xref: /openbmc/linux/kernel/sched/topology.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 DEFINE_MUTEX(sched_domains_mutex);
7 
8 /* Protected by sched_domains_mutex: */
9 static cpumask_var_t sched_domains_tmpmask;
10 static cpumask_var_t sched_domains_tmpmask2;
11 
12 #ifdef CONFIG_SCHED_DEBUG
13 
14 static int __init sched_debug_setup(char *str)
15 {
16 	sched_debug_verbose = true;
17 
18 	return 0;
19 }
20 early_param("sched_verbose", sched_debug_setup);
21 
22 static inline bool sched_debug(void)
23 {
24 	return sched_debug_verbose;
25 }
26 
27 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
28 const struct sd_flag_debug sd_flag_debug[] = {
29 #include <linux/sched/sd_flags.h>
30 };
31 #undef SD_FLAG
32 
33 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
34 				  struct cpumask *groupmask)
35 {
36 	struct sched_group *group = sd->groups;
37 	unsigned long flags = sd->flags;
38 	unsigned int idx;
39 
40 	cpumask_clear(groupmask);
41 
42 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
43 	printk(KERN_CONT "span=%*pbl level=%s\n",
44 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
45 
46 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
47 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
48 	}
49 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
50 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
51 	}
52 
53 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
54 		unsigned int flag = BIT(idx);
55 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
56 
57 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
58 		    !(sd->child->flags & flag))
59 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
60 			       sd_flag_debug[idx].name);
61 
62 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
63 		    !(sd->parent->flags & flag))
64 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
65 			       sd_flag_debug[idx].name);
66 	}
67 
68 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
69 	do {
70 		if (!group) {
71 			printk("\n");
72 			printk(KERN_ERR "ERROR: group is NULL\n");
73 			break;
74 		}
75 
76 		if (cpumask_empty(sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: empty group\n");
79 			break;
80 		}
81 
82 		if (!(sd->flags & SD_OVERLAP) &&
83 		    cpumask_intersects(groupmask, sched_group_span(group))) {
84 			printk(KERN_CONT "\n");
85 			printk(KERN_ERR "ERROR: repeated CPUs\n");
86 			break;
87 		}
88 
89 		cpumask_or(groupmask, groupmask, sched_group_span(group));
90 
91 		printk(KERN_CONT " %d:{ span=%*pbl",
92 				group->sgc->id,
93 				cpumask_pr_args(sched_group_span(group)));
94 
95 		if ((sd->flags & SD_OVERLAP) &&
96 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
97 			printk(KERN_CONT " mask=%*pbl",
98 				cpumask_pr_args(group_balance_mask(group)));
99 		}
100 
101 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
102 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
103 
104 		if (group == sd->groups && sd->child &&
105 		    !cpumask_equal(sched_domain_span(sd->child),
106 				   sched_group_span(group))) {
107 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
108 		}
109 
110 		printk(KERN_CONT " }");
111 
112 		group = group->next;
113 
114 		if (group != sd->groups)
115 			printk(KERN_CONT ",");
116 
117 	} while (group != sd->groups);
118 	printk(KERN_CONT "\n");
119 
120 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
121 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
122 
123 	if (sd->parent &&
124 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
125 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
126 	return 0;
127 }
128 
129 static void sched_domain_debug(struct sched_domain *sd, int cpu)
130 {
131 	int level = 0;
132 
133 	if (!sched_debug_verbose)
134 		return;
135 
136 	if (!sd) {
137 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
138 		return;
139 	}
140 
141 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
142 
143 	for (;;) {
144 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
145 			break;
146 		level++;
147 		sd = sd->parent;
148 		if (!sd)
149 			break;
150 	}
151 }
152 #else /* !CONFIG_SCHED_DEBUG */
153 
154 # define sched_debug_verbose 0
155 # define sched_domain_debug(sd, cpu) do { } while (0)
156 static inline bool sched_debug(void)
157 {
158 	return false;
159 }
160 #endif /* CONFIG_SCHED_DEBUG */
161 
162 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
163 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
164 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
165 #include <linux/sched/sd_flags.h>
166 0;
167 #undef SD_FLAG
168 
169 static int sd_degenerate(struct sched_domain *sd)
170 {
171 	if (cpumask_weight(sched_domain_span(sd)) == 1)
172 		return 1;
173 
174 	/* Following flags need at least 2 groups */
175 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
176 	    (sd->groups != sd->groups->next))
177 		return 0;
178 
179 	/* Following flags don't use groups */
180 	if (sd->flags & (SD_WAKE_AFFINE))
181 		return 0;
182 
183 	return 1;
184 }
185 
186 static int
187 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
188 {
189 	unsigned long cflags = sd->flags, pflags = parent->flags;
190 
191 	if (sd_degenerate(parent))
192 		return 1;
193 
194 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
195 		return 0;
196 
197 	/* Flags needing groups don't count if only 1 group in parent */
198 	if (parent->groups == parent->groups->next)
199 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
200 
201 	if (~cflags & pflags)
202 		return 0;
203 
204 	return 1;
205 }
206 
207 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
208 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
209 unsigned int sysctl_sched_energy_aware = 1;
210 DEFINE_MUTEX(sched_energy_mutex);
211 bool sched_energy_update;
212 
213 void rebuild_sched_domains_energy(void)
214 {
215 	mutex_lock(&sched_energy_mutex);
216 	sched_energy_update = true;
217 	rebuild_sched_domains();
218 	sched_energy_update = false;
219 	mutex_unlock(&sched_energy_mutex);
220 }
221 
222 #ifdef CONFIG_PROC_SYSCTL
223 int sched_energy_aware_handler(struct ctl_table *table, int write,
224 		void *buffer, size_t *lenp, loff_t *ppos)
225 {
226 	int ret, state;
227 
228 	if (write && !capable(CAP_SYS_ADMIN))
229 		return -EPERM;
230 
231 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
232 	if (!ret && write) {
233 		state = static_branch_unlikely(&sched_energy_present);
234 		if (state != sysctl_sched_energy_aware)
235 			rebuild_sched_domains_energy();
236 	}
237 
238 	return ret;
239 }
240 #endif
241 
242 static void free_pd(struct perf_domain *pd)
243 {
244 	struct perf_domain *tmp;
245 
246 	while (pd) {
247 		tmp = pd->next;
248 		kfree(pd);
249 		pd = tmp;
250 	}
251 }
252 
253 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
254 {
255 	while (pd) {
256 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
257 			return pd;
258 		pd = pd->next;
259 	}
260 
261 	return NULL;
262 }
263 
264 static struct perf_domain *pd_init(int cpu)
265 {
266 	struct em_perf_domain *obj = em_cpu_get(cpu);
267 	struct perf_domain *pd;
268 
269 	if (!obj) {
270 		if (sched_debug())
271 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
272 		return NULL;
273 	}
274 
275 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
276 	if (!pd)
277 		return NULL;
278 	pd->em_pd = obj;
279 
280 	return pd;
281 }
282 
283 static void perf_domain_debug(const struct cpumask *cpu_map,
284 						struct perf_domain *pd)
285 {
286 	if (!sched_debug() || !pd)
287 		return;
288 
289 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
290 
291 	while (pd) {
292 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
293 				cpumask_first(perf_domain_span(pd)),
294 				cpumask_pr_args(perf_domain_span(pd)),
295 				em_pd_nr_perf_states(pd->em_pd));
296 		pd = pd->next;
297 	}
298 
299 	printk(KERN_CONT "\n");
300 }
301 
302 static void destroy_perf_domain_rcu(struct rcu_head *rp)
303 {
304 	struct perf_domain *pd;
305 
306 	pd = container_of(rp, struct perf_domain, rcu);
307 	free_pd(pd);
308 }
309 
310 static void sched_energy_set(bool has_eas)
311 {
312 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
313 		if (sched_debug())
314 			pr_info("%s: stopping EAS\n", __func__);
315 		static_branch_disable_cpuslocked(&sched_energy_present);
316 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
317 		if (sched_debug())
318 			pr_info("%s: starting EAS\n", __func__);
319 		static_branch_enable_cpuslocked(&sched_energy_present);
320 	}
321 }
322 
323 /*
324  * EAS can be used on a root domain if it meets all the following conditions:
325  *    1. an Energy Model (EM) is available;
326  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
327  *    3. no SMT is detected.
328  *    4. the EM complexity is low enough to keep scheduling overheads low;
329  *    5. schedutil is driving the frequency of all CPUs of the rd;
330  *    6. frequency invariance support is present;
331  *
332  * The complexity of the Energy Model is defined as:
333  *
334  *              C = nr_pd * (nr_cpus + nr_ps)
335  *
336  * with parameters defined as:
337  *  - nr_pd:    the number of performance domains
338  *  - nr_cpus:  the number of CPUs
339  *  - nr_ps:    the sum of the number of performance states of all performance
340  *              domains (for example, on a system with 2 performance domains,
341  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
342  *
343  * It is generally not a good idea to use such a model in the wake-up path on
344  * very complex platforms because of the associated scheduling overheads. The
345  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
346  * with per-CPU DVFS and less than 8 performance states each, for example.
