xref: /openbmc/linux/kernel/sched/topology.c (revision 4a3fad70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/sched/isolation.h>
8 
9 #include "sched.h"
10 
11 DEFINE_MUTEX(sched_domains_mutex);
12 
13 /* Protected by sched_domains_mutex: */
14 cpumask_var_t sched_domains_tmpmask;
15 cpumask_var_t sched_domains_tmpmask2;
16 
17 #ifdef CONFIG_SCHED_DEBUG
18 
19 static int __init sched_debug_setup(char *str)
20 {
21 	sched_debug_enabled = true;
22 
23 	return 0;
24 }
25 early_param("sched_debug", sched_debug_setup);
26 
27 static inline bool sched_debug(void)
28 {
29 	return sched_debug_enabled;
30 }
31 
32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 				  struct cpumask *groupmask)
34 {
35 	struct sched_group *group = sd->groups;
36 
37 	cpumask_clear(groupmask);
38 
39 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
40 
41 	if (!(sd->flags & SD_LOAD_BALANCE)) {
42 		printk("does not load-balance\n");
43 		if (sd->parent)
44 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 					" has parent");
46 		return -1;
47 	}
48 
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain "
54 				"CPU%d\n", cpu);
55 	}
56 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57 		printk(KERN_ERR "ERROR: domain->groups does not contain"
58 				" CPU%d\n", cpu);
59 	}
60 
61 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 	do {
63 		if (!group) {
64 			printk("\n");
65 			printk(KERN_ERR "ERROR: group is NULL\n");
66 			break;
67 		}
68 
69 		if (!cpumask_weight(sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: empty group\n");
72 			break;
73 		}
74 
75 		if (!(sd->flags & SD_OVERLAP) &&
76 		    cpumask_intersects(groupmask, sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: repeated CPUs\n");
79 			break;
80 		}
81 
82 		cpumask_or(groupmask, groupmask, sched_group_span(group));
83 
84 		printk(KERN_CONT " %d:{ span=%*pbl",
85 				group->sgc->id,
86 				cpumask_pr_args(sched_group_span(group)));
87 
88 		if ((sd->flags & SD_OVERLAP) &&
89 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90 			printk(KERN_CONT " mask=%*pbl",
91 				cpumask_pr_args(group_balance_mask(group)));
92 		}
93 
94 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
96 
97 		if (group == sd->groups && sd->child &&
98 		    !cpumask_equal(sched_domain_span(sd->child),
99 				   sched_group_span(group))) {
100 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101 		}
102 
103 		printk(KERN_CONT " }");
104 
105 		group = group->next;
106 
107 		if (group != sd->groups)
108 			printk(KERN_CONT ",");
109 
110 	} while (group != sd->groups);
111 	printk(KERN_CONT "\n");
112 
113 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115 
116 	if (sd->parent &&
117 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 		printk(KERN_ERR "ERROR: parent span is not a superset "
119 			"of domain->span\n");
120 	return 0;
121 }
122 
123 static void sched_domain_debug(struct sched_domain *sd, int cpu)
124 {
125 	int level = 0;
126 
127 	if (!sched_debug_enabled)
128 		return;
129 
130 	if (!sd) {
131 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 		return;
133 	}
134 
135 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
136 
137 	for (;;) {
138 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 			break;
140 		level++;
141 		sd = sd->parent;
142 		if (!sd)
143 			break;
144 	}
145 }
146 #else /* !CONFIG_SCHED_DEBUG */
147 
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
151 {
152 	return false;
153 }
154 #endif /* CONFIG_SCHED_DEBUG */
155 
156 static int sd_degenerate(struct sched_domain *sd)
157 {
158 	if (cpumask_weight(sched_domain_span(sd)) == 1)
159 		return 1;
160 
161 	/* Following flags need at least 2 groups */
162 	if (sd->flags & (SD_LOAD_BALANCE |
163 			 SD_BALANCE_NEWIDLE |
164 			 SD_BALANCE_FORK |
165 			 SD_BALANCE_EXEC |
166 			 SD_SHARE_CPUCAPACITY |
167 			 SD_ASYM_CPUCAPACITY |
168 			 SD_SHARE_PKG_RESOURCES |
169 			 SD_SHARE_POWERDOMAIN)) {
170 		if (sd->groups != sd->groups->next)
171 			return 0;
172 	}
173 
174 	/* Following flags don't use groups */
175 	if (sd->flags & (SD_WAKE_AFFINE))
176 		return 0;
177 
178 	return 1;
179 }
180 
181 static int
182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183 {
184 	unsigned long cflags = sd->flags, pflags = parent->flags;
185 
186 	if (sd_degenerate(parent))
187 		return 1;
188 
189 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 		return 0;
191 
192 	/* Flags needing groups don't count if only 1 group in parent */
193 	if (parent->groups == parent->groups->next) {
194 		pflags &= ~(SD_LOAD_BALANCE |
195 				SD_BALANCE_NEWIDLE |
196 				SD_BALANCE_FORK |
197 				SD_BALANCE_EXEC |
198 				SD_ASYM_CPUCAPACITY |
199 				SD_SHARE_CPUCAPACITY |
200 				SD_SHARE_PKG_RESOURCES |
201 				SD_PREFER_SIBLING |
202 				SD_SHARE_POWERDOMAIN);
203 		if (nr_node_ids == 1)
204 			pflags &= ~SD_SERIALIZE;
205 	}
206 	if (~cflags & pflags)
207 		return 0;
208 
209 	return 1;
210 }
211 
212 static void free_rootdomain(struct rcu_head *rcu)
213 {
214 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215 
216 	cpupri_cleanup(&rd->cpupri);
217 	cpudl_cleanup(&rd->cpudl);
218 	free_cpumask_var(rd->dlo_mask);
219 	free_cpumask_var(rd->rto_mask);
220 	free_cpumask_var(rd->online);
221 	free_cpumask_var(rd->span);
222 	kfree(rd);
223 }
224 
225 void rq_attach_root(struct rq *rq, struct root_domain *rd)
226 {
227 	struct root_domain *old_rd = NULL;
228 	unsigned long flags;
229 
230 	raw_spin_lock_irqsave(&rq->lock, flags);
231 
232 	if (rq->rd) {
233 		old_rd = rq->rd;
234 
235 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 			set_rq_offline(rq);
237 
238 		cpumask_clear_cpu(rq->cpu, old_rd->span);
239 
240 		/*
241 		 * If we dont want to free the old_rd yet then
242 		 * set old_rd to NULL to skip the freeing later
243 		 * in this function:
244 		 */
245 		if (!atomic_dec_and_test(&old_rd->refcount))
246 			old_rd = NULL;
247 	}
248 
249 	atomic_inc(&rd->refcount);
250 	rq->rd = rd;
251 
252 	cpumask_set_cpu(rq->cpu, rd->span);
253 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 		set_rq_online(rq);
255 
256 	raw_spin_unlock_irqrestore(&rq->lock, flags);
257 
258 	if (old_rd)
259 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
260 }
261 
262 static int init_rootdomain(struct root_domain *rd)
263 {
264 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
265 		goto out;
266 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
267 		goto free_span;
268 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
269 		goto free_online;
270 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
271 		goto free_dlo_mask;
272 
273 #ifdef HAVE_RT_PUSH_IPI
274 	rd->rto_cpu = -1;
275 	raw_spin_lock_init(&rd->rto_lock);
276 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
277 #endif
278 
279 	init_dl_bw(&rd->dl_bw);
280 	if (cpudl_init(&rd->cpudl) != 0)
281 		goto free_rto_mask;
282 
283 	if (cpupri_init(&rd->cpupri) != 0)
284 		goto free_cpudl;
285 	return 0;
286 
287 free_cpudl:
288 	cpudl_cleanup(&rd->cpudl);
289 free_rto_mask:
290 	free_cpumask_var(rd->rto_mask);
291 free_dlo_mask:
292 	free_cpumask_var(rd->dlo_mask);
293 free_online:
294 	free_cpumask_var(rd->online);
295 free_span:
296 	free_cpumask_var(rd->span);
297 out:
298 	return -ENOMEM;
299 }
300 
301 /*
302  * By default the system creates a single root-domain with all CPUs as
303  * members (mimicking the global state we have today).
