xref: /openbmc/linux/kernel/sched/topology.c (revision 33460f86)
1 /*
2  * Scheduler topology setup/handling methods
3  */
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 
7 #include "sched.h"
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 
11 /* Protected by sched_domains_mutex: */
12 cpumask_var_t sched_domains_tmpmask;
13 cpumask_var_t sched_domains_tmpmask2;
14 
15 #ifdef CONFIG_SCHED_DEBUG
16 
17 static __read_mostly int sched_debug_enabled;
18 
19 static int __init sched_debug_setup(char *str)
20 {
21 	sched_debug_enabled = 1;
22 
23 	return 0;
24 }
25 early_param("sched_debug", sched_debug_setup);
26 
27 static inline bool sched_debug(void)
28 {
29 	return sched_debug_enabled;
30 }
31 
32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 				  struct cpumask *groupmask)
34 {
35 	struct sched_group *group = sd->groups;
36 
37 	cpumask_clear(groupmask);
38 
39 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
40 
41 	if (!(sd->flags & SD_LOAD_BALANCE)) {
42 		printk("does not load-balance\n");
43 		if (sd->parent)
44 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 					" has parent");
46 		return -1;
47 	}
48 
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain "
54 				"CPU%d\n", cpu);
55 	}
56 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57 		printk(KERN_ERR "ERROR: domain->groups does not contain"
58 				" CPU%d\n", cpu);
59 	}
60 
61 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 	do {
63 		if (!group) {
64 			printk("\n");
65 			printk(KERN_ERR "ERROR: group is NULL\n");
66 			break;
67 		}
68 
69 		if (!cpumask_weight(sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: empty group\n");
72 			break;
73 		}
74 
75 		if (!(sd->flags & SD_OVERLAP) &&
76 		    cpumask_intersects(groupmask, sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: repeated CPUs\n");
79 			break;
80 		}
81 
82 		cpumask_or(groupmask, groupmask, sched_group_span(group));
83 
84 		printk(KERN_CONT " %d:{ span=%*pbl",
85 				group->sgc->id,
86 				cpumask_pr_args(sched_group_span(group)));
87 
88 		if ((sd->flags & SD_OVERLAP) &&
89 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90 			printk(KERN_CONT " mask=%*pbl",
91 				cpumask_pr_args(group_balance_mask(group)));
92 		}
93 
94 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
96 
97 		if (group == sd->groups && sd->child &&
98 		    !cpumask_equal(sched_domain_span(sd->child),
99 				   sched_group_span(group))) {
100 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101 		}
102 
103 		printk(KERN_CONT " }");
104 
105 		group = group->next;
106 
107 		if (group != sd->groups)
108 			printk(KERN_CONT ",");
109 
110 	} while (group != sd->groups);
111 	printk(KERN_CONT "\n");
112 
113 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115 
116 	if (sd->parent &&
117 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 		printk(KERN_ERR "ERROR: parent span is not a superset "
119 			"of domain->span\n");
120 	return 0;
121 }
122 
123 static void sched_domain_debug(struct sched_domain *sd, int cpu)
124 {
125 	int level = 0;
126 
127 	if (!sched_debug_enabled)
128 		return;
129 
130 	if (!sd) {
131 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 		return;
133 	}
134 
135 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
136 
137 	for (;;) {
138 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 			break;
140 		level++;
141 		sd = sd->parent;
142 		if (!sd)
143 			break;
144 	}
145 }
146 #else /* !CONFIG_SCHED_DEBUG */
147 
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
151 {
152 	return false;
153 }
154 #endif /* CONFIG_SCHED_DEBUG */
155 
156 static int sd_degenerate(struct sched_domain *sd)
157 {
158 	if (cpumask_weight(sched_domain_span(sd)) == 1)
159 		return 1;
160 
161 	/* Following flags need at least 2 groups */
162 	if (sd->flags & (SD_LOAD_BALANCE |
163 			 SD_BALANCE_NEWIDLE |
164 			 SD_BALANCE_FORK |
165 			 SD_BALANCE_EXEC |
166 			 SD_SHARE_CPUCAPACITY |
167 			 SD_ASYM_CPUCAPACITY |
168 			 SD_SHARE_PKG_RESOURCES |
169 			 SD_SHARE_POWERDOMAIN)) {
170 		if (sd->groups != sd->groups->next)
171 			return 0;
172 	}
173 
174 	/* Following flags don't use groups */
175 	if (sd->flags & (SD_WAKE_AFFINE))
176 		return 0;
177 
178 	return 1;
179 }
180 
181 static int
182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183 {
184 	unsigned long cflags = sd->flags, pflags = parent->flags;
185 
186 	if (sd_degenerate(parent))
187 		return 1;
188 
189 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 		return 0;
191 
192 	/* Flags needing groups don't count if only 1 group in parent */
193 	if (parent->groups == parent->groups->next) {
194 		pflags &= ~(SD_LOAD_BALANCE |
195 				SD_BALANCE_NEWIDLE |
196 				SD_BALANCE_FORK |
197 				SD_BALANCE_EXEC |
198 				SD_ASYM_CPUCAPACITY |
199 				SD_SHARE_CPUCAPACITY |
200 				SD_SHARE_PKG_RESOURCES |
201 				SD_PREFER_SIBLING |
202 				SD_SHARE_POWERDOMAIN);
203 		if (nr_node_ids == 1)
204 			pflags &= ~SD_SERIALIZE;
205 	}
206 	if (~cflags & pflags)
207 		return 0;
208 
209 	return 1;
210 }
211 
212 static void free_rootdomain(struct rcu_head *rcu)
213 {
214 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215 
216 	cpupri_cleanup(&rd->cpupri);
217 	cpudl_cleanup(&rd->cpudl);
218 	free_cpumask_var(rd->dlo_mask);
219 	free_cpumask_var(rd->rto_mask);
220 	free_cpumask_var(rd->online);
221 	free_cpumask_var(rd->span);
222 	kfree(rd);
223 }
224 
225 void rq_attach_root(struct rq *rq, struct root_domain *rd)
226 {
227 	struct root_domain *old_rd = NULL;
228 	unsigned long flags;
229 
230 	raw_spin_lock_irqsave(&rq->lock, flags);
231 
232 	if (rq->rd) {
233 		old_rd = rq->rd;
234 
235 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 			set_rq_offline(rq);
237 
238 		cpumask_clear_cpu(rq->cpu, old_rd->span);
239 
240 		/*
241 		 * If we dont want to free the old_rd yet then
242 		 * set old_rd to NULL to skip the freeing later
243 		 * in this function:
244 		 */
245 		if (!atomic_dec_and_test(&old_rd->refcount))
246 			old_rd = NULL;
247 	}
248 
249 	atomic_inc(&rd->refcount);
250 	rq->rd = rd;
251 
252 	cpumask_set_cpu(rq->cpu, rd->span);
253 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 		set_rq_online(rq);
255 
256 	raw_spin_unlock_irqrestore(&rq->lock, flags);
257 
258 	if (old_rd)
259 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
260 }
261 
262 static int init_rootdomain(struct root_domain *rd)
263 {
264 	memset(rd, 0, sizeof(*rd));
265 
266 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
267 		goto out;
268 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
269 		goto free_span;
270 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
271 		goto free_online;
272 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
273 		goto free_dlo_mask;
274 
275 	init_dl_bw(&rd->dl_bw);
276 	if (cpudl_init(&rd->cpudl) != 0)
277 		goto free_rto_mask;
278 
279 	if (cpupri_init(&rd->cpupri) != 0)
280 		goto free_cpudl;
281 	return 0;
282 
283 free_cpudl:
284 	cpudl_cleanup(&rd->cpudl);
285 free_rto_mask:
286 	free_cpumask_var(rd->rto_mask);
287 free_dlo_mask:
288 	free_cpumask_var(rd->dlo_mask);
289 free_online:
290 	free_cpumask_var(rd->online);
291 free_span:
292 	free_cpumask_var(rd->span);
293 out:
294 	return -ENOMEM;
295 }
296 
297 /*
298  * By default the system creates a single root-domain with all CPUs as
299  * members (mimicking the global state we have today).