347  */
348 #define EM_MAX_COMPLEXITY 2048
349 
350 extern struct cpufreq_governor schedutil_gov;
351 static bool build_perf_domains(const struct cpumask *cpu_map)
352 {
353 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
354 	struct perf_domain *pd = NULL, *tmp;
355 	int cpu = cpumask_first(cpu_map);
356 	struct root_domain *rd = cpu_rq(cpu)->rd;
357 	struct cpufreq_policy *policy;
358 	struct cpufreq_governor *gov;
359 
360 	if (!sysctl_sched_energy_aware)
361 		goto free;
362 
363 	/* EAS is enabled for asymmetric CPU capacity topologies. */
364 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
365 		if (sched_debug()) {
366 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
367 					cpumask_pr_args(cpu_map));
368 		}
369 		goto free;
370 	}
371 
372 	/* EAS definitely does *not* handle SMT */
373 	if (sched_smt_active()) {
374 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
375 			cpumask_pr_args(cpu_map));
376 		goto free;
377 	}
378 
379 	if (!arch_scale_freq_invariant()) {
380 		if (sched_debug()) {
381 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
382 				cpumask_pr_args(cpu_map));
383 		}
384 		goto free;
385 	}
386 
387 	for_each_cpu(i, cpu_map) {
388 		/* Skip already covered CPUs. */
389 		if (find_pd(pd, i))
390 			continue;
391 
392 		/* Do not attempt EAS if schedutil is not being used. */
393 		policy = cpufreq_cpu_get(i);
394 		if (!policy)
395 			goto free;
396 		gov = policy->governor;
397 		cpufreq_cpu_put(policy);
398 		if (gov != &schedutil_gov) {
399 			if (rd->pd)
400 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
401 						cpumask_pr_args(cpu_map));
402 			goto free;
403 		}
404 
405 		/* Create the new pd and add it to the local list. */
406 		tmp = pd_init(i);
407 		if (!tmp)
408 			goto free;
409 		tmp->next = pd;
410 		pd = tmp;
411 
412 		/*
413 		 * Count performance domains and performance states for the
414 		 * complexity check.
415 		 */
416 		nr_pd++;
417 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
418 	}
419 
420 	/* Bail out if the Energy Model complexity is too high. */
421 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
422 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
423 						cpumask_pr_args(cpu_map));
424 		goto free;
425 	}
426 
427 	perf_domain_debug(cpu_map, pd);
428 
429 	/* Attach the new list of performance domains to the root domain. */
430 	tmp = rd->pd;
431 	rcu_assign_pointer(rd->pd, pd);
432 	if (tmp)
433 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
434 
435 	return !!pd;
436 
437 free:
438 	free_pd(pd);
439 	tmp = rd->pd;
440 	rcu_assign_pointer(rd->pd, NULL);
441 	if (tmp)
442 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
443 
444 	return false;
445 }
446 #else
447 static void free_pd(struct perf_domain *pd) { }
448 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
449 
450 static void free_rootdomain(struct rcu_head *rcu)
451 {
452 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
453 
454 	cpupri_cleanup(&rd->cpupri);
455 	cpudl_cleanup(&rd->cpudl);
456 	free_cpumask_var(rd->dlo_mask);
457 	free_cpumask_var(rd->rto_mask);
458 	free_cpumask_var(rd->online);
459 	free_cpumask_var(rd->span);
460 	free_pd(rd->pd);
461 	kfree(rd);
462 }
463 
464 void rq_attach_root(struct rq *rq, struct root_domain *rd)
465 {
466 	struct root_domain *old_rd = NULL;
467 	unsigned long flags;
468 
469 	raw_spin_rq_lock_irqsave(rq, flags);
470 
471 	if (rq->rd) {
472 		old_rd = rq->rd;
473 
474 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
475 			set_rq_offline(rq);
476 
477 		cpumask_clear_cpu(rq->cpu, old_rd->span);
478 
479 		/*
480 		 * If we dont want to free the old_rd yet then
481 		 * set old_rd to NULL to skip the freeing later
482 		 * in this function:
483 		 */
484 		if (!atomic_dec_and_test(&old_rd->refcount))
485 			old_rd = NULL;
486 	}
487 
488 	atomic_inc(&rd->refcount);
489 	rq->rd = rd;
490 
491 	cpumask_set_cpu(rq->cpu, rd->span);
492 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
493 		set_rq_online(rq);
494 
495 	raw_spin_rq_unlock_irqrestore(rq, flags);
496 
497 	if (old_rd)
498 		call_rcu(&old_rd->rcu, free_rootdomain);
499 }
500 
501 void sched_get_rd(struct root_domain *rd)
502 {
503 	atomic_inc(&rd->refcount);
504 }
505 
506 void sched_put_rd(struct root_domain *rd)
507 {
508 	if (!atomic_dec_and_test(&rd->refcount))
509 		return;
510 
511 	call_rcu(&rd->rcu, free_rootdomain);
512 }
513 
514 static int init_rootdomain(struct root_domain *rd)
515 {
516 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
517 		goto out;
518 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
519 		goto free_span;
520 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
521 		goto free_online;
522 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
523 		goto free_dlo_mask;
524 
525 #ifdef HAVE_RT_PUSH_IPI
526 	rd->rto_cpu = -1;
527 	raw_spin_lock_init(&rd->rto_lock);
528 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
529 #endif
530 
531 	rd->visit_gen = 0;
532 	init_dl_bw(&rd->dl_bw);
533 	if (cpudl_init(&rd->cpudl) != 0)
534 		goto free_rto_mask;
535 
536 	if (cpupri_init(&rd->cpupri) != 0)
537 		goto free_cpudl;
538 	return 0;
539 
540 free_cpudl:
541 	cpudl_cleanup(&rd->cpudl);
542 free_rto_mask:
543 	free_cpumask_var(rd->rto_mask);
544 free_dlo_mask:
545 	free_cpumask_var(rd->dlo_mask);
546 free_online:
547 	free_cpumask_var(rd->online);
548 free_span:
549 	free_cpumask_var(rd->span);
550 out:
551 	return -ENOMEM;
552 }
553 
554 /*
555  * By default the system creates a single root-domain with all CPUs as
556  * members (mimicking the global state we have today).
557  */
558 struct root_domain def_root_domain;
559 
560 void init_defrootdomain(void)
561 {
562 	init_rootdomain(&def_root_domain);
563 
564 	atomic_set(&def_root_domain.refcount, 1);
565 }
566 
567 static struct root_domain *alloc_rootdomain(void)
568 {
569 	struct root_domain *rd;
570 
571 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
572 	if (!rd)
573 		return NULL;
574 
575 	if (init_rootdomain(rd) != 0) {
576 		kfree(rd);
577 		return NULL;
578 	}
579 
580 	return rd;
581 }
582 
583 static void free_sched_groups(struct sched_group *sg, int free_sgc)
584 {
585 	struct sched_group *tmp, *first;
586 
587 	if (!sg)
588 		return;
589 
590 	first = sg;
591 	do {
592 		tmp = sg->next;
593 
594 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
595 			kfree(sg->sgc);
596 
597 		if (atomic_dec_and_test(&sg->ref))
598 			kfree(sg);
599 		sg = tmp;
600 	} while (sg != first);
601 }
602 
603 static void destroy_sched_domain(struct sched_domain *sd)
604 {
605 	/*
606 	 * A normal sched domain may have multiple group references, an
607 	 * overlapping domain, having private groups, only one.  Iterate,
608 	 * dropping group/capacity references, freeing where none remain.
609 	 */
610 	free_sched_groups(sd->groups, 1);
611 
612 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
613 		kfree(sd->shared);
614 	kfree(sd);
615 }
616 
617 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
618 {
619 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
620 
621 	while (sd) {
622 		struct sched_domain *parent = sd->parent;
623 		destroy_sched_domain(sd);
624 		sd = parent;
625 	}
626 }
627 
628 static void destroy_sched_domains(struct sched_domain *sd)
629 {
630 	if (sd)
631 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
632 }
633 
634 /*
635  * Keep a special pointer to the highest sched_domain that has
636  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
637  * allows us to avoid some pointer chasing select_idle_sibling().
638  *
639  * Also keep a unique ID per domain (we use the first CPU number in
640  * the cpumask of the domain), this allows us to quickly tell if
641  * two CPUs are in the same cache domain, see cpus_share_cache().
642  */
643 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
644 DEFINE_PER_CPU(int, sd_llc_size);
645 DEFINE_PER_CPU(int, sd_llc_id);
646 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
647 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
650 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
651 
652 static void update_top_cache_domain(int cpu)
653 {
654 	struct sched_domain_shared *sds = NULL;
655 	struct sched_domain *sd;
656 	int id = cpu;
657 	int size = 1;
658 
659 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
660 	if (sd) {
661 		id = cpumask_first(sched_domain_span(sd));
662 		size = cpumask_weight(sched_domain_span(sd));
663 		sds = sd->shared;
664 	}
665 
666 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
667 	per_cpu(sd_llc_size, cpu) = size;
668 	per_cpu(sd_llc_id, cpu) = id;
669 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
670 
671 	sd = lowest_flag_domain(cpu, SD_NUMA);
672 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
673 
674 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
675 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
676 
677 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
678 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
679 }
680 
681 /*
682  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
683  * hold the hotplug lock.
684  */
685 static void
686 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
687 {
688 	struct rq *rq = cpu_rq(cpu);
689 	struct sched_domain *tmp;
690 
691 	/* Remove the sched domains which do not contribute to scheduling. */
692 	for (tmp = sd; tmp; ) {
693 		struct sched_domain *parent = tmp->parent;
694 		if (!parent)
695 			break;
696 
697 		if (sd_parent_degenerate(tmp, parent)) {
698 			tmp->parent = parent->parent;
699 			if (parent->parent)
700 				parent->parent->child = tmp;
701 			/*
702 			 * Transfer SD_PREFER_SIBLING down in case of a
703 			 * degenerate parent; the spans match for this
704 			 * so the property transfers.
705 			 */
706 			if (parent->flags & SD_PREFER_SIBLING)
707 				tmp->flags |= SD_PREFER_SIBLING;
708 			destroy_sched_domain(parent);
709 		} else
710 			tmp = tmp->parent;
711 	}
712 
713 	if (sd && sd_degenerate(sd)) {
714 		tmp = sd;
715 		sd = sd->parent;
716 		destroy_sched_domain(tmp);
717 		if (sd) {
718 			struct sched_group *sg = sd->groups;
719 
720 			/*
721 			 * sched groups hold the flags of the child sched
722 			 * domain for convenience. Clear such flags since
723 			 * the child is being destroyed.
