xref: /openbmc/linux/kernel/sched/topology.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 
37 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38 		printk("does not load-balance\n");
39 		if (sd->parent)
40 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 		return -1;
42 	}
43 
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 	do {
56 		if (!group) {
57 			printk("\n");
58 			printk(KERN_ERR "ERROR: group is NULL\n");
59 			break;
60 		}
61 
62 		if (!cpumask_weight(sched_group_span(group))) {
63 			printk(KERN_CONT "\n");
64 			printk(KERN_ERR "ERROR: empty group\n");
65 			break;
66 		}
67 
68 		if (!(sd->flags & SD_OVERLAP) &&
69 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72 			break;
73 		}
74 
75 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76 
77 		printk(KERN_CONT " %d:{ span=%*pbl",
78 				group->sgc->id,
79 				cpumask_pr_args(sched_group_span(group)));
80 
81 		if ((sd->flags & SD_OVERLAP) &&
82 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 			printk(KERN_CONT " mask=%*pbl",
84 				cpumask_pr_args(group_balance_mask(group)));
85 		}
86 
87 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89 
90 		if (group == sd->groups && sd->child &&
91 		    !cpumask_equal(sched_domain_span(sd->child),
92 				   sched_group_span(group))) {
93 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 		}
95 
96 		printk(KERN_CONT " }");
97 
98 		group = group->next;
99 
100 		if (group != sd->groups)
101 			printk(KERN_CONT ",");
102 
103 	} while (group != sd->groups);
104 	printk(KERN_CONT "\n");
105 
106 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108 
109 	if (sd->parent &&
110 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 	return 0;
113 }
114 
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 	int level = 0;
118 
119 	if (!sched_debug_enabled)
120 		return;
121 
122 	if (!sd) {
123 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 		return;
125 	}
126 
127 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128 
129 	for (;;) {
130 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 			break;
132 		level++;
133 		sd = sd->parent;
134 		if (!sd)
135 			break;
136 	}
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139 
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 	return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151 		return 1;
152 
153 	/* Following flags need at least 2 groups */
154 	if (sd->flags & (SD_LOAD_BALANCE |
155 			 SD_BALANCE_NEWIDLE |
156 			 SD_BALANCE_FORK |
157 			 SD_BALANCE_EXEC |
158 			 SD_SHARE_CPUCAPACITY |
159 			 SD_ASYM_CPUCAPACITY |
160 			 SD_SHARE_PKG_RESOURCES |
161 			 SD_SHARE_POWERDOMAIN)) {
162 		if (sd->groups != sd->groups->next)
163 			return 0;
164 	}
165 
166 	/* Following flags don't use groups */
167 	if (sd->flags & (SD_WAKE_AFFINE))
168 		return 0;
169 
170 	return 1;
171 }
172 
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 	unsigned long cflags = sd->flags, pflags = parent->flags;
177 
178 	if (sd_degenerate(parent))
179 		return 1;
180 
181 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 		return 0;
183 
184 	/* Flags needing groups don't count if only 1 group in parent */
185 	if (parent->groups == parent->groups->next) {
186 		pflags &= ~(SD_LOAD_BALANCE |
187 				SD_BALANCE_NEWIDLE |
188 				SD_BALANCE_FORK |
189 				SD_BALANCE_EXEC |
190 				SD_ASYM_CPUCAPACITY |
191 				SD_SHARE_CPUCAPACITY |
192 				SD_SHARE_PKG_RESOURCES |
193 				SD_PREFER_SIBLING |
194 				SD_SHARE_POWERDOMAIN);
195 		if (nr_node_ids == 1)
196 			pflags &= ~SD_SERIALIZE;
197 	}
198 	if (~cflags & pflags)
199 		return 0;
200 
201 	return 1;
202 }
203 
204 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
205 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
206 DEFINE_MUTEX(sched_energy_mutex);
207 bool sched_energy_update;
208 
209 static void free_pd(struct perf_domain *pd)
210 {
211 	struct perf_domain *tmp;
212 
213 	while (pd) {
214 		tmp = pd->next;
215 		kfree(pd);
216 		pd = tmp;
217 	}
218 }
219 
220 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
221 {
222 	while (pd) {
223 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
224 			return pd;
225 		pd = pd->next;
226 	}
227 
228 	return NULL;
229 }
230 
231 static struct perf_domain *pd_init(int cpu)
232 {
233 	struct em_perf_domain *obj = em_cpu_get(cpu);
234 	struct perf_domain *pd;
235 
236 	if (!obj) {
237 		if (sched_debug())
238 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
239 		return NULL;
240 	}
241 
242 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
243 	if (!pd)
244 		return NULL;
245 	pd->em_pd = obj;
246 
247 	return pd;
248 }
249 
250 static void perf_domain_debug(const struct cpumask *cpu_map,
251 						struct perf_domain *pd)
252 {
253 	if (!sched_debug() || !pd)
254 		return;
255 
256 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
257 
258 	while (pd) {
259 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
260 				cpumask_first(perf_domain_span(pd)),
261 				cpumask_pr_args(perf_domain_span(pd)),
262 				em_pd_nr_cap_states(pd->em_pd));
263 		pd = pd->next;
264 	}
265 
266 	printk(KERN_CONT "\n");
267 }
268 
269 static void destroy_perf_domain_rcu(struct rcu_head *rp)
270 {
271 	struct perf_domain *pd;
272 
273 	pd = container_of(rp, struct perf_domain, rcu);
274 	free_pd(pd);
275 }
276 
277 static void sched_energy_set(bool has_eas)
278 {
279 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
280 		if (sched_debug())
281 			pr_info("%s: stopping EAS\n", __func__);
282 		static_branch_disable_cpuslocked(&sched_energy_present);
283 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
284 		if (sched_debug())
285 			pr_info("%s: starting EAS\n", __func__);
286 		static_branch_enable_cpuslocked(&sched_energy_present);
287 	}
288 }
289 
290 /*
291  * EAS can be used on a root domain if it meets all the following conditions:
292  *    1. an Energy Model (EM) is available;
293  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
294  *    3. the EM complexity is low enough to keep scheduling overheads low;
295  *    4. schedutil is driving the frequency of all CPUs of the rd;
296  *
297  * The complexity of the Energy Model is defined as:
298  *
299  *              C = nr_pd * (nr_cpus + nr_cs)
300  *
301  * with parameters defined as:
302  *  - nr_pd:    the number of performance domains
303  *  - nr_cpus:  the number of CPUs
304  *  - nr_cs:    the sum of the number of capacity states of all performance
305  *              domains (for example, on a system with 2 performance domains,
306  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
307  *
308  * It is generally not a good idea to use such a model in the wake-up path on
309  * very complex platforms because of the associated scheduling overheads. The
310  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
311  * with per-CPU DVFS and less than 8 capacity states each, for example.
312  */
313 #define EM_MAX_COMPLEXITY 2048
314 
315 extern struct cpufreq_governor schedutil_gov;
316 static bool build_perf_domains(const struct cpumask *cpu_map)
317 {
318 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
319 	struct perf_domain *pd = NULL, *tmp;
320 	int cpu = cpumask_first(cpu_map);
321 	struct root_domain *rd = cpu_rq(cpu)->rd;
322 	struct cpufreq_policy *policy;
323 	struct cpufreq_governor *gov;
324 
325 	/* EAS is enabled for asymmetric CPU capacity topologies. */
326 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
327 		if (sched_debug()) {
328 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
329 					cpumask_pr_args(cpu_map));
330 		}
331 		goto free;
332 	}
333 
334 	for_each_cpu(i, cpu_map) {
335 		/* Skip already covered CPUs. */
336 		if (find_pd(pd, i))
337 			continue;
338 
339 		/* Do not attempt EAS if schedutil is not being used. */
340 		policy = cpufreq_cpu_get(i);
341 		if (!policy)
342 			goto free;
343 		gov = policy->governor;
344 		cpufreq_cpu_put(policy);
345 		if (gov != &schedutil_gov) {
346 			if (rd->pd)
347 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
348 						cpumask_pr_args(cpu_map));
349 			goto free;
350 		}
351 
352 		/* Create the new pd and add it to the local list. */
353 		tmp = pd_init(i);
354 		if (!tmp)
355 			goto free;
356 		tmp->next = pd;
357 		pd = tmp;
358 
359 		/*
360 		 * Count performance domains and capacity states for the
361 		 * complexity check.
