xref: /openbmc/linux/kernel/sched/topology.c (revision 1a90ce36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/sched/isolation.h>
8 
9 #include "sched.h"
10 
11 DEFINE_MUTEX(sched_domains_mutex);
12 
13 /* Protected by sched_domains_mutex: */
14 cpumask_var_t sched_domains_tmpmask;
15 cpumask_var_t sched_domains_tmpmask2;
16 
17 #ifdef CONFIG_SCHED_DEBUG
18 
19 static int __init sched_debug_setup(char *str)
20 {
21 	sched_debug_enabled = true;
22 
23 	return 0;
24 }
25 early_param("sched_debug", sched_debug_setup);
26 
27 static inline bool sched_debug(void)
28 {
29 	return sched_debug_enabled;
30 }
31 
32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 				  struct cpumask *groupmask)
34 {
35 	struct sched_group *group = sd->groups;
36 
37 	cpumask_clear(groupmask);
38 
39 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
40 
41 	if (!(sd->flags & SD_LOAD_BALANCE)) {
42 		printk("does not load-balance\n");
43 		if (sd->parent)
44 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 					" has parent");
46 		return -1;
47 	}
48 
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain "
54 				"CPU%d\n", cpu);
55 	}
56 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57 		printk(KERN_ERR "ERROR: domain->groups does not contain"
58 				" CPU%d\n", cpu);
59 	}
60 
61 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 	do {
63 		if (!group) {
64 			printk("\n");
65 			printk(KERN_ERR "ERROR: group is NULL\n");
66 			break;
67 		}
68 
69 		if (!cpumask_weight(sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: empty group\n");
72 			break;
73 		}
74 
75 		if (!(sd->flags & SD_OVERLAP) &&
76 		    cpumask_intersects(groupmask, sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: repeated CPUs\n");
79 			break;
80 		}
81 
82 		cpumask_or(groupmask, groupmask, sched_group_span(group));
83 
84 		printk(KERN_CONT " %d:{ span=%*pbl",
85 				group->sgc->id,
86 				cpumask_pr_args(sched_group_span(group)));
87 
88 		if ((sd->flags & SD_OVERLAP) &&
89 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90 			printk(KERN_CONT " mask=%*pbl",
91 				cpumask_pr_args(group_balance_mask(group)));
92 		}
93 
94 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
96 
97 		if (group == sd->groups && sd->child &&
98 		    !cpumask_equal(sched_domain_span(sd->child),
99 				   sched_group_span(group))) {
100 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101 		}
102 
103 		printk(KERN_CONT " }");
104 
105 		group = group->next;
106 
107 		if (group != sd->groups)
108 			printk(KERN_CONT ",");
109 
110 	} while (group != sd->groups);
111 	printk(KERN_CONT "\n");
112 
113 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115 
116 	if (sd->parent &&
117 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 		printk(KERN_ERR "ERROR: parent span is not a superset "
119 			"of domain->span\n");
120 	return 0;
121 }
122 
123 static void sched_domain_debug(struct sched_domain *sd, int cpu)
124 {
125 	int level = 0;
126 
127 	if (!sched_debug_enabled)
128 		return;
129 
130 	if (!sd) {
131 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 		return;
133 	}
134 
135 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
136 
137 	for (;;) {
138 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 			break;
140 		level++;
141 		sd = sd->parent;
142 		if (!sd)
143 			break;
144 	}
145 }
146 #else /* !CONFIG_SCHED_DEBUG */
147 
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
151 {
152 	return false;
153 }
154 #endif /* CONFIG_SCHED_DEBUG */
155 
156 static int sd_degenerate(struct sched_domain *sd)
157 {
158 	if (cpumask_weight(sched_domain_span(sd)) == 1)
159 		return 1;
160 
161 	/* Following flags need at least 2 groups */
162 	if (sd->flags & (SD_LOAD_BALANCE |
163 			 SD_BALANCE_NEWIDLE |
164 			 SD_BALANCE_FORK |
165 			 SD_BALANCE_EXEC |
166 			 SD_SHARE_CPUCAPACITY |
167 			 SD_ASYM_CPUCAPACITY |
168 			 SD_SHARE_PKG_RESOURCES |
169 			 SD_SHARE_POWERDOMAIN)) {
170 		if (sd->groups != sd->groups->next)
171 			return 0;
172 	}
173 
174 	/* Following flags don't use groups */
175 	if (sd->flags & (SD_WAKE_AFFINE))
176 		return 0;
177 
178 	return 1;
179 }
180 
181 static int
182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183 {
184 	unsigned long cflags = sd->flags, pflags = parent->flags;
185 
186 	if (sd_degenerate(parent))
187 		return 1;
188 
189 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 		return 0;
191 
192 	/* Flags needing groups don't count if only 1 group in parent */
193 	if (parent->groups == parent->groups->next) {
194 		pflags &= ~(SD_LOAD_BALANCE |
195 				SD_BALANCE_NEWIDLE |
196 				SD_BALANCE_FORK |
197 				SD_BALANCE_EXEC |
198 				SD_ASYM_CPUCAPACITY |
199 				SD_SHARE_CPUCAPACITY |
200 				SD_SHARE_PKG_RESOURCES |
201 				SD_PREFER_SIBLING |
202 				SD_SHARE_POWERDOMAIN);
203 		if (nr_node_ids == 1)
204 			pflags &= ~SD_SERIALIZE;
205 	}
206 	if (~cflags & pflags)
207 		return 0;
208 
209 	return 1;
210 }
211 
212 static void free_rootdomain(struct rcu_head *rcu)
213 {
214 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215 
216 	cpupri_cleanup(&rd->cpupri);
217 	cpudl_cleanup(&rd->cpudl);
218 	free_cpumask_var(rd->dlo_mask);
219 	free_cpumask_var(rd->rto_mask);
220 	free_cpumask_var(rd->online);
221 	free_cpumask_var(rd->span);
222 	kfree(rd);
223 }
224 
225 void rq_attach_root(struct rq *rq, struct root_domain *rd)
226 {
227 	struct root_domain *old_rd = NULL;
228 	unsigned long flags;
229 
230 	raw_spin_lock_irqsave(&rq->lock, flags);
231 
232 	if (rq->rd) {
233 		old_rd = rq->rd;
234 
235 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 			set_rq_offline(rq);
237 
238 		cpumask_clear_cpu(rq->cpu, old_rd->span);
239 
240 		/*
241 		 * If we dont want to free the old_rd yet then
242 		 * set old_rd to NULL to skip the freeing later
243 		 * in this function:
244 		 */
245 		if (!atomic_dec_and_test(&old_rd->refcount))
246 			old_rd = NULL;
247 	}
248 
249 	atomic_inc(&rd->refcount);
250 	rq->rd = rd;
251 
252 	cpumask_set_cpu(rq->cpu, rd->span);
253 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 		set_rq_online(rq);
255 
256 	raw_spin_unlock_irqrestore(&rq->lock, flags);
257 
258 	if (old_rd)
259 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
260 }
261 
262 void sched_get_rd(struct root_domain *rd)
263 {
264 	atomic_inc(&rd->refcount);
265 }
266 
267 void sched_put_rd(struct root_domain *rd)
268 {
269 	if (!atomic_dec_and_test(&rd->refcount))
270 		return;
271 
272 	call_rcu_sched(&rd->rcu, free_rootdomain);
273 }
274 
275 static int init_rootdomain(struct root_domain *rd)
276 {
277 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
278 		goto out;
279 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
280 		goto free_span;
281 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
282 		goto free_online;
283 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
284 		goto free_dlo_mask;
285 
286 #ifdef HAVE_RT_PUSH_IPI
287 	rd->rto_cpu = -1;
288 	raw_spin_lock_init(&rd->rto_lock);
289 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
290 #endif
291 
292 	init_dl_bw(&rd->dl_bw);
293 	if (cpudl_init(&rd->cpudl) != 0)
294 		goto free_rto_mask;
295 
296 	if (cpupri_init(&rd->cpupri) != 0)
297 		goto free_cpudl;
298 	return 0;
299 
300 free_cpudl:
301 	cpudl_cleanup(&rd->cpudl);
302 free_rto_mask:
303 	free_cpumask_var(rd->rto_mask);
304 free_dlo_mask:
305 	free_cpumask_var(rd->dlo_mask);
306 free_online:
307 	free_cpumask_var(rd->online);
308 free_span:
309 	free_cpumask_var(rd->span);
310 out:
311 	return -ENOMEM;
312 }
313 
314 /*
315  * By default the system creates a single root-domain with all CPUs as
316  * members (mimicking the global state we have today).