300  */
301 struct root_domain def_root_domain;
302 
303 void init_defrootdomain(void)
304 {
305 	init_rootdomain(&def_root_domain);
306 
307 	atomic_set(&def_root_domain.refcount, 1);
308 }
309 
310 static struct root_domain *alloc_rootdomain(void)
311 {
312 	struct root_domain *rd;
313 
314 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
315 	if (!rd)
316 		return NULL;
317 
318 	if (init_rootdomain(rd) != 0) {
319 		kfree(rd);
320 		return NULL;
321 	}
322 
323 	return rd;
324 }
325 
326 static void free_sched_groups(struct sched_group *sg, int free_sgc)
327 {
328 	struct sched_group *tmp, *first;
329 
330 	if (!sg)
331 		return;
332 
333 	first = sg;
334 	do {
335 		tmp = sg->next;
336 
337 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
338 			kfree(sg->sgc);
339 
340 		kfree(sg);
341 		sg = tmp;
342 	} while (sg != first);
343 }
344 
345 static void destroy_sched_domain(struct sched_domain *sd)
346 {
347 	/*
348 	 * If its an overlapping domain it has private groups, iterate and
349 	 * nuke them all.
350 	 */
351 	if (sd->flags & SD_OVERLAP) {
352 		free_sched_groups(sd->groups, 1);
353 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
354 		kfree(sd->groups->sgc);
355 		kfree(sd->groups);
356 	}
357 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
358 		kfree(sd->shared);
359 	kfree(sd);
360 }
361 
362 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
363 {
364 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
365 
366 	while (sd) {
367 		struct sched_domain *parent = sd->parent;
368 		destroy_sched_domain(sd);
369 		sd = parent;
370 	}
371 }
372 
373 static void destroy_sched_domains(struct sched_domain *sd)
374 {
375 	if (sd)
376 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
377 }
378 
379 /*
380  * Keep a special pointer to the highest sched_domain that has
381  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
382  * allows us to avoid some pointer chasing select_idle_sibling().
383  *
384  * Also keep a unique ID per domain (we use the first CPU number in
385  * the cpumask of the domain), this allows us to quickly tell if
386  * two CPUs are in the same cache domain, see cpus_share_cache().
387  */
388 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
389 DEFINE_PER_CPU(int, sd_llc_size);
390 DEFINE_PER_CPU(int, sd_llc_id);
391 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
392 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
393 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
394 
395 static void update_top_cache_domain(int cpu)
396 {
397 	struct sched_domain_shared *sds = NULL;
398 	struct sched_domain *sd;
399 	int id = cpu;
400 	int size = 1;
401 
402 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
403 	if (sd) {
404 		id = cpumask_first(sched_domain_span(sd));
405 		size = cpumask_weight(sched_domain_span(sd));
406 		sds = sd->shared;
407 	}
408 
409 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
410 	per_cpu(sd_llc_size, cpu) = size;
411 	per_cpu(sd_llc_id, cpu) = id;
412 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
413 
414 	sd = lowest_flag_domain(cpu, SD_NUMA);
415 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
416 
417 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
418 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
419 }
420 
421 /*
422  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
423  * hold the hotplug lock.
424  */
425 static void
426 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
427 {
428 	struct rq *rq = cpu_rq(cpu);
429 	struct sched_domain *tmp;
430 
431 	/* Remove the sched domains which do not contribute to scheduling. */
432 	for (tmp = sd; tmp; ) {
433 		struct sched_domain *parent = tmp->parent;
434 		if (!parent)
435 			break;
436 
437 		if (sd_parent_degenerate(tmp, parent)) {
438 			tmp->parent = parent->parent;
439 			if (parent->parent)
440 				parent->parent->child = tmp;
441 			/*
442 			 * Transfer SD_PREFER_SIBLING down in case of a
443 			 * degenerate parent; the spans match for this
444 			 * so the property transfers.
445 			 */
446 			if (parent->flags & SD_PREFER_SIBLING)
447 				tmp->flags |= SD_PREFER_SIBLING;
448 			destroy_sched_domain(parent);
449 		} else
450 			tmp = tmp->parent;
451 	}
452 
453 	if (sd && sd_degenerate(sd)) {
454 		tmp = sd;
455 		sd = sd->parent;
456 		destroy_sched_domain(tmp);
457 		if (sd)
458 			sd->child = NULL;
459 	}
460 
461 	sched_domain_debug(sd, cpu);
462 
463 	rq_attach_root(rq, rd);
464 	tmp = rq->sd;
465 	rcu_assign_pointer(rq->sd, sd);
466 	destroy_sched_domains(tmp);
467 
468 	update_top_cache_domain(cpu);
469 }
470 
471 /* Setup the mask of CPUs configured for isolated domains */
472 static int __init isolated_cpu_setup(char *str)
473 {
474 	int ret;
475 
476 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
477 	ret = cpulist_parse(str, cpu_isolated_map);
478 	if (ret) {
479 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
480 		return 0;
481 	}
482 	return 1;
483 }
484 __setup("isolcpus=", isolated_cpu_setup);
485 
486 struct s_data {
487 	struct sched_domain ** __percpu sd;
488 	struct root_domain	*rd;
489 };
490 
491 enum s_alloc {
492 	sa_rootdomain,
493 	sa_sd,
494 	sa_sd_storage,
495 	sa_none,
496 };
497 
498 /*
499  * Return the canonical balance CPU for this group, this is the first CPU
500  * of this group that's also in the balance mask.
501  *
502  * The balance mask are all those CPUs that could actually end up at this
503  * group. See build_balance_mask().
504  *
505  * Also see should_we_balance().
506  */
507 int group_balance_cpu(struct sched_group *sg)
508 {
509 	return cpumask_first(group_balance_mask(sg));
510 }
511 
512 
513 /*
514  * NUMA topology (first read the regular topology blurb below)
515  *
516  * Given a node-distance table, for example:
517  *
518  *   node   0   1   2   3
519  *     0:  10  20  30  20
520  *     1:  20  10  20  30
521  *     2:  30  20  10  20
522  *     3:  20  30  20  10
523  *
524  * which represents a 4 node ring topology like:
525  *
526  *   0 ----- 1
527  *   |       |
528  *   |       |
529  *   |       |
530  *   3 ----- 2
531  *
532  * We want to construct domains and groups to represent this. The way we go
533  * about doing this is to build the domains on 'hops'. For each NUMA level we
534  * construct the mask of all nodes reachable in @level hops.