304  */
305 struct root_domain def_root_domain;
306 
307 void init_defrootdomain(void)
308 {
309 	init_rootdomain(&def_root_domain);
310 
311 	atomic_set(&def_root_domain.refcount, 1);
312 }
313 
314 static struct root_domain *alloc_rootdomain(void)
315 {
316 	struct root_domain *rd;
317 
318 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
319 	if (!rd)
320 		return NULL;
321 
322 	if (init_rootdomain(rd) != 0) {
323 		kfree(rd);
324 		return NULL;
325 	}
326 
327 	return rd;
328 }
329 
330 static void free_sched_groups(struct sched_group *sg, int free_sgc)
331 {
332 	struct sched_group *tmp, *first;
333 
334 	if (!sg)
335 		return;
336 
337 	first = sg;
338 	do {
339 		tmp = sg->next;
340 
341 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
342 			kfree(sg->sgc);
343 
344 		if (atomic_dec_and_test(&sg->ref))
345 			kfree(sg);
346 		sg = tmp;
347 	} while (sg != first);
348 }
349 
350 static void destroy_sched_domain(struct sched_domain *sd)
351 {
352 	/*
353 	 * A normal sched domain may have multiple group references, an
354 	 * overlapping domain, having private groups, only one.  Iterate,
355 	 * dropping group/capacity references, freeing where none remain.
356 	 */
357 	free_sched_groups(sd->groups, 1);
358 
359 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
360 		kfree(sd->shared);
361 	kfree(sd);
362 }
363 
364 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
365 {
366 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
367 
368 	while (sd) {
369 		struct sched_domain *parent = sd->parent;
370 		destroy_sched_domain(sd);
371 		sd = parent;
372 	}
373 }
374 
375 static void destroy_sched_domains(struct sched_domain *sd)
376 {
377 	if (sd)
378 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
379 }
380 
381 /*
382  * Keep a special pointer to the highest sched_domain that has
383  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
384  * allows us to avoid some pointer chasing select_idle_sibling().
385  *
386  * Also keep a unique ID per domain (we use the first CPU number in
387  * the cpumask of the domain), this allows us to quickly tell if
388  * two CPUs are in the same cache domain, see cpus_share_cache().
389  */
390 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
391 DEFINE_PER_CPU(int, sd_llc_size);
392 DEFINE_PER_CPU(int, sd_llc_id);
393 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
394 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
395 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
396 
397 static void update_top_cache_domain(int cpu)
398 {
399 	struct sched_domain_shared *sds = NULL;
400 	struct sched_domain *sd;
401 	int id = cpu;
402 	int size = 1;
403 
404 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
405 	if (sd) {
406 		id = cpumask_first(sched_domain_span(sd));
407 		size = cpumask_weight(sched_domain_span(sd));
408 		sds = sd->shared;
409 	}
410 
411 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
412 	per_cpu(sd_llc_size, cpu) = size;
413 	per_cpu(sd_llc_id, cpu) = id;
414 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
415 
416 	sd = lowest_flag_domain(cpu, SD_NUMA);
417 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
418 
419 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
420 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
421 }
422 
423 /*
424  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
425  * hold the hotplug lock.
426  */
427 static void
428 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
429 {
430 	struct rq *rq = cpu_rq(cpu);
431 	struct sched_domain *tmp;
432 
433 	/* Remove the sched domains which do not contribute to scheduling. */
434 	for (tmp = sd; tmp; ) {
435 		struct sched_domain *parent = tmp->parent;
436 		if (!parent)
437 			break;
438 
439 		if (sd_parent_degenerate(tmp, parent)) {
440 			tmp->parent = parent->parent;
441 			if (parent->parent)
442 				parent->parent->child = tmp;
443 			/*
444 			 * Transfer SD_PREFER_SIBLING down in case of a
445 			 * degenerate parent; the spans match for this
446 			 * so the property transfers.
447 			 */
448 			if (parent->flags & SD_PREFER_SIBLING)
449 				tmp->flags |= SD_PREFER_SIBLING;
450 			destroy_sched_domain(parent);
451 		} else
452 			tmp = tmp->parent;
453 	}
454 
455 	if (sd && sd_degenerate(sd)) {
456 		tmp = sd;
457 		sd = sd->parent;
458 		destroy_sched_domain(tmp);
459 		if (sd)
460 			sd->child = NULL;
461 	}
462 
463 	sched_domain_debug(sd, cpu);
464 
465 	rq_attach_root(rq, rd);
466 	tmp = rq->sd;
467 	rcu_assign_pointer(rq->sd, sd);
468 	dirty_sched_domain_sysctl(cpu);
469 	destroy_sched_domains(tmp);
470 
471 	update_top_cache_domain(cpu);
472 }
473 
474 struct s_data {
475 	struct sched_domain ** __percpu sd;
476 	struct root_domain	*rd;
477 };
478 
479 enum s_alloc {
480 	sa_rootdomain,
481 	sa_sd,
482 	sa_sd_storage,
483 	sa_none,
484 };
485 
486 /*
487  * Return the canonical balance CPU for this group, this is the first CPU
488  * of this group that's also in the balance mask.
489  *
490  * The balance mask are all those CPUs that could actually end up at this
491  * group. See build_balance_mask().
492  *
493  * Also see should_we_balance().
494  */
495 int group_balance_cpu(struct sched_group *sg)
496 {
497 	return cpumask_first(group_balance_mask(sg));
498 }
499 
500 
501 /*
502  * NUMA topology (first read the regular topology blurb below)
503  *
504  * Given a node-distance table, for example:
505  *
506  *   node   0   1   2   3
507  *     0:  10  20  30  20
508  *     1:  20  10  20  30
509  *     2:  30  20  10  20
510  *     3:  20  30  20  10
511  *
512  * which represents a 4 node ring topology like:
513  *
514  *   0 ----- 1
515  *   |       |
516  *   |       |
517  *   |       |
518  *   3 ----- 2
519  *
520  * We want to construct domains and groups to represent this. The way we go
521  * about doing this is to build the domains on 'hops'. For each NUMA level we
522  * construct the mask of all nodes reachable in @level hops.
523  *
524  * For the above NUMA topology that gives 3 levels:
525  *
526  * NUMA-2	0-3		0-3		0-3		0-3
527  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
528  *
529  * NUMA-1	0-1,3		0-2		1-3		0,2-3
530  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
531  *
532  * NUMA-0	0		1		2		3
533  *
534  *
535  * As can be seen; things don't nicely line up as with the regular topology.