317  */
318 struct root_domain def_root_domain;
319 
320 void init_defrootdomain(void)
321 {
322 	init_rootdomain(&def_root_domain);
323 
324 	atomic_set(&def_root_domain.refcount, 1);
325 }
326 
327 static struct root_domain *alloc_rootdomain(void)
328 {
329 	struct root_domain *rd;
330 
331 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
332 	if (!rd)
333 		return NULL;
334 
335 	if (init_rootdomain(rd) != 0) {
336 		kfree(rd);
337 		return NULL;
338 	}
339 
340 	return rd;
341 }
342 
343 static void free_sched_groups(struct sched_group *sg, int free_sgc)
344 {
345 	struct sched_group *tmp, *first;
346 
347 	if (!sg)
348 		return;
349 
350 	first = sg;
351 	do {
352 		tmp = sg->next;
353 
354 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
355 			kfree(sg->sgc);
356 
357 		if (atomic_dec_and_test(&sg->ref))
358 			kfree(sg);
359 		sg = tmp;
360 	} while (sg != first);
361 }
362 
363 static void destroy_sched_domain(struct sched_domain *sd)
364 {
365 	/*
366 	 * A normal sched domain may have multiple group references, an
367 	 * overlapping domain, having private groups, only one.  Iterate,
368 	 * dropping group/capacity references, freeing where none remain.
369 	 */
370 	free_sched_groups(sd->groups, 1);
371 
372 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
373 		kfree(sd->shared);
374 	kfree(sd);
375 }
376 
377 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
378 {
379 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
380 
381 	while (sd) {
382 		struct sched_domain *parent = sd->parent;
383 		destroy_sched_domain(sd);
384 		sd = parent;
385 	}
386 }
387 
388 static void destroy_sched_domains(struct sched_domain *sd)
389 {
390 	if (sd)
391 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
392 }
393 
394 /*
395  * Keep a special pointer to the highest sched_domain that has
396  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
397  * allows us to avoid some pointer chasing select_idle_sibling().
398  *
399  * Also keep a unique ID per domain (we use the first CPU number in
400  * the cpumask of the domain), this allows us to quickly tell if
401  * two CPUs are in the same cache domain, see cpus_share_cache().
402  */
403 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
404 DEFINE_PER_CPU(int, sd_llc_size);
405 DEFINE_PER_CPU(int, sd_llc_id);
406 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
407 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
408 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
409 
410 static void update_top_cache_domain(int cpu)
411 {
412 	struct sched_domain_shared *sds = NULL;
413 	struct sched_domain *sd;
414 	int id = cpu;
415 	int size = 1;
416 
417 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
418 	if (sd) {
419 		id = cpumask_first(sched_domain_span(sd));
420 		size = cpumask_weight(sched_domain_span(sd));
421 		sds = sd->shared;
422 	}
423 
424 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
425 	per_cpu(sd_llc_size, cpu) = size;
426 	per_cpu(sd_llc_id, cpu) = id;
427 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
428 
429 	sd = lowest_flag_domain(cpu, SD_NUMA);
430 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
431 
432 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
433 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
434 }
435 
436 /*
437  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
438  * hold the hotplug lock.
439  */
440 static void
441 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
442 {
443 	struct rq *rq = cpu_rq(cpu);
444 	struct sched_domain *tmp;
445 
446 	/* Remove the sched domains which do not contribute to scheduling. */
447 	for (tmp = sd; tmp; ) {
448 		struct sched_domain *parent = tmp->parent;
449 		if (!parent)
450 			break;
451 
452 		if (sd_parent_degenerate(tmp, parent)) {
453 			tmp->parent = parent->parent;
454 			if (parent->parent)
455 				parent->parent->child = tmp;
456 			/*
457 			 * Transfer SD_PREFER_SIBLING down in case of a
458 			 * degenerate parent; the spans match for this
459 			 * so the property transfers.
460 			 */
461 			if (parent->flags & SD_PREFER_SIBLING)
462 				tmp->flags |= SD_PREFER_SIBLING;
463 			destroy_sched_domain(parent);
464 		} else
465 			tmp = tmp->parent;
466 	}
467 
468 	if (sd && sd_degenerate(sd)) {
469 		tmp = sd;
470 		sd = sd->parent;
471 		destroy_sched_domain(tmp);
472 		if (sd)
473 			sd->child = NULL;
474 	}
475 
476 	sched_domain_debug(sd, cpu);
477 
478 	rq_attach_root(rq, rd);
479 	tmp = rq->sd;
480 	rcu_assign_pointer(rq->sd, sd);
481 	dirty_sched_domain_sysctl(cpu);
482 	destroy_sched_domains(tmp);
483 
484 	update_top_cache_domain(cpu);
485 }
486 
487 struct s_data {
488 	struct sched_domain ** __percpu sd;
489 	struct root_domain	*rd;
490 };
491 
492 enum s_alloc {
493 	sa_rootdomain,
494 	sa_sd,
495 	sa_sd_storage,
496 	sa_none,
497 };
498 
499 /*
500  * Return the canonical balance CPU for this group, this is the first CPU
501  * of this group that's also in the balance mask.
502  *
503  * The balance mask are all those CPUs that could actually end up at this
504  * group. See build_balance_mask().
505  *
506  * Also see should_we_balance().
507  */
508 int group_balance_cpu(struct sched_group *sg)
509 {
510 	return cpumask_first(group_balance_mask(sg));
511 }
512 
513 
514 /*
515  * NUMA topology (first read the regular topology blurb below)
516  *
517  * Given a node-distance table, for example:
518  *
519  *   node   0   1   2   3
520  *     0:  10  20  30  20
521  *     1:  20  10  20  30
522  *     2:  30  20  10  20
523  *     3:  20  30  20  10
524  *
525  * which represents a 4 node ring topology like:
526  *
527  *   0 ----- 1
528  *   |       |
529  *   |       |
530  *   |       |
531  *   3 ----- 2
532  *
533  * We want to construct domains and groups to represent this. The way we go
534  * about doing this is to build the domains on 'hops'. For each NUMA level we
535  * construct the mask of all nodes reachable in @level hops.
