1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include <linux/sched.h> 6 #include <linux/mutex.h> 7 #include <linux/sched/isolation.h> 8 9 #include "sched.h" 10 11 DEFINE_MUTEX(sched_domains_mutex); 12 13 /* Protected by sched_domains_mutex: */ 14 cpumask_var_t sched_domains_tmpmask; 15 cpumask_var_t sched_domains_tmpmask2; 16 17 #ifdef CONFIG_SCHED_DEBUG 18 19 static int __init sched_debug_setup(char *str) 20 { 21 sched_debug_enabled = true; 22 23 return 0; 24 } 25 early_param("sched_debug", sched_debug_setup); 26 27 static inline bool sched_debug(void) 28 { 29 return sched_debug_enabled; 30 } 31 32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33 struct cpumask *groupmask) 34 { 35 struct sched_group *group = sd->groups; 36 37 cpumask_clear(groupmask); 38 39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40 41 if (!(sd->flags & SD_LOAD_BALANCE)) { 42 printk("does not load-balance\n"); 43 if (sd->parent) 44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45 " has parent"); 46 return -1; 47 } 48 49 printk(KERN_CONT "span=%*pbl level=%s\n", 50 cpumask_pr_args(sched_domain_span(sd)), sd->name); 51 52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53 printk(KERN_ERR "ERROR: domain->span does not contain " 54 "CPU%d\n", cpu); 55 } 56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 57 printk(KERN_ERR "ERROR: domain->groups does not contain" 58 " CPU%d\n", cpu); 59 } 60 61 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62 do { 63 if (!group) { 64 printk("\n"); 65 printk(KERN_ERR "ERROR: group is NULL\n"); 66 break; 67 } 68 69 if (!cpumask_weight(sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: empty group\n"); 72 break; 73 } 74 75 if (!(sd->flags & SD_OVERLAP) && 76 cpumask_intersects(groupmask, sched_group_span(group))) { 77 printk(KERN_CONT "\n"); 78 printk(KERN_ERR "ERROR: repeated CPUs\n"); 79 break; 80 } 81 82 cpumask_or(groupmask, groupmask, sched_group_span(group)); 83 84 printk(KERN_CONT " %d:{ span=%*pbl", 85 group->sgc->id, 86 cpumask_pr_args(sched_group_span(group))); 87 88 if ((sd->flags & SD_OVERLAP) && 89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 90 printk(KERN_CONT " mask=%*pbl", 91 cpumask_pr_args(group_balance_mask(group))); 92 } 93 94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96 97 if (group == sd->groups && sd->child && 98 !cpumask_equal(sched_domain_span(sd->child), 99 sched_group_span(group))) { 100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101 } 102 103 printk(KERN_CONT " }"); 104 105 group = group->next; 106 107 if (group != sd->groups) 108 printk(KERN_CONT ","); 109 110 } while (group != sd->groups); 111 printk(KERN_CONT "\n"); 112 113 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115 116 if (sd->parent && 117 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118 printk(KERN_ERR "ERROR: parent span is not a superset " 119 "of domain->span\n"); 120 return 0; 121 } 122 123 static void sched_domain_debug(struct sched_domain *sd, int cpu) 124 { 125 int level = 0; 126 127 if (!sched_debug_enabled) 128 return; 129 130 if (!sd) { 131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132 return; 133 } 134 135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136 137 for (;;) { 138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139 break; 140 level++; 141 sd = sd->parent; 142 if (!sd) 143 break; 144 } 145 } 146 #else /* !CONFIG_SCHED_DEBUG */ 147 148 # define sched_debug_enabled 0 149 # define sched_domain_debug(sd, cpu) do { } while (0) 150 static inline bool sched_debug(void) 151 { 152 return false; 153 } 154 #endif /* CONFIG_SCHED_DEBUG */ 155 156 static int sd_degenerate(struct sched_domain *sd) 157 { 158 if (cpumask_weight(sched_domain_span(sd)) == 1) 159 return 1; 160 161 /* Following flags need at least 2 groups */ 162 if (sd->flags & (SD_LOAD_BALANCE | 163 SD_BALANCE_NEWIDLE | 164 SD_BALANCE_FORK | 165 SD_BALANCE_EXEC | 166 SD_SHARE_CPUCAPACITY | 167 SD_ASYM_CPUCAPACITY | 168 SD_SHARE_PKG_RESOURCES | 169 SD_SHARE_POWERDOMAIN)) { 170 if (sd->groups != sd->groups->next) 171 return 0; 172 } 173 174 /* Following flags don't use groups */ 175 if (sd->flags & (SD_WAKE_AFFINE)) 176 return 0; 177 178 return 1; 179 } 180 181 static int 182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183 { 184 unsigned long cflags = sd->flags, pflags = parent->flags; 185 186 if (sd_degenerate(parent)) 187 return 1; 188 189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190 return 0; 191 192 /* Flags needing groups don't count if only 1 group in parent */ 193 if (parent->groups == parent->groups->next) { 194 pflags &= ~(SD_LOAD_BALANCE | 195 SD_BALANCE_NEWIDLE | 196 SD_BALANCE_FORK | 197 SD_BALANCE_EXEC | 198 SD_ASYM_CPUCAPACITY | 199 SD_SHARE_CPUCAPACITY | 200 SD_SHARE_PKG_RESOURCES | 201 SD_PREFER_SIBLING | 202 SD_SHARE_POWERDOMAIN); 203 if (nr_node_ids == 1) 204 pflags &= ~SD_SERIALIZE; 205 } 206 if (~cflags & pflags) 207 return 0; 208 209 return 1; 210 } 211 212 static void free_rootdomain(struct rcu_head *rcu) 213 { 214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215 216 cpupri_cleanup(&rd->cpupri); 217 cpudl_cleanup(&rd->cpudl); 218 free_cpumask_var(rd->dlo_mask); 219 free_cpumask_var(rd->rto_mask); 220 free_cpumask_var(rd->online); 221 free_cpumask_var(rd->span); 222 kfree(rd); 223 } 224 225 void rq_attach_root(struct rq *rq, struct root_domain *rd) 226 { 227 struct root_domain *old_rd = NULL; 228 unsigned long flags; 229 230 raw_spin_lock_irqsave(&rq->lock, flags); 231 232 if (rq->rd) { 233 old_rd = rq->rd; 234 235 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236 set_rq_offline(rq); 237 238 cpumask_clear_cpu(rq->cpu, old_rd->span); 239 240 /* 241 * If we dont want to free the old_rd yet then 242 * set old_rd to NULL to skip the freeing later 243 * in this function: 244 */ 245 if (!atomic_dec_and_test(&old_rd->refcount)) 246 old_rd = NULL; 247 } 248 249 atomic_inc(&rd->refcount); 250 rq->rd = rd; 251 252 cpumask_set_cpu(rq->cpu, rd->span); 253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254 set_rq_online(rq); 255 256 raw_spin_unlock_irqrestore(&rq->lock, flags); 257 258 if (old_rd) 259 call_rcu_sched(&old_rd->rcu, free_rootdomain); 260 } 261 262 static int init_rootdomain(struct root_domain *rd) 263 { 264 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 265 goto out; 266 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 267 goto free_span; 268 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 269 goto free_online; 270 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 271 goto free_dlo_mask; 272 273 #ifdef HAVE_RT_PUSH_IPI 274 rd->rto_cpu = -1; 275 raw_spin_lock_init(&rd->rto_lock); 276 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 277 #endif 278 279 init_dl_bw(&rd->dl_bw); 280 if (cpudl_init(&rd->cpudl) != 0) 281 goto free_rto_mask; 282 283 if (cpupri_init(&rd->cpupri) != 0) 284 goto free_cpudl; 285 return 0; 286 287 free_cpudl: 288 cpudl_cleanup(&rd->cpudl); 289 free_rto_mask: 290 free_cpumask_var(rd->rto_mask); 291 free_dlo_mask: 292 free_cpumask_var(rd->dlo_mask); 293 free_online: 294 free_cpumask_var(rd->online); 295 free_span: 296 free_cpumask_var(rd->span); 297 out: 298 return -ENOMEM; 299 } 300 301 /* 302 * By default the system creates a single root-domain with all CPUs as 303 * members (mimicking the global state we have today). 