362 		 */
363 		nr_pd++;
364 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
365 	}
366 
367 	/* Bail out if the Energy Model complexity is too high. */
368 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
369 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
370 						cpumask_pr_args(cpu_map));
371 		goto free;
372 	}
373 
374 	perf_domain_debug(cpu_map, pd);
375 
376 	/* Attach the new list of performance domains to the root domain. */
377 	tmp = rd->pd;
378 	rcu_assign_pointer(rd->pd, pd);
379 	if (tmp)
380 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
381 
382 	return !!pd;
383 
384 free:
385 	free_pd(pd);
386 	tmp = rd->pd;
387 	rcu_assign_pointer(rd->pd, NULL);
388 	if (tmp)
389 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
390 
391 	return false;
392 }
393 #else
394 static void free_pd(struct perf_domain *pd) { }
395 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
396 
397 static void free_rootdomain(struct rcu_head *rcu)
398 {
399 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
400 
401 	cpupri_cleanup(&rd->cpupri);
402 	cpudl_cleanup(&rd->cpudl);
403 	free_cpumask_var(rd->dlo_mask);
404 	free_cpumask_var(rd->rto_mask);
405 	free_cpumask_var(rd->online);
406 	free_cpumask_var(rd->span);
407 	free_pd(rd->pd);
408 	kfree(rd);
409 }
410 
411 void rq_attach_root(struct rq *rq, struct root_domain *rd)
412 {
413 	struct root_domain *old_rd = NULL;
414 	unsigned long flags;
415 
416 	raw_spin_lock_irqsave(&rq->lock, flags);
417 
418 	if (rq->rd) {
419 		old_rd = rq->rd;
420 
421 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
422 			set_rq_offline(rq);
423 
424 		cpumask_clear_cpu(rq->cpu, old_rd->span);
425 
426 		/*
427 		 * If we dont want to free the old_rd yet then
428 		 * set old_rd to NULL to skip the freeing later
429 		 * in this function:
430 		 */
431 		if (!atomic_dec_and_test(&old_rd->refcount))
432 			old_rd = NULL;
433 	}
434 
435 	atomic_inc(&rd->refcount);
436 	rq->rd = rd;
437 
438 	cpumask_set_cpu(rq->cpu, rd->span);
439 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
440 		set_rq_online(rq);
441 
442 	raw_spin_unlock_irqrestore(&rq->lock, flags);
443 
444 	if (old_rd)
445 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
446 }
447 
448 void sched_get_rd(struct root_domain *rd)
449 {
450 	atomic_inc(&rd->refcount);
451 }
452 
453 void sched_put_rd(struct root_domain *rd)
454 {
455 	if (!atomic_dec_and_test(&rd->refcount))
456 		return;
457 
458 	call_rcu_sched(&rd->rcu, free_rootdomain);
459 }
460 
461 static int init_rootdomain(struct root_domain *rd)
462 {
463 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
464 		goto out;
465 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
466 		goto free_span;
467 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
468 		goto free_online;
469 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
470 		goto free_dlo_mask;
471 
472 #ifdef HAVE_RT_PUSH_IPI
473 	rd->rto_cpu = -1;
474 	raw_spin_lock_init(&rd->rto_lock);
475 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
476 #endif
477 
478 	init_dl_bw(&rd->dl_bw);
479 	if (cpudl_init(&rd->cpudl) != 0)
480 		goto free_rto_mask;
481 
482 	if (cpupri_init(&rd->cpupri) != 0)
483 		goto free_cpudl;
484 	return 0;
485 
486 free_cpudl:
487 	cpudl_cleanup(&rd->cpudl);
488 free_rto_mask:
489 	free_cpumask_var(rd->rto_mask);
490 free_dlo_mask:
491 	free_cpumask_var(rd->dlo_mask);
492 free_online:
493 	free_cpumask_var(rd->online);
494 free_span:
495 	free_cpumask_var(rd->span);
496 out:
497 	return -ENOMEM;
498 }
499 
500 /*
501  * By default the system creates a single root-domain with all CPUs as
502  * members (mimicking the global state we have today).
503  */
504 struct root_domain def_root_domain;
505 
506 void init_defrootdomain(void)
507 {
508 	init_rootdomain(&def_root_domain);
509 
510 	atomic_set(&def_root_domain.refcount, 1);
511 }
512 
513 static struct root_domain *alloc_rootdomain(void)
514 {
515 	struct root_domain *rd;
516 
517 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
518 	if (!rd)
519 		return NULL;
520 
521 	if (init_rootdomain(rd) != 0) {
522 		kfree(rd);
523 		return NULL;
524 	}
525 
526 	return rd;
527 }
528 
529 static void free_sched_groups(struct sched_group *sg, int free_sgc)
530 {
531 	struct sched_group *tmp, *first;
532 
533 	if (!sg)
534 		return;
535 
536 	first = sg;
537 	do {
538 		tmp = sg->next;
539 
540 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
541 			kfree(sg->sgc);
542 
543 		if (atomic_dec_and_test(&sg->ref))
544 			kfree(sg);
545 		sg = tmp;
546 	} while (sg != first);
547 }
548 
549 static void destroy_sched_domain(struct sched_domain *sd)
550 {
551 	/*
552 	 * A normal sched domain may have multiple group references, an
553 	 * overlapping domain, having private groups, only one.  Iterate,
554 	 * dropping group/capacity references, freeing where none remain.
555 	 */
556 	free_sched_groups(sd->groups, 1);
557 
558 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
559 		kfree(sd->shared);
560 	kfree(sd);
561 }
562 
563 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
564 {
565 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
566 
567 	while (sd) {
568 		struct sched_domain *parent = sd->parent;
569 		destroy_sched_domain(sd);
570 		sd = parent;
571 	}
572 }
573 
574 static void destroy_sched_domains(struct sched_domain *sd)
575 {
576 	if (sd)
577 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
578 }
579 
580 /*
581  * Keep a special pointer to the highest sched_domain that has
582  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
583  * allows us to avoid some pointer chasing select_idle_sibling().
584  *
585  * Also keep a unique ID per domain (we use the first CPU number in
586  * the cpumask of the domain), this allows us to quickly tell if
587  * two CPUs are in the same cache domain, see cpus_share_cache().
588  */
589 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
590 DEFINE_PER_CPU(int, sd_llc_size);
591 DEFINE_PER_CPU(int, sd_llc_id);
592 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
593 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
594 DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing);
595 DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
596 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
597 
598 static void update_top_cache_domain(int cpu)
599 {
600 	struct sched_domain_shared *sds = NULL;
601 	struct sched_domain *sd;
602 	int id = cpu;
603 	int size = 1;
604 
605 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
606 	if (sd) {
607 		id = cpumask_first(sched_domain_span(sd));
608 		size = cpumask_weight(sched_domain_span(sd));
609 		sds = sd->shared;
610 	}
611 
612 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
613 	per_cpu(sd_llc_size, cpu) = size;
614 	per_cpu(sd_llc_id, cpu) = id;
615 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
616 
617 	sd = lowest_flag_domain(cpu, SD_NUMA);
618 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
619 
620 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
621 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
622 
623 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
624 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
625 }
626 
627 /*
628  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
629  * hold the hotplug lock.
630  */
631 static void
632 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
633 {
634 	struct rq *rq = cpu_rq(cpu);
635 	struct sched_domain *tmp;
636 
637 	/* Remove the sched domains which do not contribute to scheduling. */
638 	for (tmp = sd; tmp; ) {
639 		struct sched_domain *parent = tmp->parent;
640 		if (!parent)
641 			break;
642 
643 		if (sd_parent_degenerate(tmp, parent)) {
644 			tmp->parent = parent->parent;
645 			if (parent->parent)
646 				parent->parent->child = tmp;
647 			/*
648 			 * Transfer SD_PREFER_SIBLING down in case of a
649 			 * degenerate parent; the spans match for this
650 			 * so the property transfers.
