1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29 struct cpumask *groupmask) 30 { 31 struct sched_group *group = sd->groups; 32 33 cpumask_clear(groupmask); 34 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36 37 if (!(sd->flags & SD_LOAD_BALANCE)) { 38 printk("does not load-balance\n"); 39 if (sd->parent) 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41 return -1; 42 } 43 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55 do { 56 if (!group) { 57 printk("\n"); 58 printk(KERN_ERR "ERROR: group is NULL\n"); 59 break; 60 } 61 62 if (!cpumask_weight(sched_group_span(group))) { 63 printk(KERN_CONT "\n"); 64 printk(KERN_ERR "ERROR: empty group\n"); 65 break; 66 } 67 68 if (!(sd->flags & SD_OVERLAP) && 69 cpumask_intersects(groupmask, sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: repeated CPUs\n"); 72 break; 73 } 74 75 cpumask_or(groupmask, groupmask, sched_group_span(group)); 76 77 printk(KERN_CONT " %d:{ span=%*pbl", 78 group->sgc->id, 79 cpumask_pr_args(sched_group_span(group))); 80 81 if ((sd->flags & SD_OVERLAP) && 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83 printk(KERN_CONT " mask=%*pbl", 84 cpumask_pr_args(group_balance_mask(group))); 85 } 86 87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89 90 if (group == sd->groups && sd->child && 91 !cpumask_equal(sched_domain_span(sd->child), 92 sched_group_span(group))) { 93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94 } 95 96 printk(KERN_CONT " }"); 97 98 group = group->next; 99 100 if (group != sd->groups) 101 printk(KERN_CONT ","); 102 103 } while (group != sd->groups); 104 printk(KERN_CONT "\n"); 105 106 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108 109 if (sd->parent && 110 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112 return 0; 113 } 114 115 static void sched_domain_debug(struct sched_domain *sd, int cpu) 116 { 117 int level = 0; 118 119 if (!sched_debug_enabled) 120 return; 121 122 if (!sd) { 123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124 return; 125 } 126 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128 129 for (;;) { 130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131 break; 132 level++; 133 sd = sd->parent; 134 if (!sd) 135 break; 136 } 137 } 138 #else /* !CONFIG_SCHED_DEBUG */ 139 140 # define sched_debug_enabled 0 141 # define sched_domain_debug(sd, cpu) do { } while (0) 142 static inline bool sched_debug(void) 143 { 144 return false; 145 } 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 static int sd_degenerate(struct sched_domain *sd) 149 { 150 if (cpumask_weight(sched_domain_span(sd)) == 1) 151 return 1; 152 153 /* Following flags need at least 2 groups */ 154 if (sd->flags & (SD_LOAD_BALANCE | 155 SD_BALANCE_NEWIDLE | 156 SD_BALANCE_FORK | 157 SD_BALANCE_EXEC | 158 SD_SHARE_CPUCAPACITY | 159 SD_ASYM_CPUCAPACITY | 160 SD_SHARE_PKG_RESOURCES | 161 SD_SHARE_POWERDOMAIN)) { 162 if (sd->groups != sd->groups->next) 163 return 0; 164 } 165 166 /* Following flags don't use groups */ 167 if (sd->flags & (SD_WAKE_AFFINE)) 168 return 0; 169 170 return 1; 171 } 172 173 static int 174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175 { 176 unsigned long cflags = sd->flags, pflags = parent->flags; 177 178 if (sd_degenerate(parent)) 179 return 1; 180 181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182 return 0; 183 184 /* Flags needing groups don't count if only 1 group in parent */ 185 if (parent->groups == parent->groups->next) { 186 pflags &= ~(SD_LOAD_BALANCE | 187 SD_BALANCE_NEWIDLE | 188 SD_BALANCE_FORK | 189 SD_BALANCE_EXEC | 190 SD_ASYM_CPUCAPACITY | 191 SD_SHARE_CPUCAPACITY | 192 SD_SHARE_PKG_RESOURCES | 193 SD_PREFER_SIBLING | 194 SD_SHARE_POWERDOMAIN); 195 if (nr_node_ids == 1) 196 pflags &= ~SD_SERIALIZE; 197 } 198 if (~cflags & pflags) 199 return 0; 200 201 return 1; 202 } 203 204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 205 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 206 unsigned int sysctl_sched_energy_aware = 1; 207 DEFINE_MUTEX(sched_energy_mutex); 208 bool sched_energy_update; 209 210 #ifdef CONFIG_PROC_SYSCTL 211 int sched_energy_aware_handler(struct ctl_table *table, int write, 212 void __user *buffer, size_t *lenp, loff_t *ppos) 213 { 214 int ret, state; 215 216 if (write && !capable(CAP_SYS_ADMIN)) 217 return -EPERM; 218 219 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 220 if (!ret && write) { 221 state = static_branch_unlikely(&sched_energy_present); 222 if (state != sysctl_sched_energy_aware) { 223 mutex_lock(&sched_energy_mutex); 224 sched_energy_update = 1; 225 rebuild_sched_domains(); 226 sched_energy_update = 0; 227 mutex_unlock(&sched_energy_mutex); 228 } 229 } 230 231 return ret; 232 } 233 #endif 234 235 static void free_pd(struct perf_domain *pd) 236 { 237 struct perf_domain *tmp; 238 239 while (pd) { 240 tmp = pd->next; 241 kfree(pd); 242 pd = tmp; 243 } 244 } 245 246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 247 { 248 while (pd) { 249 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 250 return pd; 251 pd = pd->next; 252 } 253 254 return NULL; 255 } 256 257 static struct perf_domain *pd_init(int cpu) 258 { 259 struct em_perf_domain *obj = em_cpu_get(cpu); 260 struct perf_domain *pd; 261 262 if (!obj) { 263 if (sched_debug()) 264 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 265 return NULL; 266 } 267 268 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 269 if (!pd) 270 return NULL; 271 pd->em_pd = obj; 272 273 return pd; 274 } 275 276 static void perf_domain_debug(const struct cpumask *cpu_map, 277 struct perf_domain *pd) 278 { 279 if (!sched_debug() || !pd) 280 return; 281 282 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 283 284 while (pd) { 285 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }", 286 cpumask_first(perf_domain_span(pd)), 287 cpumask_pr_args(perf_domain_span(pd)), 288 em_pd_nr_cap_states(pd->em_pd)); 289 pd = pd->next; 290 } 291 292 printk(KERN_CONT "\n"); 293 } 294 295 static void destroy_perf_domain_rcu(struct rcu_head *rp) 296 { 297 struct perf_domain *pd; 298 299 pd = container_of(rp, struct perf_domain, rcu); 300 free_pd(pd); 301 } 302 303 static void sched_energy_set(bool has_eas) 304 { 305 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 306 if (sched_debug()) 307 pr_info("%s: stopping EAS\n", __func__); 308 static_branch_disable_cpuslocked(&sched_energy_present); 309 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 310 if (sched_debug()) 311 pr_info("%s: starting EAS\n", __func__); 312 static_branch_enable_cpuslocked(&sched_energy_present); 313 } 314 } 315 316 /* 317 * EAS can be used on a root domain if it meets all the following conditions: 318 * 1. an Energy Model (EM) is available; 319 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 320 * 3. the EM complexity is low enough to keep scheduling overheads low; 321 * 4. schedutil is driving the frequency of all CPUs of the rd; 322 * 323 * The complexity of the Energy Model is defined as: 324 * 325 * C = nr_pd * (nr_cpus + nr_cs) 326 * 327 * with parameters defined as: 328 * - nr_pd: the number of performance domains 329 * - nr_cpus: the number of CPUs 330 * - nr_cs: the sum of the number of capacity states of all performance 331 * domains (for example, on a system with 2 performance domains, 332 * with 10 capacity states each, nr_cs = 2 * 10 = 20). 333 * 334 * It is generally not a good idea to use such a model in the wake-up path on 335 * very complex platforms because of the associated scheduling overheads. The 336 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 337 * with per-CPU DVFS and less than 8 capacity states each, for example. 