1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include <linux/sched.h> 6 #include <linux/mutex.h> 7 #include <linux/sched/isolation.h> 8 9 #include "sched.h" 10 11 DEFINE_MUTEX(sched_domains_mutex); 12 13 /* Protected by sched_domains_mutex: */ 14 cpumask_var_t sched_domains_tmpmask; 15 cpumask_var_t sched_domains_tmpmask2; 16 17 #ifdef CONFIG_SCHED_DEBUG 18 19 static int __init sched_debug_setup(char *str) 20 { 21 sched_debug_enabled = true; 22 23 return 0; 24 } 25 early_param("sched_debug", sched_debug_setup); 26 27 static inline bool sched_debug(void) 28 { 29 return sched_debug_enabled; 30 } 31 32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33 struct cpumask *groupmask) 34 { 35 struct sched_group *group = sd->groups; 36 37 cpumask_clear(groupmask); 38 39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40 41 if (!(sd->flags & SD_LOAD_BALANCE)) { 42 printk("does not load-balance\n"); 43 if (sd->parent) 44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45 " has parent"); 46 return -1; 47 } 48 49 printk(KERN_CONT "span=%*pbl level=%s\n", 50 cpumask_pr_args(sched_domain_span(sd)), sd->name); 51 52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53 printk(KERN_ERR "ERROR: domain->span does not contain " 54 "CPU%d\n", cpu); 55 } 56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 57 printk(KERN_ERR "ERROR: domain->groups does not contain" 58 " CPU%d\n", cpu); 59 } 60 61 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62 do { 63 if (!group) { 64 printk("\n"); 65 printk(KERN_ERR "ERROR: group is NULL\n"); 66 break; 67 } 68 69 if (!cpumask_weight(sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: empty group\n"); 72 break; 73 } 74 75 if (!(sd->flags & SD_OVERLAP) && 76 cpumask_intersects(groupmask, sched_group_span(group))) { 77 printk(KERN_CONT "\n"); 78 printk(KERN_ERR "ERROR: repeated CPUs\n"); 79 break; 80 } 81 82 cpumask_or(groupmask, groupmask, sched_group_span(group)); 83 84 printk(KERN_CONT " %d:{ span=%*pbl", 85 group->sgc->id, 86 cpumask_pr_args(sched_group_span(group))); 87 88 if ((sd->flags & SD_OVERLAP) && 89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 90 printk(KERN_CONT " mask=%*pbl", 91 cpumask_pr_args(group_balance_mask(group))); 92 } 93 94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96 97 if (group == sd->groups && sd->child && 98 !cpumask_equal(sched_domain_span(sd->child), 99 sched_group_span(group))) { 100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101 } 102 103 printk(KERN_CONT " }"); 104 105 group = group->next; 106 107 if (group != sd->groups) 108 printk(KERN_CONT ","); 109 110 } while (group != sd->groups); 111 printk(KERN_CONT "\n"); 112 113 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115 116 if (sd->parent && 117 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118 printk(KERN_ERR "ERROR: parent span is not a superset " 119 "of domain->span\n"); 120 return 0; 121 } 122 123 static void sched_domain_debug(struct sched_domain *sd, int cpu) 124 { 125 int level = 0; 126 127 if (!sched_debug_enabled) 128 return; 129 130 if (!sd) { 131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132 return; 133 } 134 135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136 137 for (;;) { 138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139 break; 140 level++; 141 sd = sd->parent; 142 if (!sd) 143 break; 144 } 145 } 146 #else /* !CONFIG_SCHED_DEBUG */ 147 148 # define sched_debug_enabled 0 149 # define sched_domain_debug(sd, cpu) do { } while (0) 150 static inline bool sched_debug(void) 151 { 152 return false; 153 } 154 #endif /* CONFIG_SCHED_DEBUG */ 155 156 static int sd_degenerate(struct sched_domain *sd) 157 { 158 if (cpumask_weight(sched_domain_span(sd)) == 1) 159 return 1; 160 161 /* Following flags need at least 2 groups */ 162 if (sd->flags & (SD_LOAD_BALANCE | 163 SD_BALANCE_NEWIDLE | 164 SD_BALANCE_FORK | 165 SD_BALANCE_EXEC | 166 SD_SHARE_CPUCAPACITY | 167 SD_ASYM_CPUCAPACITY | 168 SD_SHARE_PKG_RESOURCES | 169 SD_SHARE_POWERDOMAIN)) { 170 if (sd->groups != sd->groups->next) 171 return 0; 172 } 173 174 /* Following flags don't use groups */ 175 if (sd->flags & (SD_WAKE_AFFINE)) 176 return 0; 177 178 return 1; 179 } 180 181 static int 182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183 { 184 unsigned long cflags = sd->flags, pflags = parent->flags; 185 186 if (sd_degenerate(parent)) 187 return 1; 188 189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190 return 0; 191 192 /* Flags needing groups don't count if only 1 group in parent */ 193 if (parent->groups == parent->groups->next) { 194 pflags &= ~(SD_LOAD_BALANCE | 195 SD_BALANCE_NEWIDLE | 196 SD_BALANCE_FORK | 197 SD_BALANCE_EXEC | 198 SD_ASYM_CPUCAPACITY | 199 SD_SHARE_CPUCAPACITY | 200 SD_SHARE_PKG_RESOURCES | 201 SD_PREFER_SIBLING | 202 SD_SHARE_POWERDOMAIN); 203 if (nr_node_ids == 1) 204 pflags &= ~SD_SERIALIZE; 205 } 206 if (~cflags & pflags) 207 return 0; 208 209 return 1; 210 } 211 212 static void free_rootdomain(struct rcu_head *rcu) 213 { 214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215 216 cpupri_cleanup(&rd->cpupri); 217 cpudl_cleanup(&rd->cpudl); 218 free_cpumask_var(rd->dlo_mask); 219 free_cpumask_var(rd->rto_mask); 220 free_cpumask_var(rd->online); 221 free_cpumask_var(rd->span); 222 kfree(rd); 223 } 224 225 void rq_attach_root(struct rq *rq, struct root_domain *rd) 226 { 227 struct root_domain *old_rd = NULL; 228 unsigned long flags; 229 230 raw_spin_lock_irqsave(&rq->lock, flags); 231 232 if (rq->rd) { 233 old_rd = rq->rd; 234 235 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236 set_rq_offline(rq); 237 238 cpumask_clear_cpu(rq->cpu, old_rd->span); 239 240 /* 241 * If we dont want to free the old_rd yet then 242 * set old_rd to NULL to skip the freeing later 243 * in this function: 244 */ 245 if (!atomic_dec_and_test(&old_rd->refcount)) 246 old_rd = NULL; 247 } 248 249 atomic_inc(&rd->refcount); 250 rq->rd = rd; 251 252 cpumask_set_cpu(rq->cpu, rd->span); 253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254 set_rq_online(rq); 255 256 raw_spin_unlock_irqrestore(&rq->lock, flags); 257 258 if (old_rd) 259 call_rcu_sched(&old_rd->rcu, free_rootdomain); 260 } 261 262 void sched_get_rd(struct root_domain *rd) 263 { 264 atomic_inc(&rd->refcount); 265 } 266 267 void sched_put_rd(struct root_domain *rd) 268 { 269 if (!atomic_dec_and_test(&rd->refcount)) 270 return; 271 272 call_rcu_sched(&rd->rcu, free_rootdomain); 273 } 274 275 static int init_rootdomain(struct root_domain *rd) 276 { 277 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 278 goto out; 279 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 280 goto free_span; 281 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 282 goto free_online; 283 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 284 goto free_dlo_mask; 285 286 #ifdef HAVE_RT_PUSH_IPI 287 rd->rto_cpu = -1; 288 raw_spin_lock_init(&rd->rto_lock); 289 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 290 #endif 291 292 init_dl_bw(&rd->dl_bw); 293 if (cpudl_init(&rd->cpudl) != 0) 294 goto free_rto_mask; 295 296 if (cpupri_init(&rd->cpupri) != 0) 297 goto free_cpudl; 298 return 0; 299 300 free_cpudl: 301 cpudl_cleanup(&rd->cpudl); 302 free_rto_mask: 303 free_cpumask_var(rd->rto_mask); 304 free_dlo_mask: 305 free_cpumask_var(rd->dlo_mask); 306 free_online: 307 free_cpumask_var(rd->online); 308 free_span: 309 free_cpumask_var(rd->span); 310 out: 311 return -ENOMEM; 312 } 313 314 /* 315 * By default the system creates a single root-domain with all CPUs as 316 * members (mimicking the global state we have today). 