724 			 */
725 			do {
726 				sg->flags = 0;
727 			} while (sg != sd->groups);
728 
729 			sd->child = NULL;
730 		}
731 	}
732 
733 	sched_domain_debug(sd, cpu);
734 
735 	rq_attach_root(rq, rd);
736 	tmp = rq->sd;
737 	rcu_assign_pointer(rq->sd, sd);
738 	dirty_sched_domain_sysctl(cpu);
739 	destroy_sched_domains(tmp);
740 
741 	update_top_cache_domain(cpu);
742 }
743 
744 struct s_data {
745 	struct sched_domain * __percpu *sd;
746 	struct root_domain	*rd;
747 };
748 
749 enum s_alloc {
750 	sa_rootdomain,
751 	sa_sd,
752 	sa_sd_storage,
753 	sa_none,
754 };
755 
756 /*
757  * Return the canonical balance CPU for this group, this is the first CPU
758  * of this group that's also in the balance mask.
759  *
760  * The balance mask are all those CPUs that could actually end up at this
761  * group. See build_balance_mask().
762  *
763  * Also see should_we_balance().
764  */
765 int group_balance_cpu(struct sched_group *sg)
766 {
767 	return cpumask_first(group_balance_mask(sg));
768 }
769 
770 
771 /*
772  * NUMA topology (first read the regular topology blurb below)
773  *
774  * Given a node-distance table, for example:
775  *
776  *   node   0   1   2   3
777  *     0:  10  20  30  20
778  *     1:  20  10  20  30
779  *     2:  30  20  10  20
780  *     3:  20  30  20  10
781  *
782  * which represents a 4 node ring topology like:
783  *
784  *   0 ----- 1
785  *   |       |
786  *   |       |
787  *   |       |
788  *   3 ----- 2
789  *
790  * We want to construct domains and groups to represent this. The way we go
791  * about doing this is to build the domains on 'hops'. For each NUMA level we
792  * construct the mask of all nodes reachable in @level hops.
793  *
794  * For the above NUMA topology that gives 3 levels:
795  *
796  * NUMA-2	0-3		0-3		0-3		0-3
797  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
798  *
799  * NUMA-1	0-1,3		0-2		1-3		0,2-3
800  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
801  *
802  * NUMA-0	0		1		2		3
803  *
804  *
805  * As can be seen; things don't nicely line up as with the regular topology.
806  * When we iterate a domain in child domain chunks some nodes can be
807  * represented multiple times -- hence the "overlap" naming for this part of
808  * the topology.
809  *
810  * In order to minimize this overlap, we only build enough groups to cover the
811  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
812  *
813  * Because:
814  *
815  *  - the first group of each domain is its child domain; this
816  *    gets us the first 0-1,3
817  *  - the only uncovered node is 2, who's child domain is 1-3.
818  *
819  * However, because of the overlap, computing a unique CPU for each group is
820  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
821  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
822  * end up at those groups (they would end up in group: 0-1,3).
823  *
824  * To correct this we have to introduce the group balance mask. This mask
825  * will contain those CPUs in the group that can reach this group given the
826  * (child) domain tree.
827  *
828  * With this we can once again compute balance_cpu and sched_group_capacity
829  * relations.
830  *
831  * XXX include words on how balance_cpu is unique and therefore can be
832  * used for sched_group_capacity links.
833  *
834  *
835  * Another 'interesting' topology is:
836  *
837  *   node   0   1   2   3
838  *     0:  10  20  20  30
839  *     1:  20  10  20  20
840  *     2:  20  20  10  20
841  *     3:  30  20  20  10
842  *
843  * Which looks a little like:
844  *
845  *   0 ----- 1
846  *   |     / |
847  *   |   /   |
848  *   | /     |
849  *   2 ----- 3
850  *
851  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
852  * are not.
853  *
854  * This leads to a few particularly weird cases where the sched_domain's are
855  * not of the same number for each CPU. Consider:
856  *
857  * NUMA-2	0-3						0-3
858  *  groups:	{0-2},{1-3}					{1-3},{0-2}
859  *
860  * NUMA-1	0-2		0-3		0-3		1-3
861  *
862  * NUMA-0	0		1		2		3
863  *
864  */
865 
866 
867 /*
868  * Build the balance mask; it contains only those CPUs that can arrive at this
869  * group and should be considered to continue balancing.
870  *
871  * We do this during the group creation pass, therefore the group information
872  * isn't complete yet, however since each group represents a (child) domain we
873  * can fully construct this using the sched_domain bits (which are already
874  * complete).
875  */
876 static void
877 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
878 {
879 	const struct cpumask *sg_span = sched_group_span(sg);
880 	struct sd_data *sdd = sd->private;
881 	struct sched_domain *sibling;
882 	int i;
883 
884 	cpumask_clear(mask);
885 
886 	for_each_cpu(i, sg_span) {
887 		sibling = *per_cpu_ptr(sdd->sd, i);
888 
889 		/*
890 		 * Can happen in the asymmetric case, where these siblings are
891 		 * unused. The mask will not be empty because those CPUs that
892 		 * do have the top domain _should_ span the domain.
893 		 */
894 		if (!sibling->child)
895 			continue;
896 
897 		/* If we would not end up here, we can't continue from here */
898 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
899 			continue;
900 
901 		cpumask_set_cpu(i, mask);
902 	}
903 
904 	/* We must not have empty masks here */
905 	WARN_ON_ONCE(cpumask_empty(mask));
906 }
907 
908 /*
909  * XXX: This creates per-node group entries; since the load-balancer will
910  * immediately access remote memory to construct this group's load-balance
911  * statistics having the groups node local is of dubious benefit.
912  */
913 static struct sched_group *
914 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
915 {
916 	struct sched_group *sg;
917 	struct cpumask *sg_span;
918 
919 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
920 			GFP_KERNEL, cpu_to_node(cpu));
921 
922 	if (!sg)
923 		return NULL;
924 
925 	sg_span = sched_group_span(sg);
926 	if (sd->child) {
927 		cpumask_copy(sg_span, sched_domain_span(sd->child));
928 		sg->flags = sd->child->flags;
929 	} else {
930 		cpumask_copy(sg_span, sched_domain_span(sd));
931 	}
932 
933 	atomic_inc(&sg->ref);
934 	return sg;
935 }
936 
937 static void init_overlap_sched_group(struct sched_domain *sd,
938 				     struct sched_group *sg)
939 {
940 	struct cpumask *mask = sched_domains_tmpmask2;
941 	struct sd_data *sdd = sd->private;
942 	struct cpumask *sg_span;
943 	int cpu;
944 
945 	build_balance_mask(sd, sg, mask);
946 	cpu = cpumask_first(mask);
947 
948 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
949 	if (atomic_inc_return(&sg->sgc->ref) == 1)
950 		cpumask_copy(group_balance_mask(sg), mask);
951 	else
952 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
953 
954 	/*
955 	 * Initialize sgc->capacity such that even if we mess up the
956 	 * domains and no possible iteration will get us here, we won't
957 	 * die on a /0 trap.
958 	 */
959 	sg_span = sched_group_span(sg);
960 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
961 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
962 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
963 }
964 
965 static struct sched_domain *
966 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
967 {
968 	/*
969 	 * The proper descendant would be the one whose child won't span out
970 	 * of sd
971 	 */
972 	while (sibling->child &&
973 	       !cpumask_subset(sched_domain_span(sibling->child),
974 			       sched_domain_span(sd)))
975 		sibling = sibling->child;
976 
977 	/*
978 	 * As we are referencing sgc across different topology level, we need
979 	 * to go down to skip those sched_domains which don't contribute to
980 	 * scheduling because they will be degenerated in cpu_attach_domain
981 	 */
982 	while (sibling->child &&
983 	       cpumask_equal(sched_domain_span(sibling->child),
984 			     sched_domain_span(sibling)))
985 		sibling = sibling->child;
986 
987 	return sibling;
988 }
989 
990 static int
991 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
992 {
993 	struct sched_group *first = NULL, *last = NULL, *sg;
994 	const struct cpumask *span = sched_domain_span(sd);
995 	struct cpumask *covered = sched_domains_tmpmask;
996 	struct sd_data *sdd = sd->private;
997 	struct sched_domain *sibling;
998 	int i;
999 
1000 	cpumask_clear(covered);
1001 
1002 	for_each_cpu_wrap(i, span, cpu) {
1003 		struct cpumask *sg_span;
1004 
1005 		if (cpumask_test_cpu(i, covered))
1006 			continue;
1007 
1008 		sibling = *per_cpu_ptr(sdd->sd, i);
1009 
1010 		/*
1011 		 * Asymmetric node setups can result in situations where the
1012 		 * domain tree is of unequal depth, make sure to skip domains
1013 		 * that already cover the entire range.
1014 		 *
1015 		 * In that case build_sched_domains() will have terminated the
1016 		 * iteration early and our sibling sd spans will be empty.
1017 		 * Domains should always include the CPU they're built on, so
1018 		 * check that.
1019 		 */
1020 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1021 			continue;
1022 
1023 		/*
1024 		 * Usually we build sched_group by sibling's child sched_domain
1025 		 * But for machines whose NUMA diameter are 3 or above, we move
1026 		 * to build sched_group by sibling's proper descendant's child
1027 		 * domain because sibling's child sched_domain will span out of
1028 		 * the sched_domain being built as below.