338 */ 339 #define EM_MAX_COMPLEXITY 2048 340 341 extern struct cpufreq_governor schedutil_gov; 342 static bool build_perf_domains(const struct cpumask *cpu_map) 343 { 344 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map); 345 struct perf_domain *pd = NULL, *tmp; 346 int cpu = cpumask_first(cpu_map); 347 struct root_domain *rd = cpu_rq(cpu)->rd; 348 struct cpufreq_policy *policy; 349 struct cpufreq_governor *gov; 350 351 if (!sysctl_sched_energy_aware) 352 goto free; 353 354 /* EAS is enabled for asymmetric CPU capacity topologies. */ 355 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 356 if (sched_debug()) { 357 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 358 cpumask_pr_args(cpu_map)); 359 } 360 goto free; 361 } 362 363 for_each_cpu(i, cpu_map) { 364 /* Skip already covered CPUs. */ 365 if (find_pd(pd, i)) 366 continue; 367 368 /* Do not attempt EAS if schedutil is not being used. */ 369 policy = cpufreq_cpu_get(i); 370 if (!policy) 371 goto free; 372 gov = policy->governor; 373 cpufreq_cpu_put(policy); 374 if (gov != &schedutil_gov) { 375 if (rd->pd) 376 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 377 cpumask_pr_args(cpu_map)); 378 goto free; 379 } 380 381 /* Create the new pd and add it to the local list. */ 382 tmp = pd_init(i); 383 if (!tmp) 384 goto free; 385 tmp->next = pd; 386 pd = tmp; 387 388 /* 389 * Count performance domains and capacity states for the 390 * complexity check. 391 */ 392 nr_pd++; 393 nr_cs += em_pd_nr_cap_states(pd->em_pd); 394 } 395 396 /* Bail out if the Energy Model complexity is too high. */ 397 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) { 398 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 399 cpumask_pr_args(cpu_map)); 400 goto free; 401 } 402 403 perf_domain_debug(cpu_map, pd); 404 405 /* Attach the new list of performance domains to the root domain. */ 406 tmp = rd->pd; 407 rcu_assign_pointer(rd->pd, pd); 408 if (tmp) 409 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 410 411 return !!pd; 412 413 free: 414 free_pd(pd); 415 tmp = rd->pd; 416 rcu_assign_pointer(rd->pd, NULL); 417 if (tmp) 418 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 419 420 return false; 421 } 422 #else 423 static void free_pd(struct perf_domain *pd) { } 424 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 425 426 static void free_rootdomain(struct rcu_head *rcu) 427 { 428 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 429 430 cpupri_cleanup(&rd->cpupri); 431 cpudl_cleanup(&rd->cpudl); 432 free_cpumask_var(rd->dlo_mask); 433 free_cpumask_var(rd->rto_mask); 434 free_cpumask_var(rd->online); 435 free_cpumask_var(rd->span); 436 free_pd(rd->pd); 437 kfree(rd); 438 } 439 440 void rq_attach_root(struct rq *rq, struct root_domain *rd) 441 { 442 struct root_domain *old_rd = NULL; 443 unsigned long flags; 444 445 raw_spin_lock_irqsave(&rq->lock, flags); 446 447 if (rq->rd) { 448 old_rd = rq->rd; 449 450 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 451 set_rq_offline(rq); 452 453 cpumask_clear_cpu(rq->cpu, old_rd->span); 454 455 /* 456 * If we dont want to free the old_rd yet then 457 * set old_rd to NULL to skip the freeing later 458 * in this function: 459 */ 460 if (!atomic_dec_and_test(&old_rd->refcount)) 461 old_rd = NULL; 462 } 463 464 atomic_inc(&rd->refcount); 465 rq->rd = rd; 466 467 cpumask_set_cpu(rq->cpu, rd->span); 468 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 469 set_rq_online(rq); 470 471 raw_spin_unlock_irqrestore(&rq->lock, flags); 472 473 if (old_rd) 474 call_rcu(&old_rd->rcu, free_rootdomain); 475 } 476 477 void sched_get_rd(struct root_domain *rd) 478 { 479 atomic_inc(&rd->refcount); 480 } 481 482 void sched_put_rd(struct root_domain *rd) 483 { 484 if (!atomic_dec_and_test(&rd->refcount)) 485 return; 486 487 call_rcu(&rd->rcu, free_rootdomain); 488 } 489 490 static int init_rootdomain(struct root_domain *rd) 491 { 492 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 493 goto out; 494 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 495 goto free_span; 496 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 497 goto free_online; 498 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 499 goto free_dlo_mask; 500 501 #ifdef HAVE_RT_PUSH_IPI 502 rd->rto_cpu = -1; 503 raw_spin_lock_init(&rd->rto_lock); 504 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 505 #endif 506 507 init_dl_bw(&rd->dl_bw); 508 if (cpudl_init(&rd->cpudl) != 0) 509 goto free_rto_mask; 510 511 if (cpupri_init(&rd->cpupri) != 0) 512 goto free_cpudl; 513 return 0; 514 515 free_cpudl: 516 cpudl_cleanup(&rd->cpudl); 517 free_rto_mask: 518 free_cpumask_var(rd->rto_mask); 519 free_dlo_mask: 520 free_cpumask_var(rd->dlo_mask); 521 free_online: 522 free_cpumask_var(rd->online); 523 free_span: 524 free_cpumask_var(rd->span); 525 out: 526 return -ENOMEM; 527 } 528 529 /* 530 * By default the system creates a single root-domain with all CPUs as 531 * members (mimicking the global state we have today). 532 */ 533 struct root_domain def_root_domain; 534 535 void init_defrootdomain(void) 536 { 537 init_rootdomain(&def_root_domain); 538 539 atomic_set(&def_root_domain.refcount, 1); 540 } 541 542 static struct root_domain *alloc_rootdomain(void) 543 { 544 struct root_domain *rd; 545 546 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 547 if (!rd) 548 return NULL; 549 550 if (init_rootdomain(rd) != 0) { 551 kfree(rd); 552 return NULL; 553 } 554 555 return rd; 556 } 557 558 static void free_sched_groups(struct sched_group *sg, int free_sgc) 559 { 560 struct sched_group *tmp, *first; 561 562 if (!sg) 563 return; 564 565 first = sg; 566 do { 567 tmp = sg->next; 568 569 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 570 kfree(sg->sgc); 571 572 if (atomic_dec_and_test(&sg->ref)) 573 kfree(sg); 574 sg = tmp; 575 } while (sg != first); 576 } 577 578 static void destroy_sched_domain(struct sched_domain *sd) 579 { 580 /* 581 * A normal sched domain may have multiple group references, an 582 * overlapping domain, having private groups, only one. Iterate, 583 * dropping group/capacity references, freeing where none remain. 584 */ 585 free_sched_groups(sd->groups, 1); 586 587 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 588 kfree(sd->shared); 589 kfree(sd); 590 } 591 592 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 593 { 594 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 595 596 while (sd) { 597 struct sched_domain *parent = sd->parent; 598 destroy_sched_domain(sd); 599 sd = parent; 600 } 601 } 602 603 static void destroy_sched_domains(struct sched_domain *sd) 604 { 605 if (sd) 606 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 607 } 608 609 /* 610 * Keep a special pointer to the highest sched_domain that has 611 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 612 * allows us to avoid some pointer chasing select_idle_sibling(). 613 * 614 * Also keep a unique ID per domain (we use the first CPU number in 615 * the cpumask of the domain), this allows us to quickly tell if 616 * two CPUs are in the same cache domain, see cpus_share_cache(). 