317 */ 318 struct root_domain def_root_domain; 319 320 void init_defrootdomain(void) 321 { 322 init_rootdomain(&def_root_domain); 323 324 atomic_set(&def_root_domain.refcount, 1); 325 } 326 327 static struct root_domain *alloc_rootdomain(void) 328 { 329 struct root_domain *rd; 330 331 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 332 if (!rd) 333 return NULL; 334 335 if (init_rootdomain(rd) != 0) { 336 kfree(rd); 337 return NULL; 338 } 339 340 return rd; 341 } 342 343 static void free_sched_groups(struct sched_group *sg, int free_sgc) 344 { 345 struct sched_group *tmp, *first; 346 347 if (!sg) 348 return; 349 350 first = sg; 351 do { 352 tmp = sg->next; 353 354 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 355 kfree(sg->sgc); 356 357 if (atomic_dec_and_test(&sg->ref)) 358 kfree(sg); 359 sg = tmp; 360 } while (sg != first); 361 } 362 363 static void destroy_sched_domain(struct sched_domain *sd) 364 { 365 /* 366 * A normal sched domain may have multiple group references, an 367 * overlapping domain, having private groups, only one. Iterate, 368 * dropping group/capacity references, freeing where none remain. 369 */ 370 free_sched_groups(sd->groups, 1); 371 372 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 373 kfree(sd->shared); 374 kfree(sd); 375 } 376 377 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 378 { 379 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 380 381 while (sd) { 382 struct sched_domain *parent = sd->parent; 383 destroy_sched_domain(sd); 384 sd = parent; 385 } 386 } 387 388 static void destroy_sched_domains(struct sched_domain *sd) 389 { 390 if (sd) 391 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 392 } 393 394 /* 395 * Keep a special pointer to the highest sched_domain that has 396 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 397 * allows us to avoid some pointer chasing select_idle_sibling(). 398 * 399 * Also keep a unique ID per domain (we use the first CPU number in 400 * the cpumask of the domain), this allows us to quickly tell if 401 * two CPUs are in the same cache domain, see cpus_share_cache(). 402 */ 403 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 404 DEFINE_PER_CPU(int, sd_llc_size); 405 DEFINE_PER_CPU(int, sd_llc_id); 406 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 407 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 408 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 409 410 static void update_top_cache_domain(int cpu) 411 { 412 struct sched_domain_shared *sds = NULL; 413 struct sched_domain *sd; 414 int id = cpu; 415 int size = 1; 416 417 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 418 if (sd) { 419 id = cpumask_first(sched_domain_span(sd)); 420 size = cpumask_weight(sched_domain_span(sd)); 421 sds = sd->shared; 422 } 423 424 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 425 per_cpu(sd_llc_size, cpu) = size; 426 per_cpu(sd_llc_id, cpu) = id; 427 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 428 429 sd = lowest_flag_domain(cpu, SD_NUMA); 430 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 431 432 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 433 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 434 } 435 436 /* 437 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 438 * hold the hotplug lock. 439 */ 440 static void 441 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 442 { 443 struct rq *rq = cpu_rq(cpu); 444 struct sched_domain *tmp; 445 446 /* Remove the sched domains which do not contribute to scheduling. */ 447 for (tmp = sd; tmp; ) { 448 struct sched_domain *parent = tmp->parent; 449 if (!parent) 450 break; 451 452 if (sd_parent_degenerate(tmp, parent)) { 453 tmp->parent = parent->parent; 454 if (parent->parent) 455 parent->parent->child = tmp; 456 /* 457 * Transfer SD_PREFER_SIBLING down in case of a 458 * degenerate parent; the spans match for this 459 * so the property transfers. 460 */ 461 if (parent->flags & SD_PREFER_SIBLING) 462 tmp->flags |= SD_PREFER_SIBLING; 463 destroy_sched_domain(parent); 464 } else 465 tmp = tmp->parent; 466 } 467 468 if (sd && sd_degenerate(sd)) { 469 tmp = sd; 470 sd = sd->parent; 471 destroy_sched_domain(tmp); 472 if (sd) 473 sd->child = NULL; 474 } 475 476 sched_domain_debug(sd, cpu); 477 478 rq_attach_root(rq, rd); 479 tmp = rq->sd; 480 rcu_assign_pointer(rq->sd, sd); 481 dirty_sched_domain_sysctl(cpu); 482 destroy_sched_domains(tmp); 483 484 update_top_cache_domain(cpu); 485 } 486 487 struct s_data { 488 struct sched_domain ** __percpu sd; 489 struct root_domain *rd; 490 }; 491 492 enum s_alloc { 493 sa_rootdomain, 494 sa_sd, 495 sa_sd_storage, 496 sa_none, 497 }; 498 499 /* 500 * Return the canonical balance CPU for this group, this is the first CPU 501 * of this group that's also in the balance mask. 502 * 503 * The balance mask are all those CPUs that could actually end up at this 504 * group. See build_balance_mask(). 505 * 506 * Also see should_we_balance(). 507 */ 508 int group_balance_cpu(struct sched_group *sg) 509 { 510 return cpumask_first(group_balance_mask(sg)); 511 } 512 513 514 /* 515 * NUMA topology (first read the regular topology blurb below) 516 * 517 * Given a node-distance table, for example: 518 * 519 * node 0 1 2 3 520 * 0: 10 20 30 20 521 * 1: 20 10 20 30 522 * 2: 30 20 10 20 523 * 3: 20 30 20 10 524 * 525 * which represents a 4 node ring topology like: 526 * 527 * 0 ----- 1 528 * | | 529 * | | 530 * | | 531 * 3 ----- 2 532 * 533 * We want to construct domains and groups to represent this. The way we go 534 * about doing this is to build the domains on 'hops'. For each NUMA level we 535 * construct the mask of all nodes reachable in @level hops. 536 * 537 * For the above NUMA topology that gives 3 levels: 538 * 539 * NUMA-2 0-3 0-3 0-3 0-3 540 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 541 * 542 * NUMA-1 0-1,3 0-2 1-3 0,2-3 543 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 544 * 545 * NUMA-0 0 1 2 3 546 * 547 * 548 * As can be seen; things don't nicely line up as with the regular topology. 