651 			 */
652 			if (parent->flags & SD_PREFER_SIBLING)
653 				tmp->flags |= SD_PREFER_SIBLING;
654 			destroy_sched_domain(parent);
655 		} else
656 			tmp = tmp->parent;
657 	}
658 
659 	if (sd && sd_degenerate(sd)) {
660 		tmp = sd;
661 		sd = sd->parent;
662 		destroy_sched_domain(tmp);
663 		if (sd)
664 			sd->child = NULL;
665 	}
666 
667 	sched_domain_debug(sd, cpu);
668 
669 	rq_attach_root(rq, rd);
670 	tmp = rq->sd;
671 	rcu_assign_pointer(rq->sd, sd);
672 	dirty_sched_domain_sysctl(cpu);
673 	destroy_sched_domains(tmp);
674 
675 	update_top_cache_domain(cpu);
676 }
677 
678 struct s_data {
679 	struct sched_domain ** __percpu sd;
680 	struct root_domain	*rd;
681 };
682 
683 enum s_alloc {
684 	sa_rootdomain,
685 	sa_sd,
686 	sa_sd_storage,
687 	sa_none,
688 };
689 
690 /*
691  * Return the canonical balance CPU for this group, this is the first CPU
692  * of this group that's also in the balance mask.
693  *
694  * The balance mask are all those CPUs that could actually end up at this
695  * group. See build_balance_mask().
696  *
697  * Also see should_we_balance().
698  */
699 int group_balance_cpu(struct sched_group *sg)
700 {
701 	return cpumask_first(group_balance_mask(sg));
702 }
703 
704 
705 /*
706  * NUMA topology (first read the regular topology blurb below)
707  *
708  * Given a node-distance table, for example:
709  *
710  *   node   0   1   2   3
711  *     0:  10  20  30  20
712  *     1:  20  10  20  30
713  *     2:  30  20  10  20
714  *     3:  20  30  20  10
715  *
716  * which represents a 4 node ring topology like:
717  *
718  *   0 ----- 1
719  *   |       |
720  *   |       |
721  *   |       |
722  *   3 ----- 2
723  *
724  * We want to construct domains and groups to represent this. The way we go
725  * about doing this is to build the domains on 'hops'. For each NUMA level we
726  * construct the mask of all nodes reachable in @level hops.
727  *
728  * For the above NUMA topology that gives 3 levels:
729  *
730  * NUMA-2	0-3		0-3		0-3		0-3
731  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
732  *
733  * NUMA-1	0-1,3		0-2		1-3		0,2-3
734  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
735  *
736  * NUMA-0	0		1		2		3
737  *
738  *
739  * As can be seen; things don't nicely line up as with the regular topology.
740  * When we iterate a domain in child domain chunks some nodes can be
741  * represented multiple times -- hence the "overlap" naming for this part of
742  * the topology.
743  *
744  * In order to minimize this overlap, we only build enough groups to cover the
745  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
746  *
747  * Because:
748  *
749  *  - the first group of each domain is its child domain; this
750  *    gets us the first 0-1,3
751  *  - the only uncovered node is 2, who's child domain is 1-3.
752  *
753  * However, because of the overlap, computing a unique CPU for each group is
754  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
755  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
756  * end up at those groups (they would end up in group: 0-1,3).
757  *
758  * To correct this we have to introduce the group balance mask. This mask
759  * will contain those CPUs in the group that can reach this group given the
760  * (child) domain tree.
761  *
762  * With this we can once again compute balance_cpu and sched_group_capacity
763  * relations.
764  *
765  * XXX include words on how balance_cpu is unique and therefore can be
766  * used for sched_group_capacity links.
767  *
768  *
769  * Another 'interesting' topology is:
770  *
771  *   node   0   1   2   3
772  *     0:  10  20  20  30
773  *     1:  20  10  20  20
774  *     2:  20  20  10  20
775  *     3:  30  20  20  10
776  *
777  * Which looks a little like:
778  *
779  *   0 ----- 1
780  *   |     / |
781  *   |   /   |
782  *   | /     |
783  *   2 ----- 3
784  *
785  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
786  * are not.
787  *
788  * This leads to a few particularly weird cases where the sched_domain's are
789  * not of the same number for each CPU. Consider:
790  *
791  * NUMA-2	0-3						0-3
792  *  groups:	{0-2},{1-3}					{1-3},{0-2}
793  *
794  * NUMA-1	0-2		0-3		0-3		1-3
795  *
796  * NUMA-0	0		1		2		3
797  *
798  */
799 
800 
801 /*
802  * Build the balance mask; it contains only those CPUs that can arrive at this
803  * group and should be considered to continue balancing.
804  *
805  * We do this during the group creation pass, therefore the group information
806  * isn't complete yet, however since each group represents a (child) domain we
807  * can fully construct this using the sched_domain bits (which are already
808  * complete).
809  */
810 static void
811 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
812 {
813 	const struct cpumask *sg_span = sched_group_span(sg);
814 	struct sd_data *sdd = sd->private;
815 	struct sched_domain *sibling;
816 	int i;
817 
818 	cpumask_clear(mask);
819 
820 	for_each_cpu(i, sg_span) {
821 		sibling = *per_cpu_ptr(sdd->sd, i);
822 
823 		/*
824 		 * Can happen in the asymmetric case, where these siblings are
825 		 * unused. The mask will not be empty because those CPUs that
826 		 * do have the top domain _should_ span the domain.
827 		 */
828 		if (!sibling->child)
829 			continue;
830 
831 		/* If we would not end up here, we can't continue from here */
832 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
833 			continue;
834 
835 		cpumask_set_cpu(i, mask);
836 	}
837 
838 	/* We must not have empty masks here */
839 	WARN_ON_ONCE(cpumask_empty(mask));
840 }
841 
842 /*
843  * XXX: This creates per-node group entries; since the load-balancer will
844  * immediately access remote memory to construct this group's load-balance
845  * statistics having the groups node local is of dubious benefit.
846  */
847 static struct sched_group *
848 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
849 {
850 	struct sched_group *sg;
851 	struct cpumask *sg_span;
852 
853 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
854 			GFP_KERNEL, cpu_to_node(cpu));
855 
856 	if (!sg)
857 		return NULL;
858 
859 	sg_span = sched_group_span(sg);
860 	if (sd->child)
861 		cpumask_copy(sg_span, sched_domain_span(sd->child));
862 	else
863 		cpumask_copy(sg_span, sched_domain_span(sd));
864 
865 	atomic_inc(&sg->ref);
866 	return sg;
867 }
868 
869 static void init_overlap_sched_group(struct sched_domain *sd,
870 				     struct sched_group *sg)
871 {
872 	struct cpumask *mask = sched_domains_tmpmask2;
873 	struct sd_data *sdd = sd->private;
874 	struct cpumask *sg_span;
875 	int cpu;
876 
877 	build_balance_mask(sd, sg, mask);
878 	cpu = cpumask_first_and(sched_group_span(sg), mask);
879 
880 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
881 	if (atomic_inc_return(&sg->sgc->ref) == 1)
882 		cpumask_copy(group_balance_mask(sg), mask);
883 	else
884 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
885 
886 	/*
887 	 * Initialize sgc->capacity such that even if we mess up the
888 	 * domains and no possible iteration will get us here, we won't
889 	 * die on a /0 trap.
890 	 */
891 	sg_span = sched_group_span(sg);
892 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
893 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
894 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
895 }
896 
897 static int
898 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
899 {
900 	struct sched_group *first = NULL, *last = NULL, *sg;
901 	const struct cpumask *span = sched_domain_span(sd);
902 	struct cpumask *covered = sched_domains_tmpmask;
903 	struct sd_data *sdd = sd->private;
904 	struct sched_domain *sibling;
905 	int i;
906 
907 	cpumask_clear(covered);
908 
909 	for_each_cpu_wrap(i, span, cpu) {
910 		struct cpumask *sg_span;
911 
912 		if (cpumask_test_cpu(i, covered))
913 			continue;
914 
915 		sibling = *per_cpu_ptr(sdd->sd, i);
916 
917 		/*
918 		 * Asymmetric node setups can result in situations where the
919 		 * domain tree is of unequal depth, make sure to skip domains
920 		 * that already cover the entire range.