617 */ 618 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 619 DEFINE_PER_CPU(int, sd_llc_size); 620 DEFINE_PER_CPU(int, sd_llc_id); 621 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 622 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 623 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 624 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 625 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 626 627 static void update_top_cache_domain(int cpu) 628 { 629 struct sched_domain_shared *sds = NULL; 630 struct sched_domain *sd; 631 int id = cpu; 632 int size = 1; 633 634 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 635 if (sd) { 636 id = cpumask_first(sched_domain_span(sd)); 637 size = cpumask_weight(sched_domain_span(sd)); 638 sds = sd->shared; 639 } 640 641 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 642 per_cpu(sd_llc_size, cpu) = size; 643 per_cpu(sd_llc_id, cpu) = id; 644 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 645 646 sd = lowest_flag_domain(cpu, SD_NUMA); 647 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 648 649 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 650 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 651 652 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 653 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 654 } 655 656 /* 657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 658 * hold the hotplug lock. 659 */ 660 static void 661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 662 { 663 struct rq *rq = cpu_rq(cpu); 664 struct sched_domain *tmp; 665 666 /* Remove the sched domains which do not contribute to scheduling. */ 667 for (tmp = sd; tmp; ) { 668 struct sched_domain *parent = tmp->parent; 669 if (!parent) 670 break; 671 672 if (sd_parent_degenerate(tmp, parent)) { 673 tmp->parent = parent->parent; 674 if (parent->parent) 675 parent->parent->child = tmp; 676 /* 677 * Transfer SD_PREFER_SIBLING down in case of a 678 * degenerate parent; the spans match for this 679 * so the property transfers. 680 */ 681 if (parent->flags & SD_PREFER_SIBLING) 682 tmp->flags |= SD_PREFER_SIBLING; 683 destroy_sched_domain(parent); 684 } else 685 tmp = tmp->parent; 686 } 687 688 if (sd && sd_degenerate(sd)) { 689 tmp = sd; 690 sd = sd->parent; 691 destroy_sched_domain(tmp); 692 if (sd) 693 sd->child = NULL; 694 } 695 696 sched_domain_debug(sd, cpu); 697 698 rq_attach_root(rq, rd); 699 tmp = rq->sd; 700 rcu_assign_pointer(rq->sd, sd); 701 dirty_sched_domain_sysctl(cpu); 702 destroy_sched_domains(tmp); 703 704 update_top_cache_domain(cpu); 705 } 706 707 struct s_data { 708 struct sched_domain * __percpu *sd; 709 struct root_domain *rd; 710 }; 711 712 enum s_alloc { 713 sa_rootdomain, 714 sa_sd, 715 sa_sd_storage, 716 sa_none, 717 }; 718 719 /* 720 * Return the canonical balance CPU for this group, this is the first CPU 721 * of this group that's also in the balance mask. 722 * 723 * The balance mask are all those CPUs that could actually end up at this 724 * group. See build_balance_mask(). 725 * 726 * Also see should_we_balance(). 727 */ 728 int group_balance_cpu(struct sched_group *sg) 729 { 730 return cpumask_first(group_balance_mask(sg)); 731 } 732 733 734 /* 735 * NUMA topology (first read the regular topology blurb below) 736 * 737 * Given a node-distance table, for example: 738 * 739 * node 0 1 2 3 740 * 0: 10 20 30 20 741 * 1: 20 10 20 30 742 * 2: 30 20 10 20 743 * 3: 20 30 20 10 744 * 745 * which represents a 4 node ring topology like: 746 * 747 * 0 ----- 1 748 * | | 749 * | | 750 * | | 751 * 3 ----- 2 752 * 753 * We want to construct domains and groups to represent this. The way we go 754 * about doing this is to build the domains on 'hops'. For each NUMA level we 755 * construct the mask of all nodes reachable in @level hops. 756 * 757 * For the above NUMA topology that gives 3 levels: 758 * 759 * NUMA-2 0-3 0-3 0-3 0-3 760 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 761 * 762 * NUMA-1 0-1,3 0-2 1-3 0,2-3 763 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 764 * 765 * NUMA-0 0 1 2 3 766 * 767 * 768 * As can be seen; things don't nicely line up as with the regular topology. 769 * When we iterate a domain in child domain chunks some nodes can be 770 * represented multiple times -- hence the "overlap" naming for this part of 771 * the topology. 772 * 773 * In order to minimize this overlap, we only build enough groups to cover the 774 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 775 * 776 * Because: 777 * 778 * - the first group of each domain is its child domain; this 779 * gets us the first 0-1,3 780 * - the only uncovered node is 2, who's child domain is 1-3. 781 * 782 * However, because of the overlap, computing a unique CPU for each group is 783 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 784 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 785 * end up at those groups (they would end up in group: 0-1,3). 786 * 787 * To correct this we have to introduce the group balance mask. This mask 788 * will contain those CPUs in the group that can reach this group given the 789 * (child) domain tree. 790 * 791 * With this we can once again compute balance_cpu and sched_group_capacity 792 * relations. 793 * 794 * XXX include words on how balance_cpu is unique and therefore can be 795 * used for sched_group_capacity links. 796 * 797 * 798 * Another 'interesting' topology is: 799 * 800 * node 0 1 2 3 801 * 0: 10 20 20 30 802 * 1: 20 10 20 20 803 * 2: 20 20 10 20 804 * 3: 30 20 20 10 805 * 806 * Which looks a little like: 807 * 808 * 0 ----- 1 809 * | / | 810 * | / | 811 * | / | 812 * 2 ----- 3 813 * 814 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 815 * are not. 816 * 817 * This leads to a few particularly weird cases where the sched_domain's are 818 * not of the same number for each CPU. Consider: 819 * 820 * NUMA-2 0-3 0-3 821 * groups: {0-2},{1-3} {1-3},{0-2} 822 * 823 * NUMA-1 0-2 0-3 0-3 1-3 824 * 825 * NUMA-0 0 1 2 3 826 * 827 */ 828 829 830 /* 831 * Build the balance mask; it contains only those CPUs that can arrive at this 832 * group and should be considered to continue balancing. 833 * 834 * We do this during the group creation pass, therefore the group information 835 * isn't complete yet, however since each group represents a (child) domain we 836 * can fully construct this using the sched_domain bits (which are already 837 * complete). 838 */ 839 static void 840 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 841 { 842 const struct cpumask *sg_span = sched_group_span(sg); 843 struct sd_data *sdd = sd->private; 844 struct sched_domain *sibling; 845 int i; 846 847 cpumask_clear(mask); 848 849 for_each_cpu(i, sg_span) { 850 sibling = *per_cpu_ptr(sdd->sd, i); 851 852 /* 853 * Can happen in the asymmetric case, where these siblings are 854 * unused. The mask will not be empty because those CPUs that 855 * do have the top domain _should_ span the domain. 856 */ 857 if (!sibling->child) 858 continue; 859 860 /* If we would not end up here, we can't continue from here */ 861 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 862 continue; 863 864 cpumask_set_cpu(i, mask); 865 } 866 867 /* We must not have empty masks here */ 868 WARN_ON_ONCE(cpumask_empty(mask)); 869 } 870 871 /* 872 * XXX: This creates per-node group entries; since the load-balancer will 873 * immediately access remote memory to construct this group's load-balance 874 * statistics having the groups node local is of dubious benefit. 875 */ 876 static struct sched_group * 877 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 878 { 879 struct sched_group *sg; 880 struct cpumask *sg_span; 881 882 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 883 GFP_KERNEL, cpu_to_node(cpu)); 884 885 if (!sg) 886 return NULL; 887 888 sg_span = sched_group_span(sg); 889 if (sd->child) 890 cpumask_copy(sg_span, sched_domain_span(sd->child)); 891 else 892 cpumask_copy(sg_span, sched_domain_span(sd)); 893 894 atomic_inc(&sg->ref); 895 return sg; 896 } 897 898 static void init_overlap_sched_group(struct sched_domain *sd, 899 struct sched_group *sg) 900 { 901 struct cpumask *mask = sched_domains_tmpmask2; 902 struct sd_data *sdd = sd->private; 903 struct cpumask *sg_span; 904 int cpu; 905 906 build_balance_mask(sd, sg, mask); 907 cpu = cpumask_first_and(sched_group_span(sg), mask); 908 909 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 910 if (atomic_inc_return(&sg->sgc->ref) == 1) 911 cpumask_copy(group_balance_mask(sg), mask); 912 else 913 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 914 915 /* 916 * Initialize sgc->capacity such that even if we mess up the 917 * domains and no possible iteration will get us here, we won't 918 * die on a /0 trap. 919 */ 920 sg_span = sched_group_span(sg); 921 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 922 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 923 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 924 } 925 926 static int 927 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 928 { 929 struct sched_group *first = NULL, *last = NULL, *sg; 930 const struct cpumask *span = sched_domain_span(sd); 931 struct cpumask *covered = sched_domains_tmpmask; 932 struct sd_data *sdd = sd->private; 933 struct sched_domain *sibling; 934 int i; 935 936 cpumask_clear(covered); 937 938 for_each_cpu_wrap(i, span, cpu) { 939 struct cpumask *sg_span; 940 941 if (cpumask_test_cpu(i, covered)) 942 continue; 943 944 sibling = *per_cpu_ptr(sdd->sd, i); 945 946 /* 947 * Asymmetric node setups can result in situations where the 948 * domain tree is of unequal depth, make sure to skip domains 949 * that already cover the entire range. 