535  *
536  * For the above NUMA topology that gives 3 levels:
537  *
538  * NUMA-2	0-3		0-3		0-3		0-3
539  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
540  *
541  * NUMA-1	0-1,3		0-2		1-3		0,2-3
542  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
543  *
544  * NUMA-0	0		1		2		3
545  *
546  *
547  * As can be seen; things don't nicely line up as with the regular topology.
548  * When we iterate a domain in child domain chunks some nodes can be
549  * represented multiple times -- hence the "overlap" naming for this part of
550  * the topology.
551  *
552  * In order to minimize this overlap, we only build enough groups to cover the
553  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
554  *
555  * Because:
556  *
557  *  - the first group of each domain is its child domain; this
558  *    gets us the first 0-1,3
559  *  - the only uncovered node is 2, who's child domain is 1-3.
560  *
561  * However, because of the overlap, computing a unique CPU for each group is
562  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
563  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
564  * end up at those groups (they would end up in group: 0-1,3).
565  *
566  * To correct this we have to introduce the group balance mask. This mask
567  * will contain those CPUs in the group that can reach this group given the
568  * (child) domain tree.
569  *
570  * With this we can once again compute balance_cpu and sched_group_capacity
571  * relations.
572  *
573  * XXX include words on how balance_cpu is unique and therefore can be
574  * used for sched_group_capacity links.
575  *
576  *
577  * Another 'interesting' topology is:
578  *
579  *   node   0   1   2   3
580  *     0:  10  20  20  30
581  *     1:  20  10  20  20
582  *     2:  20  20  10  20
583  *     3:  30  20  20  10
584  *
585  * Which looks a little like:
586  *
587  *   0 ----- 1
588  *   |     / |
589  *   |   /   |
590  *   | /     |
591  *   2 ----- 3
592  *
593  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
594  * are not.
595  *
596  * This leads to a few particularly weird cases where the sched_domain's are
597  * not of the same number for each cpu. Consider:
598  *
599  * NUMA-2	0-3						0-3
600  *  groups:	{0-2},{1-3}					{1-3},{0-2}
601  *
602  * NUMA-1	0-2		0-3		0-3		1-3
603  *
604  * NUMA-0	0		1		2		3
605  *
606  */
607 
608 
609 /*
610  * Build the balance mask; it contains only those CPUs that can arrive at this
611  * group and should be considered to continue balancing.
612  *
613  * We do this during the group creation pass, therefore the group information
614  * isn't complete yet, however since each group represents a (child) domain we
615  * can fully construct this using the sched_domain bits (which are already
616  * complete).
617  */
618 static void
619 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
620 {
621 	const struct cpumask *sg_span = sched_group_span(sg);
622 	struct sd_data *sdd = sd->private;
623 	struct sched_domain *sibling;
624 	int i;
625 
626 	cpumask_clear(mask);
627 
628 	for_each_cpu(i, sg_span) {
629 		sibling = *per_cpu_ptr(sdd->sd, i);
630 
631 		/*
632 		 * Can happen in the asymmetric case, where these siblings are
633 		 * unused. The mask will not be empty because those CPUs that
634 		 * do have the top domain _should_ span the domain.
635 		 */
636 		if (!sibling->child)
637 			continue;
638 
639 		/* If we would not end up here, we can't continue from here */
640 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
641 			continue;
642 
643 		cpumask_set_cpu(i, mask);
644 	}
645 
646 	/* We must not have empty masks here */
647 	WARN_ON_ONCE(cpumask_empty(mask));
648 }
649 
650 /*
651  * XXX: This creates per-node group entries; since the load-balancer will
652  * immediately access remote memory to construct this group's load-balance
653  * statistics having the groups node local is of dubious benefit.
654  */
655 static struct sched_group *
656 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
657 {
658 	struct sched_group *sg;
659 	struct cpumask *sg_span;
660 
661 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
662 			GFP_KERNEL, cpu_to_node(cpu));
663 
664 	if (!sg)
665 		return NULL;
666 
667 	sg_span = sched_group_span(sg);
668 	if (sd->child)
669 		cpumask_copy(sg_span, sched_domain_span(sd->child));
670 	else
671 		cpumask_copy(sg_span, sched_domain_span(sd));
672 
673 	return sg;
674 }
675 
676 static void init_overlap_sched_group(struct sched_domain *sd,
677 				     struct sched_group *sg)
678 {
679 	struct cpumask *mask = sched_domains_tmpmask2;
680 	struct sd_data *sdd = sd->private;
681 	struct cpumask *sg_span;
682 	int cpu;
683 
684 	build_balance_mask(sd, sg, mask);
685 	cpu = cpumask_first_and(sched_group_span(sg), mask);
686 
687 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
688 	if (atomic_inc_return(&sg->sgc->ref) == 1)
689 		cpumask_copy(group_balance_mask(sg), mask);
690 	else
691 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
692 
693 	/*
694 	 * Initialize sgc->capacity such that even if we mess up the
695 	 * domains and no possible iteration will get us here, we won't
696 	 * die on a /0 trap.
697 	 */
698 	sg_span = sched_group_span(sg);
699 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
700 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
701 }
702 
703 static int
704 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
705 {
706 	struct sched_group *first = NULL, *last = NULL, *sg;
707 	const struct cpumask *span = sched_domain_span(sd);
708 	struct cpumask *covered = sched_domains_tmpmask;
709 	struct sd_data *sdd = sd->private;
710 	struct sched_domain *sibling;
711 	int i;
712 
713 	cpumask_clear(covered);
714 
715 	for_each_cpu_wrap(i, span, cpu) {
716 		struct cpumask *sg_span;
717 
718 		if (cpumask_test_cpu(i, covered))
719 			continue;
720 
721 		sibling = *per_cpu_ptr(sdd->sd, i);
722 
723 		/*
724 		 * Asymmetric node setups can result in situations where the
725 		 * domain tree is of unequal depth, make sure to skip domains
726 		 * that already cover the entire range.
727 		 *
728 		 * In that case build_sched_domains() will have terminated the
729 		 * iteration early and our sibling sd spans will be empty.
730 		 * Domains should always include the CPU they're built on, so
731 		 * check that.
732 		 */
733 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
734 			continue;
735 
736 		sg = build_group_from_child_sched_domain(sibling, cpu);
737 		if (!sg)
738 			goto fail;
739 
740 		sg_span = sched_group_span(sg);
741 		cpumask_or(covered, covered, sg_span);
742 
743 		init_overlap_sched_group(sd, sg);
744 
745 		if (!first)
746 			first = sg;
747 		if (last)
748 			last->next = sg;
749 		last = sg;
750 		last->next = first;
751 	}
752 	sd->groups = first;
753 
754 	return 0;
755 
756 fail:
757 	free_sched_groups(first, 0);
758 
759 	return -ENOMEM;
760 }
761 
762 
763 /*
764  * Package topology (also see the load-balance blurb in fair.c)
765  *
766  * The scheduler builds a tree structure to represent a number of important
767  * topology features. By default (default_topology[]) these include:
768  *
769  *  - Simultaneous multithreading (SMT)
770  *  - Multi-Core Cache (MC)
771  *  - Package (DIE)
772  *
773  * Where the last one more or less denotes everything up to a NUMA node.