536  *
537  * For the above NUMA topology that gives 3 levels:
538  *
539  * NUMA-2	0-3		0-3		0-3		0-3
540  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
541  *
542  * NUMA-1	0-1,3		0-2		1-3		0,2-3
543  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
544  *
545  * NUMA-0	0		1		2		3
546  *
547  *
548  * As can be seen; things don't nicely line up as with the regular topology.
549  * When we iterate a domain in child domain chunks some nodes can be
550  * represented multiple times -- hence the "overlap" naming for this part of
551  * the topology.
552  *
553  * In order to minimize this overlap, we only build enough groups to cover the
554  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
555  *
556  * Because:
557  *
558  *  - the first group of each domain is its child domain; this
559  *    gets us the first 0-1,3
560  *  - the only uncovered node is 2, who's child domain is 1-3.
561  *
562  * However, because of the overlap, computing a unique CPU for each group is
563  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
564  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
565  * end up at those groups (they would end up in group: 0-1,3).
566  *
567  * To correct this we have to introduce the group balance mask. This mask
568  * will contain those CPUs in the group that can reach this group given the
569  * (child) domain tree.
570  *
571  * With this we can once again compute balance_cpu and sched_group_capacity
572  * relations.
573  *
574  * XXX include words on how balance_cpu is unique and therefore can be
575  * used for sched_group_capacity links.
576  *
577  *
578  * Another 'interesting' topology is:
579  *
580  *   node   0   1   2   3
581  *     0:  10  20  20  30
582  *     1:  20  10  20  20
583  *     2:  20  20  10  20
584  *     3:  30  20  20  10
585  *
586  * Which looks a little like:
587  *
588  *   0 ----- 1
589  *   |     / |
590  *   |   /   |
591  *   | /     |
592  *   2 ----- 3
593  *
594  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
595  * are not.
596  *
597  * This leads to a few particularly weird cases where the sched_domain's are
598  * not of the same number for each cpu. Consider:
599  *
600  * NUMA-2	0-3						0-3
601  *  groups:	{0-2},{1-3}					{1-3},{0-2}
602  *
603  * NUMA-1	0-2		0-3		0-3		1-3
604  *
605  * NUMA-0	0		1		2		3
606  *
607  */
608 
609 
610 /*
611  * Build the balance mask; it contains only those CPUs that can arrive at this
612  * group and should be considered to continue balancing.
613  *
614  * We do this during the group creation pass, therefore the group information
615  * isn't complete yet, however since each group represents a (child) domain we
616  * can fully construct this using the sched_domain bits (which are already
617  * complete).
618  */
619 static void
620 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
621 {
622 	const struct cpumask *sg_span = sched_group_span(sg);
623 	struct sd_data *sdd = sd->private;
624 	struct sched_domain *sibling;
625 	int i;
626 
627 	cpumask_clear(mask);
628 
629 	for_each_cpu(i, sg_span) {
630 		sibling = *per_cpu_ptr(sdd->sd, i);
631 
632 		/*
633 		 * Can happen in the asymmetric case, where these siblings are
634 		 * unused. The mask will not be empty because those CPUs that
635 		 * do have the top domain _should_ span the domain.
636 		 */
637 		if (!sibling->child)
638 			continue;
639 
640 		/* If we would not end up here, we can't continue from here */
641 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
642 			continue;
643 
644 		cpumask_set_cpu(i, mask);
645 	}
646 
647 	/* We must not have empty masks here */
648 	WARN_ON_ONCE(cpumask_empty(mask));
649 }
650 
651 /*
652  * XXX: This creates per-node group entries; since the load-balancer will
653  * immediately access remote memory to construct this group's load-balance
654  * statistics having the groups node local is of dubious benefit.
655  */
656 static struct sched_group *
657 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
658 {
659 	struct sched_group *sg;
660 	struct cpumask *sg_span;
661 
662 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
663 			GFP_KERNEL, cpu_to_node(cpu));
664 
665 	if (!sg)
666 		return NULL;
667 
668 	sg_span = sched_group_span(sg);
669 	if (sd->child)
670 		cpumask_copy(sg_span, sched_domain_span(sd->child));
671 	else
672 		cpumask_copy(sg_span, sched_domain_span(sd));
673 
674 	atomic_inc(&sg->ref);
675 	return sg;
676 }
677 
678 static void init_overlap_sched_group(struct sched_domain *sd,
679 				     struct sched_group *sg)
680 {
681 	struct cpumask *mask = sched_domains_tmpmask2;
682 	struct sd_data *sdd = sd->private;
683 	struct cpumask *sg_span;
684 	int cpu;
685 
686 	build_balance_mask(sd, sg, mask);
687 	cpu = cpumask_first_and(sched_group_span(sg), mask);
688 
689 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
690 	if (atomic_inc_return(&sg->sgc->ref) == 1)
691 		cpumask_copy(group_balance_mask(sg), mask);
692 	else
693 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
694 
695 	/*
696 	 * Initialize sgc->capacity such that even if we mess up the
697 	 * domains and no possible iteration will get us here, we won't
698 	 * die on a /0 trap.
699 	 */
700 	sg_span = sched_group_span(sg);
701 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
702 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
703 }
704 
705 static int
706 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
707 {
708 	struct sched_group *first = NULL, *last = NULL, *sg;
709 	const struct cpumask *span = sched_domain_span(sd);
710 	struct cpumask *covered = sched_domains_tmpmask;
711 	struct sd_data *sdd = sd->private;
712 	struct sched_domain *sibling;
713 	int i;
714 
715 	cpumask_clear(covered);
716 
717 	for_each_cpu_wrap(i, span, cpu) {
718 		struct cpumask *sg_span;
719 
720 		if (cpumask_test_cpu(i, covered))
721 			continue;
722 
723 		sibling = *per_cpu_ptr(sdd->sd, i);
724 
725 		/*
726 		 * Asymmetric node setups can result in situations where the
727 		 * domain tree is of unequal depth, make sure to skip domains
728 		 * that already cover the entire range.
729 		 *
730 		 * In that case build_sched_domains() will have terminated the
731 		 * iteration early and our sibling sd spans will be empty.
732 		 * Domains should always include the CPU they're built on, so
733 		 * check that.
734 		 */
735 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
736 			continue;
737 
738 		sg = build_group_from_child_sched_domain(sibling, cpu);
739 		if (!sg)
740 			goto fail;
741 
742 		sg_span = sched_group_span(sg);
743 		cpumask_or(covered, covered, sg_span);
744 
745 		init_overlap_sched_group(sd, sg);
746 
747 		if (!first)
748 			first = sg;
749 		if (last)
750 			last->next = sg;
751 		last = sg;
752 		last->next = first;
753 	}
754 	sd->groups = first;
755 
756 	return 0;
757 
758 fail:
759 	free_sched_groups(first, 0);
760 
761 	return -ENOMEM;
762 }
763 
764 
765 /*
766  * Package topology (also see the load-balance blurb in fair.c)
767  *
768  * The scheduler builds a tree structure to represent a number of important
769  * topology features. By default (default_topology[]) these include:
770  *
771  *  - Simultaneous multithreading (SMT)
772  *  - Multi-Core Cache (MC)
773  *  - Package (DIE)
774  *
775  * Where the last one more or less denotes everything up to a NUMA node.