950 * 951 * In that case build_sched_domains() will have terminated the 952 * iteration early and our sibling sd spans will be empty. 953 * Domains should always include the CPU they're built on, so 954 * check that. 955 */ 956 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 957 continue; 958 959 sg = build_group_from_child_sched_domain(sibling, cpu); 960 if (!sg) 961 goto fail; 962 963 sg_span = sched_group_span(sg); 964 cpumask_or(covered, covered, sg_span); 965 966 init_overlap_sched_group(sd, sg); 967 968 if (!first) 969 first = sg; 970 if (last) 971 last->next = sg; 972 last = sg; 973 last->next = first; 974 } 975 sd->groups = first; 976 977 return 0; 978 979 fail: 980 free_sched_groups(first, 0); 981 982 return -ENOMEM; 983 } 984 985 986 /* 987 * Package topology (also see the load-balance blurb in fair.c) 988 * 989 * The scheduler builds a tree structure to represent a number of important 990 * topology features. By default (default_topology[]) these include: 991 * 992 * - Simultaneous multithreading (SMT) 993 * - Multi-Core Cache (MC) 994 * - Package (DIE) 995 * 996 * Where the last one more or less denotes everything up to a NUMA node. 997 * 998 * The tree consists of 3 primary data structures: 999 * 1000 * sched_domain -> sched_group -> sched_group_capacity 1001 * ^ ^ ^ ^ 1002 * `-' `-' 1003 * 1004 * The sched_domains are per-CPU and have a two way link (parent & child) and 1005 * denote the ever growing mask of CPUs belonging to that level of topology. 1006 * 1007 * Each sched_domain has a circular (double) linked list of sched_group's, each 1008 * denoting the domains of the level below (or individual CPUs in case of the 1009 * first domain level). The sched_group linked by a sched_domain includes the 1010 * CPU of that sched_domain [*]. 1011 * 1012 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1013 * 1014 * CPU 0 1 2 3 4 5 6 7 1015 * 1016 * DIE [ ] 1017 * MC [ ] [ ] 1018 * SMT [ ] [ ] [ ] [ ] 1019 * 1020 * - or - 1021 * 1022 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1023 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1024 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1025 * 1026 * CPU 0 1 2 3 4 5 6 7 1027 * 1028 * One way to think about it is: sched_domain moves you up and down among these 1029 * topology levels, while sched_group moves you sideways through it, at child 1030 * domain granularity. 1031 * 1032 * sched_group_capacity ensures each unique sched_group has shared storage. 1033 * 1034 * There are two related construction problems, both require a CPU that 1035 * uniquely identify each group (for a given domain): 1036 * 1037 * - The first is the balance_cpu (see should_we_balance() and the 1038 * load-balance blub in fair.c); for each group we only want 1 CPU to 1039 * continue balancing at a higher domain. 1040 * 1041 * - The second is the sched_group_capacity; we want all identical groups 1042 * to share a single sched_group_capacity. 1043 * 1044 * Since these topologies are exclusive by construction. That is, its 1045 * impossible for an SMT thread to belong to multiple cores, and cores to 1046 * be part of multiple caches. There is a very clear and unique location 1047 * for each CPU in the hierarchy. 1048 * 1049 * Therefore computing a unique CPU for each group is trivial (the iteration 1050 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1051 * group), we can simply pick the first CPU in each group. 1052 * 1053 * 1054 * [*] in other words, the first group of each domain is its child domain. 1055 */ 1056 1057 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1058 { 1059 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1060 struct sched_domain *child = sd->child; 1061 struct sched_group *sg; 1062 bool already_visited; 1063 1064 if (child) 1065 cpu = cpumask_first(sched_domain_span(child)); 1066 1067 sg = *per_cpu_ptr(sdd->sg, cpu); 1068 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1069 1070 /* Increase refcounts for claim_allocations: */ 1071 already_visited = atomic_inc_return(&sg->ref) > 1; 1072 /* sgc visits should follow a similar trend as sg */ 1073 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1074 1075 /* If we have already visited that group, it's already initialized. */ 1076 if (already_visited) 1077 return sg; 1078 1079 if (child) { 1080 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1081 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1082 } else { 1083 cpumask_set_cpu(cpu, sched_group_span(sg)); 1084 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1085 } 1086 1087 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1088 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1089 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1090 1091 return sg; 1092 } 1093 1094 /* 1095 * build_sched_groups will build a circular linked list of the groups 1096 * covered by the given span, will set each group's ->cpumask correctly, 1097 * and will initialize their ->sgc. 1098 * 1099 * Assumes the sched_domain tree is fully constructed 1100 */ 1101 static int 1102 build_sched_groups(struct sched_domain *sd, int cpu) 1103 { 1104 struct sched_group *first = NULL, *last = NULL; 1105 struct sd_data *sdd = sd->private; 1106 const struct cpumask *span = sched_domain_span(sd); 1107 struct cpumask *covered; 1108 int i; 1109 1110 lockdep_assert_held(&sched_domains_mutex); 1111 covered = sched_domains_tmpmask; 1112 1113 cpumask_clear(covered); 1114 1115 for_each_cpu_wrap(i, span, cpu) { 1116 struct sched_group *sg; 1117 1118 if (cpumask_test_cpu(i, covered)) 1119 continue; 1120 1121 sg = get_group(i, sdd); 1122 1123 cpumask_or(covered, covered, sched_group_span(sg)); 1124 1125 if (!first) 1126 first = sg; 1127 if (last) 1128 last->next = sg; 1129 last = sg; 1130 } 1131 last->next = first; 1132 sd->groups = first; 1133 1134 return 0; 1135 } 1136 1137 /* 1138 * Initialize sched groups cpu_capacity. 1139 * 1140 * cpu_capacity indicates the capacity of sched group, which is used while 1141 * distributing the load between different sched groups in a sched domain. 1142 * Typically cpu_capacity for all the groups in a sched domain will be same 1143 * unless there are asymmetries in the topology. If there are asymmetries, 1144 * group having more cpu_capacity will pickup more load compared to the 1145 * group having less cpu_capacity. 1146 */ 1147 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1148 { 1149 struct sched_group *sg = sd->groups; 1150 1151 WARN_ON(!sg); 1152 1153 do { 1154 int cpu, max_cpu = -1; 1155 1156 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1157 1158 if (!