xref: /openbmc/linux/kernel/sched/topology.c (revision 1802d0be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 
37 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38 		printk("does not load-balance\n");
39 		if (sd->parent)
40 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 		return -1;
42 	}
43 
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 	do {
56 		if (!group) {
57 			printk("\n");
58 			printk(KERN_ERR "ERROR: group is NULL\n");
59 			break;
60 		}
61 
62 		if (!cpumask_weight(sched_group_span(group))) {
63 			printk(KERN_CONT "\n");
64 			printk(KERN_ERR "ERROR: empty group\n");
65 			break;
66 		}
67 
68 		if (!(sd->flags & SD_OVERLAP) &&
69 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72 			break;
73 		}
74 
75 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76 
77 		printk(KERN_CONT " %d:{ span=%*pbl",
78 				group->sgc->id,
79 				cpumask_pr_args(sched_group_span(group)));
80 
81 		if ((sd->flags & SD_OVERLAP) &&
82 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 			printk(KERN_CONT " mask=%*pbl",
84 				cpumask_pr_args(group_balance_mask(group)));
85 		}
86 
87 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89 
90 		if (group == sd->groups && sd->child &&
91 		    !cpumask_equal(sched_domain_span(sd->child),
92 				   sched_group_span(group))) {
93 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 		}
95 
96 		printk(KERN_CONT " }");
97 
98 		group = group->next;
99 
100 		if (group != sd->groups)
101 			printk(KERN_CONT ",");
102 
103 	} while (group != sd->groups);
104 	printk(KERN_CONT "\n");
105 
106 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108 
109 	if (sd->parent &&
110 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 	return 0;
113 }
114 
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 	int level = 0;
118 
119 	if (!sched_debug_enabled)
120 		return;
121 
122 	if (!sd) {
123 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 		return;
125 	}
126 
127 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128 
129 	for (;;) {
130 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 			break;
132 		level++;
133 		sd = sd->parent;
134 		if (!sd)
135 			break;
136 	}
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139 
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 	return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151 		return 1;
152 
153 	/* Following flags need at least 2 groups */
154 	if (sd->flags & (SD_LOAD_BALANCE |
155 			 SD_BALANCE_NEWIDLE |
156 			 SD_BALANCE_FORK |
157 			 SD_BALANCE_EXEC |
158 			 SD_SHARE_CPUCAPACITY |
159 			 SD_ASYM_CPUCAPACITY |
160 			 SD_SHARE_PKG_RESOURCES |
161 			 SD_SHARE_POWERDOMAIN)) {
162 		if (sd->groups != sd->groups->next)
163 			return 0;
164 	}
165 
166 	/* Following flags don't use groups */
167 	if (sd->flags & (SD_WAKE_AFFINE))
168 		return 0;
169 
170 	return 1;
171 }
172 
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 	unsigned long cflags = sd->flags, pflags = parent->flags;
177 
178 	if (sd_degenerate(parent))
179 		return 1;
180 
181 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 		return 0;
183 
184 	/* Flags needing groups don't count if only 1 group in parent */
185 	if (parent->groups == parent->groups->next) {
186 		pflags &= ~(SD_LOAD_BALANCE |
187 				SD_BALANCE_NEWIDLE |
188 				SD_BALANCE_FORK |
189 				SD_BALANCE_EXEC |
190 				SD_ASYM_CPUCAPACITY |
191 				SD_SHARE_CPUCAPACITY |
192 				SD_SHARE_PKG_RESOURCES |
193 				SD_PREFER_SIBLING |
194 				SD_SHARE_POWERDOMAIN);
195 		if (nr_node_ids == 1)
196 			pflags &= ~SD_SERIALIZE;
197 	}
198 	if (~cflags & pflags)
199 		return 0;
200 
201 	return 1;
202 }
203 
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
206 unsigned int sysctl_sched_energy_aware = 1;
207 DEFINE_MUTEX(sched_energy_mutex);
208 bool sched_energy_update;
209 
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table *table, int write,
212 			 void __user *buffer, size_t *lenp, loff_t *ppos)
213 {
214 	int ret, state;
215 
216 	if (write && !capable(CAP_SYS_ADMIN))
217 		return -EPERM;
218 
219 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220 	if (!ret && write) {
221 		state = static_branch_unlikely(&sched_energy_present);
222 		if (state != sysctl_sched_energy_aware) {
223 			mutex_lock(&sched_energy_mutex);
224 			sched_energy_update = 1;
225 			rebuild_sched_domains();
226 			sched_energy_update = 0;
227 			mutex_unlock(&sched_energy_mutex);
228 		}
229 	}
230 
231 	return ret;
232 }
233 #endif
234 
235 static void free_pd(struct perf_domain *pd)