776  *
777  * The tree consists of 3 primary data structures:
778  *
779  *	sched_domain -> sched_group -> sched_group_capacity
780  *	    ^ ^             ^ ^
781  *          `-'             `-'
782  *
783  * The sched_domains are per-cpu and have a two way link (parent & child) and
784  * denote the ever growing mask of CPUs belonging to that level of topology.
785  *
786  * Each sched_domain has a circular (double) linked list of sched_group's, each
787  * denoting the domains of the level below (or individual CPUs in case of the
788  * first domain level). The sched_group linked by a sched_domain includes the
789  * CPU of that sched_domain [*].
790  *
791  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
792  *
793  * CPU   0   1   2   3   4   5   6   7
794  *
795  * DIE  [                             ]
796  * MC   [             ] [             ]
797  * SMT  [     ] [     ] [     ] [     ]
798  *
799  *  - or -
800  *
801  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
802  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
803  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
804  *
805  * CPU   0   1   2   3   4   5   6   7
806  *
807  * One way to think about it is: sched_domain moves you up and down among these
808  * topology levels, while sched_group moves you sideways through it, at child
809  * domain granularity.
810  *
811  * sched_group_capacity ensures each unique sched_group has shared storage.
812  *
813  * There are two related construction problems, both require a CPU that
814  * uniquely identify each group (for a given domain):
815  *
816  *  - The first is the balance_cpu (see should_we_balance() and the
817  *    load-balance blub in fair.c); for each group we only want 1 CPU to
818  *    continue balancing at a higher domain.
819  *
820  *  - The second is the sched_group_capacity; we want all identical groups
821  *    to share a single sched_group_capacity.
822  *
823  * Since these topologies are exclusive by construction. That is, its
824  * impossible for an SMT thread to belong to multiple cores, and cores to
825  * be part of multiple caches. There is a very clear and unique location
826  * for each CPU in the hierarchy.
827  *
828  * Therefore computing a unique CPU for each group is trivial (the iteration
829  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
830  * group), we can simply pick the first CPU in each group.
831  *
832  *
833  * [*] in other words, the first group of each domain is its child domain.
834  */
835 
836 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
837 {
838 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
839 	struct sched_domain *child = sd->child;
840 	struct sched_group *sg;
841 
842 	if (child)
843 		cpu = cpumask_first(sched_domain_span(child));
844 
845 	sg = *per_cpu_ptr(sdd->sg, cpu);
846 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
847 
848 	/* For claim_allocations: */
849 	atomic_inc(&sg->ref);
850 	atomic_inc(&sg->sgc->ref);
851 
852 	if (child) {
853 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
854 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
855 	} else {
856 		cpumask_set_cpu(cpu, sched_group_span(sg));
857 		cpumask_set_cpu(cpu, group_balance_mask(sg));
858 	}
859 
860 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
861 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
862 
863 	return sg;
864 }
865 
866 /*
867  * build_sched_groups will build a circular linked list of the groups
868  * covered by the given span, and will set each group's ->cpumask correctly,
869  * and ->cpu_capacity to 0.
870  *
871  * Assumes the sched_domain tree is fully constructed
872  */
873 static int
874 build_sched_groups(struct sched_domain *sd, int cpu)
875 {
876 	struct sched_group *first = NULL, *last = NULL;
877 	struct sd_data *sdd = sd->private;
878 	const struct cpumask *span = sched_domain_span(sd);
879 	struct cpumask *covered;
880 	int i;
881 
882 	lockdep_assert_held(&sched_domains_mutex);
883 	covered = sched_domains_tmpmask;
884 
885 	cpumask_clear(covered);
886 
887 	for_each_cpu_wrap(i, span, cpu) {
888 		struct sched_group *sg;
889 
890 		if (cpumask_test_cpu(i, covered))
891 			continue;
892 
893 		sg = get_group(i, sdd);
894 
895 		cpumask_or(covered, covered, sched_group_span(sg));
896 
897 		if (!first)
898 			first = sg;
899 		if (last)
900 			last->next = sg;
901 		last = sg;
902 	}
903 	last->next = first;
904 	sd->groups = first;
905 
906 	return 0;
907 }
908 
909 /*
910  * Initialize sched groups cpu_capacity.
911  *
912  * cpu_capacity indicates the capacity of sched group, which is used while
913  * distributing the load between different sched groups in a sched domain.
914  * Typically cpu_capacity for all the groups in a sched domain will be same
915  * unless there are asymmetries in the topology. If there are asymmetries,
916  * group having more cpu_capacity will pickup more load compared to the
917  * group having less cpu_capacity.
918  */
919 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
920 {
921 	struct sched_group *sg = sd->groups;
922 
923 	WARN_ON(!sg);
924 
925 	do {
926 		int cpu, max_cpu = -1;
927 
928 		sg->group_weight = cpumask_weight(sched_group_span(sg));
929 
930 		if (!(sd->flags & SD_ASYM_PACKING))
931 			goto next;
932 
933 		for_each_cpu(cpu, sched_group_span(sg)) {
934 			if (max_cpu < 0)
935 				max_cpu = cpu;
936 			else if (sched_asym_prefer(cpu, max_cpu))
937 				max_cpu = cpu;
938 		}
939 		sg->asym_prefer_cpu = max_cpu;
940 
941 next:
942 		sg = sg->next;
943 	} while (sg != sd->groups);
944 
945 	if (cpu != group_balance_cpu(sg))
946 		return;
947 
948 	update_group_capacity(sd, cpu);
949 }
950 
951 /*
952  * Initializers for schedule domains
953  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
954  */
955 
956 static int default_relax_domain_level = -1;
957 int sched_domain_level_max;
958 
959 static int __init setup_relax_domain_level(char *str)
960 {
961 	if (kstrtoint(str, 0, &default_relax_domain_level))
962 		pr_warn("Unable to set relax_domain_level\n");
963 
964 	return 1;
965 }
966 __setup("relax_domain_level=", setup_relax_domain_level);
967 
968 static void set_domain_attribute(struct sched_domain *sd,
969 				 struct sched_domain_attr *attr)
970 {
971 	int request;
972 
973 	if (!attr || attr->relax_domain_level < 0) {
974 		if (default_relax_domain_level < 0)
975 			return;
976 		else
977 			request = default_relax_domain_level;
978 	} else
979 		request = attr->relax_domain_level;
980 	if (request < sd->level) {
981 		/* Turn off idle balance on this domain: */
982 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
983 	} else {
984 		/* Turn on idle balance on this domain: */
985 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
986 	}
987 }
988 
989 static void __sdt_free(const struct cpumask *cpu_map);
990 static int __sdt_alloc(const struct cpumask *cpu_map);
991 
992 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
993 				 const struct cpumask *cpu_map)
994 {
995 	switch (what) {
996 	case sa_rootdomain:
997 		if (!atomic_read(&d->rd->refcount))
998 			free_rootdomain(&d->rd->rcu);
999 		/* Fall through */
1000 	case sa_sd:
1001 		free_percpu(d->sd);
1002 		/* Fall through */
1003 	case sa_sd_storage:
1004 		__sdt_free(cpu_map);
1005 		/* Fall through */
1006 	case sa_none:
1007 		break;
1008 	}
1009 }
1010 
1011 static enum s_alloc
1012 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1013 {
1014 	memset(d, 0, sizeof(*d));
1015 
1016 	if (__sdt_alloc(cpu_map))
1017 		return sa_sd_storage;
1018 	d->sd = alloc_percpu(struct sched_domain *);
1019 	if (!d->sd)
1020 		return sa_sd_storage;
1021 	d->rd = alloc_rootdomain();
1022 	if (!d->rd)
1023 		return sa_sd;
1024 	return sa_rootdomain;
1025 }
1026 
1027 /*
1028  * NULL the sd_data elements we've used to build the sched_domain and
1029  * sched_group structure so that the subsequent __free_domain_allocs()
1030  * will not free the data we're using.