921 		 *
922 		 * In that case build_sched_domains() will have terminated the
923 		 * iteration early and our sibling sd spans will be empty.
924 		 * Domains should always include the CPU they're built on, so
925 		 * check that.
926 		 */
927 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
928 			continue;
929 
930 		sg = build_group_from_child_sched_domain(sibling, cpu);
931 		if (!sg)
932 			goto fail;
933 
934 		sg_span = sched_group_span(sg);
935 		cpumask_or(covered, covered, sg_span);
936 
937 		init_overlap_sched_group(sd, sg);
938 
939 		if (!first)
940 			first = sg;
941 		if (last)
942 			last->next = sg;
943 		last = sg;
944 		last->next = first;
945 	}
946 	sd->groups = first;
947 
948 	return 0;
949 
950 fail:
951 	free_sched_groups(first, 0);
952 
953 	return -ENOMEM;
954 }
955 
956 
957 /*
958  * Package topology (also see the load-balance blurb in fair.c)
959  *
960  * The scheduler builds a tree structure to represent a number of important
961  * topology features. By default (default_topology[]) these include:
962  *
963  *  - Simultaneous multithreading (SMT)
964  *  - Multi-Core Cache (MC)
965  *  - Package (DIE)
966  *
967  * Where the last one more or less denotes everything up to a NUMA node.
968  *
969  * The tree consists of 3 primary data structures:
970  *
971  *	sched_domain -> sched_group -> sched_group_capacity
972  *	    ^ ^             ^ ^
973  *          `-'             `-'
974  *
975  * The sched_domains are per-CPU and have a two way link (parent & child) and
976  * denote the ever growing mask of CPUs belonging to that level of topology.
977  *
978  * Each sched_domain has a circular (double) linked list of sched_group's, each
979  * denoting the domains of the level below (or individual CPUs in case of the
980  * first domain level). The sched_group linked by a sched_domain includes the
981  * CPU of that sched_domain [*].
982  *
983  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
984  *
985  * CPU   0   1   2   3   4   5   6   7
986  *
987  * DIE  [                             ]
988  * MC   [             ] [             ]
989  * SMT  [     ] [     ] [     ] [     ]
990  *
991  *  - or -
992  *
993  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
994  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
995  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
996  *
997  * CPU   0   1   2   3   4   5   6   7
998  *
999  * One way to think about it is: sched_domain moves you up and down among these
1000  * topology levels, while sched_group moves you sideways through it, at child
1001  * domain granularity.
1002  *
1003  * sched_group_capacity ensures each unique sched_group has shared storage.
1004  *
1005  * There are two related construction problems, both require a CPU that
1006  * uniquely identify each group (for a given domain):
1007  *
1008  *  - The first is the balance_cpu (see should_we_balance() and the
1009  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1010  *    continue balancing at a higher domain.
1011  *
1012  *  - The second is the sched_group_capacity; we want all identical groups
1013  *    to share a single sched_group_capacity.
1014  *
1015  * Since these topologies are exclusive by construction. That is, its
1016  * impossible for an SMT thread to belong to multiple cores, and cores to
1017  * be part of multiple caches. There is a very clear and unique location
1018  * for each CPU in the hierarchy.
1019  *
1020  * Therefore computing a unique CPU for each group is trivial (the iteration
1021  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1022  * group), we can simply pick the first CPU in each group.
1023  *
1024  *
1025  * [*] in other words, the first group of each domain is its child domain.
1026  */
1027 
1028 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1029 {
1030 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1031 	struct sched_domain *child = sd->child;
1032 	struct sched_group *sg;
1033 
1034 	if (child)
1035 		cpu = cpumask_first(sched_domain_span(child));
1036 
1037 	sg = *per_cpu_ptr(sdd->sg, cpu);
1038 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1039 
1040 	/* For claim_allocations: */
1041 	atomic_inc(&sg->ref);
1042 	atomic_inc(&sg->sgc->ref);
1043 
1044 	if (child) {
1045 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1046 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1047 	} else {
1048 		cpumask_set_cpu(cpu, sched_group_span(sg));
1049 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1050 	}
1051 
1052 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1053 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1054 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1055 
1056 	return sg;
1057 }
1058 
1059 /*
1060  * build_sched_groups will build a circular linked list of the groups
1061  * covered by the given span, and will set each group's ->cpumask correctly,
1062  * and ->cpu_capacity to 0.
1063  *
1064  * Assumes the sched_domain tree is fully constructed
1065  */
1066 static int
1067 build_sched_groups(struct sched_domain *sd, int cpu)
1068 {
1069 	struct sched_group *first = NULL, *last = NULL;
1070 	struct sd_data *sdd = sd->private;
1071 	const struct cpumask *span = sched_domain_span(sd);
1072 	struct cpumask *covered;
1073 	int i;
1074 
1075 	lockdep_assert_held(&sched_domains_mutex);
1076 	covered = sched_domains_tmpmask;
1077 
1078 	cpumask_clear(covered);
1079 
1080 	for_each_cpu_wrap(i, span, cpu) {
1081 		struct sched_group *sg;
1082 
1083 		if (cpumask_test_cpu(i, covered))
1084 			continue;
1085 
1086 		sg = get_group(i, sdd);
1087 
1088 		cpumask_or(covered, covered, sched_group_span(sg));
1089 
1090 		if (!first)
1091 			first = sg;
1092 		if (last)
1093 			last->next = sg;
1094 		last = sg;
1095 	}
1096 	last->next = first;
1097 	sd->groups = first;
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Initialize sched groups cpu_capacity.
1104  *
1105  * cpu_capacity indicates the capacity of sched group, which is used while
1106  * distributing the load between different sched groups in a sched domain.
1107  * Typically cpu_capacity for all the groups in a sched domain will be same
1108  * unless there are asymmetries in the topology. If there are asymmetries,
1109  * group having more cpu_capacity will pickup more load compared to the
1110  * group having less cpu_capacity.
1111  */
1112 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1113 {
1114 	struct sched_group *sg = sd->groups;
1115 
1116 	WARN_ON(!sg);
1117 
1118 	do {
1119 		int cpu, max_cpu = -1;
1120 
1121 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1122 
1123 		if (!(sd->flags & SD_ASYM_PACKING))
1124 			goto next;
1125 
1126 		for_each_cpu(cpu, sched_group_span(sg)) {
1127 			if (max_cpu < 0)
1128 				max_cpu = cpu;
1129 			else if (sched_asym_prefer(cpu, max_cpu))
1130 				max_cpu = cpu;
1131 		}
1132 		sg->asym_prefer_cpu = max_cpu;
1133 
1134 next:
1135 		sg = sg->next;
1136 	} while (sg != sd->groups);
1137 
1138 	if (cpu != group_balance_cpu(sg))
1139 		return;
1140 
1141 	update_group_capacity(sd, cpu);
1142 }
1143 
1144 /*
1145  * Initializers for schedule domains
1146  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1147  */
1148 
1149 static int default_relax_domain_level = -1;
1150 int sched_domain_level_max;
1151 
1152 static int __init setup_relax_domain_level(char *str)
1153 {
1154 	if (kstrtoint(str, 0, &default_relax_domain_level))
1155 		pr_warn("Unable to set relax_domain_level\n");
1156 
1157 	return 1;
1158 }
1159 __setup("relax_domain_level=", setup_relax_domain_level);
1160 
1161 static void set_domain_attribute(struct sched_domain *sd,
1162 				 struct sched_domain_attr *attr)
1163 {
1164 	int request;
1165 
1166 	if (!attr || attr->relax_domain_level < 0) {
1167 		if (default_relax_domain_level < 0)
1168 			return;
1169 		else
1170 			request = default_relax_domain_level;
1171 	} else
1172 		request = attr->relax_domain_level;
1173 	if (request < sd->level) {
1174 		/* Turn off idle balance on this domain: */
1175 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1176 	} else {
1177 		/* Turn on idle balance on this domain: */
1178 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1179 	}
1180 }
1181 
1182 static void __sdt_free(const struct cpumask *cpu_map);
1183 static int __sdt_alloc(const struct cpumask *cpu_map);
1184 
1185 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1186 				 const struct cpumask *cpu_map)
1187 {
1188 	switch (what) {
1189 	case sa_rootdomain:
1190 		if (!atomic_read(&d->rd->refcount))
1191 			free_rootdomain(&d->rd->rcu);
1192 		/* Fall through */
1193 	case sa_sd:
1194 		free_percpu(d->sd);
1195 		/* Fall through */
1196 	case sa_sd_storage:
1197 		__sdt_free(cpu_map);
1198 		/* Fall through */
1199 	case sa_none:
1200 		break;
1201 	}
1202 }
1203 
1204 static enum s_alloc
1205 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1206 {
1207 	memset(d, 0, sizeof(*d));
1208 
1209 	if (__sdt_alloc(cpu_map))
1210 		return sa_sd_storage;
1211 	d->sd = alloc_percpu(struct sched_domain *);
1212 	if (!d->sd)
1213 		return sa_sd_storage;
1214 	d->rd = alloc_rootdomain();
1215 	if (!d->rd)
1216 		return sa_sd;
1217 
1218 	return sa_rootdomain;
1219 }
1220 
1221 /*
1222  * NULL the sd_data elements we've used to build the sched_domain and
1223  * sched_group structure so that the subsequent __free_domain_allocs()
1224  * will not free the data we're using.