1029 		 *
1030 		 * Smallest diameter=3 topology is:
1031 		 *
1032 		 *   node   0   1   2   3
1033 		 *     0:  10  20  30  40
1034 		 *     1:  20  10  20  30
1035 		 *     2:  30  20  10  20
1036 		 *     3:  40  30  20  10
1037 		 *
1038 		 *   0 --- 1 --- 2 --- 3
1039 		 *
1040 		 * NUMA-3       0-3             N/A             N/A             0-3
1041 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1042 		 *
1043 		 * NUMA-2       0-2             0-3             0-3             1-3
1044 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1045 		 *
1046 		 * NUMA-1       0-1             0-2             1-3             2-3
1047 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1048 		 *
1049 		 * NUMA-0       0               1               2               3
1050 		 *
1051 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1052 		 * group span isn't a subset of the domain span.
1053 		 */
1054 		if (sibling->child &&
1055 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1056 			sibling = find_descended_sibling(sd, sibling);
1057 
1058 		sg = build_group_from_child_sched_domain(sibling, cpu);
1059 		if (!sg)
1060 			goto fail;
1061 
1062 		sg_span = sched_group_span(sg);
1063 		cpumask_or(covered, covered, sg_span);
1064 
1065 		init_overlap_sched_group(sibling, sg);
1066 
1067 		if (!first)
1068 			first = sg;
1069 		if (last)
1070 			last->next = sg;
1071 		last = sg;
1072 		last->next = first;
1073 	}
1074 	sd->groups = first;
1075 
1076 	return 0;
1077 
1078 fail:
1079 	free_sched_groups(first, 0);
1080 
1081 	return -ENOMEM;
1082 }
1083 
1084 
1085 /*
1086  * Package topology (also see the load-balance blurb in fair.c)
1087  *
1088  * The scheduler builds a tree structure to represent a number of important
1089  * topology features. By default (default_topology[]) these include:
1090  *
1091  *  - Simultaneous multithreading (SMT)
1092  *  - Multi-Core Cache (MC)
1093  *  - Package (DIE)
1094  *
1095  * Where the last one more or less denotes everything up to a NUMA node.
1096  *
1097  * The tree consists of 3 primary data structures:
1098  *
1099  *	sched_domain -> sched_group -> sched_group_capacity
1100  *	    ^ ^             ^ ^
1101  *          `-'             `-'
1102  *
1103  * The sched_domains are per-CPU and have a two way link (parent & child) and
1104  * denote the ever growing mask of CPUs belonging to that level of topology.
1105  *
1106  * Each sched_domain has a circular (double) linked list of sched_group's, each
1107  * denoting the domains of the level below (or individual CPUs in case of the
1108  * first domain level). The sched_group linked by a sched_domain includes the
1109  * CPU of that sched_domain [*].
1110  *
1111  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1112  *
1113  * CPU   0   1   2   3   4   5   6   7
1114  *
1115  * DIE  [                             ]
1116  * MC   [             ] [             ]
1117  * SMT  [     ] [     ] [     ] [     ]
1118  *
1119  *  - or -
1120  *
1121  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1122  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1123  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1124  *
1125  * CPU   0   1   2   3   4   5   6   7
1126  *
1127  * One way to think about it is: sched_domain moves you up and down among these
1128  * topology levels, while sched_group moves you sideways through it, at child
1129  * domain granularity.
1130  *
1131  * sched_group_capacity ensures each unique sched_group has shared storage.
1132  *
1133  * There are two related construction problems, both require a CPU that
1134  * uniquely identify each group (for a given domain):
1135  *
1136  *  - The first is the balance_cpu (see should_we_balance() and the
1137  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1138  *    continue balancing at a higher domain.
1139  *
1140  *  - The second is the sched_group_capacity; we want all identical groups
1141  *    to share a single sched_group_capacity.
1142  *
1143  * Since these topologies are exclusive by construction. That is, its
1144  * impossible for an SMT thread to belong to multiple cores, and cores to
1145  * be part of multiple caches. There is a very clear and unique location
1146  * for each CPU in the hierarchy.
1147  *
1148  * Therefore computing a unique CPU for each group is trivial (the iteration
1149  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1150  * group), we can simply pick the first CPU in each group.
1151  *
1152  *
1153  * [*] in other words, the first group of each domain is its child domain.
1154  */
1155 
1156 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1157 {
1158 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1159 	struct sched_domain *child = sd->child;
1160 	struct sched_group *sg;
1161 	bool already_visited;
1162 
1163 	if (child)
1164 		cpu = cpumask_first(sched_domain_span(child));
1165 
1166 	sg = *per_cpu_ptr(sdd->sg, cpu);
1167 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1168 
1169 	/* Increase refcounts for claim_allocations: */
1170 	already_visited = atomic_inc_return(&sg->ref) > 1;
1171 	/* sgc visits should follow a similar trend as sg */
1172 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1173 
1174 	/* If we have already visited that group, it's already initialized. */
1175 	if (already_visited)
1176 		return sg;
1177 
1178 	if (child) {
1179 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1180 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1181 		sg->flags = child->flags;
1182 	} else {
1183 		cpumask_set_cpu(cpu, sched_group_span(sg));
1184 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1185 	}
1186 
1187 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1188 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1189 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1190 
1191 	return sg;
1192 }
1193 
1194 /*
1195  * build_sched_groups will build a circular linked list of the groups
1196  * covered by the given span, will set each group's ->cpumask correctly,
1197  * and will initialize their ->sgc.
1198  *
1199  * Assumes the sched_domain tree is fully constructed
1200  */
1201 static int
1202 build_sched_groups(struct sched_domain *sd, int cpu)
1203 {
1204 	struct sched_group *first = NULL, *last = NULL;
1205 	struct sd_data *sdd = sd->private;
1206 	const struct cpumask *span = sched_domain_span(sd);
1207 	struct cpumask *covered;
1208 	int i;
1209 
1210 	lockdep_assert_held(&sched_domains_mutex);
1211 	covered = sched_domains_tmpmask;
1212 
1213 	cpumask_clear(covered);
1214 
1215 	for_each_cpu_wrap(i, span, cpu) {
1216 		struct sched_group *sg;
1217 
1218 		if (cpumask_test_cpu(i, covered))
1219 			continue;
1220 
1221 		sg = get_group(i, sdd);
1222 
1223 		cpumask_or(covered, covered, sched_group_span(sg));
1224 
1225 		if (!first)
1226 			first = sg;
1227 		if (last)
1228 			last->next = sg;
1229 		last = sg;
1230 	}
1231 	last->next = first;
1232 	sd->groups = first;
1233 
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Initialize sched groups cpu_capacity.
1239  *
1240  * cpu_capacity indicates the capacity of sched group, which is used while
1241  * distributing the load between different sched groups in a sched domain.
1242  * Typically cpu_capacity for all the groups in a sched domain will be same
1243  * unless there are asymmetries in the topology. If there are asymmetries,
1244  * group having more cpu_capacity will pickup more load compared to the
1245  * group having less cpu_capacity.
1246  */
1247 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1248 {
1249 	struct sched_group *sg = sd->groups;
1250 
1251 	WARN_ON(!sg);
1252 
1253 	do {
1254 		int cpu, max_cpu = -1;
1255 
1256 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1257 
1258 		if (!(sd->flags & SD_ASYM_PACKING))
1259 			goto next;
1260 
1261 		for_each_cpu(cpu, sched_group_span(sg)) {
1262 			if (max_cpu < 0)
1263 				max_cpu = cpu;
1264 			else if (sched_asym_prefer(cpu, max_cpu))
1265 				max_cpu = cpu;
1266 		}
1267 		sg->asym_prefer_cpu = max_cpu;
1268 
1269 next:
1270 		sg = sg->next;
1271 	} while (sg != sd->groups);
1272 
1273 	if (cpu != group_balance_cpu(sg))
1274 		return;
1275 
1276 	update_group_capacity(sd, cpu);
1277 }
1278 
1279 /*
1280  * Asymmetric CPU capacity bits
1281  */
1282 struct asym_cap_data {
1283 	struct list_head link;
1284 	unsigned long capacity;
1285 	unsigned long cpus[];
1286 };
1287 
1288 /*
1289  * Set of available CPUs grouped by their corresponding capacities
1290  * Each list entry contains a CPU mask reflecting CPUs that share the same
1291  * capacity.
1292  * The lifespan of data is unlimited.
1293  */
1294 static LIST_HEAD(asym_cap_list);
1295 
1296 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1297 
1298 /*
1299  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1300  * Provides sd_flags reflecting the asymmetry scope.
1301  */
1302 static inline int
1303 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1304 			   const struct cpumask *cpu_map)
1305 {
1306 	struct asym_cap_data *entry;
1307 	int count = 0, miss = 0;
1308 
1309 	/*
1310 	 * Count how many unique CPU capacities this domain spans across
1311 	 * (compare sched_domain CPUs mask with ones representing  available
1312 	 * CPUs capacities). Take into account CPUs that might be offline:
1313 	 * skip those.
1314 	 */
1315 	list_for_each_entry(entry, &asym_cap_list, link) {
1316 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1317 			++count;
1318 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1319 			++miss;
1320 	}
1321 
1322 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1323 
1324 	/* No asymmetry detected */
1325 	if (count < 2)
1326 		return 0;
1327 	/* Some of the available CPU capacity values have not been detected */
1328 	if (miss)
1329 		return SD_ASYM_CPUCAPACITY;
1330 
1331 	/* Full asymmetry */
1332 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1333 
1334 }
1335 
1336 static inline void asym_cpu_capacity_update_data(int cpu)
1337 {
1338 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1339 	struct asym_cap_data *entry = NULL;
1340 
1341 	list_for_each_entry(entry, &asym_cap_list, link) {
1342 		if (capacity == entry->capacity)
1343 			goto done;
1344 	}
1345 
1346 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1347 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1348 		return;
1349 	entry->capacity = capacity;
1350 	list_add(&entry->link, &asym_cap_list);
1351 done:
1352 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1353 }
1354 
1355 /*
1356  * Build-up/update list of CPUs grouped by their capacities
1357  * An update requires explicit request to rebuild sched domains
1358  * with state indicating CPU topology changes.