(sd->flags & SD_ASYM_PACKING)) 1159 goto next; 1160 1161 for_each_cpu(cpu, sched_group_span(sg)) { 1162 if (max_cpu < 0) 1163 max_cpu = cpu; 1164 else if (sched_asym_prefer(cpu, max_cpu)) 1165 max_cpu = cpu; 1166 } 1167 sg->asym_prefer_cpu = max_cpu; 1168 1169 next: 1170 sg = sg->next; 1171 } while (sg != sd->groups); 1172 1173 if (cpu != group_balance_cpu(sg)) 1174 return; 1175 1176 update_group_capacity(sd, cpu); 1177 } 1178 1179 /* 1180 * Initializers for schedule domains 1181 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1182 */ 1183 1184 static int default_relax_domain_level = -1; 1185 int sched_domain_level_max; 1186 1187 static int __init setup_relax_domain_level(char *str) 1188 { 1189 if (kstrtoint(str, 0, &default_relax_domain_level)) 1190 pr_warn("Unable to set relax_domain_level\n"); 1191 1192 return 1; 1193 } 1194 __setup("relax_domain_level=", setup_relax_domain_level); 1195 1196 static void set_domain_attribute(struct sched_domain *sd, 1197 struct sched_domain_attr *attr) 1198 { 1199 int request; 1200 1201 if (!attr || attr->relax_domain_level < 0) { 1202 if (default_relax_domain_level < 0) 1203 return; 1204 else 1205 request = default_relax_domain_level; 1206 } else 1207 request = attr->relax_domain_level; 1208 if (request < sd->level) { 1209 /* Turn off idle balance on this domain: */ 1210 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1211 } else { 1212 /* Turn on idle balance on this domain: */ 1213 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1214 } 1215 } 1216 1217 static void __sdt_free(const struct cpumask *cpu_map); 1218 static int __sdt_alloc(const struct cpumask *cpu_map); 1219 1220 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1221 const struct cpumask *cpu_map) 1222 { 1223 switch (what) { 1224 case sa_rootdomain: 1225 if (!atomic_read(&d->rd->refcount)) 1226 free_rootdomain(&d->rd->rcu); 1227 /* Fall through */ 1228 case sa_sd: 1229 free_percpu(d->sd); 1230 /* Fall through */ 1231 case sa_sd_storage: 1232 __sdt_free(cpu_map); 1233 /* Fall through */ 1234 case sa_none: 1235 break; 1236 } 1237 } 1238 1239 static enum s_alloc 1240 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1241 { 1242 memset(d, 0, sizeof(*d)); 1243 1244 if (__sdt_alloc(cpu_map)) 1245 return sa_sd_storage; 1246 d->sd = alloc_percpu(struct sched_domain *); 1247 if (!d->sd) 1248 return sa_sd_storage; 1249 d->rd = alloc_rootdomain(); 1250 if (!d->rd) 1251 return sa_sd; 1252 1253 return sa_rootdomain; 1254 } 1255 1256 /* 1257 * NULL the sd_data elements we've used to build the sched_domain and 1258 * sched_group structure so that the subsequent __free_domain_allocs() 1259 * will not free the data we're using. 1260 */ 1261 static void claim_allocations(int cpu, struct sched_domain *sd) 1262 { 1263 struct sd_data *sdd = sd->private; 1264 1265 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1266 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1267 1268 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1269 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1270 1271 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1272 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1273 1274 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1275 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1276 } 1277 1278 #ifdef CONFIG_NUMA 1279 enum numa_topology_type sched_numa_topology_type; 1280 1281 static int sched_domains_numa_levels; 1282 static int sched_domains_curr_level; 1283 1284 int sched_max_numa_distance; 1285 static int *sched_domains_numa_distance; 1286 static struct cpumask ***sched_domains_numa_masks; 1287 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1288 #endif 1289 1290 /* 1291 * SD_flags allowed in topology descriptions. 1292 * 1293 * These flags are purely descriptive of the topology and do not prescribe 1294 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1295 * function: 1296 * 1297 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1298 * SD_SHARE_PKG_RESOURCES - describes shared caches 1299 * SD_NUMA - describes NUMA topologies 1300 * SD_SHARE_POWERDOMAIN - describes shared power domain 1301 * 1302 * Odd one out, which beside describing the topology has a quirk also 1303 * prescribes the desired behaviour that goes along with it: 1304 * 1305 * SD_ASYM_PACKING - describes SMT quirks 1306 */ 1307 #define TOPOLOGY_SD_FLAGS \ 1308 (SD_SHARE_CPUCAPACITY | \ 1309 SD_SHARE_PKG_RESOURCES | \ 1310 SD_NUMA | \ 1311 SD_ASYM_PACKING | \ 1312 SD_SHARE_POWERDOMAIN) 1313 1314 static struct sched_domain * 1315 sd_init(struct sched_domain_topology_level *tl, 1316 const struct cpumask *cpu_map, 1317 struct sched_domain *child, int dflags, int cpu) 1318 { 1319 struct sd_data *sdd = &tl->data; 1320 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1321 int sd_id, sd_weight, sd_flags = 0; 1322 1323 #ifdef CONFIG_NUMA 1324 /* 1325 * Ugly hack to pass state to sd_numa_mask()... 1326 */ 1327 sched_domains_curr_level = tl->numa_level; 1328 #endif 1329 1330 sd_weight = cpumask_weight(tl->mask(cpu)); 1331 1332 if (tl->sd_flags) 1333 sd_flags = (*tl->sd_flags)(); 1334 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1335 "wrong sd_flags in topology description\n")) 1336 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1337 1338 /* Apply detected topology flags */ 1339 sd_flags |= dflags; 1340 1341 *sd = (struct sched_domain){ 1342 .min_interval = sd_weight, 1343 .max_interval = 2*sd_weight, 1344 .busy_factor = 32, 1345 .imbalance_pct = 125, 1346 1347 .cache_nice_tries = 0, 1348 1349 .flags = 1*SD_LOAD_BALANCE 1350 | 1*SD_BALANCE_NEWIDLE 1351 | 1*SD_BALANCE_EXEC 1352 | 1*SD_BALANCE_FORK 1353 | 0*SD_BALANCE_WAKE 1354 | 1*SD_WAKE_AFFINE 1355 | 0*SD_SHARE_CPUCAPACITY 1356 | 0*SD_SHARE_PKG_RESOURCES 1357 | 0*SD_SERIALIZE 1358 | 1*SD_PREFER_SIBLING 1359 | 0*SD_NUMA 1360 | sd_flags 1361 , 1362 1363 .last_balance = jiffies, 1364 .balance_interval = sd_weight, 1365 .max_newidle_lb_cost = 0, 1366 .next_decay_max_lb_cost = jiffies, 1367 .child = child, 1368 #ifdef CONFIG_SCHED_DEBUG 1369 .name = tl->name, 1370 #endif 1371 }; 1372 1373 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1374 sd_id = cpumask_first(sched_domain_span(sd)); 1375 1376 /* 1377 * Convert topological properties into behaviour. 1378 */ 1379 1380 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1381 struct sched_domain *t = sd; 1382 1383 /* 1384 * Don't attempt to spread across CPUs of different capacities. 1385 */ 1386 if (sd->child) 1387 sd->child->flags &= ~SD_PREFER_SIBLING; 1388 1389 for_each_lower_domain(t) 1390 t->flags |= SD_BALANCE_WAKE; 1391 } 1392 1393 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1394 sd->imbalance_pct = 110; 1395 1396 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1397 sd->imbalance_pct = 117; 1398 sd->cache_nice_tries = 1; 1399 1400 #ifdef CONFIG_NUMA 1401 } else if (sd->flags & SD_NUMA) { 1402 sd->cache_nice_tries = 2; 1403 1404 sd->flags &= ~SD_PREFER_SIBLING; 1405 sd->flags |= SD_SERIALIZE; 1406 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1407 sd->flags &= ~(SD_BALANCE_EXEC | 1408 SD_BALANCE_FORK | 1409 SD_WAKE_AFFINE); 1410 } 1411 1412 #endif 1413 } else { 1414 sd->cache_nice_tries = 1; 1415 } 1416 1417 /* 1418 * For all levels sharing cache; connect a sched_domain_shared 1419 * instance. 