549 * When we iterate a domain in child domain chunks some nodes can be 550 * represented multiple times -- hence the "overlap" naming for this part of 551 * the topology. 552 * 553 * In order to minimize this overlap, we only build enough groups to cover the 554 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 555 * 556 * Because: 557 * 558 * - the first group of each domain is its child domain; this 559 * gets us the first 0-1,3 560 * - the only uncovered node is 2, who's child domain is 1-3. 561 * 562 * However, because of the overlap, computing a unique CPU for each group is 563 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 564 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 565 * end up at those groups (they would end up in group: 0-1,3). 566 * 567 * To correct this we have to introduce the group balance mask. This mask 568 * will contain those CPUs in the group that can reach this group given the 569 * (child) domain tree. 570 * 571 * With this we can once again compute balance_cpu and sched_group_capacity 572 * relations. 573 * 574 * XXX include words on how balance_cpu is unique and therefore can be 575 * used for sched_group_capacity links. 576 * 577 * 578 * Another 'interesting' topology is: 579 * 580 * node 0 1 2 3 581 * 0: 10 20 20 30 582 * 1: 20 10 20 20 583 * 2: 20 20 10 20 584 * 3: 30 20 20 10 585 * 586 * Which looks a little like: 587 * 588 * 0 ----- 1 589 * | / | 590 * | / | 591 * | / | 592 * 2 ----- 3 593 * 594 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 595 * are not. 596 * 597 * This leads to a few particularly weird cases where the sched_domain's are 598 * not of the same number for each cpu. Consider: 599 * 600 * NUMA-2 0-3 0-3 601 * groups: {0-2},{1-3} {1-3},{0-2} 602 * 603 * NUMA-1 0-2 0-3 0-3 1-3 604 * 605 * NUMA-0 0 1 2 3 606 * 607 */ 608 609 610 /* 611 * Build the balance mask; it contains only those CPUs that can arrive at this 612 * group and should be considered to continue balancing. 613 * 614 * We do this during the group creation pass, therefore the group information 615 * isn't complete yet, however since each group represents a (child) domain we 616 * can fully construct this using the sched_domain bits (which are already 617 * complete). 618 */ 619 static void 620 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 621 { 622 const struct cpumask *sg_span = sched_group_span(sg); 623 struct sd_data *sdd = sd->private; 624 struct sched_domain *sibling; 625 int i; 626 627 cpumask_clear(mask); 628 629 for_each_cpu(i, sg_span) { 630 sibling = *per_cpu_ptr(sdd->sd, i); 631 632 /* 633 * Can happen in the asymmetric case, where these siblings are 634 * unused. The mask will not be empty because those CPUs that 635 * do have the top domain _should_ span the domain. 636 */ 637 if (!sibling->child) 638 continue; 639 640 /* If we would not end up here, we can't continue from here */ 641 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 642 continue; 643 644 cpumask_set_cpu(i, mask); 645 } 646 647 /* We must not have empty masks here */ 648 WARN_ON_ONCE(cpumask_empty(mask)); 649 } 650 651 /* 652 * XXX: This creates per-node group entries; since the load-balancer will 653 * immediately access remote memory to construct this group's load-balance 654 * statistics having the groups node local is of dubious benefit. 655 */ 656 static struct sched_group * 657 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 658 { 659 struct sched_group *sg; 660 struct cpumask *sg_span; 661 662 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 663 GFP_KERNEL, cpu_to_node(cpu)); 664 665 if (!sg) 666 return NULL; 667 668 sg_span = sched_group_span(sg); 669 if (sd->child) 670 cpumask_copy(sg_span, sched_domain_span(sd->child)); 671 else 672 cpumask_copy(sg_span, sched_domain_span(sd)); 673 674 atomic_inc(&sg->ref); 675 return sg; 676 } 677 678 static void init_overlap_sched_group(struct sched_domain *sd, 679 struct sched_group *sg) 680 { 681 struct cpumask *mask = sched_domains_tmpmask2; 682 struct sd_data *sdd = sd->private; 683 struct cpumask *sg_span; 684 int cpu; 685 686 build_balance_mask(sd, sg, mask); 687 cpu = cpumask_first_and(sched_group_span(sg), mask); 688 689 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 690 if (atomic_inc_return(&sg->sgc->ref) == 1) 691 cpumask_copy(group_balance_mask(sg), mask); 692 else 693 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 694 695 /* 696 * Initialize sgc->capacity such that even if we mess up the 697 * domains and no possible iteration will get us here, we won't 698 * die on a /0 trap. 699 */ 700 sg_span = sched_group_span(sg); 701 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 702 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 703 } 704 705 static int 706 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 707 { 708 struct sched_group *first = NULL, *last = NULL, *sg; 709 const struct cpumask *span = sched_domain_span(sd); 710 struct cpumask *covered = sched_domains_tmpmask; 711 struct sd_data *sdd = sd->private; 712 struct sched_domain *sibling; 713 int i; 714 715 cpumask_clear(covered); 716 717 for_each_cpu_wrap(i, span, cpu) { 718 struct cpumask *sg_span; 719 720 if (cpumask_test_cpu(i, covered)) 721 continue; 722 723 sibling = *per_cpu_ptr(sdd->sd, i); 724 725 /* 726 * Asymmetric node setups can result in situations where the 727 * domain tree is of unequal depth, make sure to skip domains 728 * that already cover the entire range. 729 * 730 * In that case build_sched_domains() will have terminated the 731 * iteration early and our sibling sd spans will be empty. 732 * Domains should always include the CPU they're built on, so 733 * check that. 734 */ 735 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 736 continue; 737 738 sg = build_group_from_child_sched_domain(sibling, cpu); 739 if (!sg) 740 goto fail; 741 742 sg_span = sched_group_span(sg); 743 cpumask_or(covered, covered, sg_span); 744 745 init_overlap_sched_group(sd, sg); 746 747 if (!first) 748 first = sg; 749 if (last) 750 last->next = sg; 751 last = sg; 752 last->next = first; 753 } 754 sd->groups = first; 755 756 return 0; 757 758 fail: 759 free_sched_groups(first, 0); 760 761 return -ENOMEM; 762 } 763 764 765 /* 766 * Package topology (also see the load-balance blurb in fair.c) 767 * 768 * The scheduler builds a tree structure to represent a number of important 769 * topology features. By default (default_topology[]) these include: 770 * 771 * - Simultaneous multithreading (SMT) 772 * - Multi-Core Cache (MC) 773 * - Package (DIE) 774 * 775 * Where the last one more or less denotes everything up to a NUMA node. 776 * 777 * The tree consists of 3 primary data structures: 778 * 779 * sched_domain -> sched_group -> sched_group_capacity 780 * ^ ^ ^ ^ 781 * `-' `-' 782 * 783 * The sched_domains are per-cpu and have a two way link (parent & child) and 784 * denote the ever growing mask of CPUs belonging to that level of topology. 