304 */ 305 struct root_domain def_root_domain; 306 307 void init_defrootdomain(void) 308 { 309 init_rootdomain(&def_root_domain); 310 311 atomic_set(&def_root_domain.refcount, 1); 312 } 313 314 static struct root_domain *alloc_rootdomain(void) 315 { 316 struct root_domain *rd; 317 318 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 319 if (!rd) 320 return NULL; 321 322 if (init_rootdomain(rd) != 0) { 323 kfree(rd); 324 return NULL; 325 } 326 327 return rd; 328 } 329 330 static void free_sched_groups(struct sched_group *sg, int free_sgc) 331 { 332 struct sched_group *tmp, *first; 333 334 if (!sg) 335 return; 336 337 first = sg; 338 do { 339 tmp = sg->next; 340 341 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 342 kfree(sg->sgc); 343 344 if (atomic_dec_and_test(&sg->ref)) 345 kfree(sg); 346 sg = tmp; 347 } while (sg != first); 348 } 349 350 static void destroy_sched_domain(struct sched_domain *sd) 351 { 352 /* 353 * A normal sched domain may have multiple group references, an 354 * overlapping domain, having private groups, only one. Iterate, 355 * dropping group/capacity references, freeing where none remain. 356 */ 357 free_sched_groups(sd->groups, 1); 358 359 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 360 kfree(sd->shared); 361 kfree(sd); 362 } 363 364 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 365 { 366 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 367 368 while (sd) { 369 struct sched_domain *parent = sd->parent; 370 destroy_sched_domain(sd); 371 sd = parent; 372 } 373 } 374 375 static void destroy_sched_domains(struct sched_domain *sd) 376 { 377 if (sd) 378 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 379 } 380 381 /* 382 * Keep a special pointer to the highest sched_domain that has 383 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 384 * allows us to avoid some pointer chasing select_idle_sibling(). 385 * 386 * Also keep a unique ID per domain (we use the first CPU number in 387 * the cpumask of the domain), this allows us to quickly tell if 388 * two CPUs are in the same cache domain, see cpus_share_cache(). 389 */ 390 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 391 DEFINE_PER_CPU(int, sd_llc_size); 392 DEFINE_PER_CPU(int, sd_llc_id); 393 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 394 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 395 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 396 397 static void update_top_cache_domain(int cpu) 398 { 399 struct sched_domain_shared *sds = NULL; 400 struct sched_domain *sd; 401 int id = cpu; 402 int size = 1; 403 404 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 405 if (sd) { 406 id = cpumask_first(sched_domain_span(sd)); 407 size = cpumask_weight(sched_domain_span(sd)); 408 sds = sd->shared; 409 } 410 411 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 412 per_cpu(sd_llc_size, cpu) = size; 413 per_cpu(sd_llc_id, cpu) = id; 414 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 415 416 sd = lowest_flag_domain(cpu, SD_NUMA); 417 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 418 419 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 420 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 421 } 422 423 /* 424 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 425 * hold the hotplug lock. 426 */ 427 static void 428 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 429 { 430 struct rq *rq = cpu_rq(cpu); 431 struct sched_domain *tmp; 432 433 /* Remove the sched domains which do not contribute to scheduling. */ 434 for (tmp = sd; tmp; ) { 435 struct sched_domain *parent = tmp->parent; 436 if (!parent) 437 break; 438 439 if (sd_parent_degenerate(tmp, parent)) { 440 tmp->parent = parent->parent; 441 if (parent->parent) 442 parent->parent->child = tmp; 443 /* 444 * Transfer SD_PREFER_SIBLING down in case of a 445 * degenerate parent; the spans match for this 446 * so the property transfers. 447 */ 448 if (parent->flags & SD_PREFER_SIBLING) 449 tmp->flags |= SD_PREFER_SIBLING; 450 destroy_sched_domain(parent); 451 } else 452 tmp = tmp->parent; 453 } 454 455 if (sd && sd_degenerate(sd)) { 456 tmp = sd; 457 sd = sd->parent; 458 destroy_sched_domain(tmp); 459 if (sd) 460 sd->child = NULL; 461 } 462 463 sched_domain_debug(sd, cpu); 464 465 rq_attach_root(rq, rd); 466 tmp = rq->sd; 467 rcu_assign_pointer(rq->sd, sd); 468 dirty_sched_domain_sysctl(cpu); 469 destroy_sched_domains(tmp); 470 471 update_top_cache_domain(cpu); 472 } 473 474 struct s_data { 475 struct sched_domain ** __percpu sd; 476 struct root_domain *rd; 477 }; 478 479 enum s_alloc { 480 sa_rootdomain, 481 sa_sd, 482 sa_sd_storage, 483 sa_none, 484 }; 485 486 /* 487 * Return the canonical balance CPU for this group, this is the first CPU 488 * of this group that's also in the balance mask. 489 * 490 * The balance mask are all those CPUs that could actually end up at this 491 * group. See build_balance_mask(). 492 * 493 * Also see should_we_balance(). 494 */ 495 int group_balance_cpu(struct sched_group *sg) 496 { 497 return cpumask_first(group_balance_mask(sg)); 498 } 499 500 501 /* 502 * NUMA topology (first read the regular topology blurb below) 503 * 504 * Given a node-distance table, for example: 505 * 506 * node 0 1 2 3 507 * 0: 10 20 30 20 508 * 1: 20 10 20 30 509 * 2: 30 20 10 20 510 * 3: 20 30 20 10 511 * 512 * which represents a 4 node ring topology like: 513 * 514 * 0 ----- 1 515 * | | 516 * | | 517 * | | 518 * 3 ----- 2 519 * 520 * We want to construct domains and groups to represent this. The way we go 521 * about doing this is to build the domains on 'hops'. For each NUMA level we 522 * construct the mask of all nodes reachable in @level hops. 523 * 524 * For the above NUMA topology that gives 3 levels: 525 * 526 * NUMA-2 0-3 0-3 0-3 0-3 527 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 528 * 529 * NUMA-1 0-1,3 0-2 1-3 0,2-3 530 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 531 * 532 * NUMA-0 0 1 2 3 533 * 534 * 535 * As can be seen; things don't nicely line up as with the regular topology. 