1031  */
1032 static void claim_allocations(int cpu, struct sched_domain *sd)
1033 {
1034 	struct sd_data *sdd = sd->private;
1035 
1036 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1037 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1038 
1039 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1040 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1041 
1042 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1043 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1044 
1045 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1046 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1047 }
1048 
1049 #ifdef CONFIG_NUMA
1050 static int sched_domains_numa_levels;
1051 enum numa_topology_type sched_numa_topology_type;
1052 static int *sched_domains_numa_distance;
1053 int sched_max_numa_distance;
1054 static struct cpumask ***sched_domains_numa_masks;
1055 static int sched_domains_curr_level;
1056 #endif
1057 
1058 /*
1059  * SD_flags allowed in topology descriptions.
1060  *
1061  * These flags are purely descriptive of the topology and do not prescribe
1062  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1063  * function:
1064  *
1065  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1066  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1067  *   SD_NUMA                - describes NUMA topologies
1068  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1069  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1070  *
1071  * Odd one out, which beside describing the topology has a quirk also
1072  * prescribes the desired behaviour that goes along with it:
1073  *
1074  *   SD_ASYM_PACKING        - describes SMT quirks
1075  */
1076 #define TOPOLOGY_SD_FLAGS		\
1077 	(SD_SHARE_CPUCAPACITY |		\
1078 	 SD_SHARE_PKG_RESOURCES |	\
1079 	 SD_NUMA |			\
1080 	 SD_ASYM_PACKING |		\
1081 	 SD_ASYM_CPUCAPACITY |		\
1082 	 SD_SHARE_POWERDOMAIN)
1083 
1084 static struct sched_domain *
1085 sd_init(struct sched_domain_topology_level *tl,
1086 	const struct cpumask *cpu_map,
1087 	struct sched_domain *child, int cpu)
1088 {
1089 	struct sd_data *sdd = &tl->data;
1090 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1091 	int sd_id, sd_weight, sd_flags = 0;
1092 
1093 #ifdef CONFIG_NUMA
1094 	/*
1095 	 * Ugly hack to pass state to sd_numa_mask()...
1096 	 */
1097 	sched_domains_curr_level = tl->numa_level;
1098 #endif
1099 
1100 	sd_weight = cpumask_weight(tl->mask(cpu));
1101 
1102 	if (tl->sd_flags)
1103 		sd_flags = (*tl->sd_flags)();
1104 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1105 			"wrong sd_flags in topology description\n"))
1106 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1107 
1108 	*sd = (struct sched_domain){
1109 		.min_interval		= sd_weight,
1110 		.max_interval		= 2*sd_weight,
1111 		.busy_factor		= 32,
1112 		.imbalance_pct		= 125,
1113 
1114 		.cache_nice_tries	= 0,
1115 		.busy_idx		= 0,
1116 		.idle_idx		= 0,
1117 		.newidle_idx		= 0,
1118 		.wake_idx		= 0,
1119 		.forkexec_idx		= 0,
1120 
1121 		.flags			= 1*SD_LOAD_BALANCE
1122 					| 1*SD_BALANCE_NEWIDLE
1123 					| 1*SD_BALANCE_EXEC
1124 					| 1*SD_BALANCE_FORK
1125 					| 0*SD_BALANCE_WAKE
1126 					| 1*SD_WAKE_AFFINE
1127 					| 0*SD_SHARE_CPUCAPACITY
1128 					| 0*SD_SHARE_PKG_RESOURCES
1129 					| 0*SD_SERIALIZE
1130 					| 0*SD_PREFER_SIBLING
1131 					| 0*SD_NUMA
1132 					| sd_flags
1133 					,
1134 
1135 		.last_balance		= jiffies,
1136 		.balance_interval	= sd_weight,
1137 		.smt_gain		= 0,
1138 		.max_newidle_lb_cost	= 0,
1139 		.next_decay_max_lb_cost	= jiffies,
1140 		.child			= child,
1141 #ifdef CONFIG_SCHED_DEBUG
1142 		.name			= tl->name,
1143 #endif
1144 	};
1145 
1146 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1147 	sd_id = cpumask_first(sched_domain_span(sd));
1148 
1149 	/*
1150 	 * Convert topological properties into behaviour.
1151 	 */
1152 
1153 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1154 		struct sched_domain *t = sd;
1155 
1156 		for_each_lower_domain(t)
1157 			t->flags |= SD_BALANCE_WAKE;
1158 	}
1159 
1160 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1161 		sd->flags |= SD_PREFER_SIBLING;
1162 		sd->imbalance_pct = 110;
1163 		sd->smt_gain = 1178; /* ~15% */
1164 
1165 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1166 		sd->flags |= SD_PREFER_SIBLING;
1167 		sd->imbalance_pct = 117;
1168 		sd->cache_nice_tries = 1;
1169 		sd->busy_idx = 2;
1170 
1171 #ifdef CONFIG_NUMA
1172 	} else if (sd->flags & SD_NUMA) {
1173 		sd->cache_nice_tries = 2;
1174 		sd->busy_idx = 3;
1175 		sd->idle_idx = 2;
1176 
1177 		sd->flags |= SD_SERIALIZE;
1178 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1179 			sd->flags &= ~(SD_BALANCE_EXEC |
1180 				       SD_BALANCE_FORK |
1181 				       SD_WAKE_AFFINE);
1182 		}
1183 
1184 #endif
1185 	} else {
1186 		sd->flags |= SD_PREFER_SIBLING;
1187 		sd->cache_nice_tries = 1;
1188 		sd->busy_idx = 2;
1189 		sd->idle_idx = 1;
1190 	}
1191 
1192 	/*
1193 	 * For all levels sharing cache; connect a sched_domain_shared
1194 	 * instance.
1195 	 */
1196 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1197 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1198 		atomic_inc(&sd->shared->ref);
1199 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1200 	}
1201 
1202 	sd->private = sdd;
1203 
1204 	return sd;
1205 }
1206 
1207 /*
1208  * Topology list, bottom-up.