785 * 786 * Each sched_domain has a circular (double) linked list of sched_group's, each 787 * denoting the domains of the level below (or individual CPUs in case of the 788 * first domain level). The sched_group linked by a sched_domain includes the 789 * CPU of that sched_domain [*]. 790 * 791 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 792 * 793 * CPU 0 1 2 3 4 5 6 7 794 * 795 * DIE [ ] 796 * MC [ ] [ ] 797 * SMT [ ] [ ] [ ] [ ] 798 * 799 * - or - 800 * 801 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 802 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 803 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 804 * 805 * CPU 0 1 2 3 4 5 6 7 806 * 807 * One way to think about it is: sched_domain moves you up and down among these 808 * topology levels, while sched_group moves you sideways through it, at child 809 * domain granularity. 810 * 811 * sched_group_capacity ensures each unique sched_group has shared storage. 812 * 813 * There are two related construction problems, both require a CPU that 814 * uniquely identify each group (for a given domain): 815 * 816 * - The first is the balance_cpu (see should_we_balance() and the 817 * load-balance blub in fair.c); for each group we only want 1 CPU to 818 * continue balancing at a higher domain. 819 * 820 * - The second is the sched_group_capacity; we want all identical groups 821 * to share a single sched_group_capacity. 822 * 823 * Since these topologies are exclusive by construction. That is, its 824 * impossible for an SMT thread to belong to multiple cores, and cores to 825 * be part of multiple caches. There is a very clear and unique location 826 * for each CPU in the hierarchy. 827 * 828 * Therefore computing a unique CPU for each group is trivial (the iteration 829 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 830 * group), we can simply pick the first CPU in each group. 831 * 832 * 833 * [*] in other words, the first group of each domain is its child domain. 834 */ 835 836 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 837 { 838 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 839 struct sched_domain *child = sd->child; 840 struct sched_group *sg; 841 842 if (child) 843 cpu = cpumask_first(sched_domain_span(child)); 844 845 sg = *per_cpu_ptr(sdd->sg, cpu); 846 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 847 848 /* For claim_allocations: */ 849 atomic_inc(&sg->ref); 850 atomic_inc(&sg->sgc->ref); 851 852 if (child) { 853 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 854 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 855 } else { 856 cpumask_set_cpu(cpu, sched_group_span(sg)); 857 cpumask_set_cpu(cpu, group_balance_mask(sg)); 858 } 859 860 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 861 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 862 863 return sg; 864 } 865 866 /* 867 * build_sched_groups will build a circular linked list of the groups 868 * covered by the given span, and will set each group's ->cpumask correctly, 869 * and ->cpu_capacity to 0. 870 * 871 * Assumes the sched_domain tree is fully constructed 872 */ 873 static int 874 build_sched_groups(struct sched_domain *sd, int cpu) 875 { 876 struct sched_group *first = NULL, *last = NULL; 877 struct sd_data *sdd = sd->private; 878 const struct cpumask *span = sched_domain_span(sd); 879 struct cpumask *covered; 880 int i; 881 882 lockdep_assert_held(&sched_domains_mutex); 883 covered = sched_domains_tmpmask; 884 885 cpumask_clear(covered); 886 887 for_each_cpu_wrap(i, span, cpu) { 888 struct sched_group *sg; 889 890 if (cpumask_test_cpu(i, covered)) 891 continue; 892 893 sg = get_group(i, sdd); 894 895 cpumask_or(covered, covered, sched_group_span(sg)); 896 897 if (!first) 898 first = sg; 899 if (last) 900 last->next = sg; 901 last = sg; 902 } 903 last->next = first; 904 sd->groups = first; 905 906 return 0; 907 } 908 909 /* 910 * Initialize sched groups cpu_capacity. 911 * 912 * cpu_capacity indicates the capacity of sched group, which is used while 913 * distributing the load between different sched groups in a sched domain. 914 * Typically cpu_capacity for all the groups in a sched domain will be same 915 * unless there are asymmetries in the topology. If there are asymmetries, 916 * group having more cpu_capacity will pickup more load compared to the 917 * group having less cpu_capacity. 918 */ 919 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 920 { 921 struct sched_group *sg = sd->groups; 922 923 WARN_ON(!sg); 924 925 do { 926 int cpu, max_cpu = -1; 927 928 sg->group_weight = cpumask_weight(sched_group_span(sg)); 929 930 if (!(sd->flags & SD_ASYM_PACKING)) 931 goto next; 932 933 for_each_cpu(cpu, sched_group_span(sg)) { 934 if (max_cpu < 0) 935 max_cpu = cpu; 936 else if (sched_asym_prefer(cpu, max_cpu)) 937 max_cpu = cpu; 938 } 939 sg->asym_prefer_cpu = max_cpu; 940 941 next: 942 sg = sg->next; 943 } while (sg != sd->groups); 944 945 if (cpu != group_balance_cpu(sg)) 946 return; 947 948 update_group_capacity(sd, cpu); 949 } 950 951 /* 952 * Initializers for schedule domains 953 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 954 */ 955 956 static int default_relax_domain_level = -1; 957 int sched_domain_level_max; 958 959 static int __init setup_relax_domain_level(char *str) 960 { 961 if (kstrtoint(str, 0, &default_relax_domain_level)) 962 pr_warn("Unable to set relax_domain_level\n"); 963 964 return 1; 965 } 966 __setup("relax_domain_level=", setup_relax_domain_level); 967 968 static void set_domain_attribute(struct sched_domain *sd, 969 struct sched_domain_attr *attr) 970 { 971 int request; 972 973 if (!attr || attr->relax_domain_level < 0) { 974 if (default_relax_domain_level < 0) 975 return; 976 else 977 request = default_relax_domain_level; 978 } else 979 request = attr->relax_domain_level; 980 if (request < sd->level) { 981 /* Turn off idle balance on this domain: */ 982 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 983 } else { 