1225  */
1226 static void claim_allocations(int cpu, struct sched_domain *sd)
1227 {
1228 	struct sd_data *sdd = sd->private;
1229 
1230 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1231 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1232 
1233 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1234 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1235 
1236 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1237 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1238 
1239 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1240 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1241 }
1242 
1243 #ifdef CONFIG_NUMA
1244 enum numa_topology_type sched_numa_topology_type;
1245 
1246 static int			sched_domains_numa_levels;
1247 static int			sched_domains_curr_level;
1248 
1249 int				sched_max_numa_distance;
1250 static int			*sched_domains_numa_distance;
1251 static struct cpumask		***sched_domains_numa_masks;
1252 #endif
1253 
1254 /*
1255  * SD_flags allowed in topology descriptions.
1256  *
1257  * These flags are purely descriptive of the topology and do not prescribe
1258  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1259  * function:
1260  *
1261  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1262  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1263  *   SD_NUMA                - describes NUMA topologies
1264  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1265  *
1266  * Odd one out, which beside describing the topology has a quirk also
1267  * prescribes the desired behaviour that goes along with it:
1268  *
1269  *   SD_ASYM_PACKING        - describes SMT quirks
1270  */
1271 #define TOPOLOGY_SD_FLAGS		\
1272 	(SD_SHARE_CPUCAPACITY	|	\
1273 	 SD_SHARE_PKG_RESOURCES |	\
1274 	 SD_NUMA		|	\
1275 	 SD_ASYM_PACKING	|	\
1276 	 SD_SHARE_POWERDOMAIN)
1277 
1278 static struct sched_domain *
1279 sd_init(struct sched_domain_topology_level *tl,
1280 	const struct cpumask *cpu_map,
1281 	struct sched_domain *child, int dflags, int cpu)
1282 {
1283 	struct sd_data *sdd = &tl->data;
1284 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1285 	int sd_id, sd_weight, sd_flags = 0;
1286 
1287 #ifdef CONFIG_NUMA
1288 	/*
1289 	 * Ugly hack to pass state to sd_numa_mask()...
1290 	 */
1291 	sched_domains_curr_level = tl->numa_level;
1292 #endif
1293 
1294 	sd_weight = cpumask_weight(tl->mask(cpu));
1295 
1296 	if (tl->sd_flags)
1297 		sd_flags = (*tl->sd_flags)();
1298 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1299 			"wrong sd_flags in topology description\n"))
1300 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1301 
1302 	/* Apply detected topology flags */
1303 	sd_flags |= dflags;
1304 
1305 	*sd = (struct sched_domain){
1306 		.min_interval		= sd_weight,
1307 		.max_interval		= 2*sd_weight,
1308 		.busy_factor		= 32,
1309 		.imbalance_pct		= 125,
1310 
1311 		.cache_nice_tries	= 0,
1312 		.busy_idx		= 0,
1313 		.idle_idx		= 0,
1314 		.newidle_idx		= 0,
1315 		.wake_idx		= 0,
1316 		.forkexec_idx		= 0,
1317 
1318 		.flags			= 1*SD_LOAD_BALANCE
1319 					| 1*SD_BALANCE_NEWIDLE
1320 					| 1*SD_BALANCE_EXEC
1321 					| 1*SD_BALANCE_FORK
1322 					| 0*SD_BALANCE_WAKE
1323 					| 1*SD_WAKE_AFFINE
1324 					| 0*SD_SHARE_CPUCAPACITY
1325 					| 0*SD_SHARE_PKG_RESOURCES
1326 					| 0*SD_SERIALIZE
1327 					| 1*SD_PREFER_SIBLING
1328 					| 0*SD_NUMA
1329 					| sd_flags
1330 					,
1331 
1332 		.last_balance		= jiffies,
1333 		.balance_interval	= sd_weight,
1334 		.max_newidle_lb_cost	= 0,
1335 		.next_decay_max_lb_cost	= jiffies,
1336 		.child			= child,
1337 #ifdef CONFIG_SCHED_DEBUG
1338 		.name			= tl->name,
1339 #endif
1340 	};
1341 
1342 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1343 	sd_id = cpumask_first(sched_domain_span(sd));
1344 
1345 	/*
1346 	 * Convert topological properties into behaviour.
1347 	 */
1348 
1349 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1350 		struct sched_domain *t = sd;
1351 
1352 		/*
1353 		 * Don't attempt to spread across CPUs of different capacities.
1354 		 */
1355 		if (sd->child)
1356 			sd->child->flags &= ~SD_PREFER_SIBLING;
1357 
1358 		for_each_lower_domain(t)
1359 			t->flags |= SD_BALANCE_WAKE;
1360 	}
1361 
1362 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1363 		sd->imbalance_pct = 110;
1364 
1365 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1366 		sd->imbalance_pct = 117;
1367 		sd->cache_nice_tries = 1;
1368 		sd->busy_idx = 2;
1369 
1370 #ifdef CONFIG_NUMA
1371 	} else if (sd->flags & SD_NUMA) {
1372 		sd->cache_nice_tries = 2;
1373 		sd->busy_idx = 3;
1374 		sd->idle_idx = 2;
1375 
1376 		sd->flags &= ~SD_PREFER_SIBLING;
1377 		sd->flags |= SD_SERIALIZE;
1378 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1379 			sd->flags &= ~(SD_BALANCE_EXEC |
1380 				       SD_BALANCE_FORK |
1381 				       SD_WAKE_AFFINE);
1382 		}
1383 
1384 #endif
1385 	} else {
1386 		sd->cache_nice_tries = 1;
1387 		sd->busy_idx = 2;
1388 		sd->idle_idx = 1;
1389 	}
1390 
1391 	/*
1392 	 * For all levels sharing cache; connect a sched_domain_shared
1393 	 * instance.
1394 	 */
1395 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1396 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1397 		atomic_inc(&sd->shared->ref);
1398 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1399 	}
1400 
1401 	sd->private = sdd;
1402 
1403 	return sd;
1404 }
1405 
1406 /*
1407  * Topology list, bottom-up.