236 {
237 	struct perf_domain *tmp;
238 
239 	while (pd) {
240 		tmp = pd->next;
241 		kfree(pd);
242 		pd = tmp;
243 	}
244 }
245 
246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
247 {
248 	while (pd) {
249 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250 			return pd;
251 		pd = pd->next;
252 	}
253 
254 	return NULL;
255 }
256 
257 static struct perf_domain *pd_init(int cpu)
258 {
259 	struct em_perf_domain *obj = em_cpu_get(cpu);
260 	struct perf_domain *pd;
261 
262 	if (!obj) {
263 		if (sched_debug())
264 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265 		return NULL;
266 	}
267 
268 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269 	if (!pd)
270 		return NULL;
271 	pd->em_pd = obj;
272 
273 	return pd;
274 }
275 
276 static void perf_domain_debug(const struct cpumask *cpu_map,
277 						struct perf_domain *pd)
278 {
279 	if (!sched_debug() || !pd)
280 		return;
281 
282 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
283 
284 	while (pd) {
285 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 				cpumask_first(perf_domain_span(pd)),
287 				cpumask_pr_args(perf_domain_span(pd)),
288 				em_pd_nr_cap_states(pd->em_pd));
289 		pd = pd->next;
290 	}
291 
292 	printk(KERN_CONT "\n");
293 }
294 
295 static void destroy_perf_domain_rcu(struct rcu_head *rp)
296 {
297 	struct perf_domain *pd;
298 
299 	pd = container_of(rp, struct perf_domain, rcu);
300 	free_pd(pd);
301 }
302 
303 static void sched_energy_set(bool has_eas)
304 {
305 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306 		if (sched_debug())
307 			pr_info("%s: stopping EAS\n", __func__);
308 		static_branch_disable_cpuslocked(&sched_energy_present);
309 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310 		if (sched_debug())
311 			pr_info("%s: starting EAS\n", __func__);
312 		static_branch_enable_cpuslocked(&sched_energy_present);
313 	}
314 }
315 
316 /*
317  * EAS can be used on a root domain if it meets all the following conditions:
318  *    1. an Energy Model (EM) is available;
319  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320  *    3. the EM complexity is low enough to keep scheduling overheads low;
321  *    4. schedutil is driving the frequency of all CPUs of the rd;
322  *
323  * The complexity of the Energy Model is defined as:
324  *
325  *              C = nr_pd * (nr_cpus + nr_cs)
326  *
327  * with parameters defined as:
328  *  - nr_pd:    the number of performance domains
329  *  - nr_cpus:  the number of CPUs
330  *  - nr_cs:    the sum of the number of capacity states of all performance
331  *              domains (for example, on a system with 2 performance domains,
332  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
333  *
334  * It is generally not a good idea to use such a model in the wake-up path on
335  * very complex platforms because of the associated scheduling overheads. The
336  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
337  * with per-CPU DVFS and less than 8 capacity states each, for example.
338  */
339 #define EM_MAX_COMPLEXITY 2048
340 
341 extern struct cpufreq_governor schedutil_gov;
342 static bool build_perf_domains(const struct cpumask *cpu_map)
343 {
344 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
345 	struct perf_domain *pd = NULL, *tmp;
346 	int cpu = cpumask_first(cpu_map);
347 	struct root_domain *rd = cpu_rq(cpu)->rd;
348 	struct cpufreq_policy *policy;
349 	struct cpufreq_governor *gov;
350 
351 	if (!sysctl_sched_energy_aware)
352 		goto free;
353 
354 	/* EAS is enabled for asymmetric CPU capacity topologies. */
355 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
356 		if (sched_debug()) {
357 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
358 					cpumask_pr_args(cpu_map));
359 		}
360 		goto free;
361 	}
362 
363 	for_each_cpu(i, cpu_map) {
364 		/* Skip already covered CPUs. */
365 		if (find_pd(pd, i))
366 			continue;
367 
368 		/* Do not attempt EAS if schedutil is not being used. */
369 		policy = cpufreq_cpu_get(i);
370 		if (!policy)
371 			goto free;
372 		gov = policy->governor;
373 		cpufreq_cpu_put(policy);
374 		if (gov != &schedutil_gov) {
375 			if (rd->pd)
376 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
377 						cpumask_pr_args(cpu_map));
378 			goto free;
379 		}
380 
381 		/* Create the new pd and add it to the local list. */
382 		tmp = pd_init(i);
383 		if (!tmp)
384 			goto free;
385 		tmp->next = pd;
386 		pd = tmp;
387 
388 		/*
389 		 * Count performance domains and capacity states for the
390 		 * complexity check.