984 /* Turn on idle balance on this domain: */ 985 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 986 } 987 } 988 989 static void __sdt_free(const struct cpumask *cpu_map); 990 static int __sdt_alloc(const struct cpumask *cpu_map); 991 992 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 993 const struct cpumask *cpu_map) 994 { 995 switch (what) { 996 case sa_rootdomain: 997 if (!atomic_read(&d->rd->refcount)) 998 free_rootdomain(&d->rd->rcu); 999 /* Fall through */ 1000 case sa_sd: 1001 free_percpu(d->sd); 1002 /* Fall through */ 1003 case sa_sd_storage: 1004 __sdt_free(cpu_map); 1005 /* Fall through */ 1006 case sa_none: 1007 break; 1008 } 1009 } 1010 1011 static enum s_alloc 1012 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1013 { 1014 memset(d, 0, sizeof(*d)); 1015 1016 if (__sdt_alloc(cpu_map)) 1017 return sa_sd_storage; 1018 d->sd = alloc_percpu(struct sched_domain *); 1019 if (!d->sd) 1020 return sa_sd_storage; 1021 d->rd = alloc_rootdomain(); 1022 if (!d->rd) 1023 return sa_sd; 1024 return sa_rootdomain; 1025 } 1026 1027 /* 1028 * NULL the sd_data elements we've used to build the sched_domain and 1029 * sched_group structure so that the subsequent __free_domain_allocs() 1030 * will not free the data we're using. 1031 */ 1032 static void claim_allocations(int cpu, struct sched_domain *sd) 1033 { 1034 struct sd_data *sdd = sd->private; 1035 1036 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1037 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1038 1039 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1040 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1041 1042 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1043 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1044 1045 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1046 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1047 } 1048 1049 #ifdef CONFIG_NUMA 1050 static int sched_domains_numa_levels; 1051 enum numa_topology_type sched_numa_topology_type; 1052 static int *sched_domains_numa_distance; 1053 int sched_max_numa_distance; 1054 static struct cpumask ***sched_domains_numa_masks; 1055 static int sched_domains_curr_level; 1056 #endif 1057 1058 /* 1059 * SD_flags allowed in topology descriptions. 1060 * 1061 * These flags are purely descriptive of the topology and do not prescribe 1062 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1063 * function: 1064 * 1065 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1066 * SD_SHARE_PKG_RESOURCES - describes shared caches 1067 * SD_NUMA - describes NUMA topologies 1068 * SD_SHARE_POWERDOMAIN - describes shared power domain 1069 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1070 * 1071 * Odd one out, which beside describing the topology has a quirk also 1072 * prescribes the desired behaviour that goes along with it: 1073 * 1074 * SD_ASYM_PACKING - describes SMT quirks 1075 */ 1076 #define TOPOLOGY_SD_FLAGS \ 1077 (SD_SHARE_CPUCAPACITY | \ 1078 SD_SHARE_PKG_RESOURCES | \ 1079 SD_NUMA | \ 1080 SD_ASYM_PACKING | \ 1081 SD_ASYM_CPUCAPACITY | \ 1082 SD_SHARE_POWERDOMAIN) 1083 1084 static struct sched_domain * 1085 sd_init(struct sched_domain_topology_level *tl, 1086 const struct cpumask *cpu_map, 1087 struct sched_domain *child, int cpu) 1088 { 1089 struct sd_data *sdd = &tl->data; 1090 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1091 int sd_id, sd_weight, sd_flags = 0; 1092 1093 #ifdef CONFIG_NUMA 1094 /* 1095 * Ugly hack to pass state to sd_numa_mask()... 1096 */ 1097 sched_domains_curr_level = tl->numa_level; 1098 #endif 1099 1100 sd_weight = cpumask_weight(tl->mask(cpu)); 1101 1102 if (tl->sd_flags) 1103 sd_flags = (*tl->sd_flags)(); 1104 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1105 "wrong sd_flags in topology description\n")) 1106 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1107 1108 *sd = (struct sched_domain){ 1109 .min_interval = sd_weight, 1110 .max_interval = 2*sd_weight, 1111 .busy_factor = 32, 1112 .imbalance_pct = 125, 1113 1114 .cache_nice_tries = 0, 1115 .busy_idx = 0, 1116 .idle_idx = 0, 1117 .newidle_idx = 0, 1118 .wake_idx = 0, 1119 .forkexec_idx = 0, 1120 1121 .flags = 1*SD_LOAD_BALANCE 1122 | 1*SD_BALANCE_NEWIDLE 1123 | 1*SD_BALANCE_EXEC 1124 | 1*SD_BALANCE_FORK 1125 | 0*SD_BALANCE_WAKE 1126 | 1*SD_WAKE_AFFINE 1127 | 0*SD_SHARE_CPUCAPACITY 1128 | 0*SD_SHARE_PKG_RESOURCES 1129 | 0*SD_SERIALIZE 1130 | 0*SD_PREFER_SIBLING 1131 | 0*SD_NUMA 1132 | sd_flags 1133 , 1134 1135 .last_balance = jiffies, 1136 .balance_interval = sd_weight, 1137 .smt_gain = 0, 1138 .max_newidle_lb_cost = 0, 1139 .next_decay_max_lb_cost = jiffies, 1140 .child = child, 1141 #ifdef CONFIG_SCHED_DEBUG 1142 .name = tl->name, 1143 #endif 1144 }; 1145 1146 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1147 sd_id = cpumask_first(sched_domain_span(sd)); 1148 1149 /* 1150 * Convert topological properties into behaviour. 1151 */ 1152 1153 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1154 struct sched_domain *t = sd; 1155 1156 for_each_lower_domain(t) 1157 t->flags |= SD_BALANCE_WAKE; 1158 } 1159 1160 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1161 sd->flags |= SD_PREFER_SIBLING; 1162 sd->imbalance_pct = 110; 1163 sd->smt_gain = 1178; /* ~15% */ 1164 1165 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1166 sd->flags |= SD_PREFER_SIBLING; 1167 sd->imbalance_pct = 117; 1168 sd->cache_nice_tries = 1; 1169 sd->busy_idx = 2; 1170 1171 #ifdef CONFIG_NUMA 1172 } else if (sd->flags & SD_NUMA) { 1173 sd->cache_nice_tries = 2; 1174 sd->busy_idx = 3; 1175 sd->idle_idx = 2; 1176 1177 sd->flags |= SD_SERIALIZE; 1178 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1179 sd->flags &= ~(SD_BALANCE_EXEC | 1180 SD_BALANCE_FORK | 1181 SD_WAKE_AFFINE); 1182 } 1183 1184 #endif 1185 } else { 1186 sd->flags |= SD_PREFER_SIBLING; 1187 sd->cache_nice_tries = 1; 1188 sd->busy_idx = 2; 1189 sd->idle_idx = 1; 1190 } 1191 1192 /* 1193 * For all levels sharing cache; connect a sched_domain_shared 1194 * instance. 