1408  */
1409 static struct sched_domain_topology_level default_topology[] = {
1410 #ifdef CONFIG_SCHED_SMT
1411 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1412 #endif
1413 #ifdef CONFIG_SCHED_MC
1414 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1415 #endif
1416 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1417 	{ NULL, },
1418 };
1419 
1420 static struct sched_domain_topology_level *sched_domain_topology =
1421 	default_topology;
1422 
1423 #define for_each_sd_topology(tl)			\
1424 	for (tl = sched_domain_topology; tl->mask; tl++)
1425 
1426 void set_sched_topology(struct sched_domain_topology_level *tl)
1427 {
1428 	if (WARN_ON_ONCE(sched_smp_initialized))
1429 		return;
1430 
1431 	sched_domain_topology = tl;
1432 }
1433 
1434 #ifdef CONFIG_NUMA
1435 
1436 static const struct cpumask *sd_numa_mask(int cpu)
1437 {
1438 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1439 }
1440 
1441 static void sched_numa_warn(const char *str)
1442 {
1443 	static int done = false;
1444 	int i,j;
1445 
1446 	if (done)
1447 		return;
1448 
1449 	done = true;
1450 
1451 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1452 
1453 	for (i = 0; i < nr_node_ids; i++) {
1454 		printk(KERN_WARNING "  ");
1455 		for (j = 0; j < nr_node_ids; j++)
1456 			printk(KERN_CONT "%02d ", node_distance(i,j));
1457 		printk(KERN_CONT "\n");
1458 	}
1459 	printk(KERN_WARNING "\n");
1460 }
1461 
1462 bool find_numa_distance(int distance)
1463 {
1464 	int i;
1465 
1466 	if (distance == node_distance(0, 0))
1467 		return true;
1468 
1469 	for (i = 0; i < sched_domains_numa_levels; i++) {
1470 		if (sched_domains_numa_distance[i] == distance)
1471 			return true;
1472 	}
1473 
1474 	return false;
1475 }
1476 
1477 /*
1478  * A system can have three types of NUMA topology:
1479  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1480  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1481  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1482  *
1483  * The difference between a glueless mesh topology and a backplane
1484  * topology lies in whether communication between not directly
1485  * connected nodes goes through intermediary nodes (where programs
1486  * could run), or through backplane controllers. This affects
1487  * placement of programs.
1488  *
1489  * The type of topology can be discerned with the following tests:
1490  * - If the maximum distance between any nodes is 1 hop, the system
1491  *   is directly connected.
1492  * - If for two nodes A and B, located N > 1 hops away from each other,
1493  *   there is an intermediary node C, which is < N hops away from both
1494  *   nodes A and B, the system is a glueless mesh.
1495  */
1496 static void init_numa_topology_type(void)
1497 {
1498 	int a, b, c, n;
1499 
1500 	n = sched_max_numa_distance;
1501 
1502 	if (sched_domains_numa_levels <= 2) {
1503 		sched_numa_topology_type = NUMA_DIRECT;
1504 		return;
1505 	}
1506 
1507 	for_each_online_node(a) {
1508 		for_each_online_node(b) {
1509 			/* Find two nodes furthest removed from each other. */
1510 			if (node_distance(a, b) < n)
1511 				continue;
1512 
1513 			/* Is there an intermediary node between a and b? */
1514 			for_each_online_node(c) {
1515 				if (node_distance(a, c) < n &&
1516 				    node_distance(b, c) < n) {
1517 					sched_numa_topology_type =
1518 							NUMA_GLUELESS_MESH;
1519 					return;
1520 				}
1521 			}
1522 
1523 			sched_numa_topology_type = NUMA_BACKPLANE;
1524 			return;
1525 		}
1526 	}
1527 }
1528 
1529 void sched_init_numa(void)
1530 {
1531 	int next_distance, curr_distance = node_distance(0, 0);
1532 	struct sched_domain_topology_level *tl;
1533 	int level = 0;
1534 	int i, j, k;
1535 
1536 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1537 	if (!sched_domains_numa_distance)
1538 		return;
1539 
1540 	/* Includes NUMA identity node at level 0. */
1541 	sched_domains_numa_distance[level++] = curr_distance;
1542 	sched_domains_numa_levels = level;
1543 
1544 	/*
1545 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1546 	 * unique distances in the node_distance() table.
1547 	 *
1548 	 * Assumes node_distance(0,j) includes all distances in
1549 	 * node_distance(i,j) in order to avoid cubic time.
1550 	 */
1551 	next_distance = curr_distance;
1552 	for (i = 0; i < nr_node_ids; i++) {
1553 		for (j = 0; j < nr_node_ids; j++) {
1554 			for (k = 0; k < nr_node_ids; k++) {
1555 				int distance = node_distance(i, k);
1556 
1557 				if (distance > curr_distance &&
1558 				    (distance < next_distance ||
1559 				     next_distance == curr_distance))
1560 					next_distance = distance;
1561 
1562 				/*
1563 				 * While not a strong assumption it would be nice to know
1564 				 * about cases where if node A is connected to B, B is not
1565 				 * equally connected to A.
1566 				 */
1567 				if (sched_debug() && node_distance(k, i) != distance)
1568 					sched_numa_warn("Node-distance not symmetric");
1569 
1570 				if (sched_debug() && i && !find_numa_distance(distance))
1571 					sched_numa_warn("Node-0 not representative");
1572 			}
1573 			if (next_distance != curr_distance) {
1574 				sched_domains_numa_distance[level++] = next_distance;
1575 				sched_domains_numa_levels = level;
1576 				curr_distance = next_distance;
1577 			} else break;
1578 		}
1579 
1580 		/*
1581 		 * In case of sched_debug() we verify the above assumption.
1582 		 */
1583 		if (!sched_debug())
1584 			break;
1585 	}
1586 
1587 	/*
1588 	 * 'level' contains the number of unique distances
1589 	 *
1590 	 * The sched_domains_numa_distance[] array includes the actual distance
1591 	 * numbers.
1592 	 */
1593 
1594 	/*
1595 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1596 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1597 	 * the array will contain less then 'level' members. This could be
1598 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1599 	 * in other functions.
1600 	 *
1601 	 * We reset it to 'level' at the end of this function.
1602 	 */
1603 	sched_domains_numa_levels = 0;
1604 
1605 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1606 	if (!sched_domains_numa_masks)
1607 		return;
1608 
1609 	/*
1610 	 * Now for each level, construct a mask per node which contains all
1611 	 * CPUs of nodes that are that many hops away from us.
1612 	 */
1613 	for (i = 0; i < level; i++) {
1614 		sched_domains_numa_masks[i] =
1615 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1616 		if (!sched_domains_numa_masks[i])
1617 			return;
1618 
1619 		for (j = 0; j < nr_node_ids; j++) {
1620 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1621 			if (!mask)
1622 				return;
1623 
1624 			sched_domains_numa_masks[i][j] = mask;
1625 
1626 			for_each_node(k) {
1627 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1628 					continue;
1629 
1630 				cpumask_or(mask, mask, cpumask_of_node(k));
1631 			}
1632 		}
1633 	}
1634 
1635 	/* Compute default topology size */
1636 	for (i = 0; sched_domain_topology[i].mask; i++);
1637 
1638 	tl = kzalloc((i + level + 1) *
1639 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1640 	if (!tl)
1641 		return;
1642 
1643 	/*
1644 	 * Copy the default topology bits..
1645 	 */
1646 	for (i = 0; sched_domain_topology[i].mask; i++)
1647 		tl[i] = sched_domain_topology[i];
1648 
1649 	/*
1650 	 * Add the NUMA identity distance, aka single NODE.
1651 	 */
1652 	tl[i++] = (struct sched_domain_topology_level){
1653 		.mask = sd_numa_mask,
1654 		.numa_level = 0,
1655 		SD_INIT_NAME(NODE)
1656 	};
1657 
1658 	/*
1659 	 * .. and append 'j' levels of NUMA goodness.