1209  */
1210 static struct sched_domain_topology_level default_topology[] = {
1211 #ifdef CONFIG_SCHED_SMT
1212 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1213 #endif
1214 #ifdef CONFIG_SCHED_MC
1215 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1216 #endif
1217 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1218 	{ NULL, },
1219 };
1220 
1221 static struct sched_domain_topology_level *sched_domain_topology =
1222 	default_topology;
1223 
1224 #define for_each_sd_topology(tl)			\
1225 	for (tl = sched_domain_topology; tl->mask; tl++)
1226 
1227 void set_sched_topology(struct sched_domain_topology_level *tl)
1228 {
1229 	if (WARN_ON_ONCE(sched_smp_initialized))
1230 		return;
1231 
1232 	sched_domain_topology = tl;
1233 }
1234 
1235 #ifdef CONFIG_NUMA
1236 
1237 static const struct cpumask *sd_numa_mask(int cpu)
1238 {
1239 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1240 }
1241 
1242 static void sched_numa_warn(const char *str)
1243 {
1244 	static int done = false;
1245 	int i,j;
1246 
1247 	if (done)
1248 		return;
1249 
1250 	done = true;
1251 
1252 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1253 
1254 	for (i = 0; i < nr_node_ids; i++) {
1255 		printk(KERN_WARNING "  ");
1256 		for (j = 0; j < nr_node_ids; j++)
1257 			printk(KERN_CONT "%02d ", node_distance(i,j));
1258 		printk(KERN_CONT "\n");
1259 	}
1260 	printk(KERN_WARNING "\n");
1261 }
1262 
1263 bool find_numa_distance(int distance)
1264 {
1265 	int i;
1266 
1267 	if (distance == node_distance(0, 0))
1268 		return true;
1269 
1270 	for (i = 0; i < sched_domains_numa_levels; i++) {
1271 		if (sched_domains_numa_distance[i] == distance)
1272 			return true;
1273 	}
1274 
1275 	return false;
1276 }
1277 
1278 /*
1279  * A system can have three types of NUMA topology:
1280  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1281  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1282  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1283  *
1284  * The difference between a glueless mesh topology and a backplane
1285  * topology lies in whether communication between not directly
1286  * connected nodes goes through intermediary nodes (where programs
1287  * could run), or through backplane controllers. This affects
1288  * placement of programs.
1289  *
1290  * The type of topology can be discerned with the following tests:
1291  * - If the maximum distance between any nodes is 1 hop, the system
1292  *   is directly connected.
1293  * - If for two nodes A and B, located N > 1 hops away from each other,
1294  *   there is an intermediary node C, which is < N hops away from both
1295  *   nodes A and B, the system is a glueless mesh.
1296  */
1297 static void init_numa_topology_type(void)
1298 {
1299 	int a, b, c, n;
1300 
1301 	n = sched_max_numa_distance;
1302 
1303 	if (sched_domains_numa_levels <= 1) {
1304 		sched_numa_topology_type = NUMA_DIRECT;
1305 		return;
1306 	}
1307 
1308 	for_each_online_node(a) {
1309 		for_each_online_node(b) {
1310 			/* Find two nodes furthest removed from each other. */
1311 			if (node_distance(a, b) < n)
1312 				continue;
1313 
1314 			/* Is there an intermediary node between a and b? */
1315 			for_each_online_node(c) {
1316 				if (node_distance(a, c) < n &&
1317 				    node_distance(b, c) < n) {
1318 					sched_numa_topology_type =
1319 							NUMA_GLUELESS_MESH;
1320 					return;
1321 				}
1322 			}
1323 
1324 			sched_numa_topology_type = NUMA_BACKPLANE;
1325 			return;
1326 		}
1327 	}
1328 }
1329 
1330 void sched_init_numa(void)
1331 {
1332 	int next_distance, curr_distance = node_distance(0, 0);
1333 	struct sched_domain_topology_level *tl;
1334 	int level = 0;
1335 	int i, j, k;
1336 
1337 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1338 	if (!sched_domains_numa_distance)
1339 		return;
1340 
1341 	/* Includes NUMA identity node at level 0. */
1342 	sched_domains_numa_distance[level++] = curr_distance;
1343 	sched_domains_numa_levels = level;
1344 
1345 	/*
1346 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1347 	 * unique distances in the node_distance() table.
1348 	 *
1349 	 * Assumes node_distance(0,j) includes all distances in
1350 	 * node_distance(i,j) in order to avoid cubic time.
1351 	 */
1352 	next_distance = curr_distance;
1353 	for (i = 0; i < nr_node_ids; i++) {
1354 		for (j = 0; j < nr_node_ids; j++) {
1355 			for (k = 0; k < nr_node_ids; k++) {
1356 				int distance = node_distance(i, k);
1357 
1358 				if (distance > curr_distance &&
1359 				    (distance < next_distance ||
1360 				     next_distance == curr_distance))
1361 					next_distance = distance;
1362 
1363 				/*
1364 				 * While not a strong assumption it would be nice to know
1365 				 * about cases where if node A is connected to B, B is not
1366 				 * equally connected to A.
1367 				 */
1368 				if (sched_debug() && node_distance(k, i) != distance)
1369 					sched_numa_warn("Node-distance not symmetric");
1370 
1371 				if (sched_debug() && i && !find_numa_distance(distance))
1372 					sched_numa_warn("Node-0 not representative");
1373 			}
1374 			if (next_distance != curr_distance) {
1375 				sched_domains_numa_distance[level++] = next_distance;
1376 				sched_domains_numa_levels = level;
1377 				curr_distance = next_distance;
1378 			} else break;
1379 		}
1380 
1381 		/*
1382 		 * In case of sched_debug() we verify the above assumption.
1383 		 */
1384 		if (!sched_debug())
1385 			break;
1386 	}
1387 
1388 	if (!level)
1389 		return;
1390 
1391 	/*
1392 	 * 'level' contains the number of unique distances
1393 	 *
1394 	 * The sched_domains_numa_distance[] array includes the actual distance
1395 	 * numbers.
1396 	 */
1397 
1398 	/*
1399 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401 	 * the array will contain less then 'level' members. This could be
1402 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403 	 * in other functions.
1404 	 *
1405 	 * We reset it to 'level' at the end of this function.
1406 	 */
1407 	sched_domains_numa_levels = 0;
1408 
1409 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1410 	if (!sched_domains_numa_masks)
1411 		return;
1412 
1413 	/*
1414 	 * Now for each level, construct a mask per node which contains all
1415 	 * CPUs of nodes that are that many hops away from us.
1416 	 */
1417 	for (i = 0; i < level; i++) {
1418 		sched_domains_numa_masks[i] =
1419 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1420 		if (!sched_domains_numa_masks[i])
1421 			return;
1422 
1423 		for (j = 0; j < nr_node_ids; j++) {
1424 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1425 			if (!mask)
1426 				return;
1427 
1428 			sched_domains_numa_masks[i][j] = mask;
1429 
1430 			for_each_node(k) {
1431 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1432 					continue;
1433 
1434 				cpumask_or(mask, mask, cpumask_of_node(k));
1435 			}
1436 		}
1437 	}
1438 
1439 	/* Compute default topology size */
1440 	for (i = 0; sched_domain_topology[i].mask; i++);
1441 
1442 	tl = kzalloc((i + level + 1) *
1443 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1444 	if (!tl)
1445 		return;
1446 
1447 	/*
1448 	 * Copy the default topology bits..
1449 	 */
1450 	for (i = 0; sched_domain_topology[i].mask; i++)
1451 		tl[i] = sched_domain_topology[i];
1452 
1453 	/*
1454 	 * Add the NUMA identity distance, aka single NODE.
1455 	 */
1456 	tl[i++] = (struct sched_domain_topology_level){
1457 		.mask = sd_numa_mask,
1458 		.numa_level = 0,
1459 		SD_INIT_NAME(NODE)
1460 	};
1461 
1462 	/*
1463 	 * .. and append 'j' levels of NUMA goodness.