536  * When we iterate a domain in child domain chunks some nodes can be
537  * represented multiple times -- hence the "overlap" naming for this part of
538  * the topology.
539  *
540  * In order to minimize this overlap, we only build enough groups to cover the
541  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
542  *
543  * Because:
544  *
545  *  - the first group of each domain is its child domain; this
546  *    gets us the first 0-1,3
547  *  - the only uncovered node is 2, who's child domain is 1-3.
548  *
549  * However, because of the overlap, computing a unique CPU for each group is
550  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
551  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
552  * end up at those groups (they would end up in group: 0-1,3).
553  *
554  * To correct this we have to introduce the group balance mask. This mask
555  * will contain those CPUs in the group that can reach this group given the
556  * (child) domain tree.
557  *
558  * With this we can once again compute balance_cpu and sched_group_capacity
559  * relations.
560  *
561  * XXX include words on how balance_cpu is unique and therefore can be
562  * used for sched_group_capacity links.
563  *
564  *
565  * Another 'interesting' topology is:
566  *
567  *   node   0   1   2   3
568  *     0:  10  20  20  30
569  *     1:  20  10  20  20
570  *     2:  20  20  10  20
571  *     3:  30  20  20  10
572  *
573  * Which looks a little like:
574  *
575  *   0 ----- 1
576  *   |     / |
577  *   |   /   |
578  *   | /     |
579  *   2 ----- 3
580  *
581  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
582  * are not.
583  *
584  * This leads to a few particularly weird cases where the sched_domain's are
585  * not of the same number for each cpu. Consider:
586  *
587  * NUMA-2	0-3						0-3
588  *  groups:	{0-2},{1-3}					{1-3},{0-2}
589  *
590  * NUMA-1	0-2		0-3		0-3		1-3
591  *
592  * NUMA-0	0		1		2		3
593  *
594  */
595 
596 
597 /*
598  * Build the balance mask; it contains only those CPUs that can arrive at this
599  * group and should be considered to continue balancing.
600  *
601  * We do this during the group creation pass, therefore the group information
602  * isn't complete yet, however since each group represents a (child) domain we
603  * can fully construct this using the sched_domain bits (which are already
604  * complete).
605  */
606 static void
607 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
608 {
609 	const struct cpumask *sg_span = sched_group_span(sg);
610 	struct sd_data *sdd = sd->private;
611 	struct sched_domain *sibling;
612 	int i;
613 
614 	cpumask_clear(mask);
615 
616 	for_each_cpu(i, sg_span) {
617 		sibling = *per_cpu_ptr(sdd->sd, i);
618 
619 		/*
620 		 * Can happen in the asymmetric case, where these siblings are
621 		 * unused. The mask will not be empty because those CPUs that
622 		 * do have the top domain _should_ span the domain.
623 		 */
624 		if (!sibling->child)
625 			continue;
626 
627 		/* If we would not end up here, we can't continue from here */
628 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
629 			continue;
630 
631 		cpumask_set_cpu(i, mask);
632 	}
633 
634 	/* We must not have empty masks here */
635 	WARN_ON_ONCE(cpumask_empty(mask));
636 }
637 
638 /*
639  * XXX: This creates per-node group entries; since the load-balancer will
640  * immediately access remote memory to construct this group's load-balance
641  * statistics having the groups node local is of dubious benefit.
642  */
643 static struct sched_group *
644 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
645 {
646 	struct sched_group *sg;
647 	struct cpumask *sg_span;
648 
649 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
650 			GFP_KERNEL, cpu_to_node(cpu));
651 
652 	if (!sg)
653 		return NULL;
654 
655 	sg_span = sched_group_span(sg);
656 	if (sd->child)
657 		cpumask_copy(sg_span, sched_domain_span(sd->child));
658 	else
659 		cpumask_copy(sg_span, sched_domain_span(sd));
660 
661 	atomic_inc(&sg->ref);
662 	return sg;
663 }
664 
665 static void init_overlap_sched_group(struct sched_domain *sd,
666 				     struct sched_group *sg)
667 {
668 	struct cpumask *mask = sched_domains_tmpmask2;
669 	struct sd_data *sdd = sd->private;
670 	struct cpumask *sg_span;
671 	int cpu;
672 
673 	build_balance_mask(sd, sg, mask);
674 	cpu = cpumask_first_and(sched_group_span(sg), mask);
675 
676 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
677 	if (atomic_inc_return(&sg->sgc->ref) == 1)
678 		cpumask_copy(group_balance_mask(sg), mask);
679 	else
680 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
681 
682 	/*
683 	 * Initialize sgc->capacity such that even if we mess up the
684 	 * domains and no possible iteration will get us here, we won't
685 	 * die on a /0 trap.
686 	 */
687 	sg_span = sched_group_span(sg);
688 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
689 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
690 }
691 
692 static int
693 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
694 {
695 	struct sched_group *first = NULL, *last = NULL, *sg;
696 	const struct cpumask *span = sched_domain_span(sd);
697 	struct cpumask *covered = sched_domains_tmpmask;
698 	struct sd_data *sdd = sd->private;
699 	struct sched_domain *sibling;
700 	int i;
701 
702 	cpumask_clear(covered);
703 
704 	for_each_cpu_wrap(i, span, cpu) {
705 		struct cpumask *sg_span;
706 
707 		if (cpumask_test_cpu(i, covered))
708 			continue;
709 
710 		sibling = *per_cpu_ptr(sdd->sd, i);
711 
712 		/*
713 		 * Asymmetric node setups can result in situations where the
714 		 * domain tree is of unequal depth, make sure to skip domains
715 		 * that already cover the entire range.
716 		 *
717 		 * In that case build_sched_domains() will have terminated the
718 		 * iteration early and our sibling sd spans will be empty.
719 		 * Domains should always include the CPU they're built on, so
720 		 * check that.
721 		 */
722 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
723 			continue;
724 
725 		sg = build_group_from_child_sched_domain(sibling, cpu);
726 		if (!sg)
727 			goto fail;
728 
729 		sg_span = sched_group_span(sg);
730 		cpumask_or(covered, covered, sg_span);
731 
732 		init_overlap_sched_group(sd, sg);
733 
734 		if (!first)
735 			first = sg;
736 		if (last)
737 			last->next = sg;
738 		last = sg;
739 		last->next = first;
740 	}
741 	sd->groups = first;
742 
743 	return 0;
744 
745 fail:
746 	free_sched_groups(first, 0);
747 
748 	return -ENOMEM;
749 }
750 
751 
752 /*
753  * Package topology (also see the load-balance blurb in fair.c)
754  *
755  * The scheduler builds a tree structure to represent a number of important
756  * topology features. By default (default_topology[]) these include:
757  *
758  *  - Simultaneous multithreading (SMT)
759  *  - Multi-Core Cache (MC)
760  *  - Package (DIE)
761  *
762  * Where the last one more or less denotes everything up to a NUMA node.
763  *
764  * The tree consists of 3 primary data structures:
765  *
766  *	sched_domain -> sched_group -> sched_group_capacity
767  *	    ^ ^             ^ ^
768  *          `-'             `-'
769  *
770  * The sched_domains are per-cpu and have a two way link (parent & child) and
771  * denote the ever growing mask of CPUs belonging to that level of topology.