536 * When we iterate a domain in child domain chunks some nodes can be 537 * represented multiple times -- hence the "overlap" naming for this part of 538 * the topology. 539 * 540 * In order to minimize this overlap, we only build enough groups to cover the 541 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 542 * 543 * Because: 544 * 545 * - the first group of each domain is its child domain; this 546 * gets us the first 0-1,3 547 * - the only uncovered node is 2, who's child domain is 1-3. 548 * 549 * However, because of the overlap, computing a unique CPU for each group is 550 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 551 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 552 * end up at those groups (they would end up in group: 0-1,3). 553 * 554 * To correct this we have to introduce the group balance mask. This mask 555 * will contain those CPUs in the group that can reach this group given the 556 * (child) domain tree. 557 * 558 * With this we can once again compute balance_cpu and sched_group_capacity 559 * relations. 560 * 561 * XXX include words on how balance_cpu is unique and therefore can be 562 * used for sched_group_capacity links. 563 * 564 * 565 * Another 'interesting' topology is: 566 * 567 * node 0 1 2 3 568 * 0: 10 20 20 30 569 * 1: 20 10 20 20 570 * 2: 20 20 10 20 571 * 3: 30 20 20 10 572 * 573 * Which looks a little like: 574 * 575 * 0 ----- 1 576 * | / | 577 * | / | 578 * | / | 579 * 2 ----- 3 580 * 581 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 582 * are not. 583 * 584 * This leads to a few particularly weird cases where the sched_domain's are 585 * not of the same number for each cpu. Consider: 586 * 587 * NUMA-2 0-3 0-3 588 * groups: {0-2},{1-3} {1-3},{0-2} 589 * 590 * NUMA-1 0-2 0-3 0-3 1-3 591 * 592 * NUMA-0 0 1 2 3 593 * 594 */ 595 596 597 /* 598 * Build the balance mask; it contains only those CPUs that can arrive at this 599 * group and should be considered to continue balancing. 600 * 601 * We do this during the group creation pass, therefore the group information 602 * isn't complete yet, however since each group represents a (child) domain we 603 * can fully construct this using the sched_domain bits (which are already 604 * complete). 605 */ 606 static void 607 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 608 { 609 const struct cpumask *sg_span = sched_group_span(sg); 610 struct sd_data *sdd = sd->private; 611 struct sched_domain *sibling; 612 int i; 613 614 cpumask_clear(mask); 615 616 for_each_cpu(i, sg_span) { 617 sibling = *per_cpu_ptr(sdd->sd, i); 618 619 /* 620 * Can happen in the asymmetric case, where these siblings are 621 * unused. The mask will not be empty because those CPUs that 622 * do have the top domain _should_ span the domain. 623 */ 624 if (!sibling->child) 625 continue; 626 627 /* If we would not end up here, we can't continue from here */ 628 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 629 continue; 630 631 cpumask_set_cpu(i, mask); 632 } 633 634 /* We must not have empty masks here */ 635 WARN_ON_ONCE(cpumask_empty(mask)); 636 } 637 638 /* 639 * XXX: This creates per-node group entries; since the load-balancer will 640 * immediately access remote memory to construct this group's load-balance 641 * statistics having the groups node local is of dubious benefit. 642 */ 643 static struct sched_group * 644 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 645 { 646 struct sched_group *sg; 647 struct cpumask *sg_span; 648 649 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 650 GFP_KERNEL, cpu_to_node(cpu)); 651 652 if (!sg) 653 return NULL; 654 655 sg_span = sched_group_span(sg); 656 if (sd->child) 657 cpumask_copy(sg_span, sched_domain_span(sd->child)); 658 else 659 cpumask_copy(sg_span, sched_domain_span(sd)); 660 661 atomic_inc(&sg->ref); 662 return sg; 663 } 664 665 static void init_overlap_sched_group(struct sched_domain *sd, 666 struct sched_group *sg) 667 { 668 struct cpumask *mask = sched_domains_tmpmask2; 669 struct sd_data *sdd = sd->private; 670 struct cpumask *sg_span; 671 int cpu; 672 673 build_balance_mask(sd, sg, mask); 674 cpu = cpumask_first_and(sched_group_span(sg), mask); 675 676 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 677 if (atomic_inc_return(&sg->sgc->ref) == 1) 678 cpumask_copy(group_balance_mask(sg), mask); 679 else 680 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 681 682 /* 683 * Initialize sgc->capacity such that even if we mess up the 684 * domains and no possible iteration will get us here, we won't 685 * die on a /0 trap. 686 */ 687 sg_span = sched_group_span(sg); 688 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 689 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 690 } 691 692 static int 693 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 694 { 695 struct sched_group *first = NULL, *last = NULL, *sg; 696 const struct cpumask *span = sched_domain_span(sd); 697 struct cpumask *covered = sched_domains_tmpmask; 698 struct sd_data *sdd = sd->private; 699 struct sched_domain *sibling; 700 int i; 701 702 cpumask_clear(covered); 703 704 for_each_cpu_wrap(i, span, cpu) { 705 struct cpumask *sg_span; 706 707 if (cpumask_test_cpu(i, covered)) 708 continue; 709 710 sibling = *per_cpu_ptr(sdd->sd, i); 711 712 /* 713 * Asymmetric node setups can result in situations where the 714 * domain tree is of unequal depth, make sure to skip domains 715 * that already cover the entire range. 716 * 717 * In that case build_sched_domains() will have terminated the 718 * iteration early and our sibling sd spans will be empty. 719 * Domains should always include the CPU they're built on, so 720 * check that. 721 */ 722 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 723 continue; 724 725 sg = build_group_from_child_sched_domain(sibling, cpu); 726 if (!sg) 727 goto fail; 728 729 sg_span = sched_group_span(sg); 730 cpumask_or(covered, covered, sg_span); 731 732 init_overlap_sched_group(sd, sg); 733 734 if (!first) 735 first = sg; 736 if (last) 737 last->next = sg; 738 last = sg; 739 last->next = first; 740 } 741 sd->groups = first; 742 743 return 0; 744 745 fail: 746 free_sched_groups(first, 0); 747 748 return -ENOMEM; 749 } 750 751 752 /* 753 * Package topology (also see the load-balance blurb in fair.c) 754 * 755 * The scheduler builds a tree structure to represent a number of important 756 * topology features. By default (default_topology[]) these include: 757 * 758 * - Simultaneous multithreading (SMT) 759 * - Multi-Core Cache (MC) 760 * - Package (DIE) 761 * 762 * Where the last one more or less denotes everything up to a NUMA node. 763 * 764 * The tree consists of 3 primary data structures: 765 * 766 * sched_domain -> sched_group -> sched_group_capacity 767 * ^ ^ ^ ^ 768 * `-' `-' 769 * 770 * The sched_domains are per-cpu and have a two way link (parent & child) and 771 * denote the ever growing mask of CPUs belonging to that level of topology. 