenerate parent; the spans match for this
732 			 * so the property transfers.
733 			 */
734 			if (parent->flags & SD_PREFER_SIBLING)
735 				tmp->flags |= SD_PREFER_SIBLING;
736 			destroy_sched_domain(parent);
737 		} else
738 			tmp = tmp->parent;
739 	}
740 
741 	if (sd && sd_degenerate(sd)) {
742 		tmp = sd;
743 		sd = sd->parent;
744 		destroy_sched_domain(tmp);
745 		if (sd) {
746 			struct sched_group *sg = sd->groups;
747 
748 			/*
749 			 * sched groups hold the flags of the child sched
750 			 * domain for convenience. Clear such flags since
751 			 * the child is being destroyed.
752 			 */
753 			do {
754 				sg->flags = 0;
755 			} while (sg != sd->groups);
756 
757 			sd->child = NULL;
758 		}
759 	}
760 
761 	sched_domain_debug(sd, cpu);
762 
763 	rq_attach_root(rq, rd);
764 	tmp = rq->sd;
765 	rcu_assign_pointer(rq->sd, sd);
766 	dirty_sched_domain_sysctl(cpu);
767 	destroy_sched_domains(tmp);
768 
769 	update_top_cache_domain(cpu);
770 }
771 
772 struct s_data {
773 	struct sched_domain * __percpu *sd;
774 	struct root_domain	*rd;
775 };
776 
777 enum s_alloc {
778 	sa_rootdomain,
779 	sa_sd,
780 	sa_sd_storage,
781 	sa_none,
782 };
783 
784 /*
785  * Return the canonical balance CPU for this group, this is the first CPU
786  * of this group that's also in the balance mask.
787  *
788  * The balance mask are all those CPUs that could actually end up at this
789  * group. See build_balance_mask().
790  *
791  * Also see should_we_balance().
792  */
793 int group_balance_cpu(struct sched_group *sg)
794 {
795 	return cpumask_first(group_balance_mask(sg));
796 }
797 
798 
799 /*
800  * NUMA topology (first read the regular topology blurb below)
801  *
802  * Given a node-distance table, for example:
803  *
804  *   node   0   1   2   3
805  *     0:  10  20  30  20
806  *     1:  20  10  20  30
807  *     2:  30  20  10  20
808  *     3:  20  30  20  10
809  *
810  * which represents a 4 node ring topology like:
811  *
812  *   0 ----- 1
813  *   |       |
814  *   |       |
815  *   |       |
816  *   3 ----- 2
817  *
818  * We want to construct domains and groups to represent this. The way we go
819  * about doing this is to build the domains on 'hops'. For each NUMA level we
820  * construct the mask of all nodes reachable in @level hops.
821  *
822  * For the above NUMA topology that gives 3 levels:
823  *
824  * NUMA-2	0-3		0-3		0-3		0-3
825  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
826  *
827  * NUMA-1	0-1,3		0-2		1-3		0,2-3
828  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
829  *
830  * NUMA-0	0		1		2		3
831  *
832  *
833  * As can be seen; things don't nicely line up as with the regular topology.
834  * When we iterate a domain in child domain chunks some nodes can be
835  * represented multiple times -- hence the "overlap" naming for this part of
836  * the topology.
837  *
838  * In order to minimize this overlap, we only build enough groups to cover the
839  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
840  *
841  * Because:
842  *
843  *  - the first group of each domain is its child domain; this
844  *    gets us the first 0-1,3
845  *  - the only uncovered node is 2, who's child domain is 1-3.
846  *
847  * However, because of the overlap, computing a unique CPU for each group is
848  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
849  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
850  * end up at those groups (they would end up in group: 0-1,3).
851  *
852  * To correct this we have to introduce the group balance mask. This mask
853  * will contain those CPUs in the group that can reach this group given the
854  * (child) domain tree.
855  *
856  * With this we can once again compute balance_cpu and sched_group_capacity
857  * relations.
858  *
859  * XXX include words on how balance_cpu is unique and therefore can be
860  * used for sched_group_capacity links.
861  *
862  *
863  * Another 'interesting' topology is:
864  *
865  *   node   0   1   2   3
866  *     0:  10  20  20  30
867  *     1:  20  10  20  20
868  *     2:  20  20  10  20
869  *     3:  30  20  20  10
870  *
871  * Which looks a little like:
872  *
873  *   0 ----- 1
874  *   |     / |
875  *   |   /   |
876  *   | /     |
877  *   2 ----- 3
878  *
879  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
880  * are not.
881  *
882  * This leads to a few particularly weird cases where the sched_domain's are
883  * not of the same number for each CPU. Consider:
884  *
885  * NUMA-2	0-3						0-3
886  *  groups:	{0-2},{1-3}					{1-3},{0-2}
887  *
888  * NUMA-1	0-2		0-3		0-3		1-3
889  *
890  * NUMA-0	0		1		2		3
891  *
892  */
893 
894 
895 /*
896  * Build the balance mask; it contains only those CPUs that can arrive at this
897  * group and should be considered to continue balancing.
898  *
899  * We do this during the group creation pass, therefore the group information
900  * isn't complete yet, however since each group represents a (child) domain we
901  * can fully construct this using the sched_domain bits (which are already
902  * complete).
903  */
904 static void
905 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
906 {
907 	const struct cpumask *sg_span = sched_group_span(sg);
908 	struct sd_data *sdd = sd->private;
909 	struct sched_domain *sibling;
910 	int i;
911 
912 	cpumask_clear(mask);
913 
914 	for_each_cpu(i, sg_span) {
915 		sibling = *per_cpu_ptr(sdd->sd, i);
916 
917 		/*
918 		 * Can happen in the asymmetric case, where these siblings are
919 		 * unused. The mask will not be empty because those CPUs that
920 		 * do have the top domain _should_ span the domain.
921 		 */
922 		if (!sibling->child)
923 			continue;
924 
925 		/* If we would not end up here, we can't continue from here */
926 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
927 			continue;
928 
929 		cpumask_set_cpu(i, mask);
930 	}
931 
932 	/* We must not have empty masks here */
933 	WARN_ON_ONCE(cpumask_empty(mask));
934 }
935 
936 /*
937  * XXX: This creates per-node group entries; since the load-balancer will
938  * immediately access remote memory to construct this group's load-balance
939  * statistics having the groups node local is of dubious benefit.
940  */
941 static struct sched_group *
942 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
943 {
944 	struct sched_group *sg;
945 	struct cpumask *sg_span;
946 
947 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
948 			GFP_KERNEL, cpu_to_node(cpu));
949 
950 	if (!sg)
951 		return NULL;
952 
953 	sg_span = sched_group_span(sg);
954 	if (sd->child) {
955 		cpumask_copy(sg_span, sched_domain_span(sd->child));
956 		sg->flags = sd->child->flags;
957 	} else {
958 		cpumask_copy(sg_span, sched_domain_span(sd));
959 	}
960 
961 	atomic_inc(&sg->ref);
962 	return sg;
963 }
964 
965 static void init_overlap_sched_group(struct sched_domain *sd,
966 				     struct sched_group *sg)
967 {
968 	struct cpumask *mask = sched_domains_tmpmask2;
969 	struct sd_data *sdd = sd->private;
970 	struct cpumask *sg_span;
971 	int cpu;
972 
973 	build_balance_mask(sd, sg, mask);
974 	cpu = cpumask_first(mask);
975 
976 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
977 	if (atomic_inc_return(&sg->sgc->ref) == 1)
978 		cpumask_copy(group_balance_mask(sg), mask);
979 	else
980 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
981 
982 	/*
983 	 * Initialize sgc->capacity such that even if we mess up the
984 	 * domains and no possible iteration will get us here, we won't
985 	 * die on a /0 trap.