772  *
773  * Each sched_domain has a circular (double) linked list of sched_group's, each
774  * denoting the domains of the level below (or individual CPUs in case of the
775  * first domain level). The sched_group linked by a sched_domain includes the
776  * CPU of that sched_domain [*].
777  *
778  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
779  *
780  * CPU   0   1   2   3   4   5   6   7
781  *
782  * DIE  [                             ]
783  * MC   [             ] [             ]
784  * SMT  [     ] [     ] [     ] [     ]
785  *
786  *  - or -
787  *
788  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
789  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
790  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
791  *
792  * CPU   0   1   2   3   4   5   6   7
793  *
794  * One way to think about it is: sched_domain moves you up and down among these
795  * topology levels, while sched_group moves you sideways through it, at child
796  * domain granularity.
797  *
798  * sched_group_capacity ensures each unique sched_group has shared storage.
799  *
800  * There are two related construction problems, both require a CPU that
801  * uniquely identify each group (for a given domain):
802  *
803  *  - The first is the balance_cpu (see should_we_balance() and the
804  *    load-balance blub in fair.c); for each group we only want 1 CPU to
805  *    continue balancing at a higher domain.
806  *
807  *  - The second is the sched_group_capacity; we want all identical groups
808  *    to share a single sched_group_capacity.
809  *
810  * Since these topologies are exclusive by construction. That is, its
811  * impossible for an SMT thread to belong to multiple cores, and cores to
812  * be part of multiple caches. There is a very clear and unique location
813  * for each CPU in the hierarchy.
814  *
815  * Therefore computing a unique CPU for each group is trivial (the iteration
816  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
817  * group), we can simply pick the first CPU in each group.
818  *
819  *
820  * [*] in other words, the first group of each domain is its child domain.
821  */
822 
823 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
824 {
825 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
826 	struct sched_domain *child = sd->child;
827 	struct sched_group *sg;
828 
829 	if (child)
830 		cpu = cpumask_first(sched_domain_span(child));
831 
832 	sg = *per_cpu_ptr(sdd->sg, cpu);
833 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
834 
835 	/* For claim_allocations: */
836 	atomic_inc(&sg->ref);
837 	atomic_inc(&sg->sgc->ref);
838 
839 	if (child) {
840 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
841 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
842 	} else {
843 		cpumask_set_cpu(cpu, sched_group_span(sg));
844 		cpumask_set_cpu(cpu, group_balance_mask(sg));
845 	}
846 
847 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
848 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
849 
850 	return sg;
851 }
852 
853 /*
854  * build_sched_groups will build a circular linked list of the groups
855  * covered by the given span, and will set each group's ->cpumask correctly,
856  * and ->cpu_capacity to 0.
857  *
858  * Assumes the sched_domain tree is fully constructed
859  */
860 static int
861 build_sched_groups(struct sched_domain *sd, int cpu)
862 {
863 	struct sched_group *first = NULL, *last = NULL;
864 	struct sd_data *sdd = sd->private;
865 	const struct cpumask *span = sched_domain_span(sd);
866 	struct cpumask *covered;
867 	int i;
868 
869 	lockdep_assert_held(&sched_domains_mutex);
870 	covered = sched_domains_tmpmask;
871 
872 	cpumask_clear(covered);
873 
874 	for_each_cpu_wrap(i, span, cpu) {
875 		struct sched_group *sg;
876 
877 		if (cpumask_test_cpu(i, covered))
878 			continue;
879 
880 		sg = get_group(i, sdd);
881 
882 		cpumask_or(covered, covered, sched_group_span(sg));
883 
884 		if (!first)
885 			first = sg;
886 		if (last)
887 			last->next = sg;
888 		last = sg;
889 	}
890 	last->next = first;
891 	sd->groups = first;
892 
893 	return 0;
894 }
895 
896 /*
897  * Initialize sched groups cpu_capacity.
898  *
899  * cpu_capacity indicates the capacity of sched group, which is used while
900  * distributing the load between different sched groups in a sched domain.
901  * Typically cpu_capacity for all the groups in a sched domain will be same
902  * unless there are asymmetries in the topology. If there are asymmetries,
903  * group having more cpu_capacity will pickup more load compared to the
904  * group having less cpu_capacity.
905  */
906 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
907 {
908 	struct sched_group *sg = sd->groups;
909 
910 	WARN_ON(!sg);
911 
912 	do {
913 		int cpu, max_cpu = -1;
914 
915 		sg->group_weight = cpumask_weight(sched_group_span(sg));
916 
917 		if (!(sd->flags & SD_ASYM_PACKING))
918 			goto next;
919 
920 		for_each_cpu(cpu, sched_group_span(sg)) {
921 			if (max_cpu < 0)
922 				max_cpu = cpu;
923 			else if (sched_asym_prefer(cpu, max_cpu))
924 				max_cpu = cpu;
925 		}
926 		sg->asym_prefer_cpu = max_cpu;
927 
928 next:
929 		sg = sg->next;
930 	} while (sg != sd->groups);
931 
932 	if (cpu != group_balance_cpu(sg))
933 		return;
934 
935 	update_group_capacity(sd, cpu);
936 }
937 
938 /*
939  * Initializers for schedule domains
940  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
941  */
942 
943 static int default_relax_domain_level = -1;
944 int sched_domain_level_max;
945 
946 static int __init setup_relax_domain_level(char *str)
947 {
948 	if (kstrtoint(str, 0, &default_relax_domain_level))
949 		pr_warn("Unable to set relax_domain_level\n");
950 
951 	return 1;
952 }
953 __setup("relax_domain_level=", setup_relax_domain_level);
954 
955 static void set_domain_attribute(struct sched_domain *sd,
956 				 struct sched_domain_attr *attr)
957 {
958 	int request;
959 
960 	if (!attr || attr->relax_domain_level < 0) {
961 		if (default_relax_domain_level < 0)
962 			return;
963 		else
964 			request = default_relax_domain_level;
965 	} else
966 		request = attr->relax_domain_level;
967 	if (request < sd->level) {
968 		/* Turn off idle balance on this domain: */
969 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
970 	} else {
971 		/* Turn on idle balance on this domain: */
972 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
973 	}
974 }
975 
976 static void __sdt_free(const struct cpumask *cpu_map);
977 static int __sdt_alloc(const struct cpumask *cpu_map);
978 
979 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
980 				 const struct cpumask *cpu_map)
981 {
982 	switch (what) {
983 	case sa_rootdomain:
984 		if (!atomic_read(&d->rd->refcount))
985 			free_rootdomain(&d->rd->rcu);
986 		/* Fall through */
987 	case sa_sd:
988 		free_percpu(d->sd);
989 		/* Fall through */
990 	case sa_sd_storage:
991 		__sdt_free(cpu_map);
992 		/* Fall through */
993 	case sa_none:
994 		break;
995 	}
996 }
997 
998 static enum s_alloc
999 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1000 {
1001 	memset(d, 0, sizeof(*d));
1002 
1003 	if (__sdt_alloc(cpu_map))
1004 		return sa_sd_storage;
1005 	d->sd = alloc_percpu(struct sched_domain *);
1006 	if (!d->sd)
1007 		return sa_sd_storage;
1008 	d->rd = alloc_rootdomain();
1009 	if (!d->rd)
1010 		return sa_sd;
1011 	return sa_rootdomain;
1012 }
1013 
1014 /*
1015  * NULL the sd_data elements we've used to build the sched_domain and
1016  * sched_group structure so that the subsequent __free_domain_allocs()
1017  * will not free the data we're using.