772 * 773 * Each sched_domain has a circular (double) linked list of sched_group's, each 774 * denoting the domains of the level below (or individual CPUs in case of the 775 * first domain level). The sched_group linked by a sched_domain includes the 776 * CPU of that sched_domain [*]. 777 * 778 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 779 * 780 * CPU 0 1 2 3 4 5 6 7 781 * 782 * DIE [ ] 783 * MC [ ] [ ] 784 * SMT [ ] [ ] [ ] [ ] 785 * 786 * - or - 787 * 788 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 789 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 790 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 791 * 792 * CPU 0 1 2 3 4 5 6 7 793 * 794 * One way to think about it is: sched_domain moves you up and down among these 795 * topology levels, while sched_group moves you sideways through it, at child 796 * domain granularity. 797 * 798 * sched_group_capacity ensures each unique sched_group has shared storage. 799 * 800 * There are two related construction problems, both require a CPU that 801 * uniquely identify each group (for a given domain): 802 * 803 * - The first is the balance_cpu (see should_we_balance() and the 804 * load-balance blub in fair.c); for each group we only want 1 CPU to 805 * continue balancing at a higher domain. 806 * 807 * - The second is the sched_group_capacity; we want all identical groups 808 * to share a single sched_group_capacity. 809 * 810 * Since these topologies are exclusive by construction. That is, its 811 * impossible for an SMT thread to belong to multiple cores, and cores to 812 * be part of multiple caches. There is a very clear and unique location 813 * for each CPU in the hierarchy. 814 * 815 * Therefore computing a unique CPU for each group is trivial (the iteration 816 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 817 * group), we can simply pick the first CPU in each group. 818 * 819 * 820 * [*] in other words, the first group of each domain is its child domain. 821 */ 822 823 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 824 { 825 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 826 struct sched_domain *child = sd->child; 827 struct sched_group *sg; 828 829 if (child) 830 cpu = cpumask_first(sched_domain_span(child)); 831 832 sg = *per_cpu_ptr(sdd->sg, cpu); 833 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 834 835 /* For claim_allocations: */ 836 atomic_inc(&sg->ref); 837 atomic_inc(&sg->sgc->ref); 838 839 if (child) { 840 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 841 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 842 } else { 843 cpumask_set_cpu(cpu, sched_group_span(sg)); 844 cpumask_set_cpu(cpu, group_balance_mask(sg)); 845 } 846 847 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 848 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 849 850 return sg; 851 } 852 853 /* 854 * build_sched_groups will build a circular linked list of the groups 855 * covered by the given span, and will set each group's ->cpumask correctly, 856 * and ->cpu_capacity to 0. 857 * 858 * Assumes the sched_domain tree is fully constructed 859 */ 860 static int 861 build_sched_groups(struct sched_domain *sd, int cpu) 862 { 863 struct sched_group *first = NULL, *last = NULL; 864 struct sd_data *sdd = sd->private; 865 const struct cpumask *span = sched_domain_span(sd); 866 struct cpumask *covered; 867 int i; 868 869 lockdep_assert_held(&sched_domains_mutex); 870 covered = sched_domains_tmpmask; 871 872 cpumask_clear(covered); 873 874 for_each_cpu_wrap(i, span, cpu) { 875 struct sched_group *sg; 876 877 if (cpumask_test_cpu(i, covered)) 878 continue; 879 880 sg = get_group(i, sdd); 881 882 cpumask_or(covered, covered, sched_group_span(sg)); 883 884 if (!first) 885 first = sg; 886 if (last) 887 last->next = sg; 888 last = sg; 889 } 890 last->next = first; 891 sd->groups = first; 892 893 return 0; 894 } 895 896 /* 897 * Initialize sched groups cpu_capacity. 898 * 899 * cpu_capacity indicates the capacity of sched group, which is used while 900 * distributing the load between different sched groups in a sched domain. 901 * Typically cpu_capacity for all the groups in a sched domain will be same 902 * unless there are asymmetries in the topology. If there are asymmetries, 903 * group having more cpu_capacity will pickup more load compared to the 904 * group having less cpu_capacity. 905 */ 906 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 907 { 908 struct sched_group *sg = sd->groups; 909 910 WARN_ON(!sg); 911 912 do { 913 int cpu, max_cpu = -1; 914 915 sg->group_weight = cpumask_weight(sched_group_span(sg)); 916 917 if (!(sd->flags & SD_ASYM_PACKING)) 918 goto next; 919 920 for_each_cpu(cpu, sched_group_span(sg)) { 921 if (max_cpu < 0) 922 max_cpu = cpu; 923 else if (sched_asym_prefer(cpu, max_cpu)) 924 max_cpu = cpu; 925 } 926 sg->asym_prefer_cpu = max_cpu; 927 928 next: 929 sg = sg->next; 930 } while (sg != sd->groups); 931 932 if (cpu != group_balance_cpu(sg)) 933 return; 934 935 update_group_capacity(sd, cpu); 936 } 937 938 /* 939 * Initializers for schedule domains 940 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 941 */ 942 943 static int default_relax_domain_level = -1; 944 int sched_domain_level_max; 945 946 static int __init setup_relax_domain_level(char *str) 947 { 948 if (kstrtoint(str, 0, &default_relax_domain_level)) 949 pr_warn("Unable to set relax_domain_level\n"); 950 951 return 1; 952 } 953 __setup("relax_domain_level=", setup_relax_domain_level); 954 955 static void set_domain_attribute(struct sched_domain *sd, 956 struct sched_domain_attr *attr) 957 { 958 int request; 959 960 if (!attr || attr->relax_domain_level < 0) { 961 if (default_relax_domain_level < 0) 962 return; 963 else 964 request = default_relax_domain_level; 965 } else 966 request = attr->relax_domain_level; 967 if (request < sd->level) { 968 /* Turn off idle balance on this domain: */ 969 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 970 } else { 971 /* Turn on idle balance on this domain: */ 972 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 973 } 974 } 975 976 static