1464 	 */
1465 	for (j = 1; j < level; i++, j++) {
1466 		tl[i] = (struct sched_domain_topology_level){
1467 			.mask = sd_numa_mask,
1468 			.sd_flags = cpu_numa_flags,
1469 			.flags = SDTL_OVERLAP,
1470 			.numa_level = j,
1471 			SD_INIT_NAME(NUMA)
1472 		};
1473 	}
1474 
1475 	sched_domain_topology = tl;
1476 
1477 	sched_domains_numa_levels = level;
1478 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1479 
1480 	init_numa_topology_type();
1481 }
1482 
1483 void sched_domains_numa_masks_set(unsigned int cpu)
1484 {
1485 	int node = cpu_to_node(cpu);
1486 	int i, j;
1487 
1488 	for (i = 0; i < sched_domains_numa_levels; i++) {
1489 		for (j = 0; j < nr_node_ids; j++) {
1490 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1491 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1492 		}
1493 	}
1494 }
1495 
1496 void sched_domains_numa_masks_clear(unsigned int cpu)
1497 {
1498 	int i, j;
1499 
1500 	for (i = 0; i < sched_domains_numa_levels; i++) {
1501 		for (j = 0; j < nr_node_ids; j++)
1502 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1503 	}
1504 }
1505 
1506 #endif /* CONFIG_NUMA */
1507 
1508 static int __sdt_alloc(const struct cpumask *cpu_map)
1509 {
1510 	struct sched_domain_topology_level *tl;
1511 	int j;
1512 
1513 	for_each_sd_topology(tl) {
1514 		struct sd_data *sdd = &tl->data;
1515 
1516 		sdd->sd = alloc_percpu(struct sched_domain *);
1517 		if (!sdd->sd)
1518 			return -ENOMEM;
1519 
1520 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1521 		if (!sdd->sds)
1522 			return -ENOMEM;
1523 
1524 		sdd->sg = alloc_percpu(struct sched_group *);
1525 		if (!sdd->sg)
1526 			return -ENOMEM;
1527 
1528 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1529 		if (!sdd->sgc)
1530 			return -ENOMEM;
1531 
1532 		for_each_cpu(j, cpu_map) {
1533 			struct sched_domain *sd;
1534 			struct sched_domain_shared *sds;
1535 			struct sched_group *sg;
1536 			struct sched_group_capacity *sgc;
1537 
1538 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1539 					GFP_KERNEL, cpu_to_node(j));
1540 			if (!sd)
1541 				return -ENOMEM;
1542 
1543 			*per_cpu_ptr(sdd->sd, j) = sd;
1544 
1545 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1546 					GFP_KERNEL, cpu_to_node(j));
1547 			if (!sds)
1548 				return -ENOMEM;
1549 
1550 			*per_cpu_ptr(sdd->sds, j) = sds;
1551 
1552 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1553 					GFP_KERNEL, cpu_to_node(j));
1554 			if (!sg)
1555 				return -ENOMEM;
1556 
1557 			sg->next = sg;
1558 
1559 			*per_cpu_ptr(sdd->sg, j) = sg;
1560 
1561 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1562 					GFP_KERNEL, cpu_to_node(j));
1563 			if (!sgc)
1564 				return -ENOMEM;
1565 
1566 #ifdef CONFIG_SCHED_DEBUG
1567 			sgc->id = j;
1568 #endif
1569 
1570 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1571 		}
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 static void __sdt_free(const struct cpumask *cpu_map)
1578 {
1579 	struct sched_domain_topology_level *tl;
1580 	int j;
1581 
1582 	for_each_sd_topology(tl) {
1583 		struct sd_data *sdd = &tl->data;
1584 
1585 		for_each_cpu(j, cpu_map) {
1586 			struct sched_domain *sd;
1587 
1588 			if (sdd->sd) {
1589 				sd = *per_cpu_ptr(sdd->sd, j);
1590 				if (sd && (sd->flags & SD_OVERLAP))
1591 					free_sched_groups(sd->groups, 0);
1592 				kfree(*per_cpu_ptr(sdd->sd, j));
1593 			}
1594 
1595 			if (sdd->sds)
1596 				kfree(*per_cpu_ptr(sdd->sds, j));
1597 			if (sdd->sg)
1598 				kfree(*per_cpu_ptr(sdd->sg, j));
1599 			if (sdd->sgc)
1600 				kfree(*per_cpu_ptr(sdd->sgc, j));
1601 		}
1602 		free_percpu(sdd->sd);
1603 		sdd->sd = NULL;
1604 		free_percpu(sdd->sds);
1605 		sdd->sds = NULL;
1606 		free_percpu(sdd->sg);
1607 		sdd->sg = NULL;
1608 		free_percpu(sdd->sgc);
1609 		sdd->sgc = NULL;
1610 	}
1611 }
1612 
1613 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1614 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1615 		struct sched_domain *child, int cpu)
1616 {
1617 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1618 
1619 	if (child) {
1620 		sd->level = child->level + 1;
1621 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1622 		child->parent = sd;
1623 
1624 		if (!cpumask_subset(sched_domain_span(child),
1625 				    sched_domain_span(sd))) {
1626 			pr_err("BUG: arch topology borken\n");
1627 #ifdef CONFIG_SCHED_DEBUG
1628 			pr_err("     the %s domain not a subset of the %s domain\n",
1629 					child->name, sd->name);
1630 #endif
1631 			/* Fixup, ensure @sd has at least @child cpus. */
1632 			cpumask_or(sched_domain_span(sd),
1633 				   sched_domain_span(sd),
1634 				   sched_domain_span(child));
1635 		}
1636 
1637 	}
1638 	set_domain_attribute(sd, attr);
1639 
1640 	return sd;
1641 }
1642 
1643 /*
1644  * Build sched domains for a given set of CPUs and attach the sched domains
1645  * to the individual CPUs
1646  */
1647 static int
1648 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1649 {
1650 	enum s_alloc alloc_state;
1651 	struct sched_domain *sd;
1652 	struct s_data d;
1653 	struct rq *rq = NULL;
1654 	int i, ret = -ENOMEM;
1655 
1656 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1657 	if (alloc_state != sa_rootdomain)
1658 		goto error;
1659 
1660 	/* Set up domains for CPUs specified by the cpu_map: */
1661 	for_each_cpu(i, cpu_map) {
1662 		struct sched_domain_topology_level *tl;
1663 
1664 		sd = NULL;
1665 		for_each_sd_topology(tl) {
1666 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1667 			if (tl == sched_domain_topology)
1668 				*per_cpu_ptr(d.sd, i) = sd;
1669 			if (tl->flags & SDTL_OVERLAP)
1670 				sd->flags |= SD_OVERLAP;
1671 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1672 				break;
1673 		}
1674 	}
1675 
1676 	/* Build the groups for the domains */
1677 	for_each_cpu(i, cpu_map) {
1678 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1679 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1680 			if (sd->flags & SD_OVERLAP) {
1681 				if (build_overlap_sched_groups(sd, i))
1682 					goto error;
1683 			} else {
1684 				if (build_sched_groups(sd, i))
1685 					goto error;
1686 			}
1687 		}
1688 	}
1689 
1690 	/* Calculate CPU capacity for physical packages and nodes */
1691 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1692 		if (!cpumask_test_cpu(i, cpu_map))
1693 			continue;
1694 
1695 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1696 			claim_allocations(i, sd);
1697 			init_sched_groups_capacity(i, sd);
1698 		}
1699 	}
1700 
1701 	/* Attach the domains */
1702 	rcu_read_lock();
1703 	for_each_cpu(i, cpu_map) {
1704 		rq = cpu_rq(i);
1705 		sd = *per_cpu_ptr(d.sd, i);
1706 
1707 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1708 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1709 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1710 
1711 		cpu_attach_domain(sd, d.rd, i);
1712 	}
1713 	rcu_read_unlock();
1714 
1715 	if (rq && sched_debug_enabled) {
1716 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1717 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1718 	}
1719 
1720 	ret = 0;
1721 error:
1722 	__free_domain_allocs(&d, alloc_state, cpu_map);
1723 	return ret;
1724 }
1725 
1726 /* Current sched domains: */
1727 static cpumask_var_t			*doms_cur;
1728 
1729 /* Number of sched domains in 'doms_cur': */
1730 static int				ndoms_cur;
1731 
1732 /* Attribues of custom domains in 'doms_cur' */
1733 static struct sched_domain_attr		*dattr_cur;
1734 
1735 /*
1736  * Special case: If a kmalloc() of a doms_cur partition (array of
1737  * cpumask) fails, then fallback to a single sched domain,
1738  * as determined by the single cpumask fallback_doms.