774  *
775  * The tree consists of 3 primary data structures:
776  *
777  *	sched_domain -> sched_group -> sched_group_capacity
778  *	    ^ ^             ^ ^
779  *          `-'             `-'
780  *
781  * The sched_domains are per-cpu and have a two way link (parent & child) and
782  * denote the ever growing mask of CPUs belonging to that level of topology.
783  *
784  * Each sched_domain has a circular (double) linked list of sched_group's, each
785  * denoting the domains of the level below (or individual CPUs in case of the
786  * first domain level). The sched_group linked by a sched_domain includes the
787  * CPU of that sched_domain [*].
788  *
789  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
790  *
791  * CPU   0   1   2   3   4   5   6   7
792  *
793  * DIE  [                             ]
794  * MC   [             ] [             ]
795  * SMT  [     ] [     ] [     ] [     ]
796  *
797  *  - or -
798  *
799  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
800  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
801  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
802  *
803  * CPU   0   1   2   3   4   5   6   7
804  *
805  * One way to think about it is: sched_domain moves you up and down among these
806  * topology levels, while sched_group moves you sideways through it, at child
807  * domain granularity.
808  *
809  * sched_group_capacity ensures each unique sched_group has shared storage.
810  *
811  * There are two related construction problems, both require a CPU that
812  * uniquely identify each group (for a given domain):
813  *
814  *  - The first is the balance_cpu (see should_we_balance() and the
815  *    load-balance blub in fair.c); for each group we only want 1 CPU to
816  *    continue balancing at a higher domain.
817  *
818  *  - The second is the sched_group_capacity; we want all identical groups
819  *    to share a single sched_group_capacity.
820  *
821  * Since these topologies are exclusive by construction. That is, its
822  * impossible for an SMT thread to belong to multiple cores, and cores to
823  * be part of multiple caches. There is a very clear and unique location
824  * for each CPU in the hierarchy.
825  *
826  * Therefore computing a unique CPU for each group is trivial (the iteration
827  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
828  * group), we can simply pick the first CPU in each group.
829  *
830  *
831  * [*] in other words, the first group of each domain is its child domain.
832  */
833 
834 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
835 {
836 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
837 	struct sched_domain *child = sd->child;
838 	struct sched_group *sg;
839 
840 	if (child)
841 		cpu = cpumask_first(sched_domain_span(child));
842 
843 	sg = *per_cpu_ptr(sdd->sg, cpu);
844 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
845 
846 	/* For claim_allocations: */
847 	atomic_inc(&sg->ref);
848 	atomic_inc(&sg->sgc->ref);
849 
850 	if (child) {
851 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
852 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
853 	} else {
854 		cpumask_set_cpu(cpu, sched_group_span(sg));
855 		cpumask_set_cpu(cpu, group_balance_mask(sg));
856 	}
857 
858 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
859 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
860 
861 	return sg;
862 }
863 
864 /*
865  * build_sched_groups will build a circular linked list of the groups
866  * covered by the given span, and will set each group's ->cpumask correctly,
867  * and ->cpu_capacity to 0.
868  *
869  * Assumes the sched_domain tree is fully constructed
870  */
871 static int
872 build_sched_groups(struct sched_domain *sd, int cpu)
873 {
874 	struct sched_group *first = NULL, *last = NULL;
875 	struct sd_data *sdd = sd->private;
876 	const struct cpumask *span = sched_domain_span(sd);
877 	struct cpumask *covered;
878 	int i;
879 
880 	lockdep_assert_held(&sched_domains_mutex);
881 	covered = sched_domains_tmpmask;
882 
883 	cpumask_clear(covered);
884 
885 	for_each_cpu_wrap(i, span, cpu) {
886 		struct sched_group *sg;
887 
888 		if (cpumask_test_cpu(i, covered))
889 			continue;
890 
891 		sg = get_group(i, sdd);
892 
893 		cpumask_or(covered, covered, sched_group_span(sg));
894 
895 		if (!first)
896 			first = sg;
897 		if (last)
898 			last->next = sg;
899 		last = sg;
900 	}
901 	last->next = first;
902 	sd->groups = first;
903 
904 	return 0;
905 }
906 
907 /*
908  * Initialize sched groups cpu_capacity.
909  *
910  * cpu_capacity indicates the capacity of sched group, which is used while
911  * distributing the load between different sched groups in a sched domain.
912  * Typically cpu_capacity for all the groups in a sched domain will be same
913  * unless there are asymmetries in the topology. If there are asymmetries,
914  * group having more cpu_capacity will pickup more load compared to the
915  * group having less cpu_capacity.
916  */
917 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
918 {
919 	struct sched_group *sg = sd->groups;
920 
921 	WARN_ON(!sg);
922 
923 	do {
924 		int cpu, max_cpu = -1;
925 
926 		sg->group_weight = cpumask_weight(sched_group_span(sg));
927 
928 		if (!(sd->flags & SD_ASYM_PACKING))
929 			goto next;
930 
931 		for_each_cpu(cpu, sched_group_span(sg)) {
932 			if (max_cpu < 0)
933 				max_cpu = cpu;
934 			else if (sched_asym_prefer(cpu, max_cpu))
935 				max_cpu = cpu;
936 		}
937 		sg->asym_prefer_cpu = max_cpu;
938 
939 next:
940 		sg = sg->next;
941 	} while (sg != sd->groups);
942 
943 	if (cpu != group_balance_cpu(sg))
944 		return;
945 
946 	update_group_capacity(sd, cpu);
947 }
948 
949 /*
950  * Initializers for schedule domains
951  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
952  */
953 
954 static int default_relax_domain_level = -1;
955 int sched_domain_level_max;
956 
957 static int __init setup_relax_domain_level(char *str)
958 {
959 	if (kstrtoint(str, 0, &default_relax_domain_level))
960 		pr_warn("Unable to set relax_domain_level\n");
961 
962 	return 1;
963 }
964 __setup("relax_domain_level=", setup_relax_domain_level);
965 
966 static void set_domain_attribute(struct sched_domain *sd,
967 				 struct sched_domain_attr *attr)
968 {
969 	int request;
970 
971 	if (!attr || attr->relax_domain_level < 0) {
972 		if (default_relax_domain_level < 0)
973 			return;
974 		else
975 			request = default_relax_domain_level;
976 	} else
977 		request = attr->relax_domain_level;
978 	if (request < sd->level) {
979 		/* Turn off idle balance on this domain: */
980 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981 	} else {
982 		/* Turn on idle balance on this domain: */
983 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
984 	}
985 }
986 
987 static void __sdt_free(const struct cpumask *cpu_map);
988 static int __sdt_alloc(const struct cpumask *cpu_map);
989 
990 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
991 				 const struct cpumask *cpu_map)
992 {
993 	switch (what) {
994 	case sa_rootdomain:
995 		if (!atomic_read(&d->rd->refcount))
996 			free_rootdomain(&d->rd->rcu);
997 		/* Fall through */
998 	case sa_sd:
999 		free_percpu(d->sd);
1000 		/* Fall through */
1001 	case sa_sd_storage:
1002 		__sdt_free(cpu_map);
1003 		/* Fall through */
1004 	case sa_none:
1005 		break;
1006 	}
1007 }
1008 
1009 static enum s_alloc
1010 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1011 {
1012 	memset(d, 0, sizeof(*d));
1013 
1014 	if (__sdt_alloc(cpu_map))
1015 		return sa_sd_storage;
1016 	d->sd = alloc_percpu(struct sched_domain *);
1017 	if (!d->sd)
1018 		return sa_sd_storage;
1019 	d->rd = alloc_rootdomain();
1020 	if (!d->rd)
1021 		return sa_sd;
1022 	return sa_rootdomain;
1023 }
1024 
1025 /*
1026  * NULL the sd_data elements we've used to build the sched_domain and
1027  * sched_group structure so that the subsequent __free_domain_allocs()
1028  * will not free the data we're using.