void __sdt_free(const struct cpumask *cpu_map); 977 static int __sdt_alloc(const struct cpumask *cpu_map); 978 979 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 980 const struct cpumask *cpu_map) 981 { 982 switch (what) { 983 case sa_rootdomain: 984 if (!atomic_read(&d->rd->refcount)) 985 free_rootdomain(&d->rd->rcu); 986 /* Fall through */ 987 case sa_sd: 988 free_percpu(d->sd); 989 /* Fall through */ 990 case sa_sd_storage: 991 __sdt_free(cpu_map); 992 /* Fall through */ 993 case sa_none: 994 break; 995 } 996 } 997 998 static enum s_alloc 999 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1000 { 1001 memset(d, 0, sizeof(*d)); 1002 1003 if (__sdt_alloc(cpu_map)) 1004 return sa_sd_storage; 1005 d->sd = alloc_percpu(struct sched_domain *); 1006 if (!d->sd) 1007 return sa_sd_storage; 1008 d->rd = alloc_rootdomain(); 1009 if (!d->rd) 1010 return sa_sd; 1011 return sa_rootdomain; 1012 } 1013 1014 /* 1015 * NULL the sd_data elements we've used to build the sched_domain and 1016 * sched_group structure so that the subsequent __free_domain_allocs() 1017 * will not free the data we're using. 1018 */ 1019 static void claim_allocations(int cpu, struct sched_domain *sd) 1020 { 1021 struct sd_data *sdd = sd->private; 1022 1023 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1024 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1025 1026 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1027 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1028 1029 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1030 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1031 1032 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1033 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1034 } 1035 1036 #ifdef CONFIG_NUMA 1037 static int sched_domains_numa_levels; 1038 enum numa_topology_type sched_numa_topology_type; 1039 static int *sched_domains_numa_distance; 1040 int sched_max_numa_distance; 1041 static struct cpumask ***sched_domains_numa_masks; 1042 static int sched_domains_curr_level; 1043 #endif 1044 1045 /* 1046 * SD_flags allowed in topology descriptions. 1047 * 1048 * These flags are purely descriptive of the topology and do not prescribe 1049 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1050 * function: 1051 * 1052 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1053 * SD_SHARE_PKG_RESOURCES - describes shared caches 1054 * SD_NUMA - describes NUMA topologies 1055 * SD_SHARE_POWERDOMAIN - describes shared power domain 1056 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1057 * 1058 * Odd one out, which beside describing the topology has a quirk also 1059 * prescribes the desired behaviour that goes along with it: 1060 * 1061 * SD_ASYM_PACKING - describes SMT quirks 1062 */ 1063 #define TOPOLOGY_SD_FLAGS \ 1064 (SD_SHARE_CPUCAPACITY | \ 1065 SD_SHARE_PKG_RESOURCES | \ 1066 SD_NUMA | \ 1067 SD_ASYM_PACKING | \ 1068 SD_ASYM_CPUCAPACITY | \ 1069 SD_SHARE_POWERDOMAIN) 1070 1071 static struct sched_domain * 1072 sd_init(struct sched_domain_topology_level *tl, 1073 const struct cpumask *cpu_map, 1074 struct sched_domain *child, int cpu) 1075 { 1076 struct sd_data *sdd = &tl->data; 1077 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1078 int sd_id, sd_weight, sd_flags = 0; 1079 1080 #ifdef CONFIG_NUMA 1081 /* 1082 * Ugly hack to pass state to sd_numa_mask()... 1083 */ 1084 sched_domains_curr_level = tl->numa_level; 1085 #endif 1086 1087 sd_weight = cpumask_weight(tl->mask(cpu)); 1088 1089 if (tl->sd_flags) 1090 sd_flags = (*tl->sd_flags)(); 1091 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1092 "wrong sd_flags in topology description\n")) 1093 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1094 1095 *sd = (struct sched_domain){ 1096 .min_interval = sd_weight, 1097 .max_interval = 2*sd_weight, 1098 .busy_factor = 32, 1099 .imbalance_pct = 125, 1100 1101 .cache_nice_tries = 0, 1102 .busy_idx = 0, 1103 .idle_idx = 0, 1104 .newidle_idx = 0, 1105 .wake_idx = 0, 1106 .forkexec_idx = 0, 1107 1108 .flags = 1*SD_LOAD_BALANCE 1109 | 1*SD_BALANCE_NEWIDLE 1110 | 1*SD_BALANCE_EXEC 1111 | 1*SD_BALANCE_FORK 1112 | 0*SD_BALANCE_WAKE 1113 | 1*SD_WAKE_AFFINE 1114 | 0*SD_SHARE_CPUCAPACITY 1115 | 0*SD_SHARE_PKG_RESOURCES 1116 | 0*SD_SERIALIZE 1117 | 0*SD_PREFER_SIBLING 1118 | 0*SD_NUMA 1119 | sd_flags 1120 , 1121 1122 .last_balance = jiffies, 1123 .balance_interval = sd_weight, 1124 .smt_gain = 0, 1125 .max_newidle_lb_cost = 0, 1126 .next_decay_max_lb_cost = jiffies, 1127 .child = child, 1128 #ifdef CONFIG_SCHED_DEBUG 1129 .name = tl->name, 1130 #endif 1131 }; 1132 1133 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1134 sd_id = cpumask_first(sched_domain_span(sd)); 1135 1136 /* 1137 * Convert topological properties into behaviour. 1138 */ 1139 1140 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1141 struct sched_domain *t = sd; 1142 1143 for_each_lower_domain(t) 1144 t->flags |= SD_BALANCE_WAKE; 1145 } 1146 1147 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1148 sd->flags |= SD_PREFER_SIBLING; 1149 sd->imbalance_pct = 110; 1150 sd->smt_gain = 1178; /* ~15% */ 1151 1152 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1153 sd->flags |= SD_PREFER_SIBLING; 1154 sd->imbalance_pct = 117; 1155 sd->cache_nice_tries = 1; 1156 sd->busy_idx = 2; 1157 1158 #ifdef CONFIG_NUMA 1159 } else if (sd->flags & SD_NUMA) { 1160 sd->cache_nice_tries = 2; 1161 sd->busy_idx = 3; 1162 sd->idle_idx = 2; 1163 1164 sd->flags |= SD_SERIALIZE; 1165 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1166 sd->flags &= ~(SD_BALANCE_EXEC | 1167 SD_BALANCE_FORK | 1168 SD_WAKE_AFFINE); 1169 } 1170 1171 #endif 1172 } else { 1173 sd->flags |= SD_PREFER_SIBLING; 1174 sd->cache_nice_tries = 1; 1175 sd->busy_idx = 2; 1176 sd->idle_idx = 1; 1177 } 1178 1179 /* 1180 * For all levels sharing cache; connect a sched_domain_shared 1181 * instance. 