1195 */ 1196 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1197 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1198 atomic_inc(&sd->shared->ref); 1199 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1200 } 1201 1202 sd->private = sdd; 1203 1204 return sd; 1205 } 1206 1207 /* 1208 * Topology list, bottom-up. 1209 */ 1210 static struct sched_domain_topology_level default_topology[] = { 1211 #ifdef CONFIG_SCHED_SMT 1212 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1213 #endif 1214 #ifdef CONFIG_SCHED_MC 1215 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1216 #endif 1217 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1218 { NULL, }, 1219 }; 1220 1221 static struct sched_domain_topology_level *sched_domain_topology = 1222 default_topology; 1223 1224 #define for_each_sd_topology(tl) \ 1225 for (tl = sched_domain_topology; tl->mask; tl++) 1226 1227 void set_sched_topology(struct sched_domain_topology_level *tl) 1228 { 1229 if (WARN_ON_ONCE(sched_smp_initialized)) 1230 return; 1231 1232 sched_domain_topology = tl; 1233 } 1234 1235 #ifdef CONFIG_NUMA 1236 1237 static const struct cpumask *sd_numa_mask(int cpu) 1238 { 1239 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1240 } 1241 1242 static void sched_numa_warn(const char *str) 1243 { 1244 static int done = false; 1245 int i,j; 1246 1247 if (done) 1248 return; 1249 1250 done = true; 1251 1252 printk(KERN_WARNING "ERROR: %s\n\n", str); 1253 1254 for (i = 0; i < nr_node_ids; i++) { 1255 printk(KERN_WARNING " "); 1256 for (j = 0; j < nr_node_ids; j++) 1257 printk(KERN_CONT "%02d ", node_distance(i,j)); 1258 printk(KERN_CONT "\n"); 1259 } 1260 printk(KERN_WARNING "\n"); 1261 } 1262 1263 bool find_numa_distance(int distance) 1264 { 1265 int i; 1266 1267 if (distance == node_distance(0, 0)) 1268 return true; 1269 1270 for (i = 0; i < sched_domains_numa_levels; i++) { 1271 if (sched_domains_numa_distance[i] == distance) 1272 return true; 1273 } 1274 1275 return false; 1276 } 1277 1278 /* 1279 * A system can have three types of NUMA topology: 1280 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1281 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1282 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1283 * 1284 * The difference between a glueless mesh topology and a backplane 1285 * topology lies in whether communication between not directly 1286 * connected nodes goes through intermediary nodes (where programs 1287 * could run), or through backplane controllers. This affects 1288 * placement of programs. 1289 * 1290 * The type of topology can be discerned with the following tests: 1291 * - If the maximum distance between any nodes is 1 hop, the system 1292 * is directly connected. 1293 * - If for two nodes A and B, located N > 1 hops away from each other, 1294 * there is an intermediary node C, which is < N hops away from both 1295 * nodes A and B, the system is a glueless mesh. 1296 */ 1297 static void init_numa_topology_type(void) 1298 { 1299 int a, b, c, n; 1300 1301 n = sched_max_numa_distance; 1302 1303 if (sched_domains_numa_levels <= 1) { 1304 sched_numa_topology_type = NUMA_DIRECT; 1305 return; 1306 } 1307 1308 for_each_online_node(a) { 1309 for_each_online_node(b) { 1310 /* Find two nodes furthest removed from each other. */ 1311 if (node_distance(a, b) < n) 1312 continue; 1313 1314 /* Is there an intermediary node between a and b? */ 1315 for_each_online_node(c) { 1316 if (node_distance(a, c) < n && 1317 node_distance(b, c) < n) { 1318 sched_numa_topology_type = 1319 NUMA_GLUELESS_MESH; 1320 return; 1321 } 1322 } 1323 1324 sched_numa_topology_type = NUMA_BACKPLANE; 1325 return; 1326 } 1327 } 1328 } 1329 1330 void sched_init_numa(void) 1331 { 1332 int next_distance, curr_distance = node_distance(0, 0); 1333 struct sched_domain_topology_level *tl; 1334 int level = 0; 1335 int i, j, k; 1336 1337 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1338 if (!sched_domains_numa_distance) 1339 return; 1340 1341 /* Includes NUMA identity node at level 0. */ 1342 sched_domains_numa_distance[level++] = curr_distance; 1343 sched_domains_numa_levels = level; 1344 1345 /* 1346 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1347 * unique distances in the node_distance() table. 1348 * 1349 * Assumes node_distance(0,j) includes all distances in 1350 * node_distance(i,j) in order to avoid cubic time. 1351 */ 1352 next_distance = curr_distance; 1353 for (i = 0; i < nr_node_ids; i++) { 1354 for (j = 0; j < nr_node_ids; j++) { 1355 for (k = 0; k < nr_node_ids; k++) { 1356 int distance = node_distance(i, k); 1357 1358 if (distance > curr_distance && 1359 (distance < next_distance || 1360 next_distance == curr_distance)) 1361 next_distance = distance; 1362 1363 /* 1364 * While not a strong assumption it would be nice to know 1365 * about cases where if node A is connected to B, B is not 1366 * equally connected to A. 1367 */ 1368 if (sched_debug() && node_distance(k, i) != distance) 1369 sched_numa_warn("Node-distance not symmetric"); 1370 1371 if (sched_debug() && i && !find_numa_distance(distance)) 1372 sched_numa_warn("Node-0 not representative"); 1373 } 1374 if (next_distance != curr_distance) { 1375 sched_domains_numa_distance[level++] = next_distance; 1376 sched_domains_numa_levels = level; 1377 curr_distance = next_distance; 1378 } else break; 1379 } 1380 1381 /* 1382 * In case of sched_debug() we verify the above assumption. 1383 */ 1384 if (!sched_debug()) 1385 break; 1386 } 1387 1388 if (!level) 1389 return; 1390 1391 /* 1392 * 'level' contains the number of unique distances 1393 * 1394 * The sched_domains_numa_distance[] array includes the actual distance 1395 * numbers. 1396 */ 1397 1398 /* 1399 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1400 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1401 * the array will contain less then 'level' members. This could be 1402 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1403 * in other functions. 1404 * 1405 * We reset it to 'level' at the end of this function. 1406 */ 1407 sched_domains_numa_levels = 0; 1408 1409 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1410 if (!sched_domains_numa_masks) 1411 return; 1412 1413 /* 1414 * Now for each level, construct a mask per node which contains all 1415 * CPUs of nodes that are that many hops away from us. 1416 */ 1417 for (i = 0; i < level; i++) { 1418 sched_domains_numa_masks[i] = 1419 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1420 if (!sched_domains_numa_masks[i]) 1421 return; 1422 1423 for (j = 0; j < nr_node_ids; j++) { 1424 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1425 if (!mask) 1426 return; 1427 1428 sched_domains_numa_masks[i][j] = mask; 1429 1430 for_each_node(k) { 1431 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1432 continue; 1433 1434 cpumask_or(mask, mask, cpumask_of_node(k)); 1435 } 1436 } 1437 } 1438 1439 /* Compute default topology size */ 1440 for (i = 0; sched_domain_topology[i].mask; i++); 1441 1442 tl = kzalloc((i + level + 1) * 1443 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1444 if (!tl) 1445 return; 1446 1447 /* 1448 * Copy the default topology bits.. 1449 */ 1450 for (i = 0; sched_domain_topology[i].mask; i++) 1451 tl[i] = sched_domain_topology[i]; 1452 1453 /* 1454 * Add the NUMA identity distance, aka single NODE. 1455 */ 1456 tl[i++] = (struct sched_domain_topology_level){ 1457 .mask = sd_numa_mask, 1458 .numa_level = 0, 1459 SD_INIT_NAME(NODE) 1460 }; 1461 1462 /* 1463 * .. and append 'j' levels of NUMA goodness. 