986 	 */
987 	sg_span = sched_group_span(sg);
988 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
989 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
990 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
991 }
992 
993 static struct sched_domain *
994 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
995 {
996 	/*
997 	 * The proper descendant would be the one whose child won't span out
998 	 * of sd
999 	 */
1000 	while (sibling->child &&
1001 	       !cpumask_subset(sched_domain_span(sibling->child),
1002 			       sched_domain_span(sd)))
1003 		sibling = sibling->child;
1004 
1005 	/*
1006 	 * As we are referencing sgc across different topology level, we need
1007 	 * to go down to skip those sched_domains which don't contribute to
1008 	 * scheduling because they will be degenerated in cpu_attach_domain
1009 	 */
1010 	while (sibling->child &&
1011 	       cpumask_equal(sched_domain_span(sibling->child),
1012 			     sched_domain_span(sibling)))
1013 		sibling = sibling->child;
1014 
1015 	return sibling;
1016 }
1017 
1018 static int
1019 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1020 {
1021 	struct sched_group *first = NULL, *last = NULL, *sg;
1022 	const struct cpumask *span = sched_domain_span(sd);
1023 	struct cpumask *covered = sched_domains_tmpmask;
1024 	struct sd_data *sdd = sd->private;
1025 	struct sched_domain *sibling;
1026 	int i;
1027 
1028 	cpumask_clear(covered);
1029 
1030 	for_each_cpu_wrap(i, span, cpu) {
1031 		struct cpumask *sg_span;
1032 
1033 		if (cpumask_test_cpu(i, covered))
1034 			continue;
1035 
1036 		sibling = *per_cpu_ptr(sdd->sd, i);
1037 
1038 		/*
1039 		 * Asymmetric node setups can result in situations where the
1040 		 * domain tree is of unequal depth, make sure to skip domains
1041 		 * that already cover the entire range.
1042 		 *
1043 		 * In that case build_sched_domains() will have terminated the
1044 		 * iteration early and our sibling sd spans will be empty.
1045 		 * Domains should always include the CPU they're built on, so
1046 		 * check that.
1047 		 */
1048 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1049 			continue;
1050 
1051 		/*
1052 		 * Usually we build sched_group by sibling's child sched_domain
1053 		 * But for machines whose NUMA diameter are 3 or above, we move
1054 		 * to build sched_group by sibling's proper descendant's child
1055 		 * domain because sibling's child sched_domain will span out of
1056 		 * the sched_domain being built as below.
1057 		 *
1058 		 * Smallest diameter=3 topology is:
1059 		 *
1060 		 *   node   0   1   2   3
1061 		 *     0:  10  20  30  40
1062 		 *     1:  20  10  20  30
1063 		 *     2:  30  20  10  20
1064 		 *     3:  40  30  20  10
1065 		 *
1066 		 *   0 --- 1 --- 2 --- 3
1067 		 *
1068 		 * NUMA-3       0-3             N/A             N/A             0-3
1069 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1070 		 *
1071 		 * NUMA-2       0-2             0-3             0-3             1-3
1072 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1073 		 *
1074 		 * NUMA-1       0-1             0-2             1-3             2-3
1075 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1076 		 *
1077 		 * NUMA-0       0               1               2               3
1078 		 *
1079 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1080 		 * group span isn't a subset of the domain span.
1081 		 */
1082 		if (sibling->child &&
1083 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1084 			sibling = find_descended_sibling(sd, sibling);
1085 
1086 		sg = build_group_from_child_sched_domain(sibling, cpu);
1087 		if (!sg)
1088 			goto fail;
1089 
1090 		sg_span = sched_group_span(sg);
1091 		cpumask_or(covered, covered, sg_span);
1092 
1093 		init_overlap_sched_group(sibling, sg);
1094 
1095 		if (!first)
1096 			first = sg;
1097 		if (last)
1098 			last->next = sg;
1099 		last = sg;
1100 		last->next = first;
1101 	}
1102 	sd->groups = first;
1103 
1104 	return 0;
1105 
1106 fail:
1107 	free_sched_groups(first, 0);
1108 
1109 	return -ENOMEM;
1110 }
1111 
1112 
1113 /*
1114  * Package topology (also see the load-balance blurb in fair.c)
1115  *
1116  * The scheduler builds a tree structure to represent a number of important
1117  * topology features. By default (default_topology[]) these include:
1118  *
1119  *  - Simultaneous multithreading (SMT)
1120  *  - Multi-Core Cache (MC)
1121  *  - Package (DIE)
1122  *
1123  * Where the last one more or less denotes everything up to a NUMA node.
1124  *
1125  * The tree consists of 3 primary data structures:
1126  *
1127  *	sched_domain -> sched_group -> sched_group_capacity
1128  *	    ^ ^             ^ ^
1129  *          `-'             `-'
1130  *
1131  * The sched_domains are per-CPU and have a two way link (parent & child) and
1132  * denote the ever growing mask of CPUs belonging to that level of topology.
1133  *
1134  * Each sched_domain has a circular (double) linked list of sched_group's, each
1135  * denoting the domains of the level below (or individual CPUs in case of the
1136  * first domain level). The sched_group linked by a sched_domain includes the
1137  * CPU of that sched_domain [*].
1138  *
1139  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1140  *
1141  * CPU   0   1   2   3   4   5   6   7
1142  *
1143  * DIE  [                             ]
1144  * MC   [             ] [             ]
1145  * SMT  [     ] [     ] [     ] [     ]
1146  *
1147  *  - or -
1148  *
1149  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1150  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1151  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1152  *
1153  * CPU   0   1   2   3   4   5   6   7
1154  *
1155  * One way to think about it is: sched_domain moves you up and down among these
1156  * topology levels, while sched_group moves you sideways through it, at child
1157  * domain granularity.
1158  *
1159  * sched_group_capacity ensures each unique sched_group has shared storage.
1160  *
1161  * There are two related construction problems, both require a CPU that
1162  * uniquely identify each group (for a given domain):
1163  *
1164  *  - The first is the balance_cpu (see should_we_balance() and the
1165  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1166  *    continue balancing at a higher domain.
1167  *
1168  *  - The second is the sched_group_capacity; we want all identical groups
1169  *    to share a single sched_group_capacity.
1170  *
1171  * Since these topologies are exclusive by construction. That is, its
1172  * impossible for an SMT thread to belong to multiple cores, and cores to
1173  * be part of multiple caches. There is a very clear and unique location
1174  * for each CPU in the hierarchy.
1175  *
1176  * Therefore computing a unique CPU for each group is trivial (the iteration
1177  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1178  * group), we can simply pick the first CPU in each group.
1179  *
1180  *
1181  * [*] in other words, the first group of each domain is its child domain.
1182  */
1183 
1184 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1185 {
1186 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1187 	struct sched_domain *child = sd->child;
1188 	struct sched_group *sg;
1189 	bool already_visited;
1190 
1191 	if (child)
1192 		cpu = cpumask_first(sched_domain_span(child));
1193 
1194 	sg = *per_cpu_ptr(sdd->sg, cpu);
1195 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1196 
1197 	/* Increase refcounts for claim_allocations: */
1198 	already_visited = atomic_inc_return(&sg->ref) > 1;
1199 	/* sgc visits should follow a similar trend as sg */
1200 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1201 
1202 	/* If we have already visited that group, it's already initialized. */
1203 	if (already_visited)
1204 		return sg;
1205 
1206 	if (child) {
1207 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1208 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1209 		sg->flags = child->flags;
1210 	} else {
1211 		cpumask_set_cpu(cpu, sched_group_span(sg));
1212 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1213 	}
1214 
1215 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1216 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1217 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1218 
1219 	return sg;
1220 }
1221 
1222 /*
1223  * build_sched_groups will build a circular linked list of the groups
1224  * covered by the given span, will set each group's ->cpumask correctly,
1225  * and will initialize their ->sgc.