1182 */ 1183 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1184 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1185 atomic_inc(&sd->shared->ref); 1186 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1187 } 1188 1189 sd->private = sdd; 1190 1191 return sd; 1192 } 1193 1194 /* 1195 * Topology list, bottom-up. 1196 */ 1197 static struct sched_domain_topology_level default_topology[] = { 1198 #ifdef CONFIG_SCHED_SMT 1199 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1200 #endif 1201 #ifdef CONFIG_SCHED_MC 1202 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1203 #endif 1204 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1205 { NULL, }, 1206 }; 1207 1208 static struct sched_domain_topology_level *sched_domain_topology = 1209 default_topology; 1210 1211 #define for_each_sd_topology(tl) \ 1212 for (tl = sched_domain_topology; tl->mask; tl++) 1213 1214 void set_sched_topology(struct sched_domain_topology_level *tl) 1215 { 1216 if (WARN_ON_ONCE(sched_smp_initialized)) 1217 return; 1218 1219 sched_domain_topology = tl; 1220 } 1221 1222 #ifdef CONFIG_NUMA 1223 1224 static const struct cpumask *sd_numa_mask(int cpu) 1225 { 1226 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1227 } 1228 1229 static void sched_numa_warn(const char *str) 1230 { 1231 static int done = false; 1232 int i,j; 1233 1234 if (done) 1235 return; 1236 1237 done = true; 1238 1239 printk(KERN_WARNING "ERROR: %s\n\n", str); 1240 1241 for (i = 0; i < nr_node_ids; i++) { 1242 printk(KERN_WARNING " "); 1243 for (j = 0; j < nr_node_ids; j++) 1244 printk(KERN_CONT "%02d ", node_distance(i,j)); 1245 printk(KERN_CONT "\n"); 1246 } 1247 printk(KERN_WARNING "\n"); 1248 } 1249 1250 bool find_numa_distance(int distance) 1251 { 1252 int i; 1253 1254 if (distance == node_distance(0, 0)) 1255 return true; 1256 1257 for (i = 0; i < sched_domains_numa_levels; i++) { 1258 if (sched_domains_numa_distance[i] == distance) 1259 return true; 1260 } 1261 1262 return false; 1263 } 1264 1265 /* 1266 * A system can have three types of NUMA topology: 1267 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1268 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1269 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1270 * 1271 * The difference between a glueless mesh topology and a backplane 1272 * topology lies in whether communication between not directly 1273 * connected nodes goes through intermediary nodes (where programs 1274 * could run), or through backplane controllers. This affects 1275 * placement of programs. 1276 * 1277 * The type of topology can be discerned with the following tests: 1278 * - If the maximum distance between any nodes is 1 hop, the system 1279 * is directly connected. 1280 * - If for two nodes A and B, located N > 1 hops away from each other, 1281 * there is an intermediary node C, which is < N hops away from both 1282 * nodes A and B, the system is a glueless mesh. 1283 */ 1284 static void init_numa_topology_type(void) 1285 { 1286 int a, b, c, n; 1287 1288 n = sched_max_numa_distance; 1289 1290 if (sched_domains_numa_levels <= 1) { 1291 sched_numa_topology_type = NUMA_DIRECT; 1292 return; 1293 } 1294 1295 for_each_online_node(a) { 1296 for_each_online_node(b) { 1297 /* Find two nodes furthest removed from each other. */ 1298 if (node_distance(a, b) < n) 1299 continue; 1300 1301 /* Is there an intermediary node between a and b? */ 1302 for_each_online_node(c) { 1303 if (node_distance(a, c) < n && 1304 node_distance(b, c) < n) { 1305 sched_numa_topology_type = 1306 NUMA_GLUELESS_MESH; 1307 return; 1308 } 1309 } 1310 1311 sched_numa_topology_type = NUMA_BACKPLANE; 1312 return; 1313 } 1314 } 1315 } 1316 1317 void sched_init_numa(void) 1318 { 1319 int next_distance, curr_distance = node_distance(0, 0); 1320 struct sched_domain_topology_level *tl; 1321 int level = 0; 1322 int i, j, k; 1323 1324 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1325 if (!sched_domains_numa_distance) 1326 return; 1327 1328 /* Includes NUMA identity node at level 0. */ 1329 sched_domains_numa_distance[level++] = curr_distance; 1330 sched_domains_numa_levels = level; 1331 1332 /* 1333 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1334 * unique distances in the node_distance() table. 1335 * 1336 * Assumes node_distance(0,j) includes all distances in 1337 * node_distance(i,j) in order to avoid cubic time. 1338 */ 1339 next_distance = curr_distance; 1340 for (i = 0; i < nr_node_ids; i++) { 1341 for (j = 0; j < nr_node_ids; j++) { 1342 for (k = 0; k < nr_node_ids; k++) { 1343 int distance = node_distance(i, k); 1344 1345 if (distance > curr_distance && 1346 (distance < next_distance || 1347 next_distance == curr_distance)) 1348 next_distance = distance; 1349 1350 /* 1351 * While not a strong assumption it would be nice to know 1352 * about cases where if node A is connected to B, B is not 1353 * equally connected to A. 1354 */ 1355 if (sched_debug() && node_distance(k, i) != distance) 1356 sched_numa_warn("Node-distance not symmetric"); 1357 1358 if (sched_debug() && i && !find_numa_distance(distance)) 1359 sched_numa_warn("Node-0 not representative"); 1360 } 1361 if (next_distance != curr_distance) { 1362 sched_domains_numa_distance[level++] = next_distance; 1363 sched_domains_numa_levels = level; 1364 curr_distance = next_distance; 1365 } else break; 1366 } 1367 1368 /* 1369 * In case of sched_debug() we verify the above assumption. 1370 */ 1371 if (!sched_debug()) 1372 break; 1373 } 1374 1375 if (!level) 1376 return; 1377 1378 /* 1379 * 'level' contains the number of unique distances 1380 * 1381 * The sched_domains_numa_distance[] array includes the actual distance 1382 * numbers. 1383 */ 1384 1385 /* 1386 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1387 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1388 * the array will contain less then 'level' members. This could be 1389 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1390 * in other functions. 1391 * 1392 * We reset it to 'level' at the end of this function. 1393 */ 1394 sched_domains_numa_levels = 0; 1395 1396 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1397 if (!sched_domains_numa_masks) 1398 return; 1399 1400 /* 1401 * Now for each level, construct a mask per node which contains all 1402 * CPUs of nodes that are that many hops away from us. 1403 */ 1404 for (i = 0; i < level; i++) { 1405 sched_domains_numa_masks[i] = 1406 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1407 if (!sched_domains_numa_masks[i]) 1408 return; 1409 1410 for (j = 0; j < nr_node_ids; j++) { 1411 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1412 if (!mask) 1413 return; 1414 1415 sched_domains_numa_masks[i][j] = mask; 1416 1417 for_each_node(k) { 1418 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1419 continue; 1420 1421 cpumask_or(mask, mask, cpumask_of_node(k)); 1422 } 1423 } 1424 } 1425 1426 /* Compute default topology size */ 1427 for (i = 0; sched_domain_topology[i].mask; i++); 1428 1429 tl = kzalloc((i + level + 1) * 1430 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1431 if (!tl) 1432 return; 1433 1434 /* 1435 * Copy the default topology bits.. 1436 */ 1437 for (i = 0; sched_domain_topology[i].mask; i++) 1438 tl[i] = sched_domain_topology[i]; 1439 1440 /* 1441 * Add the NUMA identity distance, aka single NODE. 1442 */ 1443 tl[i++] = (struct sched_domain_topology_level){ 1444 .mask = sd_numa_mask, 1445 .numa_level = 0, 1446 SD_INIT_NAME(NODE) 1447 }; 1448 1449 /* 1450 * .. and append 'j' levels of NUMA goodness. 