1420 */ 1421 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1422 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1423 atomic_inc(&sd->shared->ref); 1424 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1425 } 1426 1427 sd->private = sdd; 1428 1429 return sd; 1430 } 1431 1432 /* 1433 * Topology list, bottom-up. 1434 */ 1435 static struct sched_domain_topology_level default_topology[] = { 1436 #ifdef CONFIG_SCHED_SMT 1437 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1438 #endif 1439 #ifdef CONFIG_SCHED_MC 1440 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1441 #endif 1442 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1443 { NULL, }, 1444 }; 1445 1446 static struct sched_domain_topology_level *sched_domain_topology = 1447 default_topology; 1448 1449 #define for_each_sd_topology(tl) \ 1450 for (tl = sched_domain_topology; tl->mask; tl++) 1451 1452 void set_sched_topology(struct sched_domain_topology_level *tl) 1453 { 1454 if (WARN_ON_ONCE(sched_smp_initialized)) 1455 return; 1456 1457 sched_domain_topology = tl; 1458 } 1459 1460 #ifdef CONFIG_NUMA 1461 1462 static const struct cpumask *sd_numa_mask(int cpu) 1463 { 1464 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1465 } 1466 1467 static void sched_numa_warn(const char *str) 1468 { 1469 static int done = false; 1470 int i,j; 1471 1472 if (done) 1473 return; 1474 1475 done = true; 1476 1477 printk(KERN_WARNING "ERROR: %s\n\n", str); 1478 1479 for (i = 0; i < nr_node_ids; i++) { 1480 printk(KERN_WARNING " "); 1481 for (j = 0; j < nr_node_ids; j++) 1482 printk(KERN_CONT "%02d ", node_distance(i,j)); 1483 printk(KERN_CONT "\n"); 1484 } 1485 printk(KERN_WARNING "\n"); 1486 } 1487 1488 bool find_numa_distance(int distance) 1489 { 1490 int i; 1491 1492 if (distance == node_distance(0, 0)) 1493 return true; 1494 1495 for (i = 0; i < sched_domains_numa_levels; i++) { 1496 if (sched_domains_numa_distance[i] == distance) 1497 return true; 1498 } 1499 1500 return false; 1501 } 1502 1503 /* 1504 * A system can have three types of NUMA topology: 1505 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1506 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1507 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1508 * 1509 * The difference between a glueless mesh topology and a backplane 1510 * topology lies in whether communication between not directly 1511 * connected nodes goes through intermediary nodes (where programs 1512 * could run), or through backplane controllers. This affects 1513 * placement of programs. 1514 * 1515 * The type of topology can be discerned with the following tests: 1516 * - If the maximum distance between any nodes is 1 hop, the system 1517 * is directly connected. 1518 * - If for two nodes A and B, located N > 1 hops away from each other, 1519 * there is an intermediary node C, which is < N hops away from both 1520 * nodes A and B, the system is a glueless mesh. 1521 */ 1522 static void init_numa_topology_type(void) 1523 { 1524 int a, b, c, n; 1525 1526 n = sched_max_numa_distance; 1527 1528 if (sched_domains_numa_levels <= 2) { 1529 sched_numa_topology_type = NUMA_DIRECT; 1530 return; 1531 } 1532 1533 for_each_online_node(a) { 1534 for_each_online_node(b) { 1535 /* Find two nodes furthest removed from each other. */ 1536 if (node_distance(a, b) < n) 1537 continue; 1538 1539 /* Is there an intermediary node between a and b? */ 1540 for_each_online_node(c) { 1541 if (node_distance(a, c) < n && 1542 node_distance(b, c) < n) { 1543 sched_numa_topology_type = 1544 NUMA_GLUELESS_MESH; 1545 return; 1546 } 1547 } 1548 1549 sched_numa_topology_type = NUMA_BACKPLANE; 1550 return; 1551 } 1552 } 1553 } 1554 1555 void sched_init_numa(void) 1556 { 1557 int next_distance, curr_distance = node_distance(0, 0); 1558 struct sched_domain_topology_level *tl; 1559 int level = 0; 1560 int i, j, k; 1561 1562 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1563 if (!sched_domains_numa_distance) 1564 return; 1565 1566 /* Includes NUMA identity node at level 0. */ 1567 sched_domains_numa_distance[level++] = curr_distance; 1568 sched_domains_numa_levels = level; 1569 1570 /* 1571 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1572 * unique distances in the node_distance() table. 1573 * 1574 * Assumes node_distance(0,j) includes all distances in 1575 * node_distance(i,j) in order to avoid cubic time. 1576 */ 1577 next_distance = curr_distance; 1578 for (i = 0; i < nr_node_ids; i++) { 1579 for (j = 0; j < nr_node_ids; j++) { 1580 for (k = 0; k < nr_node_ids; k++) { 1581 int distance = node_distance(i, k); 1582 1583 if (distance > curr_distance && 1584 (distance < next_distance || 1585 next_distance == curr_distance)) 1586 next_distance = distance; 1587 1588 /* 1589 * While not a strong assumption it would be nice to know 1590 * about cases where if node A is connected to B, B is not 1591 * equally connected to A. 1592 */ 1593 if (sched_debug() && node_distance(k, i) != distance) 1594 sched_numa_warn("Node-distance not symmetric"); 1595 1596 if (sched_debug() && i && !find_numa_distance(distance)) 1597 sched_numa_warn("Node-0 not representative"); 1598 } 1599 if (next_distance != curr_distance) { 1600 sched_domains_numa_distance[level++] = next_distance; 1601 sched_domains_numa_levels = level; 1602 curr_distance = next_distance; 1603 } else break; 1604 } 1605 1606 /* 1607 * In case of sched_debug() we verify the above assumption. 1608 */ 1609 if (!sched_debug()) 1610 break; 1611 } 1612 1613 /* 1614 * 'level' contains the number of unique distances 1615 * 1616 * The sched_domains_numa_distance[] array includes the actual distance 1617 * numbers. 1618 */ 1619 1620 /* 1621 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1622 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1623 * the array will contain less then 'level' members. This could be 1624 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1625 * in other functions. 1626 * 1627 * We reset it to 'level' at the end of this function. 1628 */ 1629 sched_domains_numa_levels = 0; 1630 1631 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1632 if (!sched_domains_numa_masks) 1633 return; 1634 1635 /* 1636 * Now for each level, construct a mask per node which contains all 1637 * CPUs of nodes that are that many hops away from us. 1638 */ 1639 for (i = 0; i < level; i++) { 1640 sched_domains_numa_masks[i] = 1641 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1642 if (!sched_domains_numa_masks[i]) 1643 return; 1644 1645 for (j = 0; j < nr_node_ids; j++) { 1646 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1647 if (!mask) 1648 return; 1649 1650 sched_domains_numa_masks[i][j] = mask; 1651 1652 for_each_node(k) { 1653 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1654 continue; 1655 1656 cpumask_or(mask, mask, cpumask_of_node(k)); 1657 } 1658 } 1659 } 1660 1661 /* Compute default topology size */ 1662 for (i = 0; sched_domain_topology[i].mask; i++); 1663 1664 tl = kzalloc((i + level + 1) * 1665 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1666 if (!tl) 1667 return; 1668 1669 /* 1670 * Copy the default topology bits.. 1671 */ 1672 for (i = 0; sched_domain_topology[i].mask; i++) 1673 tl[i] = sched_domain_topology[i]; 1674 1675 /* 1676 * Add the NUMA identity distance, aka single NODE. 1677 */ 1678 tl[i++] = (struct sched_domain_topology_level){ 1679 .mask = sd_numa_mask, 1680 .numa_level = 0, 1681 SD_INIT_NAME(NODE) 1682 }; 1683 1684 /* 1685 * .. and append 'j' levels of NUMA goodness. 1686 */ 1687 for (j = 1; j < level; i++, j++) { 1688 tl[i] = (struct sched_domain_topology_level){ 1689 .mask = sd_numa_mask, 1690 .sd_flags = cpu_numa_flags, 1691 .flags = SDTL_OVERLAP, 1692 .numa_level = j, 1693 SD_INIT_NAME(NUMA) 1694 }; 1695 } 1696 1697 sched_domain_topology = tl; 1698 1699 sched_domains_numa_levels = level; 1700 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1701 1702 init_numa_topology_type(); 1703 } 1704 1705 void sched_domains_numa_masks_set(unsigned int cpu) 1706 { 1707 int node = cpu_to_node(cpu); 1708 int i, j; 1709 1710 for (i = 0; i < sched_domains_numa_levels; i++) { 1711 for (j = 0; j < nr_node_ids; j++) { 1712 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1713 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1714 } 1715 } 1716 } 1717 1718 void sched_domains_numa_masks_clear(unsigned int cpu) 1719 { 1720 int i, j; 1721 1722 for (i = 0; i < sched_domains_numa_levels; i++) { 1723 for (j = 0; j < nr_node_ids; j++) 1724 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1725 } 1726 } 1727 1728 /* 1729 * sched_numa_find_closest() - given the NUMA topology, find the cpu 1730 * closest to @cpu from @cpumask. 