1226  *
1227  * Assumes the sched_domain tree is fully constructed
1228  */
1229 static int
1230 build_sched_groups(struct sched_domain *sd, int cpu)
1231 {
1232 	struct sched_group *first = NULL, *last = NULL;
1233 	struct sd_data *sdd = sd->private;
1234 	const struct cpumask *span = sched_domain_span(sd);
1235 	struct cpumask *covered;
1236 	int i;
1237 
1238 	lockdep_assert_held(&sched_domains_mutex);
1239 	covered = sched_domains_tmpmask;
1240 
1241 	cpumask_clear(covered);
1242 
1243 	for_each_cpu_wrap(i, span, cpu) {
1244 		struct sched_group *sg;
1245 
1246 		if (cpumask_test_cpu(i, covered))
1247 			continue;
1248 
1249 		sg = get_group(i, sdd);
1250 
1251 		cpumask_or(covered, covered, sched_group_span(sg));
1252 
1253 		if (!first)
1254 			first = sg;
1255 		if (last)
1256 			last->next = sg;
1257 		last = sg;
1258 	}
1259 	last->next = first;
1260 	sd->groups = first;
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Initialize sched groups cpu_capacity.
1267  *
1268  * cpu_capacity indicates the capacity of sched group, which is used while
1269  * distributing the load between different sched groups in a sched domain.
1270  * Typically cpu_capacity for all the groups in a sched domain will be same
1271  * unless there are asymmetries in the topology. If there are asymmetries,
1272  * group having more cpu_capacity will pickup more load compared to the
1273  * group having less cpu_capacity.
1274  */
1275 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1276 {
1277 	struct sched_group *sg = sd->groups;
1278 
1279 	WARN_ON(!sg);
1280 
1281 	do {
1282 		int cpu, max_cpu = -1;
1283 
1284 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1285 
1286 		if (!(sd->flags & SD_ASYM_PACKING))
1287 			goto next;
1288 
1289 		for_each_cpu(cpu, sched_group_span(sg)) {
1290 			if (max_cpu < 0)
1291 				max_cpu = cpu;
1292 			else if (sched_asym_prefer(cpu, max_cpu))
1293 				max_cpu = cpu;
1294 		}
1295 		sg->asym_prefer_cpu = max_cpu;
1296 
1297 next:
1298 		sg = sg->next;
1299 	} while (sg != sd->groups);
1300 
1301 	if (cpu != group_balance_cpu(sg))
1302 		return;
1303 
1304 	update_group_capacity(sd, cpu);
1305 }
1306 
1307 /*
1308  * Asymmetric CPU capacity bits
1309  */
1310 struct asym_cap_data {
1311 	struct list_head link;
1312 	unsigned long capacity;
1313 	unsigned long cpus[];
1314 };
1315 
1316 /*
1317  * Set of available CPUs grouped by their corresponding capacities
1318  * Each list entry contains a CPU mask reflecting CPUs that share the same
1319  * capacity.
1320  * The lifespan of data is unlimited.
1321  */
1322 static LIST_HEAD(asym_cap_list);
1323 
1324 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1325 
1326 /*
1327  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1328  * Provides sd_flags reflecting the asymmetry scope.
1329  */
1330 static inline int
1331 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1332 			   const struct cpumask *cpu_map)
1333 {
1334 	struct asym_cap_data *entry;
1335 	int count = 0, miss = 0;
1336 
1337 	/*
1338 	 * Count how many unique CPU capacities this domain spans across
1339 	 * (compare sched_domain CPUs mask with ones representing  available
1340 	 * CPUs capacities). Take into account CPUs that might be offline:
1341 	 * skip those.
1342 	 */
1343 	list_for_each_entry(entry, &asym_cap_list, link) {
1344 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1345 			++count;
1346 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1347 			++miss;
1348 	}
1349 
1350 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1351 
1352 	/* No asymmetry detected */
1353 	if (count < 2)
1354 		return 0;
1355 	/* Some of the available CPU capacity values have not been detected */
1356 	if (miss)
1357 		return SD_ASYM_CPUCAPACITY;
1358 
1359 	/* Full asymmetry */
1360 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1361 
1362 }
1363 
1364 static inline void asym_cpu_capacity_update_data(int cpu)
1365 {
1366 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1367 	struct asym_cap_data *entry = NULL;
1368 
1369 	list_for_each_entry(entry, &asym_cap_list, link) {
1370 		if (capacity == entry->capacity)
1371 			goto done;
1372 	}
1373 
1374 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1375 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1376 		return;
1377 	entry->capacity = capacity;
1378 	list_add(&entry->link, &asym_cap_list);
1379 done:
1380 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1381 }
1382 
1383 /*
1384  * Build-up/update list of CPUs grouped by their capacities
1385  * An update requires explicit request to rebuild sched domains
1386  * with state indicating CPU topology changes.
1387  */
1388 static void asym_cpu_capacity_scan(void)
1389 {
1390 	struct asym_cap_data *entry, *next;
1391 	int cpu;
1392 
1393 	list_for_each_entry(entry, &asym_cap_list, link)
1394 		cpumask_clear(cpu_capacity_span(entry));
1395 
1396 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1397 		asym_cpu_capacity_update_data(cpu);
1398 
1399 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1400 		if (cpumask_empty(cpu_capacity_span(entry))) {
1401 			list_del(&entry->link);
1402 			kfree(entry);
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Only one capacity value has been detected i.e. this system is symmetric.
1408 	 * No need to keep this data around.
1409 	 */
1410 	if (list_is_singular(&asym_cap_list)) {
1411 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1412 		list_del(&entry->link);
1413 		kfree(entry);
1414 	}
1415 }
1416 
1417 /*
1418  * Initializers for schedule domains
1419  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1420  */
1421 
1422 static int default_relax_domain_level = -1;
1423 int sched_domain_level_max;
1424 
1425 static int __init setup_relax_domain_level(char *str)
1426 {
1427 	if (kstrtoint(str, 0, &default_relax_domain_level))
1428 		pr_warn("Unable to set relax_domain_level\n");
1429 
1430 	return 1;
1431 }
1432 __setup("relax_domain_level=", setup_relax_domain_level);
1433 
1434 static void set_domain_attribute(struct sched_domain *sd,
1435 				 struct sched_domain_attr *attr)
1436 {
1437 	int request;
1438 
1439 	if (!attr || attr->relax_domain_level < 0) {
1440 		if (default_relax_domain_level < 0)
1441 			return;
1442 		request = default_relax_domain_level;
1443 	} else
1444 		request = attr->relax_domain_level;
1445 
1446 	if (sd->level > request) {
1447 		/* Turn off idle balance on this domain: */
1448 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1449 	}
1450 }
1451 
1452 static void __sdt_free(const struct cpumask *cpu_map);
1453 static int __sdt_alloc(const struct cpumask *cpu_map);
1454 
1455 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1456 				 const struct cpumask *cpu_map)
1457 {
1458 	switch (what) {
1459 	case sa_rootdomain:
1460 		if (!atomic_read(&d->rd->refcount))
1461 			free_rootdomain(&d->rd->rcu);
1462 		fallthrough;
1463 	case sa_sd:
1464 		free_percpu(d->sd);
1465 		fallthrough;
1466 	case sa_sd_storage:
1467 		__sdt_free(cpu_map);
1468 		fallthrough;
1469 	case sa_none:
1470 		break;
1471 	}
1472 }
1473 
1474 static enum s_alloc
1475 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1476 {
1477 	memset(d, 0, sizeof(*d));
1478 
1479 	if (__sdt_alloc(cpu_map))
1480 		return sa_sd_storage;
1481 	d->sd = alloc_percpu(struct sched_domain *);
1482 	if (!d->sd)
1483 		return sa_sd_storage;
1484 	d->rd = alloc_rootdomain();
1485 	if (!d->rd)
1486 		return sa_sd;
1487 
1488 	return sa_rootdomain;
1489 }
1490 
1491 /*
1492  * NULL the sd_data elements we've used to build the sched_domain and
1493  * sched_group structure so that the subsequent __free_domain_allocs()
1494  * will not free the data we're using.