1464 */ 1465 for (j = 1; j < level; i++, j++) { 1466 tl[i] = (struct sched_domain_topology_level){ 1467 .mask = sd_numa_mask, 1468 .sd_flags = cpu_numa_flags, 1469 .flags = SDTL_OVERLAP, 1470 .numa_level = j, 1471 SD_INIT_NAME(NUMA) 1472 }; 1473 } 1474 1475 sched_domain_topology = tl; 1476 1477 sched_domains_numa_levels = level; 1478 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1479 1480 init_numa_topology_type(); 1481 } 1482 1483 void sched_domains_numa_masks_set(unsigned int cpu) 1484 { 1485 int node = cpu_to_node(cpu); 1486 int i, j; 1487 1488 for (i = 0; i < sched_domains_numa_levels; i++) { 1489 for (j = 0; j < nr_node_ids; j++) { 1490 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1491 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1492 } 1493 } 1494 } 1495 1496 void sched_domains_numa_masks_clear(unsigned int cpu) 1497 { 1498 int i, j; 1499 1500 for (i = 0; i < sched_domains_numa_levels; i++) { 1501 for (j = 0; j < nr_node_ids; j++) 1502 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1503 } 1504 } 1505 1506 #endif /* CONFIG_NUMA */ 1507 1508 static int __sdt_alloc(const struct cpumask *cpu_map) 1509 { 1510 struct sched_domain_topology_level *tl; 1511 int j; 1512 1513 for_each_sd_topology(tl) { 1514 struct sd_data *sdd = &tl->data; 1515 1516 sdd->sd = alloc_percpu(struct sched_domain *); 1517 if (!sdd->sd) 1518 return -ENOMEM; 1519 1520 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1521 if (!sdd->sds) 1522 return -ENOMEM; 1523 1524 sdd->sg = alloc_percpu(struct sched_group *); 1525 if (!sdd->sg) 1526 return -ENOMEM; 1527 1528 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1529 if (!sdd->sgc) 1530 return -ENOMEM; 1531 1532 for_each_cpu(j, cpu_map) { 1533 struct sched_domain *sd; 1534 struct sched_domain_shared *sds; 1535 struct sched_group *sg; 1536 struct sched_group_capacity *sgc; 1537 1538 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1539 GFP_KERNEL, cpu_to_node(j)); 1540 if (!sd) 1541 return -ENOMEM; 1542 1543 *per_cpu_ptr(sdd->sd, j) = sd; 1544 1545 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1546 GFP_KERNEL, cpu_to_node(j)); 1547 if (!sds) 1548 return -ENOMEM; 1549 1550 *per_cpu_ptr(sdd->sds, j) = sds; 1551 1552 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1553 GFP_KERNEL, cpu_to_node(j)); 1554 if (!sg) 1555 return -ENOMEM; 1556 1557 sg->next = sg; 1558 1559 *per_cpu_ptr(sdd->sg, j) = sg; 1560 1561 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1562 GFP_KERNEL, cpu_to_node(j)); 1563 if (!sgc) 1564 return -ENOMEM; 1565 1566 #ifdef CONFIG_SCHED_DEBUG 1567 sgc->id = j; 1568 #endif 1569 1570 *per_cpu_ptr(sdd->sgc, j) = sgc; 1571 } 1572 } 1573 1574 return 0; 1575 } 1576 1577 static void __sdt_free(const struct cpumask *cpu_map) 1578 { 1579 struct sched_domain_topology_level *tl; 1580 int j; 1581 1582 for_each_sd_topology(tl) { 1583 struct sd_data *sdd = &tl->data; 1584 1585 for_each_cpu(j, cpu_map) { 1586 struct sched_domain *sd; 1587 1588 if (sdd->sd) { 1589 sd = *per_cpu_ptr(sdd->sd, j); 1590 if (sd && (sd->flags & SD_OVERLAP)) 1591 free_sched_groups(sd->groups, 0); 1592 kfree(*per_cpu_ptr(sdd->sd, j)); 1593 } 1594 1595 if (sdd->sds) 1596 kfree(*per_cpu_ptr(sdd->sds, j)); 1597 if (sdd->sg) 1598 kfree(*per_cpu_ptr(sdd->sg, j)); 1599 if (sdd->sgc) 1600 kfree(*per_cpu_ptr(sdd->sgc, j)); 1601 } 1602 free_percpu(sdd->sd); 1603 sdd->sd = NULL; 1604 free_percpu(sdd->sds); 1605 sdd->sds = NULL; 1606 free_percpu(sdd->sg); 1607 sdd->sg = NULL; 1608 free_percpu(sdd->sgc); 1609 sdd->sgc = NULL; 1610 } 1611 } 1612 1613 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1614 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1615 struct sched_domain *child, int cpu) 1616 { 1617 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1618 1619 if (child) { 1620 sd->level = child->level + 1; 1621 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1622 child->parent = sd; 1623 1624 if (!cpumask_subset(sched_domain_span(child), 1625 sched_domain_span(sd))) { 1626 pr_err("BUG: arch topology borken\n"); 1627 #ifdef CONFIG_SCHED_DEBUG 1628 pr_err(" the %s domain not a subset of the %s domain\n", 1629 child->name, sd->name); 1630 #endif 1631 /* Fixup, ensure @sd has at least @child cpus. */ 1632 cpumask_or(sched_domain_span(sd), 1633 sched_domain_span(sd), 1634 sched_domain_span(child)); 1635 } 1636 1637 } 1638 set_domain_attribute(sd, attr); 1639 1640 return sd; 1641 } 1642 1643 /* 1644 * Build sched domains for a given set of CPUs and attach the sched domains 1645 * to the individual CPUs 1646 */ 1647 static int 1648 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1649 { 1650 enum s_alloc alloc_state; 1651 struct sched_domain *sd; 1652 struct s_data d; 1653 struct rq *rq = NULL; 1654 int i, ret = -ENOMEM; 1655 1656 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1657 if (alloc_state != sa_rootdomain) 1658 goto error; 1659 1660 /* Set up domains for CPUs specified by the cpu_map: */ 1661 for_each_cpu(i, cpu_map) { 1662 struct sched_domain_topology_level *tl; 1663 1664 sd = NULL; 1665 for_each_sd_topology(tl) { 1666 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1667 if (tl == sched_domain_topology) 1668 *per_cpu_ptr(d.sd, i) = sd; 1669 if (tl->flags & SDTL_OVERLAP) 1670 sd->flags |= SD_OVERLAP; 1671 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1672 break; 1673 } 1674 } 1675 1676 /* Build the groups for the domains */ 1677 for_each_cpu(i, cpu_map) { 1678 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1679 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1680 if (sd->flags & SD_OVERLAP) { 1681 if (build_overlap_sched_groups(sd, i)) 1682 goto error; 1683 } else { 1684 if (build_sched_groups(sd, i)) 1685 goto error; 1686 } 1687 } 1688 } 1689 1690 /* Calculate CPU capacity for physical packages and nodes */ 1691 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1692 if (!cpumask_test_cpu(i, cpu_map)) 1693 continue; 1694 1695 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1696 claim_allocations(i, sd); 1697 init_sched_groups_capacity(i, sd); 1698 } 1699 } 1700 1701 /* Attach the domains */ 1702 rcu_read_lock(); 1703 for_each_cpu(i, cpu_map) { 1704 rq = cpu_rq(i); 1705 sd = *per_cpu_ptr(d.sd, i); 1706 1707 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1708 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1709 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1710 