1029  */
1030 static void claim_allocations(int cpu, struct sched_domain *sd)
1031 {
1032 	struct sd_data *sdd = sd->private;
1033 
1034 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1035 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1036 
1037 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1038 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1039 
1040 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1041 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1042 
1043 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1044 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1045 }
1046 
1047 #ifdef CONFIG_NUMA
1048 static int sched_domains_numa_levels;
1049 enum numa_topology_type sched_numa_topology_type;
1050 static int *sched_domains_numa_distance;
1051 int sched_max_numa_distance;
1052 static struct cpumask ***sched_domains_numa_masks;
1053 static int sched_domains_curr_level;
1054 #endif
1055 
1056 /*
1057  * SD_flags allowed in topology descriptions.
1058  *
1059  * These flags are purely descriptive of the topology and do not prescribe
1060  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1061  * function:
1062  *
1063  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1064  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1065  *   SD_NUMA                - describes NUMA topologies
1066  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1067  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1068  *
1069  * Odd one out, which beside describing the topology has a quirk also
1070  * prescribes the desired behaviour that goes along with it:
1071  *
1072  *   SD_ASYM_PACKING        - describes SMT quirks
1073  */
1074 #define TOPOLOGY_SD_FLAGS		\
1075 	(SD_SHARE_CPUCAPACITY |		\
1076 	 SD_SHARE_PKG_RESOURCES |	\
1077 	 SD_NUMA |			\
1078 	 SD_ASYM_PACKING |		\
1079 	 SD_ASYM_CPUCAPACITY |		\
1080 	 SD_SHARE_POWERDOMAIN)
1081 
1082 static struct sched_domain *
1083 sd_init(struct sched_domain_topology_level *tl,
1084 	const struct cpumask *cpu_map,
1085 	struct sched_domain *child, int cpu)
1086 {
1087 	struct sd_data *sdd = &tl->data;
1088 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1089 	int sd_id, sd_weight, sd_flags = 0;
1090 
1091 #ifdef CONFIG_NUMA
1092 	/*
1093 	 * Ugly hack to pass state to sd_numa_mask()...
1094 	 */
1095 	sched_domains_curr_level = tl->numa_level;
1096 #endif
1097 
1098 	sd_weight = cpumask_weight(tl->mask(cpu));
1099 
1100 	if (tl->sd_flags)
1101 		sd_flags = (*tl->sd_flags)();
1102 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1103 			"wrong sd_flags in topology description\n"))
1104 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1105 
1106 	*sd = (struct sched_domain){
1107 		.min_interval		= sd_weight,
1108 		.max_interval		= 2*sd_weight,
1109 		.busy_factor		= 32,
1110 		.imbalance_pct		= 125,
1111 
1112 		.cache_nice_tries	= 0,
1113 		.busy_idx		= 0,
1114 		.idle_idx		= 0,
1115 		.newidle_idx		= 0,
1116 		.wake_idx		= 0,
1117 		.forkexec_idx		= 0,
1118 
1119 		.flags			= 1*SD_LOAD_BALANCE
1120 					| 1*SD_BALANCE_NEWIDLE
1121 					| 1*SD_BALANCE_EXEC
1122 					| 1*SD_BALANCE_FORK
1123 					| 0*SD_BALANCE_WAKE
1124 					| 1*SD_WAKE_AFFINE
1125 					| 0*SD_SHARE_CPUCAPACITY
1126 					| 0*SD_SHARE_PKG_RESOURCES
1127 					| 0*SD_SERIALIZE
1128 					| 0*SD_PREFER_SIBLING
1129 					| 0*SD_NUMA
1130 					| sd_flags
1131 					,
1132 
1133 		.last_balance		= jiffies,
1134 		.balance_interval	= sd_weight,
1135 		.smt_gain		= 0,
1136 		.max_newidle_lb_cost	= 0,
1137 		.next_decay_max_lb_cost	= jiffies,
1138 		.child			= child,
1139 #ifdef CONFIG_SCHED_DEBUG
1140 		.name			= tl->name,
1141 #endif
1142 	};
1143 
1144 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1145 	sd_id = cpumask_first(sched_domain_span(sd));
1146 
1147 	/*
1148 	 * Convert topological properties into behaviour.
1149 	 */
1150 
1151 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1152 		struct sched_domain *t = sd;
1153 
1154 		for_each_lower_domain(t)
1155 			t->flags |= SD_BALANCE_WAKE;
1156 	}
1157 
1158 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1159 		sd->flags |= SD_PREFER_SIBLING;
1160 		sd->imbalance_pct = 110;
1161 		sd->smt_gain = 1178; /* ~15% */
1162 
1163 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1164 		sd->imbalance_pct = 117;
1165 		sd->cache_nice_tries = 1;
1166 		sd->busy_idx = 2;
1167 
1168 #ifdef CONFIG_NUMA
1169 	} else if (sd->flags & SD_NUMA) {
1170 		sd->cache_nice_tries = 2;
1171 		sd->busy_idx = 3;
1172 		sd->idle_idx = 2;
1173 
1174 		sd->flags |= SD_SERIALIZE;
1175 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1176 			sd->flags &= ~(SD_BALANCE_EXEC |
1177 				       SD_BALANCE_FORK |
1178 				       SD_WAKE_AFFINE);
1179 		}
1180 
1181 #endif
1182 	} else {
1183 		sd->flags |= SD_PREFER_SIBLING;
1184 		sd->cache_nice_tries = 1;
1185 		sd->busy_idx = 2;
1186 		sd->idle_idx = 1;
1187 	}
1188 
1189 	/*
1190 	 * For all levels sharing cache; connect a sched_domain_shared
1191 	 * instance.
1192 	 */
1193 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1194 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1195 		atomic_inc(&sd->shared->ref);
1196 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1197 	}
1198 
1199 	sd->private = sdd;
1200 
1201 	return sd;
1202 }
1203 
1204 /*
1205  * Topology list, bottom-up.