1495  */
1496 static void claim_allocations(int cpu, struct sched_domain *sd)
1497 {
1498 	struct sd_data *sdd = sd->private;
1499 
1500 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1501 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1502 
1503 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1504 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1505 
1506 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1507 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1508 
1509 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1510 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1511 }
1512 
1513 #ifdef CONFIG_NUMA
1514 enum numa_topology_type sched_numa_topology_type;
1515 
1516 static int			sched_domains_numa_levels;
1517 static int			sched_domains_curr_level;
1518 
1519 int				sched_max_numa_distance;
1520 static int			*sched_domains_numa_distance;
1521 static struct cpumask		***sched_domains_numa_masks;
1522 #endif
1523 
1524 /*
1525  * SD_flags allowed in topology descriptions.
1526  *
1527  * These flags are purely descriptive of the topology and do not prescribe
1528  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1529  * function:
1530  *
1531  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1532  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1533  *   SD_NUMA                - describes NUMA topologies
1534  *
1535  * Odd one out, which beside describing the topology has a quirk also
1536  * prescribes the desired behaviour that goes along with it:
1537  *
1538  *   SD_ASYM_PACKING        - describes SMT quirks
1539  */
1540 #define TOPOLOGY_SD_FLAGS		\
1541 	(SD_SHARE_CPUCAPACITY	|	\
1542 	 SD_SHARE_PKG_RESOURCES |	\
1543 	 SD_NUMA		|	\
1544 	 SD_ASYM_PACKING)
1545 
1546 static struct sched_domain *
1547 sd_init(struct sched_domain_topology_level *tl,
1548 	const struct cpumask *cpu_map,
1549 	struct sched_domain *child, int cpu)
1550 {
1551 	struct sd_data *sdd = &tl->data;
1552 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1553 	int sd_id, sd_weight, sd_flags = 0;
1554 	struct cpumask *sd_span;
1555 
1556 #ifdef CONFIG_NUMA
1557 	/*
1558 	 * Ugly hack to pass state to sd_numa_mask()...
1559 	 */
1560 	sched_domains_curr_level = tl->numa_level;
1561 #endif
1562 
1563 	sd_weight = cpumask_weight(tl->mask(cpu));
1564 
1565 	if (tl->sd_flags)
1566 		sd_flags = (*tl->sd_flags)();
1567 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1568 			"wrong sd_flags in topology description\n"))
1569 		sd_flags &= TOPOLOGY_SD_FLAGS;
1570 
1571 	*sd = (struct sched_domain){
1572 		.min_interval		= sd_weight,
1573 		.max_interval		= 2*sd_weight,
1574 		.busy_factor		= 16,
1575 		.imbalance_pct		= 117,
1576 
1577 		.cache_nice_tries	= 0,
1578 
1579 		.flags			= 1*SD_BALANCE_NEWIDLE
1580 					| 1*SD_BALANCE_EXEC
1581 					| 1*SD_BALANCE_FORK
1582 					| 0*SD_BALANCE_WAKE
1583 					| 1*SD_WAKE_AFFINE
1584 					| 0*SD_SHARE_CPUCAPACITY
1585 					| 0*SD_SHARE_PKG_RESOURCES
1586 					| 0*SD_SERIALIZE
1587 					| 1*SD_PREFER_SIBLING
1588 					| 0*SD_NUMA
1589 					| sd_flags
1590 					,
1591 
1592 		.last_balance		= jiffies,
1593 		.balance_interval	= sd_weight,
1594 		.max_newidle_lb_cost	= 0,
1595 		.last_decay_max_lb_cost	= jiffies,
1596 		.child			= child,
1597 #ifdef CONFIG_SCHED_DEBUG
1598 		.name			= tl->name,
1599 #endif
1600 	};
1601 
1602 	sd_span = sched_domain_span(sd);
1603 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1604 	sd_id = cpumask_first(sd_span);
1605 
1606 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1607 
1608 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1609 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1610 		  "CPU capacity asymmetry not supported on SMT\n");
1611 
1612 	/*
1613 	 * Convert topological properties into behaviour.
1614 	 */
1615 	/* Don't attempt to spread across CPUs of different capacities. */
1616 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1617 		sd->child->flags &= ~SD_PREFER_SIBLING;
1618 
1619 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1620 		sd->imbalance_pct = 110;
1621 
1622 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1623 		sd->imbalance_pct = 117;
1624 		sd->cache_nice_tries = 1;
1625 
1626 #ifdef CONFIG_NUMA
1627 	} else if (sd->flags & SD_NUMA) {
1628 		sd->cache_nice_tries = 2;
1629 
1630 		sd->flags &= ~SD_PREFER_SIBLING;
1631 		sd->flags |= SD_SERIALIZE;
1632 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1633 			sd->flags &= ~(SD_BALANCE_EXEC |
1634 				       SD_BALANCE_FORK |
1635 				       SD_WAKE_AFFINE);
1636 		}
1637 
1638 #endif
1639 	} else {
1640 		sd->cache_nice_tries = 1;
1641 	}
1642 
1643 	/*
1644 	 * For all levels sharing cache; connect a sched_domain_shared
1645 	 * instance.
1646 	 */
1647 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1648 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1649 		atomic_inc(&sd->shared->ref);
1650 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1651 	}
1652 
1653 	sd->private = sdd;
1654 
1655 	return sd;
1656 }
1657 
1658 /*
1659  * Topology list, bottom-up.
1660  */
1661 static struct sched_domain_topology_level default_topology[] = {
1662 #ifdef CONFIG_SCHED_SMT
1663 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1664 #endif
1665 
1666 #ifdef CONFIG_SCHED_CLUSTER
1667 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1668 #endif
1669 
1670 #ifdef CONFIG_SCHED_MC
1671 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1672 #endif
1673 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1674 	{ NULL, },
1675 };
1676 
1677 static struct sched_domain_topology_level *sched_domain_topology =
1678 	default_topology;
1679 static struct sched_domain_topology_level *sched_domain_topology_saved;
1680 
1681 #define for_each_sd_topology(tl)			\
1682 	for (tl = sched_domain_topology; tl->mask; tl++)
1683 
1684 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1685 {
1686 	if (WARN_ON_ONCE(sched_smp_initialized))
1687 		return;
1688 
1689 	sched_domain_topology = tl;
1690 	sched_domain_topology_saved = NULL;
1691 }
1692 
1693 #ifdef CONFIG_NUMA
1694 
1695 static const struct cpumask *sd_numa_mask(int cpu)
1696 {
1697 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1698 }
1699 
1700 static void sched_numa_warn(const char *str)
1701 {
1702 	static int done = false;
1703 	int i,j;
1704 
1705 	if (done)
1706 		return;
1707 
1708 	done = true;
1709 
1710 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1711 
1712 	for (i = 0; i < nr_node_ids; i++) {
1713 		printk(KERN_WARNING "  ");
1714 		for (j = 0; j < nr_node_ids; j++) {
1715 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1716 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1717 			else
1718 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1719 		}
1720 		printk(KERN_CONT "\n");
1721 	}
1722 	printk(KERN_WARNING "\n");
1723 }
1724 
1725 bool find_numa_distance(int distance)
1726 {
1727 	bool found = false;
1728 	int i, *distances;
1729 
1730 	if (distance == node_distance(0, 0))
1731 		return true;
1732 
1733 	rcu_read_lock();
1734 	distances = rcu_dereference(sched_domains_numa_distance);
1735 	if (!distances)
1736 		goto unlock;
1737 	for (i = 0; i < sched_domains_numa_levels; i++) {
1738 		if (distances[i] == distance) {
1739 			found = true;
1740 			break;
1741 		}
1742 	}
1743 unlock:
1744 	rcu_read_unlock();
1745 
1746 	return found;
1747 }
1748 
1749 #define for_each_cpu_node_but(n, nbut)		\
1750 	for_each_node_state(n, N_CPU)		\
1751 		if (n == nbut)			\
1752 			continue;		\
1753 		else
1754 
1755 /*
1756  * A system can have three types of NUMA topology:
1757  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1758  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1759  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1760  *
1761  * The difference between a glueless mesh topology and a backplane
1762  * topology lies in whether communication between not directly
1763  * connected nodes goes through intermediary nodes (where programs
1764  * could run), or through backplane controllers. This affects
1765  * placement of programs.