1739  */
1740 static cpumask_var_t			fallback_doms;
1741 
1742 /*
1743  * arch_update_cpu_topology lets virtualized architectures update the
1744  * CPU core maps. It is supposed to return 1 if the topology changed
1745  * or 0 if it stayed the same.
1746  */
1747 int __weak arch_update_cpu_topology(void)
1748 {
1749 	return 0;
1750 }
1751 
1752 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1753 {
1754 	int i;
1755 	cpumask_var_t *doms;
1756 
1757 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1758 	if (!doms)
1759 		return NULL;
1760 	for (i = 0; i < ndoms; i++) {
1761 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1762 			free_sched_domains(doms, i);
1763 			return NULL;
1764 		}
1765 	}
1766 	return doms;
1767 }
1768 
1769 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1770 {
1771 	unsigned int i;
1772 	for (i = 0; i < ndoms; i++)
1773 		free_cpumask_var(doms[i]);
1774 	kfree(doms);
1775 }
1776 
1777 /*
1778  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1779  * For now this just excludes isolated CPUs, but could be used to
1780  * exclude other special cases in the future.
1781  */
1782 int sched_init_domains(const struct cpumask *cpu_map)
1783 {
1784 	int err;
1785 
1786 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1787 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1788 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1789 
1790 	arch_update_cpu_topology();
1791 	ndoms_cur = 1;
1792 	doms_cur = alloc_sched_domains(ndoms_cur);
1793 	if (!doms_cur)
1794 		doms_cur = &fallback_doms;
1795 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1796 	err = build_sched_domains(doms_cur[0], NULL);
1797 	register_sched_domain_sysctl();
1798 
1799 	return err;
1800 }
1801 
1802 /*
1803  * Detach sched domains from a group of CPUs specified in cpu_map
1804  * These CPUs will now be attached to the NULL domain
1805  */
1806 static void detach_destroy_domains(const struct cpumask *cpu_map)
1807 {
1808 	int i;
1809 
1810 	rcu_read_lock();
1811 	for_each_cpu(i, cpu_map)
1812 		cpu_attach_domain(NULL, &def_root_domain, i);
1813 	rcu_read_unlock();
1814 }
1815 
1816 /* handle null as "default" */
1817 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1818 			struct sched_domain_attr *new, int idx_new)
1819 {
1820 	struct sched_domain_attr tmp;
1821 
1822 	/* Fast path: */
1823 	if (!new && !cur)
1824 		return 1;
1825 
1826 	tmp = SD_ATTR_INIT;
1827 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1828 			new ? (new + idx_new) : &tmp,
1829 			sizeof(struct sched_domain_attr));
1830 }
1831 
1832 /*
1833  * Partition sched domains as specified by the 'ndoms_new'
1834  * cpumasks in the array doms_new[] of cpumasks. This compares
1835  * doms_new[] to the current sched domain partitioning, doms_cur[].
1836  * It destroys each deleted domain and builds each new domain.
1837  *
1838  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1839  * The masks don't intersect (don't overlap.) We should setup one
1840  * sched domain for each mask. CPUs not in any of the cpumasks will
1841  * not be load balanced. If the same cpumask appears both in the
1842  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1843  * it as it is.
1844  *
1845  * The passed in 'doms_new' should be allocated using
1846  * alloc_sched_domains.  This routine takes ownership of it and will
1847  * free_sched_domains it when done with it. If the caller failed the
1848  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1849  * and partition_sched_domains() will fallback to the single partition
1850  * 'fallback_doms', it also forces the domains to be rebuilt.
1851  *
1852  * If doms_new == NULL it will be replaced with cpu_online_mask.
1853  * ndoms_new == 0 is a special case for destroying existing domains,
1854  * and it will not create the default domain.
1855  *
1856  * Call with hotplug lock held
1857  */
1858 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1859 			     struct sched_domain_attr *dattr_new)
1860 {
1861 	int i, j, n;
1862 	int new_topology;
1863 
1864 	mutex_lock(&sched_domains_mutex);
1865 
1866 	/* Always unregister in case we don't destroy any domains: */
1867 	unregister_sched_domain_sysctl();
1868 
1869 	/* Let the architecture update CPU core mappings: */
1870 	new_topology = arch_update_cpu_topology();
1871 
1872 	if (!doms_new) {
1873 		WARN_ON_ONCE(dattr_new);
1874 		n = 0;
1875 		doms_new = alloc_sched_domains(1);
1876 		if (doms_new) {
1877 			n = 1;
1878 			cpumask_and(doms_new[0], cpu_active_mask,
1879 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
1880 		}
1881 	} else {
1882 		n = ndoms_new;
1883 	}
1884 
1885 	/* Destroy deleted domains: */
1886 	for (i = 0; i < ndoms_cur; i++) {
1887 		for (j = 0; j < n && !new_topology; j++) {
1888 			if (cpumask_equal(doms_cur[i], doms_new[j])
1889 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1890 				goto match1;
1891 		}
1892 		/* No match - a current sched domain not in new doms_new[] */
1893 		detach_destroy_domains(doms_cur[i]);
1894 match1:
1895 		;
1896 	}
1897 
1898 	n = ndoms_cur;
1899 	if (!doms_new) {
1900 		n = 0;
1901 		doms_new = &fallback_doms;
1902 		cpumask_and(doms_new[0], cpu_active_mask,
1903 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
1904 	}
1905 
1906 	/* Build new domains: */
1907 	for (i = 0; i < ndoms_new; i++) {
1908 		for (j = 0; j < n && !new_topology; j++) {
1909 			if (cpumask_equal(doms_new[i], doms_cur[j])
1910 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1911 				goto match2;
1912 		}
1913 		/* No match - add a new doms_new */
1914 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1915 match2:
1916 		;
1917 	}
1918 
1919 	/* Remember the new sched domains: */
1920 	if (doms_cur != &fallback_doms)
1921 		free_sched_domains(doms_cur, ndoms_cur);
1922 
1923 	kfree(dattr_cur);
1924 	doms_cur = doms_new;
1925 	dattr_cur = dattr_new;
1926 	ndoms_cur = ndoms_new;
1927 
1928 	register_sched_domain_sysctl();
1929 
1930 	mutex_unlock(&sched_domains_mutex);
1931 }
1932 
1933