1660 	 */
1661 	for (j = 1; j < level; i++, j++) {
1662 		tl[i] = (struct sched_domain_topology_level){
1663 			.mask = sd_numa_mask,
1664 			.sd_flags = cpu_numa_flags,
1665 			.flags = SDTL_OVERLAP,
1666 			.numa_level = j,
1667 			SD_INIT_NAME(NUMA)
1668 		};
1669 	}
1670 
1671 	sched_domain_topology = tl;
1672 
1673 	sched_domains_numa_levels = level;
1674 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1675 
1676 	init_numa_topology_type();
1677 }
1678 
1679 void sched_domains_numa_masks_set(unsigned int cpu)
1680 {
1681 	int node = cpu_to_node(cpu);
1682 	int i, j;
1683 
1684 	for (i = 0; i < sched_domains_numa_levels; i++) {
1685 		for (j = 0; j < nr_node_ids; j++) {
1686 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1687 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1688 		}
1689 	}
1690 }
1691 
1692 void sched_domains_numa_masks_clear(unsigned int cpu)
1693 {
1694 	int i, j;
1695 
1696 	for (i = 0; i < sched_domains_numa_levels; i++) {
1697 		for (j = 0; j < nr_node_ids; j++)
1698 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1699 	}
1700 }
1701 
1702 #endif /* CONFIG_NUMA */
1703 
1704 static int __sdt_alloc(const struct cpumask *cpu_map)
1705 {
1706 	struct sched_domain_topology_level *tl;
1707 	int j;
1708 
1709 	for_each_sd_topology(tl) {
1710 		struct sd_data *sdd = &tl->data;
1711 
1712 		sdd->sd = alloc_percpu(struct sched_domain *);
1713 		if (!sdd->sd)
1714 			return -ENOMEM;
1715 
1716 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1717 		if (!sdd->sds)
1718 			return -ENOMEM;
1719 
1720 		sdd->sg = alloc_percpu(struct sched_group *);
1721 		if (!sdd->sg)
1722 			return -ENOMEM;
1723 
1724 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1725 		if (!sdd->sgc)
1726 			return -ENOMEM;
1727 
1728 		for_each_cpu(j, cpu_map) {
1729 			struct sched_domain *sd;
1730 			struct sched_domain_shared *sds;
1731 			struct sched_group *sg;
1732 			struct sched_group_capacity *sgc;
1733 
1734 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1735 					GFP_KERNEL, cpu_to_node(j));
1736 			if (!sd)
1737 				return -ENOMEM;
1738 
1739 			*per_cpu_ptr(sdd->sd, j) = sd;
1740 
1741 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1742 					GFP_KERNEL, cpu_to_node(j));
1743 			if (!sds)
1744 				return -ENOMEM;
1745 
1746 			*per_cpu_ptr(sdd->sds, j) = sds;
1747 
1748 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1749 					GFP_KERNEL, cpu_to_node(j));
1750 			if (!sg)
1751 				return -ENOMEM;
1752 
1753 			sg->next = sg;
1754 
1755 			*per_cpu_ptr(sdd->sg, j) = sg;
1756 
1757 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1758 					GFP_KERNEL, cpu_to_node(j));
1759 			if (!sgc)
1760 				return -ENOMEM;
1761 
1762 #ifdef CONFIG_SCHED_DEBUG
1763 			sgc->id = j;
1764 #endif
1765 
1766 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1767 		}
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static void __sdt_free(const struct cpumask *cpu_map)
1774 {
1775 	struct sched_domain_topology_level *tl;
1776 	int j;
1777 
1778 	for_each_sd_topology(tl) {
1779 		struct sd_data *sdd = &tl->data;
1780 
1781 		for_each_cpu(j, cpu_map) {
1782 			struct sched_domain *sd;
1783 
1784 			if (sdd->sd) {
1785 				sd = *per_cpu_ptr(sdd->sd, j);
1786 				if (sd && (sd->flags & SD_OVERLAP))
1787 					free_sched_groups(sd->groups, 0);
1788 				kfree(*per_cpu_ptr(sdd->sd, j));
1789 			}
1790 
1791 			if (sdd->sds)
1792 				kfree(*per_cpu_ptr(sdd->sds, j));
1793 			if (sdd->sg)
1794 				kfree(*per_cpu_ptr(sdd->sg, j));
1795 			if (sdd->sgc)
1796 				kfree(*per_cpu_ptr(sdd->sgc, j));
1797 		}
1798 		free_percpu(sdd->sd);
1799 		sdd->sd = NULL;
1800 		free_percpu(sdd->sds);
1801 		sdd->sds = NULL;
1802 		free_percpu(sdd->sg);
1803 		sdd->sg = NULL;
1804 		free_percpu(sdd->sgc);
1805 		sdd->sgc = NULL;
1806 	}
1807 }
1808 
1809 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1810 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1811 		struct sched_domain *child, int dflags, int cpu)
1812 {
1813 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1814 
1815 	if (child) {
1816 		sd->level = child->level + 1;
1817 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1818 		child->parent = sd;
1819 
1820 		if (!cpumask_subset(sched_domain_span(child),
1821 				    sched_domain_span(sd))) {
1822 			pr_err("BUG: arch topology borken\n");
1823 #ifdef CONFIG_SCHED_DEBUG
1824 			pr_err("     the %s domain not a subset of the %s domain\n",
1825 					child->name, sd->name);
1826 #endif
1827 			/* Fixup, ensure @sd has at least @child CPUs. */
1828 			cpumask_or(sched_domain_span(sd),
1829 				   sched_domain_span(sd),
1830 				   sched_domain_span(child));
1831 		}
1832 
1833 	}
1834 	set_domain_attribute(sd, attr);
1835 
1836 	return sd;
1837 }
1838 
1839 /*
1840  * Find the sched_domain_topology_level where all CPU capacities are visible
1841  * for all CPUs.
1842  */
1843 static struct sched_domain_topology_level
1844 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1845 {
1846 	int i, j, asym_level = 0;
1847 	bool asym = false;
1848 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1849 	unsigned long cap;
1850 
1851 	/* Is there any asymmetry? */
1852 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1853 
1854 	for_each_cpu(i, cpu_map) {
1855 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
1856 			asym = true;
1857 			break;
1858 		}
1859 	}
1860 
1861 	if (!asym)
1862 		return NULL;
1863 
1864 	/*
1865 	 * Examine topology from all CPU's point of views to detect the lowest
1866 	 * sched_domain_topology_level where a highest capacity CPU is visible
1867 	 * to everyone.
1868 	 */
1869 	for_each_cpu(i, cpu_map) {
1870 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1871 		int tl_id = 0;
1872 
1873 		for_each_sd_topology(tl) {
1874 			if (tl_id < asym_level)
1875 				goto next_level;
1876 
1877 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1878 				unsigned long capacity;
1879 
1880 				capacity = arch_scale_cpu_capacity(NULL, j);
1881 
1882 				if (capacity <= max_capacity)
1883 					continue;
1884 
1885 				max_capacity = capacity;
1886 				asym_level = tl_id;
1887 				asym_tl = tl;
1888 			}
1889 next_level:
1890 			tl_id++;
1891 		}
1892 	}
1893 
1894 	return asym_tl;
1895 }
1896 
1897 
1898 /*
1899  * Build sched domains for a given set of CPUs and attach the sched domains
1900  * to the individual CPUs
1901  */
1902 static int
1903 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1904 {
1905 	enum s_alloc alloc_state;
1906 	struct sched_domain *sd;
1907 	struct s_data d;
1908 	struct rq *rq = NULL;
1909 	int i, ret = -ENOMEM;
1910 	struct sched_domain_topology_level *tl_asym;
1911 	bool has_asym = false;
1912 
1913 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1914 	if (alloc_state != sa_rootdomain)
1915 		goto error;
1916 
1917 	tl_asym = asym_cpu_capacity_level(cpu_map);
1918 
1919 	/* Set up domains for CPUs specified by the cpu_map: */
1920 	for_each_cpu(i, cpu_map) {
1921 		struct sched_domain_topology_level *tl;
1922 
1923 		sd = NULL;
1924 		for_each_sd_topology(tl) {
1925 			int dflags = 0;
1926 
1927 			if (tl == tl_asym) {
1928 				dflags |= SD_ASYM_CPUCAPACITY;
1929 				has_asym = true;
1930 			}
1931 
1932 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1933 
1934 			if (tl == sched_domain_topology)
1935 				*per_cpu_ptr(d.sd, i) = sd;
1936 			if (tl->flags & SDTL_OVERLAP)
1937 				sd->flags |= SD_OVERLAP;
1938 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1939 				break;
1940 		}
1941 	}
1942 
1943 	/* Build the groups for the domains */
1944 	for_each_cpu(i, cpu_map) {
1945 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1946 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1947 			if (sd->flags & SD_OVERLAP) {
1948 				if (build_overlap_sched_groups(sd, i))
1949 					goto error;
1950 			} else {
1951 				if (build_sched_groups(sd, i))
1952 					goto error;
1953 			}
1954 		}
1955 	}
1956 
1957 	/* Calculate CPU capacity for physical packages and nodes */
1958 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1959 		if (!cpumask_test_cpu(i, cpu_map))
1960 			continue;
1961 
1962 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1963 			claim_allocations(i, sd);
1964 			init_sched_groups_capacity(i, sd);
1965 		}
1966 	}
1967 
1968 	/* Attach the domains */
1969 	rcu_read_lock();
1970 	for_each_cpu(i, cpu_map) {
1971 		rq = cpu_rq(i);
1972 		sd = *per_cpu_ptr(d.sd, i);
1973 
1974 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1975 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1976 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1977 
1978 		cpu_attach_domain(sd, d.rd, i);
1979 	}
1980 	rcu_read_unlock();
1981 
1982 	if (has_asym)
1983 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1984 
1985 	if (rq && sched_debug_enabled) {
1986 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1987 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1988 	}
1989 
1990 	ret = 0;
1991 error:
1992 	__free_domain_allocs(&d, alloc_state, cpu_map);
1993 
1994 	return ret;
1995 }
1996 
1997 /* Current sched domains: */
1998 static cpumask_var_t			*doms_cur;
1999 
2000 /* Number of sched domains in 'doms_cur': */
2001 static int				ndoms_cur;
2002 
2003 /* Attribues of custom domains in 'doms_cur' */
2004 static struct sched_domain_attr		*dattr_cur;
2005 
2006 /*
2007  * Special case: If a kmalloc() of a doms_cur partition (array of
2008  * cpumask) fails, then fallback to a single sched domain,
2009  * as determined by the single cpumask fallback_doms.