1731 * cpumask: cpumask to find a cpu from 1732 * cpu: cpu to be close to 1733 * 1734 * returns: cpu, or nr_cpu_ids when nothing found. 1735 */ 1736 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1737 { 1738 int i, j = cpu_to_node(cpu); 1739 1740 for (i = 0; i < sched_domains_numa_levels; i++) { 1741 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1742 if (cpu < nr_cpu_ids) 1743 return cpu; 1744 } 1745 return nr_cpu_ids; 1746 } 1747 1748 #endif /* CONFIG_NUMA */ 1749 1750 static int __sdt_alloc(const struct cpumask *cpu_map) 1751 { 1752 struct sched_domain_topology_level *tl; 1753 int j; 1754 1755 for_each_sd_topology(tl) { 1756 struct sd_data *sdd = &tl->data; 1757 1758 sdd->sd = alloc_percpu(struct sched_domain *); 1759 if (!sdd->sd) 1760 return -ENOMEM; 1761 1762 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1763 if (!sdd->sds) 1764 return -ENOMEM; 1765 1766 sdd->sg = alloc_percpu(struct sched_group *); 1767 if (!sdd->sg) 1768 return -ENOMEM; 1769 1770 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1771 if (!sdd->sgc) 1772 return -ENOMEM; 1773 1774 for_each_cpu(j, cpu_map) { 1775 struct sched_domain *sd; 1776 struct sched_domain_shared *sds; 1777 struct sched_group *sg; 1778 struct sched_group_capacity *sgc; 1779 1780 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1781 GFP_KERNEL, cpu_to_node(j)); 1782 if (!sd) 1783 return -ENOMEM; 1784 1785 *per_cpu_ptr(sdd->sd, j) = sd; 1786 1787 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1788 GFP_KERNEL, cpu_to_node(j)); 1789 if (!sds) 1790 return -ENOMEM; 1791 1792 *per_cpu_ptr(sdd->sds, j) = sds; 1793 1794 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1795 GFP_KERNEL, cpu_to_node(j)); 1796 if (!sg) 1797 return -ENOMEM; 1798 1799 sg->next = sg; 1800 1801 *per_cpu_ptr(sdd->sg, j) = sg; 1802 1803 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1804 GFP_KERNEL, cpu_to_node(j)); 1805 if (!sgc) 1806 return -ENOMEM; 1807 1808 #ifdef CONFIG_SCHED_DEBUG 1809 sgc->id = j; 1810 #endif 1811 1812 *per_cpu_ptr(sdd->sgc, j) = sgc; 1813 } 1814 } 1815 1816 return 0; 1817 } 1818 1819 static void __sdt_free(const struct cpumask *cpu_map) 1820 { 1821 struct sched_domain_topology_level *tl; 1822 int j; 1823 1824 for_each_sd_topology(tl) { 1825 struct sd_data *sdd = &tl->data; 1826 1827 for_each_cpu(j, cpu_map) { 1828 struct sched_domain *sd; 1829 1830 if (sdd->sd) { 1831 sd = *per_cpu_ptr(sdd->sd, j); 1832 if (sd && (sd->flags & SD_OVERLAP)) 1833 free_sched_groups(sd->groups, 0); 1834 kfree(*per_cpu_ptr(sdd->sd, j)); 1835 } 1836 1837 if (sdd->sds) 1838 kfree(*per_cpu_ptr(sdd->sds, j)); 1839 if (sdd->sg) 1840 kfree(*per_cpu_ptr(sdd->sg, j)); 1841 if (sdd->sgc) 1842 kfree(*per_cpu_ptr(sdd->sgc, j)); 1843 } 1844 free_percpu(sdd->sd); 1845 sdd->sd = NULL; 1846 free_percpu(sdd->sds); 1847 sdd->sds = NULL; 1848 free_percpu(sdd->sg); 1849 sdd->sg = NULL; 1850 free_percpu(sdd->sgc); 1851 sdd->sgc = NULL; 1852 } 1853 } 1854 1855 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1856 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1857 struct sched_domain *child, int dflags, int cpu) 1858 { 1859 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1860 1861 if (child) { 1862 sd->level = child->level + 1; 1863 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1864 child->parent = sd; 1865 1866 if (!cpumask_subset(sched_domain_span(child), 1867 sched_domain_span(sd))) { 1868 pr_err("BUG: arch topology borken\n"); 1869 #ifdef CONFIG_SCHED_DEBUG 1870 pr_err(" the %s domain not a subset of the %s domain\n", 1871 child->name, sd->name); 1872 #endif 1873 /* Fixup, ensure @sd has at least @child CPUs. */ 1874 cpumask_or(sched_domain_span(sd), 1875 sched_domain_span(sd), 1876 sched_domain_span(child)); 1877 } 1878 1879 } 1880 set_domain_attribute(sd, attr); 1881 1882 return sd; 1883 } 1884 1885 /* 1886 * Find the sched_domain_topology_level where all CPU capacities are visible 1887 * for all CPUs. 1888 */ 1889 static struct sched_domain_topology_level 1890 *asym_cpu_capacity_level(const struct cpumask *cpu_map) 1891 { 1892 int i, j, asym_level = 0; 1893 bool asym = false; 1894 struct sched_domain_topology_level *tl, *asym_tl = NULL; 1895 unsigned long cap; 1896 1897 /* Is there any asymmetry? */ 1898 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 1899 1900 for_each_cpu(i, cpu_map) { 1901 if (arch_scale_cpu_capacity(i) != cap) { 1902 asym = true; 1903 break; 1904 } 1905 } 1906 1907 if (!asym) 1908 return NULL; 1909 1910 /* 1911 * Examine topology from all CPU's point of views to detect the lowest 1912 * sched_domain_topology_level where a highest capacity CPU is visible 1913 * to everyone. 1914 */ 1915 for_each_cpu(i, cpu_map) { 1916 unsigned long max_capacity = arch_scale_cpu_capacity(i); 1917 int tl_id = 0; 1918 1919 for_each_sd_topology(tl) { 1920 if (tl_id < asym_level) 1921 goto next_level; 1922 1923 for_each_cpu_and(j, tl->mask(i), cpu_map) { 1924 unsigned long capacity; 1925 1926 capacity = arch_scale_cpu_capacity(j); 1927 1928 if (capacity <= max_capacity) 1929 continue; 1930 1931 max_capacity = capacity; 1932 asym_level = tl_id; 1933 asym_tl = tl; 1934 } 1935 next_level: 1936 tl_id++; 1937 } 1938 } 1939 1940 return asym_tl; 1941 } 1942 1943 1944 /* 1945 * Build sched domains for a given set of CPUs and attach the sched domains 1946 * to the individual CPUs 1947 */ 1948 static int 1949 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1950 { 1951 enum s_alloc alloc_state; 1952 struct sched_domain *sd; 1953 struct s_data d; 1954 struct rq *rq = NULL; 1955 int i, ret = -ENOMEM; 1956 struct sched_domain_topology_level *tl_asym; 1957 bool has_asym = false; 1958 1959 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1960 if (alloc_state != sa_rootdomain) 1961 goto error; 1962 1963 tl_asym = asym_cpu_capacity_level(cpu_map); 1964 1965 /* Set up domains for CPUs specified by the cpu_map: */ 1966 for_each_cpu(i, cpu_map) { 1967 struct sched_domain_topology_level *tl; 1968 1969 sd = NULL; 1970 for_each_sd_topology(tl) { 1971 int dflags = 0; 1972 1973 if (tl == tl_asym) { 1974 dflags |= SD_ASYM_CPUCAPACITY; 1975 has_asym = true; 1976 } 1977 1978 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 1979 1980 if (tl == sched_domain_topology) 1981 *per_cpu_ptr(d.sd, i) = sd; 1982 if (tl->flags & SDTL_OVERLAP) 1983 sd->flags |= SD_OVERLAP; 1984 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1985 break; 1986 } 1987 } 1988 1989 /* Build the groups for the domains */ 1990 for_each_cpu(i, cpu_map) { 1991 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1992 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1993 if (sd->flags & SD_OVERLAP) { 1994 if (build_overlap_sched_groups(sd, i)) 1995 goto error; 1996 } else { 1997 if (build_sched_groups(sd, i)) 1998 goto error; 1999 } 2000 } 2001 } 2002 2003 /* Calculate CPU capacity for physical packages and nodes */ 2004 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2005 if (!cpumask_test_cpu(i, cpu_map)) 2006 continue; 2007 2008 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2009 claim_allocations(i, sd); 2010 init_sched_groups_capacity(i, sd); 2011 } 2012 } 2013 2014 /* Attach the domains */ 2015 rcu_read_lock(); 2016 for_each_cpu(i, cpu_map) { 2017 rq = cpu_rq(i); 2018 sd = *per_cpu_ptr(d.sd, i); 2019 2020 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2021 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2022 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2023 2024 cpu_attach_domain(sd, d.rd, i); 2025 } 2026 rcu_read_unlock(); 2027 2028 if (has_asym) 