1766  *
1767  * The type of topology can be discerned with the following tests:
1768  * - If the maximum distance between any nodes is 1 hop, the system
1769  *   is directly connected.
1770  * - If for two nodes A and B, located N > 1 hops away from each other,
1771  *   there is an intermediary node C, which is < N hops away from both
1772  *   nodes A and B, the system is a glueless mesh.
1773  */
1774 static void init_numa_topology_type(int offline_node)
1775 {
1776 	int a, b, c, n;
1777 
1778 	n = sched_max_numa_distance;
1779 
1780 	if (sched_domains_numa_levels <= 2) {
1781 		sched_numa_topology_type = NUMA_DIRECT;
1782 		return;
1783 	}
1784 
1785 	for_each_cpu_node_but(a, offline_node) {
1786 		for_each_cpu_node_but(b, offline_node) {
1787 			/* Find two nodes furthest removed from each other. */
1788 			if (node_distance(a, b) < n)
1789 				continue;
1790 
1791 			/* Is there an intermediary node between a and b? */
1792 			for_each_cpu_node_but(c, offline_node) {
1793 				if (node_distance(a, c) < n &&
1794 				    node_distance(b, c) < n) {
1795 					sched_numa_topology_type =
1796 							NUMA_GLUELESS_MESH;
1797 					return;
1798 				}
1799 			}
1800 
1801 			sched_numa_topology_type = NUMA_BACKPLANE;
1802 			return;
1803 		}
1804 	}
1805 
1806 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1807 	sched_numa_topology_type = NUMA_DIRECT;
1808 }
1809 
1810 
1811 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1812 
1813 void sched_init_numa(int offline_node)
1814 {
1815 	struct sched_domain_topology_level *tl;
1816 	unsigned long *distance_map;
1817 	int nr_levels = 0;
1818 	int i, j;
1819 	int *distances;
1820 	struct cpumask ***masks;
1821 
1822 	/*
1823 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1824 	 * unique distances in the node_distance() table.
1825 	 */
1826 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1827 	if (!distance_map)
1828 		return;
1829 
1830 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1831 	for_each_cpu_node_but(i, offline_node) {
1832 		for_each_cpu_node_but(j, offline_node) {
1833 			int distance = node_distance(i, j);
1834 
1835 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1836 				sched_numa_warn("Invalid distance value range");
1837 				bitmap_free(distance_map);
1838 				return;
1839 			}
1840 
1841 			bitmap_set(distance_map, distance, 1);
1842 		}
1843 	}
1844 	/*
1845 	 * We can now figure out how many unique distance values there are and
1846 	 * allocate memory accordingly.
1847 	 */
1848 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1849 
1850 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1851 	if (!distances) {
1852 		bitmap_free(distance_map);
1853 		return;
1854 	}
1855 
1856 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1857 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1858 		distances[i] = j;
1859 	}
1860 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1861 
1862 	bitmap_free(distance_map);
1863 
1864 	/*
1865 	 * 'nr_levels' contains the number of unique distances
1866 	 *
1867 	 * The sched_domains_numa_distance[] array includes the actual distance
1868 	 * numbers.
1869 	 */
1870 
1871 	/*
1872 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1873 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1874 	 * the array will contain less then 'nr_levels' members. This could be
1875 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1876 	 * in other functions.
1877 	 *
1878 	 * We reset it to 'nr_levels' at the end of this function.
1879 	 */
1880 	sched_domains_numa_levels = 0;
1881 
1882 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1883 	if (!masks)
1884 		return;
1885 
1886 	/*
1887 	 * Now for each level, construct a mask per node which contains all
1888 	 * CPUs of nodes that are that many hops away from us.
1889 	 */
1890 	for (i = 0; i < nr_levels; i++) {
1891 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1892 		if (!masks[i])
1893 			return;
1894 
1895 		for_each_cpu_node_but(j, offline_node) {
1896 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1897 			int k;
1898 
1899 			if (!mask)
1900 				return;
1901 
1902 			masks[i][j] = mask;
1903 
1904 			for_each_cpu_node_but(k, offline_node) {
1905 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1906 					sched_numa_warn("Node-distance not symmetric");
1907 
1908 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1909 					continue;
1910 
1911 				cpumask_or(mask, mask, cpumask_of_node(k));
1912 			}
1913 		}
1914 	}
1915 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1916 
1917 	/* Compute default topology size */
1918 	for (i = 0; sched_domain_topology[i].mask; i++);
1919 
1920 	tl = kzalloc((i + nr_levels + 1) *
1921 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1922 	if (!tl)
1923 		return;
1924 
1925 	/*
1926 	 * Copy the default topology bits..
1927 	 */
1928 	for (i = 0; sched_domain_topology[i].mask; i++)
1929 		tl[i] = sched_domain_topology[i];
1930 
1931 	/*
1932 	 * Add the NUMA identity distance, aka single NODE.
1933 	 */
1934 	tl[i++] = (struct sched_domain_topology_level){
1935 		.mask = sd_numa_mask,
1936 		.numa_level = 0,
1937 		SD_INIT_NAME(NODE)
1938 	};
1939 
1940 	/*
1941 	 * .. and append 'j' levels of NUMA goodness.
1942 	 */
1943 	for (j = 1; j < nr_levels; i++, j++) {
1944 		tl[i] = (struct sched_domain_topology_level){
1945 			.mask = sd_numa_mask,
1946 			.sd_flags = cpu_numa_flags,
1947 			.flags = SDTL_OVERLAP,
1948 			.numa_level = j,
1949 			SD_INIT_NAME(NUMA)
1950 		};
1951 	}
1952 
1953 	sched_domain_topology_saved = sched_domain_topology;
1954 	sched_domain_topology = tl;
1955 
1956 	sched_domains_numa_levels = nr_levels;
1957 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1958 
1959 	init_numa_topology_type(offline_node);
1960 }
1961 
1962 
1963 static void sched_reset_numa(void)
1964 {
1965 	int nr_levels, *distances;
1966 	struct cpumask ***masks;
1967 
1968 	nr_levels = sched_domains_numa_levels;
1969 	sched_domains_numa_levels = 0;
1970 	sched_max_numa_distance = 0;
1971 	sched_numa_topology_type = NUMA_DIRECT;
1972 	distances = sched_domains_numa_distance;
1973 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1974 	masks = sched_domains_numa_masks;
1975 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1976 	if (distances || masks) {
1977 		int i, j;
1978 
1979 		synchronize_rcu();
1980 		kfree(distances);
1981 		for (i = 0; i < nr_levels && masks; i++) {
1982 			if (!masks[i])
1983 				continue;
1984 			for_each_node(j)
1985 				kfree(masks[i][j]);
1986 			kfree(masks[i]);
1987 		}
1988 		kfree(masks);
1989 	}
1990 	if (sched_domain_topology_saved) {
1991 		kfree(sched_domain_topology);
1992 		sched_domain_topology = sched_domain_topology_saved;
1993 		sched_domain_topology_saved = NULL;
1994 	}
1995 }
1996 
1997 /*
1998  * Call with hotplug lock held
1999  */
2000 void sched_update_numa(int cpu, bool online)
2001 {
2002 	int node;
2003 
2004 	node = cpu_to_node(cpu);
2005 	/*
2006 	 * Scheduler NUMA topology is updated when the first CPU of a
2007 	 * node is onlined or the last CPU of a node is offlined.