2010  */
2011 static cpumask_var_t			fallback_doms;
2012 
2013 /*
2014  * arch_update_cpu_topology lets virtualized architectures update the
2015  * CPU core maps. It is supposed to return 1 if the topology changed
2016  * or 0 if it stayed the same.
2017  */
2018 int __weak arch_update_cpu_topology(void)
2019 {
2020 	return 0;
2021 }
2022 
2023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2024 {
2025 	int i;
2026 	cpumask_var_t *doms;
2027 
2028 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2029 	if (!doms)
2030 		return NULL;
2031 	for (i = 0; i < ndoms; i++) {
2032 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2033 			free_sched_domains(doms, i);
2034 			return NULL;
2035 		}
2036 	}
2037 	return doms;
2038 }
2039 
2040 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2041 {
2042 	unsigned int i;
2043 	for (i = 0; i < ndoms; i++)
2044 		free_cpumask_var(doms[i]);
2045 	kfree(doms);
2046 }
2047 
2048 /*
2049  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2050  * For now this just excludes isolated CPUs, but could be used to
2051  * exclude other special cases in the future.
2052  */
2053 int sched_init_domains(const struct cpumask *cpu_map)
2054 {
2055 	int err;
2056 
2057 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2058 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2059 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2060 
2061 	arch_update_cpu_topology();
2062 	ndoms_cur = 1;
2063 	doms_cur = alloc_sched_domains(ndoms_cur);
2064 	if (!doms_cur)
2065 		doms_cur = &fallback_doms;
2066 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2067 	err = build_sched_domains(doms_cur[0], NULL);
2068 	register_sched_domain_sysctl();
2069 
2070 	return err;
2071 }
2072 
2073 /*
2074  * Detach sched domains from a group of CPUs specified in cpu_map
2075  * These CPUs will now be attached to the NULL domain
2076  */
2077 static void detach_destroy_domains(const struct cpumask *cpu_map)
2078 {
2079 	int i;
2080 
2081 	rcu_read_lock();
2082 	for_each_cpu(i, cpu_map)
2083 		cpu_attach_domain(NULL, &def_root_domain, i);
2084 	rcu_read_unlock();
2085 }
2086 
2087 /* handle null as "default" */
2088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2089 			struct sched_domain_attr *new, int idx_new)
2090 {
2091 	struct sched_domain_attr tmp;
2092 
2093 	/* Fast path: */
2094 	if (!new && !cur)
2095 		return 1;
2096 
2097 	tmp = SD_ATTR_INIT;
2098 
2099 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2100 			new ? (new + idx_new) : &tmp,
2101 			sizeof(struct sched_domain_attr));
2102 }
2103 
2104 /*
2105  * Partition sched domains as specified by the 'ndoms_new'
2106  * cpumasks in the array doms_new[] of cpumasks. This compares
2107  * doms_new[] to the current sched domain partitioning, doms_cur[].
2108  * It destroys each deleted domain and builds each new domain.
2109  *
2110  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2111  * The masks don't intersect (don't overlap.) We should setup one
2112  * sched domain for each mask. CPUs not in any of the cpumasks will
2113  * not be load balanced. If the same cpumask appears both in the
2114  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2115  * it as it is.
2116  *
2117  * The passed in 'doms_new' should be allocated using
2118  * alloc_sched_domains.  This routine takes ownership of it and will
2119  * free_sched_domains it when done with it. If the caller failed the
2120  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2121  * and partition_sched_domains() will fallback to the single partition
2122  * 'fallback_doms', it also forces the domains to be rebuilt.
2123  *
2124  * If doms_new == NULL it will be replaced with cpu_online_mask.
2125  * ndoms_new == 0 is a special case for destroying existing domains,
2126  * and it will not create the default domain.
2127  *
2128  * Call with hotplug lock held
2129  */
2130 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2131 			     struct sched_domain_attr *dattr_new)
2132 {
2133 	bool __maybe_unused has_eas = false;
2134 	int i, j, n;
2135 	int new_topology;
2136 
2137 	mutex_lock(&sched_domains_mutex);
2138 
2139 	/* Always unregister in case we don't destroy any domains: */
2140 	unregister_sched_domain_sysctl();
2141 
2142 	/* Let the architecture update CPU core mappings: */
2143 	new_topology = arch_update_cpu_topology();
2144 
2145 	if (!doms_new) {
2146 		WARN_ON_ONCE(dattr_new);
2147 		n = 0;
2148 		doms_new = alloc_sched_domains(1);
2149 		if (doms_new) {
2150 			n = 1;
2151 			cpumask_and(doms_new[0], cpu_active_mask,
2152 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2153 		}
2154 	} else {
2155 		n = ndoms_new;
2156 	}
2157 
2158 	/* Destroy deleted domains: */
2159 	for (i = 0; i < ndoms_cur; i++) {
2160 		for (j = 0; j < n && !new_topology; j++) {
2161 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2162 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2163 				goto match1;
2164 		}
2165 		/* No match - a current sched domain not in new doms_new[] */
2166 		detach_destroy_domains(doms_cur[i]);
2167 match1:
2168 		;
2169 	}
2170 
2171 	n = ndoms_cur;
2172 	if (!doms_new) {
2173 		n = 0;
2174 		doms_new = &fallback_doms;
2175 		cpumask_and(doms_new[0], cpu_active_mask,
2176 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2177 	}
2178 
2179 	/* Build new domains: */
2180 	for (i = 0; i < ndoms_new; i++) {
2181 		for (j = 0; j < n && !new_topology; j++) {
2182 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2183 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2184 				goto match2;
2185 		}
2186 		/* No match - add a new doms_new */
2187 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2188 match2:
2189 		;
2190 	}
2191 
2192 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2193 	/* Build perf. domains: */
2194 	for (i = 0; i < ndoms_new; i++) {
2195 		for (j = 0; j < n && !sched_energy_update; j++) {
2196 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2197 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2198 				has_eas = true;
2199 				goto match3;
2200 			}
2201 		}
2202 		/* No match - add perf. domains for a new rd */
2203 		has_eas |= build_perf_domains(doms_new[i]);
2204 match3:
2205 		;
2206 	}
2207 	sched_energy_set(has_eas);
2208 #endif
2209 
2210 	/* Remember the new sched domains: */
2211 	if (doms_cur != &fallback_doms)
2212 		free_sched_domains(doms_cur, ndoms_cur);
2213 
2214 	kfree(dattr_cur);
2215 	doms_cur = doms_new;
2216 	dattr_cur = dattr_new;
2217 	ndoms_cur = ndoms_new;
2218 
2219 	register_sched_domain_sysctl();
2220 
2221 	mutex_unlock(&sched_domains_mutex);
2222 }
2223