1451 */ 1452 for (j = 1; j < level; i++, j++) { 1453 tl[i] = (struct sched_domain_topology_level){ 1454 .mask = sd_numa_mask, 1455 .sd_flags = cpu_numa_flags, 1456 .flags = SDTL_OVERLAP, 1457 .numa_level = j, 1458 SD_INIT_NAME(NUMA) 1459 }; 1460 } 1461 1462 sched_domain_topology = tl; 1463 1464 sched_domains_numa_levels = level; 1465 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1466 1467 init_numa_topology_type(); 1468 } 1469 1470 void sched_domains_numa_masks_set(unsigned int cpu) 1471 { 1472 int node = cpu_to_node(cpu); 1473 int i, j; 1474 1475 for (i = 0; i < sched_domains_numa_levels; i++) { 1476 for (j = 0; j < nr_node_ids; j++) { 1477 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1478 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1479 } 1480 } 1481 } 1482 1483 void sched_domains_numa_masks_clear(unsigned int cpu) 1484 { 1485 int i, j; 1486 1487 for (i = 0; i < sched_domains_numa_levels; i++) { 1488 for (j = 0; j < nr_node_ids; j++) 1489 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1490 } 1491 } 1492 1493 #endif /* CONFIG_NUMA */ 1494 1495 static int __sdt_alloc(const struct cpumask *cpu_map) 1496 { 1497 struct sched_domain_topology_level *tl; 1498 int j; 1499 1500 for_each_sd_topology(tl) { 1501 struct sd_data *sdd = &tl->data; 1502 1503 sdd->sd = alloc_percpu(struct sched_domain *); 1504 if (!sdd->sd) 1505 return -ENOMEM; 1506 1507 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1508 if (!sdd->sds) 1509 return -ENOMEM; 1510 1511 sdd->sg = alloc_percpu(struct sched_group *); 1512 if (!sdd->sg) 1513 return -ENOMEM; 1514 1515 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1516 if (!sdd->sgc) 1517 return -ENOMEM; 1518 1519 for_each_cpu(j, cpu_map) { 1520 struct sched_domain *sd; 1521 struct sched_domain_shared *sds; 1522 struct sched_group *sg; 1523 struct sched_group_capacity *sgc; 1524 1525 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1526 GFP_KERNEL, cpu_to_node(j)); 1527 if (!sd) 1528 return -ENOMEM; 1529 1530 *per_cpu_ptr(sdd->sd, j) = sd; 1531 1532 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1533 GFP_KERNEL, cpu_to_node(j)); 1534 if (!sds) 1535 return -ENOMEM; 1536 1537 *per_cpu_ptr(sdd->sds, j) = sds; 1538 1539 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1540 GFP_KERNEL, cpu_to_node(j)); 1541 if (!sg) 1542 return -ENOMEM; 1543 1544 sg->next = sg; 1545 1546 *per_cpu_ptr(sdd->sg, j) = sg; 1547 1548 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1549 GFP_KERNEL, cpu_to_node(j)); 1550 if (!sgc) 1551 return -ENOMEM; 1552 1553 #ifdef CONFIG_SCHED_DEBUG 1554 sgc->id = j; 1555 #endif 1556 1557 *per_cpu_ptr(sdd->sgc, j) = sgc; 1558 } 1559 } 1560 1561 return 0; 1562 } 1563 1564 static void __sdt_free(const struct cpumask *cpu_map) 1565 { 1566 struct sched_domain_topology_level *tl; 1567 int j; 1568 1569 for_each_sd_topology(tl) { 1570 struct sd_data *sdd = &tl->data; 1571 1572 for_each_cpu(j, cpu_map) { 1573 struct sched_domain *sd; 1574 1575 if (sdd->sd) { 1576 sd = *per_cpu_ptr(sdd->sd, j); 1577 if (sd && (sd->flags & SD_OVERLAP)) 1578 free_sched_groups(sd->groups, 0); 1579 kfree(*per_cpu_ptr(sdd->sd, j)); 1580 } 1581 1582 if (sdd->sds) 1583 kfree(*per_cpu_ptr(sdd->sds, j)); 1584 if (sdd->sg) 1585 kfree(*per_cpu_ptr(sdd->sg, j)); 1586 if (sdd->sgc) 1587 kfree(*per_cpu_ptr(sdd->sgc, j)); 1588 } 1589 free_percpu(sdd->sd); 1590 sdd->sd = NULL; 1591 free_percpu(sdd->sds); 1592 sdd->sds = NULL; 1593 free_percpu(sdd->sg); 1594 sdd->sg = NULL; 1595 free_percpu(sdd->sgc); 1596 sdd->sgc = NULL; 1597 } 1598 } 1599 1600 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1601 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1602 struct sched_domain *child, int cpu) 1603 { 1604 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1605 1606 if (child) { 1607 sd->level = child->level + 1; 1608 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1609 child->parent = sd; 1610 1611 if (!cpumask_subset(sched_domain_span(child), 1612 sched_domain_span(sd))) { 1613 pr_err("BUG: arch topology borken\n"); 1614 #ifdef CONFIG_SCHED_DEBUG 1615 pr_err(" the %s domain not a subset of the %s domain\n", 1616 child->name, sd->name); 1617 #endif 1618 /* Fixup, ensure @sd has at least @child cpus. */ 1619 cpumask_or(sched_domain_span(sd), 1620 sched_domain_span(sd), 1621 sched_domain_span(child)); 1622 } 1623 1624 } 1625 set_domain_attribute(sd, attr); 1626 1627 return sd; 1628 } 1629 1630 /* 1631 * Build sched domains for a given set of CPUs and attach the sched domains 1632 * to the individual CPUs 1633 */ 1634 static int 1635 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1636 { 1637 enum s_alloc alloc_state; 1638 struct sched_domain *sd; 1639 struct s_data d; 1640 struct rq *rq = NULL; 1641 int i, ret = -ENOMEM; 1642 1643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1644 if (alloc_state != sa_rootdomain) 1645 goto error; 1646 1647 /* Set up domains for CPUs specified by the cpu_map: */ 1648 for_each_cpu(i, cpu_map) { 1649 struct sched_domain_topology_level *tl; 1650 1651 sd = NULL; 1652 for_each_sd_topology(tl) { 1653 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1654 if (tl == sched_domain_topology) 1655 *per_cpu_ptr(d.sd, i) = sd; 1656 if (tl->flags & SDTL_OVERLAP) 1657 sd->flags |= SD_OVERLAP; 1658 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1659 break; 1660 } 1661 } 1662 1663 /* Build the groups for the domains */ 1664 for_each_cpu(i, cpu_map) { 1665 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1666 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1667 if (sd->flags & SD_OVERLAP) { 1668 if (build_overlap_sched_groups(sd, i)) 1669 goto error; 1670 } else { 1671 if (build_sched_groups(sd, i)) 1672 goto error; 1673 } 1674 } 1675 } 1676 1677 /* Calculate CPU capacity for physical packages and nodes */ 1678 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1679 if (!cpumask_test_cpu(i, cpu_map)) 1680 continue; 1681 1682 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1683 claim_allocations(i, sd); 1684 init_sched_groups_capacity(i, sd); 1685 } 1686 } 1687 1688 /* Attach the domains */ 1689 rcu_read_lock(); 1690 for_each_cpu(i, cpu_map) { 1691 rq = cpu_rq(i); 1692 sd = *per_cpu_ptr(d.sd, i); 1693 1694 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1695 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1696 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1697 1698 