2008 	 */
2009 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2010 		return;
2011 
2012 	sched_reset_numa();
2013 	sched_init_numa(online ? NUMA_NO_NODE : node);
2014 }
2015 
2016 void sched_domains_numa_masks_set(unsigned int cpu)
2017 {
2018 	int node = cpu_to_node(cpu);
2019 	int i, j;
2020 
2021 	for (i = 0; i < sched_domains_numa_levels; i++) {
2022 		for (j = 0; j < nr_node_ids; j++) {
2023 			if (!node_state(j, N_CPU))
2024 				continue;
2025 
2026 			/* Set ourselves in the remote node's masks */
2027 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2028 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2029 		}
2030 	}
2031 }
2032 
2033 void sched_domains_numa_masks_clear(unsigned int cpu)
2034 {
2035 	int i, j;
2036 
2037 	for (i = 0; i < sched_domains_numa_levels; i++) {
2038 		for (j = 0; j < nr_node_ids; j++) {
2039 			if (sched_domains_numa_masks[i][j])
2040 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2041 		}
2042 	}
2043 }
2044 
2045 /*
2046  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2047  *                             closest to @cpu from @cpumask.
2048  * cpumask: cpumask to find a cpu from
2049  * cpu: cpu to be close to
2050  *
2051  * returns: cpu, or nr_cpu_ids when nothing found.
2052  */
2053 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2054 {
2055 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2056 	struct cpumask ***masks;
2057 
2058 	rcu_read_lock();
2059 	masks = rcu_dereference(sched_domains_numa_masks);
2060 	if (!masks)
2061 		goto unlock;
2062 	for (i = 0; i < sched_domains_numa_levels; i++) {
2063 		if (!masks[i][j])
2064 			break;
2065 		cpu = cpumask_any_and(cpus, masks[i][j]);
2066 		if (cpu < nr_cpu_ids) {
2067 			found = cpu;
2068 			break;
2069 		}
2070 	}
2071 unlock:
2072 	rcu_read_unlock();
2073 
2074 	return found;
2075 }
2076 
2077 struct __cmp_key {
2078 	const struct cpumask *cpus;
2079 	struct cpumask ***masks;
2080 	int node;
2081 	int cpu;
2082 	int w;
2083 };
2084 
2085 static int hop_cmp(const void *a, const void *b)
2086 {
2087 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2088 	struct __cmp_key *k = (struct __cmp_key *)a;
2089 
2090 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2091 		return 1;
2092 
2093 	if (b == k->masks) {
2094 		k->w = 0;
2095 		return 0;
2096 	}
2097 
2098 	prev_hop = *((struct cpumask ***)b - 1);
2099 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2100 	if (k->w <= k->cpu)
2101 		return 0;
2102 
2103 	return -1;
2104 }
2105 
2106 /*
2107  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu
2108  *                             closest to @cpu from @cpumask.
2109  * cpumask: cpumask to find a cpu from
2110  * cpu: Nth cpu to find
2111  *
2112  * returns: cpu, or nr_cpu_ids when nothing found.
2113  */
2114 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2115 {
2116 	struct __cmp_key k = { .cpus = cpus, .node = node, .cpu = cpu };
2117 	struct cpumask ***hop_masks;
2118 	int hop, ret = nr_cpu_ids;
2119 
2120 	rcu_read_lock();
2121 
2122 	k.masks = rcu_dereference(sched_domains_numa_masks);
2123 	if (!k.masks)
2124 		goto unlock;
2125 
2126 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2127 	hop = hop_masks	- k.masks;
2128 
2129 	ret = hop ?
2130 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2131 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2132 unlock:
2133 	rcu_read_unlock();
2134 	return ret;
2135 }
2136 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2137 
2138 /**
2139  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2140  *                         @node
2141  * @node: The node to count hops from.
2142  * @hops: Include CPUs up to that many hops away. 0 means local node.
2143  *
2144  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2145  * @node, an error value otherwise.
2146  *
2147  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2148  * read-side section, copy it if required beyond that.
2149  *
2150  * Note that not all hops are equal in distance; see sched_init_numa() for how
2151  * distances and masks are handled.
2152  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2153  * during the lifetime of the system (offline nodes are taken out of the masks).
2154  */
2155 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2156 {
2157 	struct cpumask ***masks;
2158 
2159 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	masks = rcu_dereference(sched_domains_numa_masks);
2163 	if (!masks)
2164 		return ERR_PTR(-EBUSY);
2165 
2166 	return masks[hops][node];
2167 }
2168 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2169 
2170 #endif /* CONFIG_NUMA */
2171 
2172 static int __sdt_alloc(const struct cpumask *cpu_map)
2173 {
2174 	struct sched_domain_topology_level *tl;
2175 	int j;
2176 
2177 	for_each_sd_topology(tl) {
2178 		struct sd_data *sdd = &tl->data;
2179 
2180 		sdd->sd = alloc_percpu(struct sched_domain *);
2181 		if (!sdd->sd)
2182 			return -ENOMEM;
2183 
2184 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2185 		if (!sdd->sds)
2186 			return -ENOMEM;
2187 
2188 		sdd->sg = alloc_percpu(struct sched_group *);
2189 		if (!sdd->sg)
2190 			return -ENOMEM;
2191 
2192 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2193 		if (!sdd->sgc)
2194 			return -ENOMEM;
2195 
2196 		for_each_cpu(j, cpu_map) {
2197 			struct sched_domain *sd;
2198 			struct sched_domain_shared *sds;
2199 			struct sched_group *sg;
2200 			struct sched_group_capacity *sgc;
2201 
2202 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2203 					GFP_KERNEL, cpu_to_node(j));
2204 			if (!sd)
2205 				return -ENOMEM;
2206 
2207 			*per_cpu_ptr(sdd->sd, j) = sd;
2208 
2209 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2210 					GFP_KERNEL, cpu_to_node(j));
2211 			if (!sds)
2212 				return -ENOMEM;
2213 
2214 			*per_cpu_ptr(sdd->sds, j) = sds;
2215 
2216 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2217 					GFP_KERNEL, cpu_to_node(j));
2218 			if (!sg)
2219 				return -ENOMEM;
2220 
2221 			sg->next = sg;
2222 
2223 			*per_cpu_ptr(sdd->sg, j) = sg;
2224 
2225 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2226 					GFP_KERNEL, cpu_to_node(j));
2227 			if (!sgc)
2228 				return -ENOMEM;
2229 
2230 #ifdef CONFIG_SCHED_DEBUG
2231 			sgc->id = j;
2232 #endif
2233 
2234 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2235 		}
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static void __sdt_free(const struct cpumask *cpu_map)
2242 {
2243 	struct sched_domain_topology_level *tl;
2244 	int j;
2245 
2246 	for_each_sd_topology(tl) {
2247 		struct sd_data *sdd = &tl->data;
2248 
2249 		for_each_cpu(j, cpu_map) {
2250 			struct sched_domain *sd;
2251 
2252 			if (sdd->sd) {
2253 				sd = *per_cpu_ptr(sdd->sd, j);
2254 				if (sd && (sd->flags & SD_OVERLAP))
2255 					free_sched_groups(sd->groups, 0);
2256 				kfree(*per_cpu_ptr(sdd->sd, j));
2257 			}
2258 
2259 			if (sdd->sds)
2260 				kfree(*per_cpu_ptr(sdd->sds, j));
2261 			if (sdd->sg)
2262 				kfree(*per_cpu_ptr(sdd->sg, j));
2263 			if (sdd->sgc)
2264 				kfree(*per_cpu_ptr(sdd->sgc, j));
2265 		}
2266 		free_percpu(sdd->sd);
2267 		sdd->sd = NULL;
2268 		free_percpu(sdd->sds);
2269 		sdd->sds = NULL;
2270 		free_percpu(sdd->sg);
2271 		sdd->sg = NULL;
2272 		free_percpu(sdd->sgc);
2273 		sdd->sgc = NULL;
2274 	}
2275 }
2276 
2277 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2278 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2279 		struct sched_domain *child, int cpu)
2280 {
2281 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2282 
2283 	if (child) {
2284 		sd->level = child->level + 1;
2285 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2286 		child->parent = sd;
2287 
2288 		if (!cpumask_subset(sched_domain_span(child),
2289 				    sched_domain_span(sd))) {
2290 			pr_err("BUG: arch topology borken\n");
2291 #ifdef CONFIG_SCHED_DEBUG
2292 			pr_err("     the %s domain not a subset of the %s domain\n",
2293 					child->name, sd->name);
2294 #endif
2295 			/* Fixup, ensure @sd has at least @child CPUs. */
2296 			cpumask_or(sched_domain_span(sd),
2297 				   sched_domain_span(sd),
2298 				   sched_domain_span(child));
2299 		}
2300 
2301 	}
2302 	set_domain_attribute(sd, attr);
2303 
2304 	return sd;
2305 }
2306 
2307 /*
2308  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2309  * any two given CPUs at this (non-NUMA) topology level.