2029 static_branch_enable_cpuslocked(&sched_asym_cpucapacity); 2030 2031 if (rq && sched_debug_enabled) { 2032 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2033 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2034 } 2035 2036 ret = 0; 2037 error: 2038 __free_domain_allocs(&d, alloc_state, cpu_map); 2039 2040 return ret; 2041 } 2042 2043 /* Current sched domains: */ 2044 static cpumask_var_t *doms_cur; 2045 2046 /* Number of sched domains in 'doms_cur': */ 2047 static int ndoms_cur; 2048 2049 /* Attribues of custom domains in 'doms_cur' */ 2050 static struct sched_domain_attr *dattr_cur; 2051 2052 /* 2053 * Special case: If a kmalloc() of a doms_cur partition (array of 2054 * cpumask) fails, then fallback to a single sched domain, 2055 * as determined by the single cpumask fallback_doms. 2056 */ 2057 static cpumask_var_t fallback_doms; 2058 2059 /* 2060 * arch_update_cpu_topology lets virtualized architectures update the 2061 * CPU core maps. It is supposed to return 1 if the topology changed 2062 * or 0 if it stayed the same. 2063 */ 2064 int __weak arch_update_cpu_topology(void) 2065 { 2066 return 0; 2067 } 2068 2069 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2070 { 2071 int i; 2072 cpumask_var_t *doms; 2073 2074 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2075 if (!doms) 2076 return NULL; 2077 for (i = 0; i < ndoms; i++) { 2078 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2079 free_sched_domains(doms, i); 2080 return NULL; 2081 } 2082 } 2083 return doms; 2084 } 2085 2086 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2087 { 2088 unsigned int i; 2089 for (i = 0; i < ndoms; i++) 2090 free_cpumask_var(doms[i]); 2091 kfree(doms); 2092 } 2093 2094 /* 2095 * Set up scheduler domains and groups. For now this just excludes isolated 2096 * CPUs, but could be used to exclude other special cases in the future. 2097 */ 2098 int sched_init_domains(const struct cpumask *cpu_map) 2099 { 2100 int err; 2101 2102 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2103 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2104 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2105 2106 arch_update_cpu_topology(); 2107 ndoms_cur = 1; 2108 doms_cur = alloc_sched_domains(ndoms_cur); 2109 if (!doms_cur) 2110 doms_cur = &fallback_doms; 2111 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2112 err = build_sched_domains(doms_cur[0], NULL); 2113 register_sched_domain_sysctl(); 2114 2115 return err; 2116 } 2117 2118 /* 2119 * Detach sched domains from a group of CPUs specified in cpu_map 2120 * These CPUs will now be attached to the NULL domain 2121 */ 2122 static void detach_destroy_domains(const struct cpumask *cpu_map) 2123 { 2124 int i; 2125 2126 rcu_read_lock(); 2127 for_each_cpu(i, cpu_map) 2128 cpu_attach_domain(NULL, &def_root_domain, i); 2129 rcu_read_unlock(); 2130 } 2131 2132 /* handle null as "default" */ 2133 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2134 struct sched_domain_attr *new, int idx_new) 2135 { 2136 struct sched_domain_attr tmp; 2137 2138 /* Fast path: */ 2139 if (!new && !cur) 2140 return 1; 2141 2142 tmp = SD_ATTR_INIT; 2143 2144 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2145 new ? (new + idx_new) : &tmp, 2146 sizeof(struct sched_domain_attr)); 2147 } 2148 2149 /* 2150 * Partition sched domains as specified by the 'ndoms_new' 2151 * cpumasks in the array doms_new[] of cpumasks. This compares 2152 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2153 * It destroys each deleted domain and builds each new domain. 2154 * 2155 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2156 * The masks don't intersect (don't overlap.) We should setup one 2157 * sched domain for each mask. CPUs not in any of the cpumasks will 2158 * not be load balanced. If the same cpumask appears both in the 2159 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2160 * it as it is. 2161 * 2162 * The passed in 'doms_new' should be allocated using 2163 * alloc_sched_domains. This routine takes ownership of it and will 2164 * free_sched_domains it when done with it. If the caller failed the 2165 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2166 * and partition_sched_domains() will fallback to the single partition 2167 * 'fallback_doms', it also forces the domains to be rebuilt. 2168 * 2169 * If doms_new == NULL it will be replaced with cpu_online_mask. 2170 * ndoms_new == 0 is a special case for destroying existing domains, 2171 * and it will not create the default domain. 2172 * 2173 * Call with hotplug lock and sched_domains_mutex held 2174 */ 2175 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2176 struct sched_domain_attr *dattr_new) 2177 { 2178 bool __maybe_unused has_eas = false; 2179 int i, j, n; 2180 int new_topology; 2181 2182 lockdep_assert_held(&sched_domains_mutex); 2183 2184 /* Always unregister in case we don't destroy any domains: */ 2185 unregister_sched_domain_sysctl(); 2186 2187 /* Let the architecture update CPU core mappings: */ 2188 new_topology = arch_update_cpu_topology(); 2189 2190 if (!doms_new) { 2191 WARN_ON_ONCE(dattr_new); 2192 n = 0; 2193 doms_new = alloc_sched_domains(1); 2194 if (doms_new) { 2195 n = 1; 2196 cpumask_and(doms_new[0], cpu_active_mask, 2197 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2198 } 2199 } else { 2200 n = ndoms_new; 2201 } 2202 2203 /* Destroy deleted domains: */ 2204 for (i = 0; i < ndoms_cur; i++) { 2205 for (j = 0; j < n && !new_topology; j++) { 2206 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2207 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2208 struct root_domain *rd; 2209 2210 /* 2211 * This domain won't be destroyed and as such 2212 * its dl_bw->total_bw needs to be cleared. It 2213 * will be recomputed in function 2214 * update_tasks_root_domain(). 2215 */ 2216 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2217 dl_clear_root_domain(rd); 2218 goto match1; 2219 } 2220 } 2221 /* No match - a current sched domain not in new doms_new[] */ 2222 detach_destroy_domains(doms_cur[i]); 2223 match1: 2224 ; 2225 } 2226 2227 n = ndoms_cur; 2228 if (!doms_new) { 2229 n = 0; 2230 doms_new = &fallback_doms; 2231 cpumask_and(doms_new[0], cpu_active_mask, 2232 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2233 } 2234 2235 /* Build new domains: */ 2236 for (i = 0; i < ndoms_new; i++) { 2237 for (j = 0; j < n && !new_topology; j++) { 2238 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2239 dattrs_equal(dattr_new, i, dattr_cur, j)) 2240 goto match2; 2241 } 2242 /* No match - add a new doms_new */ 2243 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2244 match2: 2245 ; 2246 } 2247 2248 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2249 /* Build perf. domains: */ 2250 for (i = 0; i < ndoms_new; i++) { 2251 for (j = 0; j < n && !sched_energy_update; j++) { 2252 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2253 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2254 has_eas = true; 2255 goto match3; 2256 } 2257 } 2258 /* No match - add perf. domains for a new rd */ 2259 has_eas |= build_perf_domains(doms_new[i]); 2260 match3: 2261 ; 2262 } 2263 sched_energy_set(has_eas); 2264 #endif 2265 2266 /* Remember the new sched domains: */ 2267 if (doms_cur != &fallback_doms) 2268 free_sched_domains(doms_cur, ndoms_cur); 2269 2270 kfree(dattr_cur); 2271 doms_cur = doms_new; 2272 dattr_cur = dattr_new; 2273 ndoms_cur = ndoms_new; 2274 2275 register_sched_domain_sysctl(); 2276 } 2277 2278 /* 2279 * Call with hotplug lock held 2280 */ 2281 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2282 struct sched_domain_attr *dattr_new) 2283 { 2284 mutex_lock(&sched_domains_mutex); 2285 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2286 mutex_unlock(&sched_domains_mutex); 2287 } 2288