1018  */
1019 static void claim_allocations(int cpu, struct sched_domain *sd)
1020 {
1021 	struct sd_data *sdd = sd->private;
1022 
1023 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1024 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1025 
1026 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1027 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1028 
1029 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1030 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1031 
1032 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1033 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1034 }
1035 
1036 #ifdef CONFIG_NUMA
1037 static int sched_domains_numa_levels;
1038 enum numa_topology_type sched_numa_topology_type;
1039 static int *sched_domains_numa_distance;
1040 int sched_max_numa_distance;
1041 static struct cpumask ***sched_domains_numa_masks;
1042 static int sched_domains_curr_level;
1043 #endif
1044 
1045 /*
1046  * SD_flags allowed in topology descriptions.
1047  *
1048  * These flags are purely descriptive of the topology and do not prescribe
1049  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1050  * function:
1051  *
1052  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1053  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1054  *   SD_NUMA                - describes NUMA topologies
1055  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1056  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1057  *
1058  * Odd one out, which beside describing the topology has a quirk also
1059  * prescribes the desired behaviour that goes along with it:
1060  *
1061  *   SD_ASYM_PACKING        - describes SMT quirks
1062  */
1063 #define TOPOLOGY_SD_FLAGS		\
1064 	(SD_SHARE_CPUCAPACITY |		\
1065 	 SD_SHARE_PKG_RESOURCES |	\
1066 	 SD_NUMA |			\
1067 	 SD_ASYM_PACKING |		\
1068 	 SD_ASYM_CPUCAPACITY |		\
1069 	 SD_SHARE_POWERDOMAIN)
1070 
1071 static struct sched_domain *
1072 sd_init(struct sched_domain_topology_level *tl,
1073 	const struct cpumask *cpu_map,
1074 	struct sched_domain *child, int cpu)
1075 {
1076 	struct sd_data *sdd = &tl->data;
1077 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1078 	int sd_id, sd_weight, sd_flags = 0;
1079 
1080 #ifdef CONFIG_NUMA
1081 	/*
1082 	 * Ugly hack to pass state to sd_numa_mask()...
1083 	 */
1084 	sched_domains_curr_level = tl->numa_level;
1085 #endif
1086 
1087 	sd_weight = cpumask_weight(tl->mask(cpu));
1088 
1089 	if (tl->sd_flags)
1090 		sd_flags = (*tl->sd_flags)();
1091 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1092 			"wrong sd_flags in topology description\n"))
1093 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1094 
1095 	*sd = (struct sched_domain){
1096 		.min_interval		= sd_weight,
1097 		.max_interval		= 2*sd_weight,
1098 		.busy_factor		= 32,
1099 		.imbalance_pct		= 125,
1100 
1101 		.cache_nice_tries	= 0,
1102 		.busy_idx		= 0,
1103 		.idle_idx		= 0,
1104 		.newidle_idx		= 0,
1105 		.wake_idx		= 0,
1106 		.forkexec_idx		= 0,
1107 
1108 		.flags			= 1*SD_LOAD_BALANCE
1109 					| 1*SD_BALANCE_NEWIDLE
1110 					| 1*SD_BALANCE_EXEC
1111 					| 1*SD_BALANCE_FORK
1112 					| 0*SD_BALANCE_WAKE
1113 					| 1*SD_WAKE_AFFINE
1114 					| 0*SD_SHARE_CPUCAPACITY
1115 					| 0*SD_SHARE_PKG_RESOURCES
1116 					| 0*SD_SERIALIZE
1117 					| 0*SD_PREFER_SIBLING
1118 					| 0*SD_NUMA
1119 					| sd_flags
1120 					,
1121 
1122 		.last_balance		= jiffies,
1123 		.balance_interval	= sd_weight,
1124 		.smt_gain		= 0,
1125 		.max_newidle_lb_cost	= 0,
1126 		.next_decay_max_lb_cost	= jiffies,
1127 		.child			= child,
1128 #ifdef CONFIG_SCHED_DEBUG
1129 		.name			= tl->name,
1130 #endif
1131 	};
1132 
1133 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1134 	sd_id = cpumask_first(sched_domain_span(sd));
1135 
1136 	/*
1137 	 * Convert topological properties into behaviour.
1138 	 */
1139 
1140 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1141 		struct sched_domain *t = sd;
1142 
1143 		for_each_lower_domain(t)
1144 			t->flags |= SD_BALANCE_WAKE;
1145 	}
1146 
1147 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1148 		sd->flags |= SD_PREFER_SIBLING;
1149 		sd->imbalance_pct = 110;
1150 		sd->smt_gain = 1178; /* ~15% */
1151 
1152 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1153 		sd->flags |= SD_PREFER_SIBLING;
1154 		sd->imbalance_pct = 117;
1155 		sd->cache_nice_tries = 1;
1156 		sd->busy_idx = 2;
1157 
1158 #ifdef CONFIG_NUMA
1159 	} else if (sd->flags & SD_NUMA) {
1160 		sd->cache_nice_tries = 2;
1161 		sd->busy_idx = 3;
1162 		sd->idle_idx = 2;
1163 
1164 		sd->flags |= SD_SERIALIZE;
1165 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1166 			sd->flags &= ~(SD_BALANCE_EXEC |
1167 				       SD_BALANCE_FORK |
1168 				       SD_WAKE_AFFINE);
1169 		}
1170 
1171 #endif
1172 	} else {
1173 		sd->flags |= SD_PREFER_SIBLING;
1174 		sd->cache_nice_tries = 1;
1175 		sd->busy_idx = 2;
1176 		sd->idle_idx = 1;
1177 	}
1178 
1179 	/*
1180 	 * For all levels sharing cache; connect a sched_domain_shared
1181 	 * instance.
1182 	 */
1183 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1184 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1185 		atomic_inc(&sd->shared->ref);
1186 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1187 	}
1188 
1189 	sd->private = sdd;
1190 
1191 	return sd;
1192 }
1193 
1194 /*
1195  * Topology list, bottom-up.