1206  */
1207 static struct sched_domain_topology_level default_topology[] = {
1208 #ifdef CONFIG_SCHED_SMT
1209 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1210 #endif
1211 #ifdef CONFIG_SCHED_MC
1212 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1213 #endif
1214 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1215 	{ NULL, },
1216 };
1217 
1218 static struct sched_domain_topology_level *sched_domain_topology =
1219 	default_topology;
1220 
1221 #define for_each_sd_topology(tl)			\
1222 	for (tl = sched_domain_topology; tl->mask; tl++)
1223 
1224 void set_sched_topology(struct sched_domain_topology_level *tl)
1225 {
1226 	if (WARN_ON_ONCE(sched_smp_initialized))
1227 		return;
1228 
1229 	sched_domain_topology = tl;
1230 }
1231 
1232 #ifdef CONFIG_NUMA
1233 
1234 static const struct cpumask *sd_numa_mask(int cpu)
1235 {
1236 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1237 }
1238 
1239 static void sched_numa_warn(const char *str)
1240 {
1241 	static int done = false;
1242 	int i,j;
1243 
1244 	if (done)
1245 		return;
1246 
1247 	done = true;
1248 
1249 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1250 
1251 	for (i = 0; i < nr_node_ids; i++) {
1252 		printk(KERN_WARNING "  ");
1253 		for (j = 0; j < nr_node_ids; j++)
1254 			printk(KERN_CONT "%02d ", node_distance(i,j));
1255 		printk(KERN_CONT "\n");
1256 	}
1257 	printk(KERN_WARNING "\n");
1258 }
1259 
1260 bool find_numa_distance(int distance)
1261 {
1262 	int i;
1263 
1264 	if (distance == node_distance(0, 0))
1265 		return true;
1266 
1267 	for (i = 0; i < sched_domains_numa_levels; i++) {
1268 		if (sched_domains_numa_distance[i] == distance)
1269 			return true;
1270 	}
1271 
1272 	return false;
1273 }
1274 
1275 /*
1276  * A system can have three types of NUMA topology:
1277  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1278  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1279  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1280  *
1281  * The difference between a glueless mesh topology and a backplane
1282  * topology lies in whether communication between not directly
1283  * connected nodes goes through intermediary nodes (where programs
1284  * could run), or through backplane controllers. This affects
1285  * placement of programs.
1286  *
1287  * The type of topology can be discerned with the following tests:
1288  * - If the maximum distance between any nodes is 1 hop, the system
1289  *   is directly connected.
1290  * - If for two nodes A and B, located N > 1 hops away from each other,
1291  *   there is an intermediary node C, which is < N hops away from both
1292  *   nodes A and B, the system is a glueless mesh.
1293  */
1294 static void init_numa_topology_type(void)
1295 {
1296 	int a, b, c, n;
1297 
1298 	n = sched_max_numa_distance;
1299 
1300 	if (sched_domains_numa_levels <= 1) {
1301 		sched_numa_topology_type = NUMA_DIRECT;
1302 		return;
1303 	}
1304 
1305 	for_each_online_node(a) {
1306 		for_each_online_node(b) {
1307 			/* Find two nodes furthest removed from each other. */
1308 			if (node_distance(a, b) < n)
1309 				continue;
1310 
1311 			/* Is there an intermediary node between a and b? */
1312 			for_each_online_node(c) {
1313 				if (node_distance(a, c) < n &&
1314 				    node_distance(b, c) < n) {
1315 					sched_numa_topology_type =
1316 							NUMA_GLUELESS_MESH;
1317 					return;
1318 				}
1319 			}
1320 
1321 			sched_numa_topology_type = NUMA_BACKPLANE;
1322 			return;
1323 		}
1324 	}
1325 }
1326 
1327 void sched_init_numa(void)
1328 {
1329 	int next_distance, curr_distance = node_distance(0, 0);
1330 	struct sched_domain_topology_level *tl;
1331 	int level = 0;
1332 	int i, j, k;
1333 
1334 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1335 	if (!sched_domains_numa_distance)
1336 		return;
1337 
1338 	/*
1339 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1340 	 * unique distances in the node_distance() table.
1341 	 *
1342 	 * Assumes node_distance(0,j) includes all distances in
1343 	 * node_distance(i,j) in order to avoid cubic time.
1344 	 */
1345 	next_distance = curr_distance;
1346 	for (i = 0; i < nr_node_ids; i++) {
1347 		for (j = 0; j < nr_node_ids; j++) {
1348 			for (k = 0; k < nr_node_ids; k++) {
1349 				int distance = node_distance(i, k);
1350 
1351 				if (distance > curr_distance &&
1352 				    (distance < next_distance ||
1353 				     next_distance == curr_distance))
1354 					next_distance = distance;
1355 
1356 				/*
1357 				 * While not a strong assumption it would be nice to know
1358 				 * about cases where if node A is connected to B, B is not
1359 				 * equally connected to A.
1360 				 */
1361 				if (sched_debug() && node_distance(k, i) != distance)
1362 					sched_numa_warn("Node-distance not symmetric");
1363 
1364 				if (sched_debug() && i && !find_numa_distance(distance))
1365 					sched_numa_warn("Node-0 not representative");
1366 			}
1367 			if (next_distance != curr_distance) {
1368 				sched_domains_numa_distance[level++] = next_distance;
1369 				sched_domains_numa_levels = level;
1370 				curr_distance = next_distance;
1371 			} else break;
1372 		}
1373 
1374 		/*
1375 		 * In case of sched_debug() we verify the above assumption.
1376 		 */
1377 		if (!sched_debug())
1378 			break;
1379 	}
1380 
1381 	if (!level)
1382 		return;
1383 
1384 	/*
1385 	 * 'level' contains the number of unique distances, excluding the
1386 	 * identity distance node_distance(i,i).
1387 	 *
1388 	 * The sched_domains_numa_distance[] array includes the actual distance
1389 	 * numbers.
1390 	 */
1391 
1392 	/*
1393 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1394 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1395 	 * the array will contain less then 'level' members. This could be
1396 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1397 	 * in other functions.
1398 	 *
1399 	 * We reset it to 'level' at the end of this function.
1400 	 */
1401 	sched_domains_numa_levels = 0;
1402 
1403 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1404 	if (!sched_domains_numa_masks)
1405 		return;
1406 
1407 	/*
1408 	 * Now for each level, construct a mask per node which contains all
1409 	 * CPUs of nodes that are that many hops away from us.
1410 	 */
1411 	for (i = 0; i < level; i++) {
1412 		sched_domains_numa_masks[i] =
1413 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1414 		if (!sched_domains_numa_masks[i])
1415 			return;
1416 
1417 		for (j = 0; j < nr_node_ids; j++) {
1418 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1419 			if (!mask)
1420 				return;
1421 
1422 			sched_domains_numa_masks[i][j] = mask;
1423 
1424 			for_each_node(k) {
1425 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1426 					continue;
1427 
1428 				cpumask_or(mask, mask, cpumask_of_node(k));
1429 			}
1430 		}
1431 	}
1432 
1433 	/* Compute default topology size */
1434 	for (i = 0; sched_domain_topology[i].mask; i++);
1435 
1436 	tl = kzalloc((i + level + 1) *
1437 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1438 	if (!tl)
1439 		return;
1440 
1441 	/*
1442 	 * Copy the default topology bits..
1443 	 */
1444 	for (i = 0; sched_domain_topology[i].mask; i++)
1445 		tl[i] = sched_domain_topology[i];
1446 
1447 	/*
1448 	 * .. and append 'j' levels of NUMA goodness.