1359  */
1360 static void asym_cpu_capacity_scan(void)
1361 {
1362 	struct asym_cap_data *entry, *next;
1363 	int cpu;
1364 
1365 	list_for_each_entry(entry, &asym_cap_list, link)
1366 		cpumask_clear(cpu_capacity_span(entry));
1367 
1368 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1369 		asym_cpu_capacity_update_data(cpu);
1370 
1371 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1372 		if (cpumask_empty(cpu_capacity_span(entry))) {
1373 			list_del(&entry->link);
1374 			kfree(entry);
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Only one capacity value has been detected i.e. this system is symmetric.
1380 	 * No need to keep this data around.
1381 	 */
1382 	if (list_is_singular(&asym_cap_list)) {
1383 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1384 		list_del(&entry->link);
1385 		kfree(entry);
1386 	}
1387 }
1388 
1389 /*
1390  * Initializers for schedule domains
1391  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1392  */
1393 
1394 static int default_relax_domain_level = -1;
1395 int sched_domain_level_max;
1396 
1397 static int __init setup_relax_domain_level(char *str)
1398 {
1399 	if (kstrtoint(str, 0, &default_relax_domain_level))
1400 		pr_warn("Unable to set relax_domain_level\n");
1401 
1402 	return 1;
1403 }
1404 __setup("relax_domain_level=", setup_relax_domain_level);
1405 
1406 static void set_domain_attribute(struct sched_domain *sd,
1407 				 struct sched_domain_attr *attr)
1408 {
1409 	int request;
1410 
1411 	if (!attr || attr->relax_domain_level < 0) {
1412 		if (default_relax_domain_level < 0)
1413 			return;
1414 		request = default_relax_domain_level;
1415 	} else
1416 		request = attr->relax_domain_level;
1417 
1418 	if (sd->level > request) {
1419 		/* Turn off idle balance on this domain: */
1420 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1421 	}
1422 }
1423 
1424 static void __sdt_free(const struct cpumask *cpu_map);
1425 static int __sdt_alloc(const struct cpumask *cpu_map);
1426 
1427 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1428 				 const struct cpumask *cpu_map)
1429 {
1430 	switch (what) {
1431 	case sa_rootdomain:
1432 		if (!atomic_read(&d->rd->refcount))
1433 			free_rootdomain(&d->rd->rcu);
1434 		fallthrough;
1435 	case sa_sd:
1436 		free_percpu(d->sd);
1437 		fallthrough;
1438 	case sa_sd_storage:
1439 		__sdt_free(cpu_map);
1440 		fallthrough;
1441 	case sa_none:
1442 		break;
1443 	}
1444 }
1445 
1446 static enum s_alloc
1447 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1448 {
1449 	memset(d, 0, sizeof(*d));
1450 
1451 	if (__sdt_alloc(cpu_map))
1452 		return sa_sd_storage;
1453 	d->sd = alloc_percpu(struct sched_domain *);
1454 	if (!d->sd)
1455 		return sa_sd_storage;
1456 	d->rd = alloc_rootdomain();
1457 	if (!d->rd)
1458 		return sa_sd;
1459 
1460 	return sa_rootdomain;
1461 }
1462 
1463 /*
1464  * NULL the sd_data elements we've used to build the sched_domain and
1465  * sched_group structure so that the subsequent __free_domain_allocs()
1466  * will not free the data we're using.
1467  */
1468 static void claim_allocations(int cpu, struct sched_domain *sd)
1469 {
1470 	struct sd_data *sdd = sd->private;
1471 
1472 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1473 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1474 
1475 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1476 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1477 
1478 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1479 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1480 
1481 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1482 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1483 }
1484 
1485 #ifdef CONFIG_NUMA
1486 enum numa_topology_type sched_numa_topology_type;
1487 
1488 static int			sched_domains_numa_levels;
1489 static int			sched_domains_curr_level;
1490 
1491 int				sched_max_numa_distance;
1492 static int			*sched_domains_numa_distance;
1493 static struct cpumask		***sched_domains_numa_masks;
1494 #endif
1495 
1496 /*
1497  * SD_flags allowed in topology descriptions.
1498  *
1499  * These flags are purely descriptive of the topology and do not prescribe
1500  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1501  * function:
1502  *
1503  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1504  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1505  *   SD_NUMA                - describes NUMA topologies
1506  *
1507  * Odd one out, which beside describing the topology has a quirk also
1508  * prescribes the desired behaviour that goes along with it:
1509  *
1510  *   SD_ASYM_PACKING        - describes SMT quirks
1511  */
1512 #define TOPOLOGY_SD_FLAGS		\
1513 	(SD_SHARE_CPUCAPACITY	|	\
1514 	 SD_SHARE_PKG_RESOURCES |	\
1515 	 SD_NUMA		|	\
1516 	 SD_ASYM_PACKING)
1517 
1518 static struct sched_domain *
1519 sd_init(struct sched_domain_topology_level *tl,
1520 	const struct cpumask *cpu_map,
1521 	struct sched_domain *child, int cpu)
1522 {
1523 	struct sd_data *sdd = &tl->data;
1524 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1525 	int sd_id, sd_weight, sd_flags = 0;
1526 	struct cpumask *sd_span;
1527 
1528 #ifdef CONFIG_NUMA
1529 	/*
1530 	 * Ugly hack to pass state to sd_numa_mask()...
1531 	 */
1532 	sched_domains_curr_level = tl->numa_level;
1533 #endif
1534 
1535 	sd_weight = cpumask_weight(tl->mask(cpu));
1536 
1537 	if (tl->sd_flags)
1538 		sd_flags = (*tl->sd_flags)();
1539 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1540 			"wrong sd_flags in topology description\n"))
1541 		sd_flags &= TOPOLOGY_SD_FLAGS;
1542 
1543 	*sd = (struct sched_domain){
1544 		.min_interval		= sd_weight,
1545 		.max_interval		= 2*sd_weight,
1546 		.busy_factor		= 16,
1547 		.imbalance_pct		= 117,
1548 
1549 		.cache_nice_tries	= 0,
1550 
1551 		.flags			= 1*SD_BALANCE_NEWIDLE
1552 					| 1*SD_BALANCE_EXEC
1553 					| 1*SD_BALANCE_FORK
1554 					| 0*SD_BALANCE_WAKE
1555 					| 1*SD_WAKE_AFFINE
1556 					| 0*SD_SHARE_CPUCAPACITY
1557 					| 0*SD_SHARE_PKG_RESOURCES
1558 					| 0*SD_SERIALIZE
1559 					| 1*SD_PREFER_SIBLING
1560 					| 0*SD_NUMA
1561 					| sd_flags
1562 					,
1563 
1564 		.last_balance		= jiffies,
1565 		.balance_interval	= sd_weight,
1566 		.max_newidle_lb_cost	= 0,
1567 		.last_decay_max_lb_cost	= jiffies,
1568 		.child			= child,
1569 #ifdef CONFIG_SCHED_DEBUG
1570 		.name			= tl->name,
1571 #endif
1572 	};
1573 
1574 	sd_span = sched_domain_span(sd);
1575 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1576 	sd_id = cpumask_first(sd_span);
1577 
1578 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1579 
1580 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1581 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1582 		  "CPU capacity asymmetry not supported on SMT\n");
1583 
1584 	/*
1585 	 * Convert topological properties into behaviour.
1586 	 */
1587 	/* Don't attempt to spread across CPUs of different capacities. */
1588 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1589 		sd->child->flags &= ~SD_PREFER_SIBLING;
1590 
1591 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1592 		sd->imbalance_pct = 110;
1593 
1594 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1595 		sd->imbalance_pct = 117;
1596 		sd->cache_nice_tries = 1;
1597 
1598 #ifdef CONFIG_NUMA
1599 	} else if (sd->flags & SD_NUMA) {
1600 		sd->cache_nice_tries = 2;
1601 
1602 		sd->flags &= ~SD_PREFER_SIBLING;
1603 		sd->flags |= SD_SERIALIZE;
1604 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1605 			sd->flags &= ~(SD_BALANCE_EXEC |
1606 				       SD_BALANCE_FORK |
1607 				       SD_WAKE_AFFINE);
1608 		}
1609 
1610 #endif
1611 	} else {
1612 		sd->cache_nice_tries = 1;
1613 	}
1614 
1615 	/*
1616 	 * For all levels sharing cache; connect a sched_domain_shared
1617 	 * instance.
1618 	 */
1619 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1620 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1621 		atomic_inc(&sd->shared->ref);
1622 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1623 	}
1624 
1625 	sd->private = sdd;
1626 
1627 	return sd;
1628 }
1629 
1630 /*
1631  * Topology list, bottom-up.