1196  */
1197 static struct sched_domain_topology_level default_topology[] = {
1198 #ifdef CONFIG_SCHED_SMT
1199 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1200 #endif
1201 #ifdef CONFIG_SCHED_MC
1202 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1203 #endif
1204 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1205 	{ NULL, },
1206 };
1207 
1208 static struct sched_domain_topology_level *sched_domain_topology =
1209 	default_topology;
1210 
1211 #define for_each_sd_topology(tl)			\
1212 	for (tl = sched_domain_topology; tl->mask; tl++)
1213 
1214 void set_sched_topology(struct sched_domain_topology_level *tl)
1215 {
1216 	if (WARN_ON_ONCE(sched_smp_initialized))
1217 		return;
1218 
1219 	sched_domain_topology = tl;
1220 }
1221 
1222 #ifdef CONFIG_NUMA
1223 
1224 static const struct cpumask *sd_numa_mask(int cpu)
1225 {
1226 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1227 }
1228 
1229 static void sched_numa_warn(const char *str)
1230 {
1231 	static int done = false;
1232 	int i,j;
1233 
1234 	if (done)
1235 		return;
1236 
1237 	done = true;
1238 
1239 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1240 
1241 	for (i = 0; i < nr_node_ids; i++) {
1242 		printk(KERN_WARNING "  ");
1243 		for (j = 0; j < nr_node_ids; j++)
1244 			printk(KERN_CONT "%02d ", node_distance(i,j));
1245 		printk(KERN_CONT "\n");
1246 	}
1247 	printk(KERN_WARNING "\n");
1248 }
1249 
1250 bool find_numa_distance(int distance)
1251 {
1252 	int i;
1253 
1254 	if (distance == node_distance(0, 0))
1255 		return true;
1256 
1257 	for (i = 0; i < sched_domains_numa_levels; i++) {
1258 		if (sched_domains_numa_distance[i] == distance)
1259 			return true;
1260 	}
1261 
1262 	return false;
1263 }
1264 
1265 /*
1266  * A system can have three types of NUMA topology:
1267  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1268  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1269  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1270  *
1271  * The difference between a glueless mesh topology and a backplane
1272  * topology lies in whether communication between not directly
1273  * connected nodes goes through intermediary nodes (where programs
1274  * could run), or through backplane controllers. This affects
1275  * placement of programs.
1276  *
1277  * The type of topology can be discerned with the following tests:
1278  * - If the maximum distance between any nodes is 1 hop, the system
1279  *   is directly connected.
1280  * - If for two nodes A and B, located N > 1 hops away from each other,
1281  *   there is an intermediary node C, which is < N hops away from both
1282  *   nodes A and B, the system is a glueless mesh.
1283  */
1284 static void init_numa_topology_type(void)
1285 {
1286 	int a, b, c, n;
1287 
1288 	n = sched_max_numa_distance;
1289 
1290 	if (sched_domains_numa_levels <= 1) {
1291 		sched_numa_topology_type = NUMA_DIRECT;
1292 		return;
1293 	}
1294 
1295 	for_each_online_node(a) {
1296 		for_each_online_node(b) {
1297 			/* Find two nodes furthest removed from each other. */
1298 			if (node_distance(a, b) < n)
1299 				continue;
1300 
1301 			/* Is there an intermediary node between a and b? */
1302 			for_each_online_node(c) {
1303 				if (node_distance(a, c) < n &&
1304 				    node_distance(b, c) < n) {
1305 					sched_numa_topology_type =
1306 							NUMA_GLUELESS_MESH;
1307 					return;
1308 				}
1309 			}
1310 
1311 			sched_numa_topology_type = NUMA_BACKPLANE;
1312 			return;
1313 		}
1314 	}
1315 }
1316 
1317 void sched_init_numa(void)
1318 {
1319 	int next_distance, curr_distance = node_distance(0, 0);
1320 	struct sched_domain_topology_level *tl;
1321 	int level = 0;
1322 	int i, j, k;
1323 
1324 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1325 	if (!sched_domains_numa_distance)
1326 		return;
1327 
1328 	/* Includes NUMA identity node at level 0. */
1329 	sched_domains_numa_distance[level++] = curr_distance;
1330 	sched_domains_numa_levels = level;
1331 
1332 	/*
1333 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1334 	 * unique distances in the node_distance() table.
1335 	 *
1336 	 * Assumes node_distance(0,j) includes all distances in
1337 	 * node_distance(i,j) in order to avoid cubic time.
1338 	 */
1339 	next_distance = curr_distance;
1340 	for (i = 0; i < nr_node_ids; i++) {
1341 		for (j = 0; j < nr_node_ids; j++) {
1342 			for (k = 0; k < nr_node_ids; k++) {
1343 				int distance = node_distance(i, k);
1344 
1345 				if (distance > curr_distance &&
1346 				    (distance < next_distance ||
1347 				     next_distance == curr_distance))
1348 					next_distance = distance;
1349 
1350 				/*
1351 				 * While not a strong assumption it would be nice to know
1352 				 * about cases where if node A is connected to B, B is not
1353 				 * equally connected to A.
1354 				 */
1355 				if (sched_debug() && node_distance(k, i) != distance)
1356 					sched_numa_warn("Node-distance not symmetric");
1357 
1358 				if (sched_debug() && i && !find_numa_distance(distance))
1359 					sched_numa_warn("Node-0 not representative");
1360 			}
1361 			if (next_distance != curr_distance) {
1362 				sched_domains_numa_distance[level++] = next_distance;
1363 				sched_domains_numa_levels = level;
1364 				curr_distance = next_distance;
1365 			} else break;
1366 		}
1367 
1368 		/*
1369 		 * In case of sched_debug() we verify the above assumption.
1370 		 */
1371 		if (!sched_debug())
1372 			break;
1373 	}
1374 
1375 	if (!level)
1376 		return;
1377 
1378 	/*
1379 	 * 'level' contains the number of unique distances
1380 	 *
1381 	 * The sched_domains_numa_distance[] array includes the actual distance
1382 	 * numbers.
1383 	 */
1384 
1385 	/*
1386 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1387 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1388 	 * the array will contain less then 'level' members. This could be
1389 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1390 	 * in other functions.
1391 	 *
1392 	 * We reset it to 'level' at the end of this function.
1393 	 */
1394 	sched_domains_numa_levels = 0;
1395 
1396 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1397 	if (!sched_domains_numa_masks)
1398 		return;
1399 
1400 	/*
1401 	 * Now for each level, construct a mask per node which contains all
1402 	 * CPUs of nodes that are that many hops away from us.
1403 	 */
1404 	for (i = 0; i < level; i++) {
1405 		sched_domains_numa_masks[i] =
1406 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1407 		if (!sched_domains_numa_masks[i])
1408 			return;
1409 
1410 		for (j = 0; j < nr_node_ids; j++) {
1411 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1412 			if (!mask)
1413 				return;
1414 
1415 			sched_domains_numa_masks[i][j] = mask;
1416 
1417 			for_each_node(k) {
1418 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1419 					continue;
1420 
1421 				cpumask_or(mask, mask, cpumask_of_node(k));
1422 			}
1423 		}
1424 	}
1425 
1426 	/* Compute default topology size */
1427 	for (i = 0; sched_domain_topology[i].mask; i++);
1428 
1429 	tl = kzalloc((i + level + 1) *
1430 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1431 	if (!tl)
1432 		return;
1433 
1434 	/*
1435 	 * Copy the default topology bits..
1436 	 */
1437 	for (i = 0; sched_domain_topology[i].mask; i++)
1438 		tl[i] = sched_domain_topology[i];
1439 
1440 	/*
1441 	 * Add the NUMA identity distance, aka single NODE.
1442 	 */
1443 	tl[i++] = (struct sched_domain_topology_level){
1444 		.mask = sd_numa_mask,
1445 		.numa_level = 0,
1446 		SD_INIT_NAME(NODE)
1447 	};
1448 
1449 	/*
1450 	 * .. and append 'j' levels of NUMA goodness.