1449 	 */
1450 	for (j = 0; j < level; i++, j++) {
1451 		tl[i] = (struct sched_domain_topology_level){
1452 			.mask = sd_numa_mask,
1453 			.sd_flags = cpu_numa_flags,
1454 			.flags = SDTL_OVERLAP,
1455 			.numa_level = j,
1456 			SD_INIT_NAME(NUMA)
1457 		};
1458 	}
1459 
1460 	sched_domain_topology = tl;
1461 
1462 	sched_domains_numa_levels = level;
1463 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1464 
1465 	init_numa_topology_type();
1466 }
1467 
1468 void sched_domains_numa_masks_set(unsigned int cpu)
1469 {
1470 	int node = cpu_to_node(cpu);
1471 	int i, j;
1472 
1473 	for (i = 0; i < sched_domains_numa_levels; i++) {
1474 		for (j = 0; j < nr_node_ids; j++) {
1475 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1476 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1477 		}
1478 	}
1479 }
1480 
1481 void sched_domains_numa_masks_clear(unsigned int cpu)
1482 {
1483 	int i, j;
1484 
1485 	for (i = 0; i < sched_domains_numa_levels; i++) {
1486 		for (j = 0; j < nr_node_ids; j++)
1487 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1488 	}
1489 }
1490 
1491 #endif /* CONFIG_NUMA */
1492 
1493 static int __sdt_alloc(const struct cpumask *cpu_map)
1494 {
1495 	struct sched_domain_topology_level *tl;
1496 	int j;
1497 
1498 	for_each_sd_topology(tl) {
1499 		struct sd_data *sdd = &tl->data;
1500 
1501 		sdd->sd = alloc_percpu(struct sched_domain *);
1502 		if (!sdd->sd)
1503 			return -ENOMEM;
1504 
1505 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1506 		if (!sdd->sds)
1507 			return -ENOMEM;
1508 
1509 		sdd->sg = alloc_percpu(struct sched_group *);
1510 		if (!sdd->sg)
1511 			return -ENOMEM;
1512 
1513 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1514 		if (!sdd->sgc)
1515 			return -ENOMEM;
1516 
1517 		for_each_cpu(j, cpu_map) {
1518 			struct sched_domain *sd;
1519 			struct sched_domain_shared *sds;
1520 			struct sched_group *sg;
1521 			struct sched_group_capacity *sgc;
1522 
1523 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1524 					GFP_KERNEL, cpu_to_node(j));
1525 			if (!sd)
1526 				return -ENOMEM;
1527 
1528 			*per_cpu_ptr(sdd->sd, j) = sd;
1529 
1530 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1531 					GFP_KERNEL, cpu_to_node(j));
1532 			if (!sds)
1533 				return -ENOMEM;
1534 
1535 			*per_cpu_ptr(sdd->sds, j) = sds;
1536 
1537 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1538 					GFP_KERNEL, cpu_to_node(j));
1539 			if (!sg)
1540 				return -ENOMEM;
1541 
1542 			sg->next = sg;
1543 
1544 			*per_cpu_ptr(sdd->sg, j) = sg;
1545 
1546 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1547 					GFP_KERNEL, cpu_to_node(j));
1548 			if (!sgc)
1549 				return -ENOMEM;
1550 
1551 #ifdef CONFIG_SCHED_DEBUG
1552 			sgc->id = j;
1553 #endif
1554 
1555 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1556 		}
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 static void __sdt_free(const struct cpumask *cpu_map)
1563 {
1564 	struct sched_domain_topology_level *tl;
1565 	int j;
1566 
1567 	for_each_sd_topology(tl) {
1568 		struct sd_data *sdd = &tl->data;
1569 
1570 		for_each_cpu(j, cpu_map) {
1571 			struct sched_domain *sd;
1572 
1573 			if (sdd->sd) {
1574 				sd = *per_cpu_ptr(sdd->sd, j);
1575 				if (sd && (sd->flags & SD_OVERLAP))
1576 					free_sched_groups(sd->groups, 0);
1577 				kfree(*per_cpu_ptr(sdd->sd, j));
1578 			}
1579 
1580 			if (sdd->sds)
1581 				kfree(*per_cpu_ptr(sdd->sds, j));
1582 			if (sdd->sg)
1583 				kfree(*per_cpu_ptr(sdd->sg, j));
1584 			if (sdd->sgc)
1585 				kfree(*per_cpu_ptr(sdd->sgc, j));
1586 		}
1587 		free_percpu(sdd->sd);
1588 		sdd->sd = NULL;
1589 		free_percpu(sdd->sds);
1590 		sdd->sds = NULL;
1591 		free_percpu(sdd->sg);
1592 		sdd->sg = NULL;
1593 		free_percpu(sdd->sgc);
1594 		sdd->sgc = NULL;
1595 	}
1596 }
1597 
1598 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1599 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1600 		struct sched_domain *child, int cpu)
1601 {
1602 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1603 
1604 	if (child) {
1605 		sd->level = child->level + 1;
1606 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1607 		child->parent = sd;
1608 
1609 		if (!cpumask_subset(sched_domain_span(child),
1610 				    sched_domain_span(sd))) {
1611 			pr_err("BUG: arch topology borken\n");
1612 #ifdef CONFIG_SCHED_DEBUG
1613 			pr_err("     the %s domain not a subset of the %s domain\n",
1614 					child->name, sd->name);
1615 #endif
1616 			/* Fixup, ensure @sd has at least @child cpus. */
1617 			cpumask_or(sched_domain_span(sd),
1618 				   sched_domain_span(sd),
1619 				   sched_domain_span(child));
1620 		}
1621 
1622 	}
1623 	set_domain_attribute(sd, attr);
1624 
1625 	return sd;
1626 }
1627 
1628 /*
1629  * Build sched domains for a given set of CPUs and attach the sched domains
1630  * to the individual CPUs
1631  */
1632 static int
1633 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1634 {
1635 	enum s_alloc alloc_state;
1636 	struct sched_domain *sd;
1637 	struct s_data d;
1638 	struct rq *rq = NULL;
1639 	int i, ret = -ENOMEM;
1640 
1641 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1642 	if (alloc_state != sa_rootdomain)
1643 		goto error;
1644 
1645 	/* Set up domains for CPUs specified by the cpu_map: */
1646 	for_each_cpu(i, cpu_map) {
1647 		struct sched_domain_topology_level *tl;
1648 
1649 		sd = NULL;
1650 		for_each_sd_topology(tl) {
1651 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1652 			if (tl == sched_domain_topology)
1653 				*per_cpu_ptr(d.sd, i) = sd;
1654 			if (tl->flags & SDTL_OVERLAP)
1655 				sd->flags |= SD_OVERLAP;
1656 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1657 				break;
1658 		}
1659 	}
1660 
1661 	/* Build the groups for the domains */
1662 	for_each_cpu(i, cpu_map) {
1663 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1664 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1665 			if (sd->flags & SD_OVERLAP) {
1666 				if (build_overlap_sched_groups(sd, i))
1667 					goto error;
1668 			} else {
1669 				if (build_sched_groups(sd, i))
1670 					goto error;
1671 			}
1672 		}
1673 	}
1674 
1675 	/* Calculate CPU capacity for physical packages and nodes */
1676 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1677 		if (!cpumask_test_cpu(i, cpu_map))
1678 			continue;
1679 
1680 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1681 			claim_allocations(i, sd);
1682 			init_sched_groups_capacity(i, sd);
1683 		}
1684 	}
1685 
1686 	/* Attach the domains */
1687 	rcu_read_lock();
1688 	for_each_cpu(i, cpu_map) {
1689 		rq = cpu_rq(i);
1690 		sd = *per_cpu_ptr(d.sd, i);
1691 
1692 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1693 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1694 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1695 
1696 		cpu_attach_domain(sd, d.rd, i);
1697 	}
1698 	rcu_read_unlock();
1699 
1700 	if (rq && sched_debug_enabled) {
1701 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1702 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1703 	}
1704 
1705 	ret = 0;
1706 error:
1707 	__free_domain_allocs(&d, alloc_state, cpu_map);
1708 	return ret;
1709 }
1710 
1711 /* Current sched domains: */
1712 static cpumask_var_t			*doms_cur;
1713 
1714 /* Number of sched domains in 'doms_cur': */
1715 static int				ndoms_cur;
1716 
1717 /* Attribues of custom domains in 'doms_cur' */
1718 static struct sched_domain_attr		*dattr_cur;
1719 
1720 /*
1721  * Special case: If a kmalloc() of a doms_cur partition (array of
1722  * cpumask) fails, then fallback to a single sched domain,
1723  * as determined by the single cpumask fallback_doms.