1632  */
1633 static struct sched_domain_topology_level default_topology[] = {
1634 #ifdef CONFIG_SCHED_SMT
1635 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1636 #endif
1637 
1638 #ifdef CONFIG_SCHED_CLUSTER
1639 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1640 #endif
1641 
1642 #ifdef CONFIG_SCHED_MC
1643 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1644 #endif
1645 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1646 	{ NULL, },
1647 };
1648 
1649 static struct sched_domain_topology_level *sched_domain_topology =
1650 	default_topology;
1651 static struct sched_domain_topology_level *sched_domain_topology_saved;
1652 
1653 #define for_each_sd_topology(tl)			\
1654 	for (tl = sched_domain_topology; tl->mask; tl++)
1655 
1656 void set_sched_topology(struct sched_domain_topology_level *tl)
1657 {
1658 	if (WARN_ON_ONCE(sched_smp_initialized))
1659 		return;
1660 
1661 	sched_domain_topology = tl;
1662 	sched_domain_topology_saved = NULL;
1663 }
1664 
1665 #ifdef CONFIG_NUMA
1666 
1667 static const struct cpumask *sd_numa_mask(int cpu)
1668 {
1669 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1670 }
1671 
1672 static void sched_numa_warn(const char *str)
1673 {
1674 	static int done = false;
1675 	int i,j;
1676 
1677 	if (done)
1678 		return;
1679 
1680 	done = true;
1681 
1682 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1683 
1684 	for (i = 0; i < nr_node_ids; i++) {
1685 		printk(KERN_WARNING "  ");
1686 		for (j = 0; j < nr_node_ids; j++) {
1687 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1688 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1689 			else
1690 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1691 		}
1692 		printk(KERN_CONT "\n");
1693 	}
1694 	printk(KERN_WARNING "\n");
1695 }
1696 
1697 bool find_numa_distance(int distance)
1698 {
1699 	bool found = false;
1700 	int i, *distances;
1701 
1702 	if (distance == node_distance(0, 0))
1703 		return true;
1704 
1705 	rcu_read_lock();
1706 	distances = rcu_dereference(sched_domains_numa_distance);
1707 	if (!distances)
1708 		goto unlock;
1709 	for (i = 0; i < sched_domains_numa_levels; i++) {
1710 		if (distances[i] == distance) {
1711 			found = true;
1712 			break;
1713 		}
1714 	}
1715 unlock:
1716 	rcu_read_unlock();
1717 
1718 	return found;
1719 }
1720 
1721 #define for_each_cpu_node_but(n, nbut)		\
1722 	for_each_node_state(n, N_CPU)		\
1723 		if (n == nbut)			\
1724 			continue;		\
1725 		else
1726 
1727 /*
1728  * A system can have three types of NUMA topology:
1729  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1730  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1731  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1732  *
1733  * The difference between a glueless mesh topology and a backplane
1734  * topology lies in whether communication between not directly
1735  * connected nodes goes through intermediary nodes (where programs
1736  * could run), or through backplane controllers. This affects
1737  * placement of programs.
1738  *
1739  * The type of topology can be discerned with the following tests:
1740  * - If the maximum distance between any nodes is 1 hop, the system
1741  *   is directly connected.
1742  * - If for two nodes A and B, located N > 1 hops away from each other,
1743  *   there is an intermediary node C, which is < N hops away from both
1744  *   nodes A and B, the system is a glueless mesh.
1745  */
1746 static void init_numa_topology_type(int offline_node)
1747 {
1748 	int a, b, c, n;
1749 
1750 	n = sched_max_numa_distance;
1751 
1752 	if (sched_domains_numa_levels <= 2) {
1753 		sched_numa_topology_type = NUMA_DIRECT;
1754 		return;
1755 	}
1756 
1757 	for_each_cpu_node_but(a, offline_node) {
1758 		for_each_cpu_node_but(b, offline_node) {
1759 			/* Find two nodes furthest removed from each other. */
1760 			if (node_distance(a, b) < n)
1761 				continue;
1762 
1763 			/* Is there an intermediary node between a and b? */
1764 			for_each_cpu_node_but(c, offline_node) {
1765 				if (node_distance(a, c) < n &&
1766 				    node_distance(b, c) < n) {
1767 					sched_numa_topology_type =
1768 							NUMA_GLUELESS_MESH;
1769 					return;
1770 				}
1771 			}
1772 
1773 			sched_numa_topology_type = NUMA_BACKPLANE;
1774 			return;
1775 		}
1776 	}
1777 
1778 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1779 	sched_numa_topology_type = NUMA_DIRECT;
1780 }
1781 
1782 
1783 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1784 
1785 void sched_init_numa(int offline_node)
1786 {
1787 	struct sched_domain_topology_level *tl;
1788 	unsigned long *distance_map;
1789 	int nr_levels = 0;
1790 	int i, j;
1791 	int *distances;
1792 	struct cpumask ***masks;
1793 
1794 	/*
1795 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1796 	 * unique distances in the node_distance() table.
1797 	 */
1798 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1799 	if (!distance_map)
1800 		return;
1801 
1802 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1803 	for_each_cpu_node_but(i, offline_node) {
1804 		for_each_cpu_node_but(j, offline_node) {
1805 			int distance = node_distance(i, j);
1806 
1807 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1808 				sched_numa_warn("Invalid distance value range");
1809 				bitmap_free(distance_map);
1810 				return;
1811 			}
1812 
1813 			bitmap_set(distance_map, distance, 1);
1814 		}
1815 	}
1816 	/*
1817 	 * We can now figure out how many unique distance values there are and
1818 	 * allocate memory accordingly.
1819 	 */
1820 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1821 
1822 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1823 	if (!distances) {
1824 		bitmap_free(distance_map);
1825 		return;
1826 	}
1827 
1828 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1829 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1830 		distances[i] = j;
1831 	}
1832 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1833 
1834 	bitmap_free(distance_map);
1835 
1836 	/*
1837 	 * 'nr_levels' contains the number of unique distances
1838 	 *
1839 	 * The sched_domains_numa_distance[] array includes the actual distance
1840 	 * numbers.
1841 	 */
1842 
1843 	/*
1844 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1845 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1846 	 * the array will contain less then 'nr_levels' members. This could be
1847 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1848 	 * in other functions.
1849 	 *
1850 	 * We reset it to 'nr_levels' at the end of this function.
1851 	 */
1852 	sched_domains_numa_levels = 0;
1853 
1854 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1855 	if (!masks)
1856 		return;
1857 
1858 	/*
1859 	 * Now for each level, construct a mask per node which contains all
1860 	 * CPUs of nodes that are that many hops away from us.
1861 	 */
1862 	for (i = 0; i < nr_levels; i++) {
1863 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1864 		if (!masks[i])
1865 			return;
1866 
1867 		for_each_cpu_node_but(j, offline_node) {
1868 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1869 			int k;
1870 
1871 			if (!mask)
1872 				return;
1873 
1874 			masks[i][j] = mask;
1875 
1876 			for_each_cpu_node_but(k, offline_node) {
1877 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1878 					sched_numa_warn("Node-distance not symmetric");
1879 
1880 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1881 					continue;
1882 
1883 				cpumask_or(mask, mask, cpumask_of_node(k));
1884 			}
1885 		}
1886 	}
1887 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1888 
1889 	/* Compute default topology size */
1890 	for (i = 0; sched_domain_topology[i].mask; i++);
1891 
1892 	tl = kzalloc((i + nr_levels + 1) *
1893 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1894 	if (!tl)
1895 		return;
1896 
1897 	/*
1898 	 * Copy the default topology bits..
1899 	 */
1900 	for (i = 0; sched_domain_topology[i].mask; i++)
1901 		tl[i] = sched_domain_topology[i];
1902 
1903 	/*
1904 	 * Add the NUMA identity distance, aka single NODE.
1905 	 */
1906 	tl[i++] = (struct sched_domain_topology_level){
1907 		.mask = sd_numa_mask,
1908 		.numa_level = 0,
1909 		SD_INIT_NAME(NODE)
1910 	};
1911 
1912 	/*
1913 	 * .. and append 'j' levels of NUMA goodness.
1914 	 */
1915 	for (j = 1; j < nr_levels; i++, j++) {
1916 		tl[i] = (struct sched_domain_topology_level){
1917 			.mask = sd_numa_mask,
1918 			.sd_flags = cpu_numa_flags,
1919 			.flags = SDTL_OVERLAP,
1920 			.numa_level = j,
1921 			SD_INIT_NAME(NUMA)
1922 		};
1923 	}
1924 
1925 	sched_domain_topology_saved = sched_domain_topology;
1926 	sched_domain_topology = tl;
1927 
1928 	sched_domains_numa_levels = nr_levels;
1929 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1930 
1931 	init_numa_topology_type(offline_node);
1932 }
1933 
1934 
1935 static void sched_reset_numa(void)
1936 {
1937 	int nr_levels, *distances;
1938 	struct cpumask ***masks;
1939 
1940 	nr_levels = sched_domains_numa_levels;
1941 	sched_domains_numa_levels = 0;
1942 	sched_max_numa_distance = 0;
1943 	sched_numa_topology_type = NUMA_DIRECT;
1944 	distances = sched_domains_numa_distance;
1945 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1946 	masks = sched_domains_numa_masks;
1947 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1948 	if (distances || masks) {
1949 		int i, j;
1950 
1951 		synchronize_rcu();
1952 		kfree(distances);
1953 		for (i = 0; i < nr_levels && masks; i++) {
1954 			if (!masks[i])
1955 				continue;
1956 			for_each_node(j)
1957 				kfree(masks[i][j]);
1958 			kfree(masks[i]);
1959 		}
1960 		kfree(masks);
1961 	}
1962 	if (sched_domain_topology_saved) {
1963 		kfree(sched_domain_topology);
1964 		sched_domain_topology = sched_domain_topology_saved;
1965 		sched_domain_topology_saved = NULL;
1966 	}
1967 }
1968 
1969 /*
1970  * Call with hotplug lock held
1971  */
1972 void sched_update_numa(int cpu, bool online)
1973 {
1974 	int node;
1975 
1976 	node = cpu_to_node(cpu);
1977 	/*
1978 	 * Scheduler NUMA topology is updated when the first CPU of a
1979 	 * node is onlined or the last CPU of a node is offlined.