1451 	 */
1452 	for (j = 1; j < level; i++, j++) {
1453 		tl[i] = (struct sched_domain_topology_level){
1454 			.mask = sd_numa_mask,
1455 			.sd_flags = cpu_numa_flags,
1456 			.flags = SDTL_OVERLAP,
1457 			.numa_level = j,
1458 			SD_INIT_NAME(NUMA)
1459 		};
1460 	}
1461 
1462 	sched_domain_topology = tl;
1463 
1464 	sched_domains_numa_levels = level;
1465 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1466 
1467 	init_numa_topology_type();
1468 }
1469 
1470 void sched_domains_numa_masks_set(unsigned int cpu)
1471 {
1472 	int node = cpu_to_node(cpu);
1473 	int i, j;
1474 
1475 	for (i = 0; i < sched_domains_numa_levels; i++) {
1476 		for (j = 0; j < nr_node_ids; j++) {
1477 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1478 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1479 		}
1480 	}
1481 }
1482 
1483 void sched_domains_numa_masks_clear(unsigned int cpu)
1484 {
1485 	int i, j;
1486 
1487 	for (i = 0; i < sched_domains_numa_levels; i++) {
1488 		for (j = 0; j < nr_node_ids; j++)
1489 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1490 	}
1491 }
1492 
1493 #endif /* CONFIG_NUMA */
1494 
1495 static int __sdt_alloc(const struct cpumask *cpu_map)
1496 {
1497 	struct sched_domain_topology_level *tl;
1498 	int j;
1499 
1500 	for_each_sd_topology(tl) {
1501 		struct sd_data *sdd = &tl->data;
1502 
1503 		sdd->sd = alloc_percpu(struct sched_domain *);
1504 		if (!sdd->sd)
1505 			return -ENOMEM;
1506 
1507 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1508 		if (!sdd->sds)
1509 			return -ENOMEM;
1510 
1511 		sdd->sg = alloc_percpu(struct sched_group *);
1512 		if (!sdd->sg)
1513 			return -ENOMEM;
1514 
1515 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1516 		if (!sdd->sgc)
1517 			return -ENOMEM;
1518 
1519 		for_each_cpu(j, cpu_map) {
1520 			struct sched_domain *sd;
1521 			struct sched_domain_shared *sds;
1522 			struct sched_group *sg;
1523 			struct sched_group_capacity *sgc;
1524 
1525 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1526 					GFP_KERNEL, cpu_to_node(j));
1527 			if (!sd)
1528 				return -ENOMEM;
1529 
1530 			*per_cpu_ptr(sdd->sd, j) = sd;
1531 
1532 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1533 					GFP_KERNEL, cpu_to_node(j));
1534 			if (!sds)
1535 				return -ENOMEM;
1536 
1537 			*per_cpu_ptr(sdd->sds, j) = sds;
1538 
1539 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1540 					GFP_KERNEL, cpu_to_node(j));
1541 			if (!sg)
1542 				return -ENOMEM;
1543 
1544 			sg->next = sg;
1545 
1546 			*per_cpu_ptr(sdd->sg, j) = sg;
1547 
1548 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1549 					GFP_KERNEL, cpu_to_node(j));
1550 			if (!sgc)
1551 				return -ENOMEM;
1552 
1553 #ifdef CONFIG_SCHED_DEBUG
1554 			sgc->id = j;
1555 #endif
1556 
1557 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1558 		}
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static void __sdt_free(const struct cpumask *cpu_map)
1565 {
1566 	struct sched_domain_topology_level *tl;
1567 	int j;
1568 
1569 	for_each_sd_topology(tl) {
1570 		struct sd_data *sdd = &tl->data;
1571 
1572 		for_each_cpu(j, cpu_map) {
1573 			struct sched_domain *sd;
1574 
1575 			if (sdd->sd) {
1576 				sd = *per_cpu_ptr(sdd->sd, j);
1577 				if (sd && (sd->flags & SD_OVERLAP))
1578 					free_sched_groups(sd->groups, 0);
1579 				kfree(*per_cpu_ptr(sdd->sd, j));
1580 			}
1581 
1582 			if (sdd->sds)
1583 				kfree(*per_cpu_ptr(sdd->sds, j));
1584 			if (sdd->sg)
1585 				kfree(*per_cpu_ptr(sdd->sg, j));
1586 			if (sdd->sgc)
1587 				kfree(*per_cpu_ptr(sdd->sgc, j));
1588 		}
1589 		free_percpu(sdd->sd);
1590 		sdd->sd = NULL;
1591 		free_percpu(sdd->sds);
1592 		sdd->sds = NULL;
1593 		free_percpu(sdd->sg);
1594 		sdd->sg = NULL;
1595 		free_percpu(sdd->sgc);
1596 		sdd->sgc = NULL;
1597 	}
1598 }
1599 
1600 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1601 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1602 		struct sched_domain *child, int cpu)
1603 {
1604 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1605 
1606 	if (child) {
1607 		sd->level = child->level + 1;
1608 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1609 		child->parent = sd;
1610 
1611 		if (!cpumask_subset(sched_domain_span(child),
1612 				    sched_domain_span(sd))) {
1613 			pr_err("BUG: arch topology borken\n");
1614 #ifdef CONFIG_SCHED_DEBUG
1615 			pr_err("     the %s domain not a subset of the %s domain\n",
1616 					child->name, sd->name);
1617 #endif
1618 			/* Fixup, ensure @sd has at least @child cpus. */
1619 			cpumask_or(sched_domain_span(sd),
1620 				   sched_domain_span(sd),
1621 				   sched_domain_span(child));
1622 		}
1623 
1624 	}
1625 	set_domain_attribute(sd, attr);
1626 
1627 	return sd;
1628 }
1629 
1630 /*
1631  * Build sched domains for a given set of CPUs and attach the sched domains
1632  * to the individual CPUs
1633  */
1634 static int
1635 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1636 {
1637 	enum s_alloc alloc_state;
1638 	struct sched_domain *sd;
1639 	struct s_data d;
1640 	struct rq *rq = NULL;
1641 	int i, ret = -ENOMEM;
1642 
1643 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1644 	if (alloc_state != sa_rootdomain)
1645 		goto error;
1646 
1647 	/* Set up domains for CPUs specified by the cpu_map: */
1648 	for_each_cpu(i, cpu_map) {
1649 		struct sched_domain_topology_level *tl;
1650 
1651 		sd = NULL;
1652 		for_each_sd_topology(tl) {
1653 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1654 			if (tl == sched_domain_topology)
1655 				*per_cpu_ptr(d.sd, i) = sd;
1656 			if (tl->flags & SDTL_OVERLAP)
1657 				sd->flags |= SD_OVERLAP;
1658 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1659 				break;
1660 		}
1661 	}
1662 
1663 	/* Build the groups for the domains */
1664 	for_each_cpu(i, cpu_map) {
1665 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1666 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1667 			if (sd->flags & SD_OVERLAP) {
1668 				if (build_overlap_sched_groups(sd, i))
1669 					goto error;
1670 			} else {
1671 				if (build_sched_groups(sd, i))
1672 					goto error;
1673 			}
1674 		}
1675 	}
1676 
1677 	/* Calculate CPU capacity for physical packages and nodes */
1678 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1679 		if (!cpumask_test_cpu(i, cpu_map))
1680 			continue;
1681 
1682 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1683 			claim_allocations(i, sd);
1684 			init_sched_groups_capacity(i, sd);
1685 		}
1686 	}
1687 
1688 	/* Attach the domains */
1689 	rcu_read_lock();
1690 	for_each_cpu(i, cpu_map) {
1691 		rq = cpu_rq(i);
1692 		sd = *per_cpu_ptr(d.sd, i);
1693 
1694 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1695 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1696 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1697 
1698 		cpu_attach_domain(sd, d.rd, i);
1699 	}
1700 	rcu_read_unlock();
1701 
1702 	if (rq && sched_debug_enabled) {
1703 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1704 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1705 	}
1706 
1707 	ret = 0;
1708 error:
1709 	__free_domain_allocs(&d, alloc_state, cpu_map);
1710 	return ret;
1711 }
1712 
1713 /* Current sched domains: */
1714 static cpumask_var_t			*doms_cur;
1715 
1716 /* Number of sched domains in 'doms_cur': */
1717 static int				ndoms_cur;
1718 
1719 /* Attribues of custom domains in 'doms_cur' */
1720 static struct sched_domain_attr		*dattr_cur;
1721 
1722 /*
1723  * Special case: If a kmalloc() of a doms_cur partition (array of
1724  * cpumask) fails, then fallback to a single sched domain,
1725  * as determined by the single cpumask fallback_doms.