1724  */
1725 static cpumask_var_t			fallback_doms;
1726 
1727 /*
1728  * arch_update_cpu_topology lets virtualized architectures update the
1729  * CPU core maps. It is supposed to return 1 if the topology changed
1730  * or 0 if it stayed the same.
1731  */
1732 int __weak arch_update_cpu_topology(void)
1733 {
1734 	return 0;
1735 }
1736 
1737 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1738 {
1739 	int i;
1740 	cpumask_var_t *doms;
1741 
1742 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1743 	if (!doms)
1744 		return NULL;
1745 	for (i = 0; i < ndoms; i++) {
1746 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1747 			free_sched_domains(doms, i);
1748 			return NULL;
1749 		}
1750 	}
1751 	return doms;
1752 }
1753 
1754 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1755 {
1756 	unsigned int i;
1757 	for (i = 0; i < ndoms; i++)
1758 		free_cpumask_var(doms[i]);
1759 	kfree(doms);
1760 }
1761 
1762 /*
1763  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1764  * For now this just excludes isolated CPUs, but could be used to
1765  * exclude other special cases in the future.
1766  */
1767 int sched_init_domains(const struct cpumask *cpu_map)
1768 {
1769 	int err;
1770 
1771 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1772 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1773 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1774 
1775 	arch_update_cpu_topology();
1776 	ndoms_cur = 1;
1777 	doms_cur = alloc_sched_domains(ndoms_cur);
1778 	if (!doms_cur)
1779 		doms_cur = &fallback_doms;
1780 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1781 	err = build_sched_domains(doms_cur[0], NULL);
1782 	register_sched_domain_sysctl();
1783 
1784 	return err;
1785 }
1786 
1787 /*
1788  * Detach sched domains from a group of CPUs specified in cpu_map
1789  * These CPUs will now be attached to the NULL domain
1790  */
1791 static void detach_destroy_domains(const struct cpumask *cpu_map)
1792 {
1793 	int i;
1794 
1795 	rcu_read_lock();
1796 	for_each_cpu(i, cpu_map)
1797 		cpu_attach_domain(NULL, &def_root_domain, i);
1798 	rcu_read_unlock();
1799 }
1800 
1801 /* handle null as "default" */
1802 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1803 			struct sched_domain_attr *new, int idx_new)
1804 {
1805 	struct sched_domain_attr tmp;
1806 
1807 	/* Fast path: */
1808 	if (!new && !cur)
1809 		return 1;
1810 
1811 	tmp = SD_ATTR_INIT;
1812 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1813 			new ? (new + idx_new) : &tmp,
1814 			sizeof(struct sched_domain_attr));
1815 }
1816 
1817 /*
1818  * Partition sched domains as specified by the 'ndoms_new'
1819  * cpumasks in the array doms_new[] of cpumasks. This compares
1820  * doms_new[] to the current sched domain partitioning, doms_cur[].
1821  * It destroys each deleted domain and builds each new domain.
1822  *
1823  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1824  * The masks don't intersect (don't overlap.) We should setup one
1825  * sched domain for each mask. CPUs not in any of the cpumasks will
1826  * not be load balanced. If the same cpumask appears both in the
1827  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1828  * it as it is.
1829  *
1830  * The passed in 'doms_new' should be allocated using
1831  * alloc_sched_domains.  This routine takes ownership of it and will
1832  * free_sched_domains it when done with it. If the caller failed the
1833  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1834  * and partition_sched_domains() will fallback to the single partition
1835  * 'fallback_doms', it also forces the domains to be rebuilt.
1836  *
1837  * If doms_new == NULL it will be replaced with cpu_online_mask.
1838  * ndoms_new == 0 is a special case for destroying existing domains,
1839  * and it will not create the default domain.
1840  *
1841  * Call with hotplug lock held
1842  */
1843 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1844 			     struct sched_domain_attr *dattr_new)
1845 {
1846 	int i, j, n;
1847 	int new_topology;
1848 
1849 	mutex_lock(&sched_domains_mutex);
1850 
1851 	/* Always unregister in case we don't destroy any domains: */
1852 	unregister_sched_domain_sysctl();
1853 
1854 	/* Let the architecture update CPU core mappings: */
1855 	new_topology = arch_update_cpu_topology();
1856 
1857 	n = doms_new ? ndoms_new : 0;
1858 
1859 	/* Destroy deleted domains: */
1860 	for (i = 0; i < ndoms_cur; i++) {
1861 		for (j = 0; j < n && !new_topology; j++) {
1862 			if (cpumask_equal(doms_cur[i], doms_new[j])
1863 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1864 				goto match1;
1865 		}
1866 		/* No match - a current sched domain not in new doms_new[] */
1867 		detach_destroy_domains(doms_cur[i]);
1868 match1:
1869 		;
1870 	}
1871 
1872 	n = ndoms_cur;
1873 	if (doms_new == NULL) {
1874 		n = 0;
1875 		doms_new = &fallback_doms;
1876 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1877 		WARN_ON_ONCE(dattr_new);
1878 	}
1879 
1880 	/* Build new domains: */
1881 	for (i = 0; i < ndoms_new; i++) {
1882 		for (j = 0; j < n && !new_topology; j++) {
1883 			if (cpumask_equal(doms_new[i], doms_cur[j])
1884 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1885 				goto match2;
1886 		}
1887 		/* No match - add a new doms_new */
1888 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1889 match2:
1890 		;
1891 	}
1892 
1893 	/* Remember the new sched domains: */
1894 	if (doms_cur != &fallback_doms)
1895 		free_sched_domains(doms_cur, ndoms_cur);
1896 
1897 	kfree(dattr_cur);
1898 	doms_cur = doms_new;
1899 	dattr_cur = dattr_new;
1900 	ndoms_cur = ndoms_new;
1901 
1902 	register_sched_domain_sysctl();
1903 
1904 	mutex_unlock(&sched_domains_mutex);
1905 }
1906 
1907