1980 	 */
1981 	if (cpumask_weight(cpumask_of_node(node)) != 1)
1982 		return;
1983 
1984 	sched_reset_numa();
1985 	sched_init_numa(online ? NUMA_NO_NODE : node);
1986 }
1987 
1988 void sched_domains_numa_masks_set(unsigned int cpu)
1989 {
1990 	int node = cpu_to_node(cpu);
1991 	int i, j;
1992 
1993 	for (i = 0; i < sched_domains_numa_levels; i++) {
1994 		for (j = 0; j < nr_node_ids; j++) {
1995 			if (!node_state(j, N_CPU))
1996 				continue;
1997 
1998 			/* Set ourselves in the remote node's masks */
1999 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2000 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2001 		}
2002 	}
2003 }
2004 
2005 void sched_domains_numa_masks_clear(unsigned int cpu)
2006 {
2007 	int i, j;
2008 
2009 	for (i = 0; i < sched_domains_numa_levels; i++) {
2010 		for (j = 0; j < nr_node_ids; j++) {
2011 			if (sched_domains_numa_masks[i][j])
2012 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2013 		}
2014 	}
2015 }
2016 
2017 /*
2018  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2019  *                             closest to @cpu from @cpumask.
2020  * cpumask: cpumask to find a cpu from
2021  * cpu: cpu to be close to
2022  *
2023  * returns: cpu, or nr_cpu_ids when nothing found.
2024  */
2025 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2026 {
2027 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2028 	struct cpumask ***masks;
2029 
2030 	rcu_read_lock();
2031 	masks = rcu_dereference(sched_domains_numa_masks);
2032 	if (!masks)
2033 		goto unlock;
2034 	for (i = 0; i < sched_domains_numa_levels; i++) {
2035 		if (!masks[i][j])
2036 			break;
2037 		cpu = cpumask_any_and(cpus, masks[i][j]);
2038 		if (cpu < nr_cpu_ids) {
2039 			found = cpu;
2040 			break;
2041 		}
2042 	}
2043 unlock:
2044 	rcu_read_unlock();
2045 
2046 	return found;
2047 }
2048 
2049 #endif /* CONFIG_NUMA */
2050 
2051 static int __sdt_alloc(const struct cpumask *cpu_map)
2052 {
2053 	struct sched_domain_topology_level *tl;
2054 	int j;
2055 
2056 	for_each_sd_topology(tl) {
2057 		struct sd_data *sdd = &tl->data;
2058 
2059 		sdd->sd = alloc_percpu(struct sched_domain *);
2060 		if (!sdd->sd)
2061 			return -ENOMEM;
2062 
2063 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2064 		if (!sdd->sds)
2065 			return -ENOMEM;
2066 
2067 		sdd->sg = alloc_percpu(struct sched_group *);
2068 		if (!sdd->sg)
2069 			return -ENOMEM;
2070 
2071 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2072 		if (!sdd->sgc)
2073 			return -ENOMEM;
2074 
2075 		for_each_cpu(j, cpu_map) {
2076 			struct sched_domain *sd;
2077 			struct sched_domain_shared *sds;
2078 			struct sched_group *sg;
2079 			struct sched_group_capacity *sgc;
2080 
2081 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2082 					GFP_KERNEL, cpu_to_node(j));
2083 			if (!sd)
2084 				return -ENOMEM;
2085 
2086 			*per_cpu_ptr(sdd->sd, j) = sd;
2087 
2088 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2089 					GFP_KERNEL, cpu_to_node(j));
2090 			if (!sds)
2091 				return -ENOMEM;
2092 
2093 			*per_cpu_ptr(sdd->sds, j) = sds;
2094 
2095 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2096 					GFP_KERNEL, cpu_to_node(j));
2097 			if (!sg)
2098 				return -ENOMEM;
2099 
2100 			sg->next = sg;
2101 
2102 			*per_cpu_ptr(sdd->sg, j) = sg;
2103 
2104 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2105 					GFP_KERNEL, cpu_to_node(j));
2106 			if (!sgc)
2107 				return -ENOMEM;
2108 
2109 #ifdef CONFIG_SCHED_DEBUG
2110 			sgc->id = j;
2111 #endif
2112 
2113 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2114 		}
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 static void __sdt_free(const struct cpumask *cpu_map)
2121 {
2122 	struct sched_domain_topology_level *tl;
2123 	int j;
2124 
2125 	for_each_sd_topology(tl) {
2126 		struct sd_data *sdd = &tl->data;
2127 
2128 		for_each_cpu(j, cpu_map) {
2129 			struct sched_domain *sd;
2130 
2131 			if (sdd->sd) {
2132 				sd = *per_cpu_ptr(sdd->sd, j);
2133 				if (sd && (sd->flags & SD_OVERLAP))
2134 					free_sched_groups(sd->groups, 0);
2135 				kfree(*per_cpu_ptr(sdd->sd, j));
2136 			}
2137 
2138 			if (sdd->sds)
2139 				kfree(*per_cpu_ptr(sdd->sds, j));
2140 			if (sdd->sg)
2141 				kfree(*per_cpu_ptr(sdd->sg, j));
2142 			if (sdd->sgc)
2143 				kfree(*per_cpu_ptr(sdd->sgc, j));
2144 		}
2145 		free_percpu(sdd->sd);
2146 		sdd->sd = NULL;
2147 		free_percpu(sdd->sds);
2148 		sdd->sds = NULL;
2149 		free_percpu(sdd->sg);
2150 		sdd->sg = NULL;
2151 		free_percpu(sdd->sgc);
2152 		sdd->sgc = NULL;
2153 	}
2154 }
2155 
2156 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2157 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2158 		struct sched_domain *child, int cpu)
2159 {
2160 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2161 
2162 	if (child) {
2163 		sd->level = child->level + 1;
2164 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2165 		child->parent = sd;
2166 
2167 		if (!cpumask_subset(sched_domain_span(child),
2168 				    sched_domain_span(sd))) {
2169 			pr_err("BUG: arch topology borken\n");
2170 #ifdef CONFIG_SCHED_DEBUG
2171 			pr_err("     the %s domain not a subset of the %s domain\n",
2172 					child->name, sd->name);
2173 #endif
2174 			/* Fixup, ensure @sd has at least @child CPUs. */
2175 			cpumask_or(sched_domain_span(sd),
2176 				   sched_domain_span(sd),
2177 				   sched_domain_span(child));
2178 		}
2179 
2180 	}
2181 	set_domain_attribute(sd, attr);
2182 
2183 	return sd;
2184 }
2185 
2186 /*
2187  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2188  * any two given CPUs at this (non-NUMA) topology level.
2189  */
2190 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2191 			      const struct cpumask *cpu_map, int cpu)
2192 {
2193 	int i;
2194 
2195 	/* NUMA levels are allowed to overlap */
2196 	if (tl->flags & SDTL_OVERLAP)
2197 		return true;
2198 
2199 	/*
2200 	 * Non-NUMA levels cannot partially overlap - they must be either
2201 	 * completely equal or completely disjoint. Otherwise we can end up
2202 	 * breaking the sched_group lists - i.e. a later get_group() pass
2203 	 * breaks the linking done for an earlier span.
2204 	 */
2205 	for_each_cpu(i, cpu_map) {
2206 		if (i == cpu)
2207 			continue;
2208 		/*
2209 		 * We should 'and' all those masks with 'cpu_map' to exactly
2210 		 * match the topology we're about to build, but that can only
2211 		 * remove CPUs, which only lessens our ability to detect
2212 		 * overlaps
2213 		 */
2214 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2215 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2216 			return false;
2217 	}
2218 
2219 	return true;
2220 }
2221 
2222 /*
2223  * Build sched domains for a given set of CPUs and attach the sched domains
2224  * to the individual CPUs
2225  */
2226 static int
2227 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2228 {
2229 	enum s_alloc alloc_state = sa_none;
2230 	struct sched_domain *sd;
2231 	struct s_data d;
2232 	struct rq *rq = NULL;
2233 	int i, ret = -ENOMEM;
2234 	bool has_asym = false;
2235 
2236 	if (WARN_ON(cpumask_empty(cpu_map)))
2237 		goto error;
2238 
2239 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2240 	if (alloc_state != sa_rootdomain)
2241 		goto error;
2242 
2243 	/* Set up domains for CPUs specified by the cpu_map: */
2244 	for_each_cpu(i, cpu_map) {
2245 		struct sched_domain_topology_level *tl;
2246 
2247 		sd = NULL;
2248 		for_each_sd_topology(tl) {
2249 
2250 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2251 				goto error;
2252 
2253 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2254 
2255 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2256 
2257 			if (tl == sched_domain_topology)
2258 				*per_cpu_ptr(d.sd, i) = sd;
2259 			if (tl->flags & SDTL_OVERLAP)
2260 				sd->flags |= SD_OVERLAP;
2261 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2262 				break;
2263 		}
2264 	}
2265 
2266 	/* Build the groups for the domains */
2267 	for_each_cpu(i, cpu_map) {
2268 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2269 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2270 			if (sd->flags & SD_OVERLAP) {
2271 				if (build_overlap_sched_groups(sd, i))
2272 					goto error;
2273 			} else {
2274 				if (build_sched_groups(sd, i))
2275 					goto error;
2276 			}
2277 		}
2278 	}
2279 
2280 	/*
2281 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2282 	 * imbalanced.
2283 	 */
2284 	for_each_cpu(i, cpu_map) {
2285 		unsigned int imb = 0;
2286 		unsigned int imb_span = 1;
2287 
2288 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2289 			struct sched_domain *child = sd->child;
2290 
2291 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2292 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2293 				struct sched_domain __rcu *top_p;
2294 				unsigned int nr_llcs;
2295 
2296 				/*
2297 				 * For a single LLC per node, allow an
2298 				 * imbalance up to 25% of the node. This is an
2299 				 * arbitrary cutoff based on SMT-2 to balance
2300 				 * between memory bandwidth and avoiding
2301 				 * premature sharing of HT resources and SMT-4
2302 				 * or SMT-8 *may* benefit from a different
2303 				 * cutoff.
2304 				 *
2305 				 * For multiple LLCs, allow an imbalance
2306 				 * until multiple tasks would share an LLC
2307 				 * on one node while LLCs on another node
2308 				 * remain idle.