2310  */
2311 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2312 			      const struct cpumask *cpu_map, int cpu)
2313 {
2314 	int i;
2315 
2316 	/* NUMA levels are allowed to overlap */
2317 	if (tl->flags & SDTL_OVERLAP)
2318 		return true;
2319 
2320 	/*
2321 	 * Non-NUMA levels cannot partially overlap - they must be either
2322 	 * completely equal or completely disjoint. Otherwise we can end up
2323 	 * breaking the sched_group lists - i.e. a later get_group() pass
2324 	 * breaks the linking done for an earlier span.
2325 	 */
2326 	for_each_cpu(i, cpu_map) {
2327 		if (i == cpu)
2328 			continue;
2329 		/*
2330 		 * We should 'and' all those masks with 'cpu_map' to exactly
2331 		 * match the topology we're about to build, but that can only
2332 		 * remove CPUs, which only lessens our ability to detect
2333 		 * overlaps
2334 		 */
2335 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2336 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2337 			return false;
2338 	}
2339 
2340 	return true;
2341 }
2342 
2343 /*
2344  * Build sched domains for a given set of CPUs and attach the sched domains
2345  * to the individual CPUs
2346  */
2347 static int
2348 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2349 {
2350 	enum s_alloc alloc_state = sa_none;
2351 	struct sched_domain *sd;
2352 	struct s_data d;
2353 	struct rq *rq = NULL;
2354 	int i, ret = -ENOMEM;
2355 	bool has_asym = false;
2356 
2357 	if (WARN_ON(cpumask_empty(cpu_map)))
2358 		goto error;
2359 
2360 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2361 	if (alloc_state != sa_rootdomain)
2362 		goto error;
2363 
2364 	/* Set up domains for CPUs specified by the cpu_map: */
2365 	for_each_cpu(i, cpu_map) {
2366 		struct sched_domain_topology_level *tl;
2367 
2368 		sd = NULL;
2369 		for_each_sd_topology(tl) {
2370 
2371 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2372 				goto error;
2373 
2374 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2375 
2376 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2377 
2378 			if (tl == sched_domain_topology)
2379 				*per_cpu_ptr(d.sd, i) = sd;
2380 			if (tl->flags & SDTL_OVERLAP)
2381 				sd->flags |= SD_OVERLAP;
2382 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2383 				break;
2384 		}
2385 	}
2386 
2387 	/* Build the groups for the domains */
2388 	for_each_cpu(i, cpu_map) {
2389 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2390 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2391 			if (sd->flags & SD_OVERLAP) {
2392 				if (build_overlap_sched_groups(sd, i))
2393 					goto error;
2394 			} else {
2395 				if (build_sched_groups(sd, i))
2396 					goto error;
2397 			}
2398 		}
2399 	}
2400 
2401 	/*
2402 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2403 	 * imbalanced.
2404 	 */
2405 	for_each_cpu(i, cpu_map) {
2406 		unsigned int imb = 0;
2407 		unsigned int imb_span = 1;
2408 
2409 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2410 			struct sched_domain *child = sd->child;
2411 
2412 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2413 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2414 				struct sched_domain __rcu *top_p;
2415 				unsigned int nr_llcs;
2416 
2417 				/*
2418 				 * For a single LLC per node, allow an
2419 				 * imbalance up to 12.5% of the node. This is
2420 				 * arbitrary cutoff based two factors -- SMT and
2421 				 * memory channels. For SMT-2, the intent is to
2422 				 * avoid premature sharing of HT resources but
2423 				 * SMT-4 or SMT-8 *may* benefit from a different
2424 				 * cutoff. For memory channels, this is a very
2425 				 * rough estimate of how many channels may be
2426 				 * active and is based on recent CPUs with
2427 				 * many cores.
2428 				 *
2429 				 * For multiple LLCs, allow an imbalance
2430 				 * until multiple tasks would share an LLC
2431 				 * on one node while LLCs on another node
2432 				 * remain idle. This assumes that there are
2433 				 * enough logical CPUs per LLC to avoid SMT
2434 				 * factors and that there is a correlation
2435 				 * between LLCs and memory channels.
2436 				 */
2437 				nr_llcs = sd->span_weight / child->span_weight;
2438 				if (nr_llcs == 1)
2439 					imb = sd->span_weight >> 3;
2440 				else
2441 					imb = nr_llcs;
2442 				imb = max(1U, imb);
2443 				sd->imb_numa_nr = imb;
2444 
2445 				/* Set span based on the first NUMA domain. */
2446 				top_p = sd->parent;
2447 				while (top_p && !(top_p->flags & SD_NUMA)) {
2448 					top_p = top_p->parent;
2449 				}
2450 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2451 			} else {
2452 				int factor = max(1U, (sd->span_weight / imb_span));
2453 
2454 				sd->imb_numa_nr = imb * factor;
2455 			}
2456 		}
2457 	}
2458 
2459 	/* Calculate CPU capacity for physical packages and nodes */
2460 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2461 		if (!cpumask_test_cpu(i, cpu_map))
2462 			continue;
2463 
2464 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2465 			claim_allocations(i, sd);
2466 			init_sched_groups_capacity(i, sd);
2467 		}
2468 	}
2469 
2470 	/* Attach the domains */
2471 	rcu_read_lock();
2472 	for_each_cpu(i, cpu_map) {
2473 		rq = cpu_rq(i);
2474 		sd = *per_cpu_ptr(d.sd, i);
2475 
2476 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2477 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2478 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2479 
2480 		cpu_attach_domain(sd, d.rd, i);
2481 	}
2482 	rcu_read_unlock();
2483 
2484 	if (has_asym)
2485 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2486 
2487 	if (rq && sched_debug_verbose) {
2488 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2489 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2490 	}
2491 
2492 	ret = 0;
2493 error:
2494 	__free_domain_allocs(&d, alloc_state, cpu_map);
2495 
2496 	return ret;
2497 }
2498 
2499 /* Current sched domains: */
2500 static cpumask_var_t			*doms_cur;
2501 
2502 /* Number of sched domains in 'doms_cur': */
2503 static int				ndoms_cur;
2504 
2505 /* Attributes of custom domains in 'doms_cur' */
2506 static struct sched_domain_attr		*dattr_cur;
2507 
2508 /*
2509  * Special case: If a kmalloc() of a doms_cur partition (array of
2510  * cpumask) fails, then fallback to a single sched domain,
2511  * as determined by the single cpumask fallback_doms.