1726  */
1727 static cpumask_var_t			fallback_doms;
1728 
1729 /*
1730  * arch_update_cpu_topology lets virtualized architectures update the
1731  * CPU core maps. It is supposed to return 1 if the topology changed
1732  * or 0 if it stayed the same.
1733  */
1734 int __weak arch_update_cpu_topology(void)
1735 {
1736 	return 0;
1737 }
1738 
1739 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1740 {
1741 	int i;
1742 	cpumask_var_t *doms;
1743 
1744 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1745 	if (!doms)
1746 		return NULL;
1747 	for (i = 0; i < ndoms; i++) {
1748 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1749 			free_sched_domains(doms, i);
1750 			return NULL;
1751 		}
1752 	}
1753 	return doms;
1754 }
1755 
1756 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1757 {
1758 	unsigned int i;
1759 	for (i = 0; i < ndoms; i++)
1760 		free_cpumask_var(doms[i]);
1761 	kfree(doms);
1762 }
1763 
1764 /*
1765  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1766  * For now this just excludes isolated CPUs, but could be used to
1767  * exclude other special cases in the future.
1768  */
1769 int sched_init_domains(const struct cpumask *cpu_map)
1770 {
1771 	int err;
1772 
1773 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1774 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1775 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1776 
1777 	arch_update_cpu_topology();
1778 	ndoms_cur = 1;
1779 	doms_cur = alloc_sched_domains(ndoms_cur);
1780 	if (!doms_cur)
1781 		doms_cur = &fallback_doms;
1782 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1783 	err = build_sched_domains(doms_cur[0], NULL);
1784 	register_sched_domain_sysctl();
1785 
1786 	return err;
1787 }
1788 
1789 /*
1790  * Detach sched domains from a group of CPUs specified in cpu_map
1791  * These CPUs will now be attached to the NULL domain
1792  */
1793 static void detach_destroy_domains(const struct cpumask *cpu_map)
1794 {
1795 	int i;
1796 
1797 	rcu_read_lock();
1798 	for_each_cpu(i, cpu_map)
1799 		cpu_attach_domain(NULL, &def_root_domain, i);
1800 	rcu_read_unlock();
1801 }
1802 
1803 /* handle null as "default" */
1804 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1805 			struct sched_domain_attr *new, int idx_new)
1806 {
1807 	struct sched_domain_attr tmp;
1808 
1809 	/* Fast path: */
1810 	if (!new && !cur)
1811 		return 1;
1812 
1813 	tmp = SD_ATTR_INIT;
1814 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1815 			new ? (new + idx_new) : &tmp,
1816 			sizeof(struct sched_domain_attr));
1817 }
1818 
1819 /*
1820  * Partition sched domains as specified by the 'ndoms_new'
1821  * cpumasks in the array doms_new[] of cpumasks. This compares
1822  * doms_new[] to the current sched domain partitioning, doms_cur[].
1823  * It destroys each deleted domain and builds each new domain.
1824  *
1825  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1826  * The masks don't intersect (don't overlap.) We should setup one
1827  * sched domain for each mask. CPUs not in any of the cpumasks will
1828  * not be load balanced. If the same cpumask appears both in the
1829  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1830  * it as it is.
1831  *
1832  * The passed in 'doms_new' should be allocated using
1833  * alloc_sched_domains.  This routine takes ownership of it and will
1834  * free_sched_domains it when done with it. If the caller failed the
1835  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1836  * and partition_sched_domains() will fallback to the single partition
1837  * 'fallback_doms', it also forces the domains to be rebuilt.
1838  *
1839  * If doms_new == NULL it will be replaced with cpu_online_mask.
1840  * ndoms_new == 0 is a special case for destroying existing domains,
1841  * and it will not create the default domain.
1842  *
1843  * Call with hotplug lock held
1844  */
1845 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1846 			     struct sched_domain_attr *dattr_new)
1847 {
1848 	int i, j, n;
1849 	int new_topology;
1850 
1851 	mutex_lock(&sched_domains_mutex);
1852 
1853 	/* Always unregister in case we don't destroy any domains: */
1854 	unregister_sched_domain_sysctl();
1855 
1856 	/* Let the architecture update CPU core mappings: */
1857 	new_topology = arch_update_cpu_topology();
1858 
1859 	if (!doms_new) {
1860 		WARN_ON_ONCE(dattr_new);
1861 		n = 0;
1862 		doms_new = alloc_sched_domains(1);
1863 		if (doms_new) {
1864 			n = 1;
1865 			cpumask_and(doms_new[0], cpu_active_mask,
1866 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
1867 		}
1868 	} else {
1869 		n = ndoms_new;
1870 	}
1871 
1872 	/* Destroy deleted domains: */
1873 	for (i = 0; i < ndoms_cur; i++) {
1874 		for (j = 0; j < n && !new_topology; j++) {
1875 			if (cpumask_equal(doms_cur[i], doms_new[j])
1876 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1877 				goto match1;
1878 		}
1879 		/* No match - a current sched domain not in new doms_new[] */
1880 		detach_destroy_domains(doms_cur[i]);
1881 match1:
1882 		;
1883 	}
1884 
1885 	n = ndoms_cur;
1886 	if (!doms_new) {
1887 		n = 0;
1888 		doms_new = &fallback_doms;
1889 		cpumask_and(doms_new[0], cpu_active_mask,
1890 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
1891 	}
1892 
1893 	/* Build new domains: */
1894 	for (i = 0; i < ndoms_new; i++) {
1895 		for (j = 0; j < n && !new_topology; j++) {
1896 			if (cpumask_equal(doms_new[i], doms_cur[j])
1897 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1898 				goto match2;
1899 		}
1900 		/* No match - add a new doms_new */
1901 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1902 match2:
1903 		;
1904 	}
1905 
1906 	/* Remember the new sched domains: */
1907 	if (doms_cur != &fallback_doms)
1908 		free_sched_domains(doms_cur, ndoms_cur);
1909 
1910 	kfree(dattr_cur);
1911 	doms_cur = doms_new;
1912 	dattr_cur = dattr_new;
1913 	ndoms_cur = ndoms_new;
1914 
1915 	register_sched_domain_sysctl();
1916 
1917 	mutex_unlock(&sched_domains_mutex);
1918 }
1919 
1920