2309 				 */
2310 				nr_llcs = sd->span_weight / child->span_weight;
2311 				if (nr_llcs == 1)
2312 					imb = sd->span_weight >> 2;
2313 				else
2314 					imb = nr_llcs;
2315 				sd->imb_numa_nr = imb;
2316 
2317 				/* Set span based on the first NUMA domain. */
2318 				top_p = sd->parent;
2319 				while (top_p && !(top_p->flags & SD_NUMA)) {
2320 					top_p = top_p->parent;
2321 				}
2322 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2323 			} else {
2324 				int factor = max(1U, (sd->span_weight / imb_span));
2325 
2326 				sd->imb_numa_nr = imb * factor;
2327 			}
2328 		}
2329 	}
2330 
2331 	/* Calculate CPU capacity for physical packages and nodes */
2332 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2333 		if (!cpumask_test_cpu(i, cpu_map))
2334 			continue;
2335 
2336 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2337 			claim_allocations(i, sd);
2338 			init_sched_groups_capacity(i, sd);
2339 		}
2340 	}
2341 
2342 	/* Attach the domains */
2343 	rcu_read_lock();
2344 	for_each_cpu(i, cpu_map) {
2345 		rq = cpu_rq(i);
2346 		sd = *per_cpu_ptr(d.sd, i);
2347 
2348 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2349 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2350 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2351 
2352 		cpu_attach_domain(sd, d.rd, i);
2353 	}
2354 	rcu_read_unlock();
2355 
2356 	if (has_asym)
2357 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2358 
2359 	if (rq && sched_debug_verbose) {
2360 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2361 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2362 	}
2363 
2364 	ret = 0;
2365 error:
2366 	__free_domain_allocs(&d, alloc_state, cpu_map);
2367 
2368 	return ret;
2369 }
2370 
2371 /* Current sched domains: */
2372 static cpumask_var_t			*doms_cur;
2373 
2374 /* Number of sched domains in 'doms_cur': */
2375 static int				ndoms_cur;
2376 
2377 /* Attributes of custom domains in 'doms_cur' */
2378 static struct sched_domain_attr		*dattr_cur;
2379 
2380 /*
2381  * Special case: If a kmalloc() of a doms_cur partition (array of
2382  * cpumask) fails, then fallback to a single sched domain,
2383  * as determined by the single cpumask fallback_doms.
2384  */
2385 static cpumask_var_t			fallback_doms;
2386 
2387 /*
2388  * arch_update_cpu_topology lets virtualized architectures update the
2389  * CPU core maps. It is supposed to return 1 if the topology changed
2390  * or 0 if it stayed the same.
2391  */
2392 int __weak arch_update_cpu_topology(void)
2393 {
2394 	return 0;
2395 }
2396 
2397 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2398 {
2399 	int i;
2400 	cpumask_var_t *doms;
2401 
2402 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2403 	if (!doms)
2404 		return NULL;
2405 	for (i = 0; i < ndoms; i++) {
2406 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2407 			free_sched_domains(doms, i);
2408 			return NULL;
2409 		}
2410 	}
2411 	return doms;
2412 }
2413 
2414 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2415 {
2416 	unsigned int i;
2417 	for (i = 0; i < ndoms; i++)
2418 		free_cpumask_var(doms[i]);
2419 	kfree(doms);
2420 }
2421 
2422 /*
2423  * Set up scheduler domains and groups.  For now this just excludes isolated
2424  * CPUs, but could be used to exclude other special cases in the future.
2425  */
2426 int sched_init_domains(const struct cpumask *cpu_map)
2427 {
2428 	int err;
2429 
2430 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2431 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2432 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2433 
2434 	arch_update_cpu_topology();
2435 	asym_cpu_capacity_scan();
2436 	ndoms_cur = 1;
2437 	doms_cur = alloc_sched_domains(ndoms_cur);
2438 	if (!doms_cur)
2439 		doms_cur = &fallback_doms;
2440 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2441 	err = build_sched_domains(doms_cur[0], NULL);
2442 
2443 	return err;
2444 }
2445 
2446 /*
2447  * Detach sched domains from a group of CPUs specified in cpu_map
2448  * These CPUs will now be attached to the NULL domain
2449  */
2450 static void detach_destroy_domains(const struct cpumask *cpu_map)
2451 {
2452 	unsigned int cpu = cpumask_any(cpu_map);
2453 	int i;
2454 
2455 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2456 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2457 
2458 	rcu_read_lock();
2459 	for_each_cpu(i, cpu_map)
2460 		cpu_attach_domain(NULL, &def_root_domain, i);
2461 	rcu_read_unlock();
2462 }
2463 
2464 /* handle null as "default" */
2465 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2466 			struct sched_domain_attr *new, int idx_new)
2467 {
2468 	struct sched_domain_attr tmp;
2469 
2470 	/* Fast path: */
2471 	if (!new && !cur)
2472 		return 1;
2473 
2474 	tmp = SD_ATTR_INIT;
2475 
2476 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2477 			new ? (new + idx_new) : &tmp,
2478 			sizeof(struct sched_domain_attr));
2479 }
2480 
2481 /*
2482  * Partition sched domains as specified by the 'ndoms_new'
2483  * cpumasks in the array doms_new[] of cpumasks. This compares
2484  * doms_new[] to the current sched domain partitioning, doms_cur[].
2485  * It destroys each deleted domain and builds each new domain.
2486  *
2487  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2488  * The masks don't intersect (don't overlap.) We should setup one
2489  * sched domain for each mask. CPUs not in any of the cpumasks will
2490  * not be load balanced. If the same cpumask appears both in the
2491  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2492  * it as it is.
2493  *
2494  * The passed in 'doms_new' should be allocated using
2495  * alloc_sched_domains.  This routine takes ownership of it and will
2496  * free_sched_domains it when done with it. If the caller failed the
2497  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2498  * and partition_sched_domains() will fallback to the single partition
2499  * 'fallback_doms', it also forces the domains to be rebuilt.
2500  *
2501  * If doms_new == NULL it will be replaced with cpu_online_mask.
2502  * ndoms_new == 0 is a special case for destroying existing domains,
2503  * and it will not create the default domain.
2504  *
2505  * Call with hotplug lock and sched_domains_mutex held
2506  */
2507 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2508 				    struct sched_domain_attr *dattr_new)
2509 {
2510 	bool __maybe_unused has_eas = false;
2511 	int i, j, n;
2512 	int new_topology;
2513 
2514 	lockdep_assert_held(&sched_domains_mutex);
2515 
2516 	/* Let the architecture update CPU core mappings: */
2517 	new_topology = arch_update_cpu_topology();
2518 	/* Trigger rebuilding CPU capacity asymmetry data */
2519 	if (new_topology)
2520 		asym_cpu_capacity_scan();
2521 
2522 	if (!doms_new) {
2523 		WARN_ON_ONCE(dattr_new);
2524 		n = 0;
2525 		doms_new = alloc_sched_domains(1);
2526 		if (doms_new) {
2527 			n = 1;
2528 			cpumask_and(doms_new[0], cpu_active_mask,
2529 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2530 		}
2531 	} else {
2532 		n = ndoms_new;
2533 	}
2534 
2535 	/* Destroy deleted domains: */
2536 	for (i = 0; i < ndoms_cur; i++) {
2537 		for (j = 0; j < n && !new_topology; j++) {
2538 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2539 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2540 				struct root_domain *rd;
2541 
2542 				/*
2543 				 * This domain won't be destroyed and as such
2544 				 * its dl_bw->total_bw needs to be cleared.  It
2545 				 * will be recomputed in function
2546 				 * update_tasks_root_domain().
2547 				 */
2548 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2549 				dl_clear_root_domain(rd);
2550 				goto match1;
2551 			}
2552 		}
2553 		/* No match - a current sched domain not in new doms_new[] */
2554 		detach_destroy_domains(doms_cur[i]);
2555 match1:
2556 		;
2557 	}
2558 
2559 	n = ndoms_cur;
2560 	if (!doms_new) {
2561 		n = 0;
2562 		doms_new = &fallback_doms;
2563 		cpumask_and(doms_new[0], cpu_active_mask,
2564 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2565 	}
2566 
2567 	/* Build new domains: */
2568 	for (i = 0; i < ndoms_new; i++) {
2569 		for (j = 0; j < n && !new_topology; j++) {
2570 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2571 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2572 				goto match2;
2573 		}
2574 		/* No match - add a new doms_new */
2575 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2576 match2:
2577 		;
2578 	}
2579 
2580 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2581 	/* Build perf. domains: */
2582 	for (i = 0; i < ndoms_new; i++) {
2583 		for (j = 0; j < n && !sched_energy_update; j++) {
2584 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2585 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2586 				has_eas = true;
2587 				goto match3;
2588 			}
2589 		}
2590 		/* No match - add perf. domains for a new rd */
2591 		has_eas |= build_perf_domains(doms_new[i]);
2592 match3:
2593 		;
2594 	}
2595 	sched_energy_set(has_eas);
2596 #endif
2597 
2598 	/* Remember the new sched domains: */
2599 	if (doms_cur != &fallback_doms)
2600 		free_sched_domains(doms_cur, ndoms_cur);
2601 
2602 	kfree(dattr_cur);
2603 	doms_cur = doms_new;
2604 	dattr_cur = dattr_new;
2605 	ndoms_cur = ndoms_new;
2606 
2607 	update_sched_domain_debugfs();
2608 }
2609 
2610 /*
2611  * Call with hotplug lock held
2612  */
2613 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2614 			     struct sched_domain_attr *dattr_new)
2615 {
2616 	mutex_lock(&sched_domains_mutex);
2617 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2618 	mutex_unlock(&sched_domains_mutex);
2619 }
2620