2512  */
2513 static cpumask_var_t			fallback_doms;
2514 
2515 /*
2516  * arch_update_cpu_topology lets virtualized architectures update the
2517  * CPU core maps. It is supposed to return 1 if the topology changed
2518  * or 0 if it stayed the same.
2519  */
2520 int __weak arch_update_cpu_topology(void)
2521 {
2522 	return 0;
2523 }
2524 
2525 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2526 {
2527 	int i;
2528 	cpumask_var_t *doms;
2529 
2530 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2531 	if (!doms)
2532 		return NULL;
2533 	for (i = 0; i < ndoms; i++) {
2534 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2535 			free_sched_domains(doms, i);
2536 			return NULL;
2537 		}
2538 	}
2539 	return doms;
2540 }
2541 
2542 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2543 {
2544 	unsigned int i;
2545 	for (i = 0; i < ndoms; i++)
2546 		free_cpumask_var(doms[i]);
2547 	kfree(doms);
2548 }
2549 
2550 /*
2551  * Set up scheduler domains and groups.  For now this just excludes isolated
2552  * CPUs, but could be used to exclude other special cases in the future.
2553  */
2554 int __init sched_init_domains(const struct cpumask *cpu_map)
2555 {
2556 	int err;
2557 
2558 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2559 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2560 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2561 
2562 	arch_update_cpu_topology();
2563 	asym_cpu_capacity_scan();
2564 	ndoms_cur = 1;
2565 	doms_cur = alloc_sched_domains(ndoms_cur);
2566 	if (!doms_cur)
2567 		doms_cur = &fallback_doms;
2568 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2569 	err = build_sched_domains(doms_cur[0], NULL);
2570 
2571 	return err;
2572 }
2573 
2574 /*
2575  * Detach sched domains from a group of CPUs specified in cpu_map
2576  * These CPUs will now be attached to the NULL domain
2577  */
2578 static void detach_destroy_domains(const struct cpumask *cpu_map)
2579 {
2580 	unsigned int cpu = cpumask_any(cpu_map);
2581 	int i;
2582 
2583 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2584 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2585 
2586 	rcu_read_lock();
2587 	for_each_cpu(i, cpu_map)
2588 		cpu_attach_domain(NULL, &def_root_domain, i);
2589 	rcu_read_unlock();
2590 }
2591 
2592 /* handle null as "default" */
2593 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2594 			struct sched_domain_attr *new, int idx_new)
2595 {
2596 	struct sched_domain_attr tmp;
2597 
2598 	/* Fast path: */
2599 	if (!new && !cur)
2600 		return 1;
2601 
2602 	tmp = SD_ATTR_INIT;
2603 
2604 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2605 			new ? (new + idx_new) : &tmp,
2606 			sizeof(struct sched_domain_attr));
2607 }
2608 
2609 /*
2610  * Partition sched domains as specified by the 'ndoms_new'
2611  * cpumasks in the array doms_new[] of cpumasks. This compares
2612  * doms_new[] to the current sched domain partitioning, doms_cur[].
2613  * It destroys each deleted domain and builds each new domain.
2614  *
2615  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2616  * The masks don't intersect (don't overlap.) We should setup one
2617  * sched domain for each mask. CPUs not in any of the cpumasks will
2618  * not be load balanced. If the same cpumask appears both in the
2619  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2620  * it as it is.
2621  *
2622  * The passed in 'doms_new' should be allocated using
2623  * alloc_sched_domains.  This routine takes ownership of it and will
2624  * free_sched_domains it when done with it. If the caller failed the
2625  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2626  * and partition_sched_domains() will fallback to the single partition
2627  * 'fallback_doms', it also forces the domains to be rebuilt.
2628  *
2629  * If doms_new == NULL it will be replaced with cpu_online_mask.
2630  * ndoms_new == 0 is a special case for destroying existing domains,
2631  * and it will not create the default domain.
2632  *
2633  * Call with hotplug lock and sched_domains_mutex held
2634  */
2635 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2636 				    struct sched_domain_attr *dattr_new)
2637 {
2638 	bool __maybe_unused has_eas = false;
2639 	int i, j, n;
2640 	int new_topology;
2641 
2642 	lockdep_assert_held(&sched_domains_mutex);
2643 
2644 	/* Let the architecture update CPU core mappings: */
2645 	new_topology = arch_update_cpu_topology();
2646 	/* Trigger rebuilding CPU capacity asymmetry data */
2647 	if (new_topology)
2648 		asym_cpu_capacity_scan();
2649 
2650 	if (!doms_new) {
2651 		WARN_ON_ONCE(dattr_new);
2652 		n = 0;
2653 		doms_new = alloc_sched_domains(1);
2654 		if (doms_new) {
2655 			n = 1;
2656 			cpumask_and(doms_new[0], cpu_active_mask,
2657 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2658 		}
2659 	} else {
2660 		n = ndoms_new;
2661 	}
2662 
2663 	/* Destroy deleted domains: */
2664 	for (i = 0; i < ndoms_cur; i++) {
2665 		for (j = 0; j < n && !new_topology; j++) {
2666 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2667 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2668 				struct root_domain *rd;
2669 
2670 				/*
2671 				 * This domain won't be destroyed and as such
2672 				 * its dl_bw->total_bw needs to be cleared.  It
2673 				 * will be recomputed in function
2674 				 * update_tasks_root_domain().
2675 				 */
2676 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2677 				dl_clear_root_domain(rd);
2678 				goto match1;
2679 			}
2680 		}
2681 		/* No match - a current sched domain not in new doms_new[] */
2682 		detach_destroy_domains(doms_cur[i]);
2683 match1:
2684 		;
2685 	}
2686 
2687 	n = ndoms_cur;
2688 	if (!doms_new) {
2689 		n = 0;
2690 		doms_new = &fallback_doms;
2691 		cpumask_and(doms_new[0], cpu_active_mask,
2692 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2693 	}
2694 
2695 	/* Build new domains: */
2696 	for (i = 0; i < ndoms_new; i++) {
2697 		for (j = 0; j < n && !new_topology; j++) {
2698 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2699 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2700 				goto match2;
2701 		}
2702 		/* No match - add a new doms_new */
2703 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2704 match2:
2705 		;
2706 	}
2707 
2708 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2709 	/* Build perf. domains: */
2710 	for (i = 0; i < ndoms_new; i++) {
2711 		for (j = 0; j < n && !sched_energy_update; j++) {
2712 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2713 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2714 				has_eas = true;
2715 				goto match3;
2716 			}
2717 		}
2718 		/* No match - add perf. domains for a new rd */
2719 		has_eas |= build_perf_domains(doms_new[i]);
2720 match3:
2721 		;
2722 	}
2723 	sched_energy_set(has_eas);
2724 #endif
2725 
2726 	/* Remember the new sched domains: */
2727 	if (doms_cur != &fallback_doms)
2728 		free_sched_domains(doms_cur, ndoms_cur);
2729 
2730 	kfree(dattr_cur);
2731 	doms_cur = doms_new;
2732 	dattr_cur = dattr_new;
2733 	ndoms_cur = ndoms_new;
2734 
2735 	update_sched_domain_debugfs();
2736 }
2737 
2738 /*
2739  * Call with hotplug lock held
2740  */
2741 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2742 			     struct sched_domain_attr *dattr_new)
2743 {
2744 	mutex_lock(&sched_domains_mutex);
2745 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2746 	mutex_unlock(&sched_domains_mutex);
2747 }
2748