1711 cpu_attach_domain(sd, d.rd, i); 1712 } 1713 rcu_read_unlock(); 1714 1715 if (rq && sched_debug_enabled) { 1716 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1717 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1718 } 1719 1720 ret = 0; 1721 error: 1722 __free_domain_allocs(&d, alloc_state, cpu_map); 1723 return ret; 1724 } 1725 1726 /* Current sched domains: */ 1727 static cpumask_var_t *doms_cur; 1728 1729 /* Number of sched domains in 'doms_cur': */ 1730 static int ndoms_cur; 1731 1732 /* Attribues of custom domains in 'doms_cur' */ 1733 static struct sched_domain_attr *dattr_cur; 1734 1735 /* 1736 * Special case: If a kmalloc() of a doms_cur partition (array of 1737 * cpumask) fails, then fallback to a single sched domain, 1738 * as determined by the single cpumask fallback_doms. 1739 */ 1740 static cpumask_var_t fallback_doms; 1741 1742 /* 1743 * arch_update_cpu_topology lets virtualized architectures update the 1744 * CPU core maps. It is supposed to return 1 if the topology changed 1745 * or 0 if it stayed the same. 1746 */ 1747 int __weak arch_update_cpu_topology(void) 1748 { 1749 return 0; 1750 } 1751 1752 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1753 { 1754 int i; 1755 cpumask_var_t *doms; 1756 1757 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1758 if (!doms) 1759 return NULL; 1760 for (i = 0; i < ndoms; i++) { 1761 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1762 free_sched_domains(doms, i); 1763 return NULL; 1764 } 1765 } 1766 return doms; 1767 } 1768 1769 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1770 { 1771 unsigned int i; 1772 for (i = 0; i < ndoms; i++) 1773 free_cpumask_var(doms[i]); 1774 kfree(doms); 1775 } 1776 1777 /* 1778 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1779 * For now this just excludes isolated CPUs, but could be used to 1780 * exclude other special cases in the future. 1781 */ 1782 int sched_init_domains(const struct cpumask *cpu_map) 1783 { 1784 int err; 1785 1786 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1787 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1788 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1789 1790 arch_update_cpu_topology(); 1791 ndoms_cur = 1; 1792 doms_cur = alloc_sched_domains(ndoms_cur); 1793 if (!doms_cur) 1794 doms_cur = &fallback_doms; 1795 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 1796 err = build_sched_domains(doms_cur[0], NULL); 1797 register_sched_domain_sysctl(); 1798 1799 return err; 1800 } 1801 1802 /* 1803 * Detach sched domains from a group of CPUs specified in cpu_map 1804 * These CPUs will now be attached to the NULL domain 1805 */ 1806 static void detach_destroy_domains(const struct cpumask *cpu_map) 1807 { 1808 int i; 1809 1810 rcu_read_lock(); 1811 for_each_cpu(i, cpu_map) 1812 cpu_attach_domain(NULL, &def_root_domain, i); 1813 rcu_read_unlock(); 1814 } 1815 1816 /* handle null as "default" */ 1817 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1818 struct sched_domain_attr *new, int idx_new) 1819 { 1820 struct sched_domain_attr tmp; 1821 1822 /* Fast path: */ 1823 if (!new && !cur) 1824 return 1; 1825 1826 tmp = SD_ATTR_INIT; 1827 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1828 new ? (new + idx_new) : &tmp, 1829 sizeof(struct sched_domain_attr)); 1830 } 1831 1832 /* 1833 * Partition sched domains as specified by the 'ndoms_new' 1834 * cpumasks in the array doms_new[] of cpumasks. This compares 1835 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1836 * It destroys each deleted domain and builds each new domain. 1837 * 1838 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1839 * The masks don't intersect (don't overlap.) We should setup one 1840 * sched domain for each mask. CPUs not in any of the cpumasks will 1841 * not be load balanced. If the same cpumask appears both in the 1842 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1843 * it as it is. 1844 * 1845 * The passed in 'doms_new' should be allocated using 1846 * alloc_sched_domains. This routine takes ownership of it and will 1847 * free_sched_domains it when done with it. If the caller failed the 1848 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1849 * and partition_sched_domains() will fallback to the single partition 1850 * 'fallback_doms', it also forces the domains to be rebuilt. 1851 * 1852 * If doms_new == NULL it will be replaced with cpu_online_mask. 1853 * ndoms_new == 0 is a special case for destroying existing domains, 1854 * and it will not create the default domain. 1855 * 1856 * Call with hotplug lock held 1857 */ 1858 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1859 struct sched_domain_attr *dattr_new) 1860 { 1861 int i, j, n; 1862 int new_topology; 1863 1864 mutex_lock(&sched_domains_mutex); 1865 1866 /* Always unregister in case we don't destroy any domains: */ 1867 unregister_sched_domain_sysctl(); 1868 1869 /* Let the architecture update CPU core mappings: */ 1870 new_topology = arch_update_cpu_topology(); 1871 1872 if (!doms_new) { 1873 WARN_ON_ONCE(dattr_new); 1874 n = 0; 1875 doms_new = alloc_sched_domains(1); 1876 if (doms_new) { 1877 n = 1; 1878 cpumask_and(doms_new[0], cpu_active_mask, 1879 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1880 } 1881 } else { 1882 n = ndoms_new; 1883 } 1884 1885 /* Destroy deleted domains: */ 1886 for (i = 0; i < ndoms_cur; i++) { 1887 for (j = 0; j < n && !new_topology; j++) { 1888 if (cpumask_equal(doms_cur[i], doms_new[j]) 1889 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1890 goto match1; 1891 } 1892 /* No match - a current sched domain not in new doms_new[] */ 1893 detach_destroy_domains(doms_cur[i]); 1894 match1: 1895 ; 1896 } 1897 1898 n = ndoms_cur; 1899 if (!doms_new) { 1900 n = 0; 1901 doms_new = &fallback_doms; 1902 cpumask_and(doms_new[0], cpu_active_mask, 1903 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1904 } 1905 1906 /* Build new domains: */ 1907 for (i = 0; i < ndoms_new; i++) { 1908 for (j = 0; j < n && !new_topology; j++) { 1909 if (cpumask_equal(doms_new[i], doms_cur[j]) 1910 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1911 goto match2; 1912 } 1913 /* No match - add a new doms_new */ 1914 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1915 match2: 1916 ; 1917 } 1918 1919 /* Remember the new sched domains: */ 1920 if (doms_cur != &fallback_doms) 1921 free_sched_domains(doms_cur, ndoms_cur); 1922 1923 kfree(dattr_cur); 1924 doms_cur = doms_new; 1925 dattr_cur = dattr_new; 1926 ndoms_cur = ndoms_new; 1927 1928 register_sched_domain_sysctl(); 1929 1930 mutex_unlock(&sched_domains_mutex); 1931 } 1932 1933