cpu_attach_domain(sd, d.rd, i); 1699 } 1700 rcu_read_unlock(); 1701 1702 if (rq && sched_debug_enabled) { 1703 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1704 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1705 } 1706 1707 ret = 0; 1708 error: 1709 __free_domain_allocs(&d, alloc_state, cpu_map); 1710 return ret; 1711 } 1712 1713 /* Current sched domains: */ 1714 static cpumask_var_t *doms_cur; 1715 1716 /* Number of sched domains in 'doms_cur': */ 1717 static int ndoms_cur; 1718 1719 /* Attribues of custom domains in 'doms_cur' */ 1720 static struct sched_domain_attr *dattr_cur; 1721 1722 /* 1723 * Special case: If a kmalloc() of a doms_cur partition (array of 1724 * cpumask) fails, then fallback to a single sched domain, 1725 * as determined by the single cpumask fallback_doms. 1726 */ 1727 static cpumask_var_t fallback_doms; 1728 1729 /* 1730 * arch_update_cpu_topology lets virtualized architectures update the 1731 * CPU core maps. It is supposed to return 1 if the topology changed 1732 * or 0 if it stayed the same. 1733 */ 1734 int __weak arch_update_cpu_topology(void) 1735 { 1736 return 0; 1737 } 1738 1739 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1740 { 1741 int i; 1742 cpumask_var_t *doms; 1743 1744 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1745 if (!doms) 1746 return NULL; 1747 for (i = 0; i < ndoms; i++) { 1748 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1749 free_sched_domains(doms, i); 1750 return NULL; 1751 } 1752 } 1753 return doms; 1754 } 1755 1756 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1757 { 1758 unsigned int i; 1759 for (i = 0; i < ndoms; i++) 1760 free_cpumask_var(doms[i]); 1761 kfree(doms); 1762 } 1763 1764 /* 1765 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1766 * For now this just excludes isolated CPUs, but could be used to 1767 * exclude other special cases in the future. 1768 */ 1769 int sched_init_domains(const struct cpumask *cpu_map) 1770 { 1771 int err; 1772 1773 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1774 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1775 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1776 1777 arch_update_cpu_topology(); 1778 ndoms_cur = 1; 1779 doms_cur = alloc_sched_domains(ndoms_cur); 1780 if (!doms_cur) 1781 doms_cur = &fallback_doms; 1782 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 1783 err = build_sched_domains(doms_cur[0], NULL); 1784 register_sched_domain_sysctl(); 1785 1786 return err; 1787 } 1788 1789 /* 1790 * Detach sched domains from a group of CPUs specified in cpu_map 1791 * These CPUs will now be attached to the NULL domain 1792 */ 1793 static void detach_destroy_domains(const struct cpumask *cpu_map) 1794 { 1795 int i; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(i, cpu_map) 1799 cpu_attach_domain(NULL, &def_root_domain, i); 1800 rcu_read_unlock(); 1801 } 1802 1803 /* handle null as "default" */ 1804 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1805 struct sched_domain_attr *new, int idx_new) 1806 { 1807 struct sched_domain_attr tmp; 1808 1809 /* Fast path: */ 1810 if (!new && !cur) 1811 return 1; 1812 1813 tmp = SD_ATTR_INIT; 1814 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1815 new ? (new + idx_new) : &tmp, 1816 sizeof(struct sched_domain_attr)); 1817 } 1818 1819 /* 1820 * Partition sched domains as specified by the 'ndoms_new' 1821 * cpumasks in the array doms_new[] of cpumasks. This compares 1822 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1823 * It destroys each deleted domain and builds each new domain. 1824 * 1825 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1826 * The masks don't intersect (don't overlap.) We should setup one 1827 * sched domain for each mask. CPUs not in any of the cpumasks will 1828 * not be load balanced. If the same cpumask appears both in the 1829 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1830 * it as it is. 1831 * 1832 * The passed in 'doms_new' should be allocated using 1833 * alloc_sched_domains. This routine takes ownership of it and will 1834 * free_sched_domains it when done with it. If the caller failed the 1835 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1836 * and partition_sched_domains() will fallback to the single partition 1837 * 'fallback_doms', it also forces the domains to be rebuilt. 1838 * 1839 * If doms_new == NULL it will be replaced with cpu_online_mask. 1840 * ndoms_new == 0 is a special case for destroying existing domains, 1841 * and it will not create the default domain. 1842 * 1843 * Call with hotplug lock held 1844 */ 1845 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1846 struct sched_domain_attr *dattr_new) 1847 { 1848 int i, j, n; 1849 int new_topology; 1850 1851 mutex_lock(&sched_domains_mutex); 1852 1853 /* Always unregister in case we don't destroy any domains: */ 1854 unregister_sched_domain_sysctl(); 1855 1856 /* Let the architecture update CPU core mappings: */ 1857 new_topology = arch_update_cpu_topology(); 1858 1859 if (!doms_new) { 1860 WARN_ON_ONCE(dattr_new); 1861 n = 0; 1862 doms_new = alloc_sched_domains(1); 1863 if (doms_new) { 1864 n = 1; 1865 cpumask_and(doms_new[0], cpu_active_mask, 1866 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1867 } 1868 } else { 1869 n = ndoms_new; 1870 } 1871 1872 /* Destroy deleted domains: */ 1873 for (i = 0; i < ndoms_cur; i++) { 1874 for (j = 0; j < n && !new_topology; j++) { 1875 if (cpumask_equal(doms_cur[i], doms_new[j]) 1876 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1877 goto match1; 1878 } 1879 /* No match - a current sched domain not in new doms_new[] */ 1880 detach_destroy_domains(doms_cur[i]); 1881 match1: 1882 ; 1883 } 1884 1885 n = ndoms_cur; 1886 if (!doms_new) { 1887 n = 0; 1888 doms_new = &fallback_doms; 1889 cpumask_and(doms_new[0], cpu_active_mask, 1890 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1891 } 1892 1893 /* Build new domains: */ 1894 for (i = 0; i < ndoms_new; i++) { 1895 for (j = 0; j < n && !new_topology; j++) { 1896 if (cpumask_equal(doms_new[i], doms_cur[j]) 1897 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1898 goto match2; 1899 } 1900 /* No match - add a new doms_new */ 1901 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1902 match2: 1903 ; 1904 } 1905 1906 /* Remember the new sched domains: */ 1907 if (doms_cur != &fallback_doms) 1908 free_sched_domains(doms_cur, ndoms_cur); 1909 1910 kfree(dattr_cur); 1911 doms_cur = doms_new; 1912 dattr_cur = dattr_new; 1913 ndoms_cur = ndoms_new; 1914 1915 register_sched_domain_sysctl(); 1916 1917 mutex_unlock(&sched_domains_mutex); 1918 } 1919 1920