391 		 */
392 		nr_pd++;
393 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
394 	}
395 
396 	/* Bail out if the Energy Model complexity is too high. */
397 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
398 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
399 						cpumask_pr_args(cpu_map));
400 		goto free;
401 	}
402 
403 	perf_domain_debug(cpu_map, pd);
404 
405 	/* Attach the new list of performance domains to the root domain. */
406 	tmp = rd->pd;
407 	rcu_assign_pointer(rd->pd, pd);
408 	if (tmp)
409 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
410 
411 	return !!pd;
412 
413 free:
414 	free_pd(pd);
415 	tmp = rd->pd;
416 	rcu_assign_pointer(rd->pd, NULL);
417 	if (tmp)
418 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
419 
420 	return false;
421 }
422 #else
423 static void free_pd(struct perf_domain *pd) { }
424 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
425 
426 static void free_rootdomain(struct rcu_head *rcu)
427 {
428 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
429 
430 	cpupri_cleanup(&rd->cpupri);
431 	cpudl_cleanup(&rd->cpudl);
432 	free_cpumask_var(rd->dlo_mask);
433 	free_cpumask_var(rd->rto_mask);
434 	free_cpumask_var(rd->online);
435 	free_cpumask_var(rd->span);
436 	free_pd(rd->pd);
437 	kfree(rd);
438 }
439 
440 void rq_attach_root(struct rq *rq, struct root_domain *rd)
441 {
442 	struct root_domain *old_rd = NULL;
443 	unsigned long flags;
444 
445 	raw_spin_lock_irqsave(&rq->lock, flags);
446 
447 	if (rq->rd) {
448 		old_rd = rq->rd;
449 
450 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
451 			set_rq_offline(rq);
452 
453 		cpumask_clear_cpu(rq->cpu, old_rd->span);
454 
455 		/*
456 		 * If we dont want to free the old_rd yet then
457 		 * set old_rd to NULL to skip the freeing later
458 		 * in this function:
459 		 */
460 		if (!atomic_dec_and_test(&old_rd->refcount))
461 			old_rd = NULL;
462 	}
463 
464 	atomic_inc(&rd->refcount);
465 	rq->rd = rd;
466 
467 	cpumask_set_cpu(rq->cpu, rd->span);
468 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
469 		set_rq_online(rq);
470 
471 	raw_spin_unlock_irqrestore(&rq->lock, flags);
472 
473 	if (old_rd)
474 		call_rcu(&old_rd->rcu, free_rootdomain);
475 }
476 
477 void sched_get_rd(struct root_domain *rd)
478 {
479 	atomic_inc(&rd->refcount);
480 }
481 
482 void sched_put_rd(struct root_domain *rd)
483 {
484 	if (!atomic_dec_and_test(&rd->refcount))
485 		return;
486 
487 	call_rcu(&rd->rcu, free_rootdomain);
488 }
489 
490 static int init_rootdomain(struct root_domain *rd)
491 {
492 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
493 		goto out;
494 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
495 		goto free_span;
496 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
497 		goto free_online;
498 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
499 		goto free_dlo_mask;
500 
501 #ifdef HAVE_RT_PUSH_IPI
502 	rd->rto_cpu = -1;
503 	raw_spin_lock_init(&rd->rto_lock);
504 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
505 #endif
506 
507 	init_dl_bw(&rd->dl_bw);
508 	if (cpudl_init(&rd->cpudl) != 0)
509 		goto free_rto_mask;
510 
511 	if (cpupri_init(&rd->cpupri) != 0)
512 		goto free_cpudl;
513 	return 0;
514 
515 free_cpudl:
516 	cpudl_cleanup(&rd->cpudl);
517 free_rto_mask:
518 	free_cpumask_var(rd->rto_mask);
519 free_dlo_mask:
520 	free_cpumask_var(rd->dlo_mask);
521 free_online:
522 	free_cpumask_var(rd->online);
523 free_span:
524 	free_cpumask_var(rd->span);
525 out:
526 	return -ENOMEM;
527 }
528 
529 /*
530  * By default the system creates a single root-domain with all CPUs as
531  * members (mimicking the global state we have today).
532  */
533 struct root_domain def_root_domain;
534 
535 void init_defrootdomain(void)
536 {
537 	init_rootdomain(&def_root_domain);
538 
539 	atomic_set(&def_root_domain.refcount, 1);
540 }
541 
542 static struct root_domain *alloc_rootdomain(void)
543 {
544 	struct root_domain *rd;
545 
546 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
547 	if (!rd)
548 		return NULL;
549 
550 	if (init_rootdomain(rd) != 0) {
551 		kfree(rd);
552 		return NULL;
553 	}
554 
555 	return rd;
556 }
557 
558 static void free_sched_groups(struct sched_group *sg, int free_sgc)
559 {
560 	struct sched_group *tmp, *first;
561 
562 	if (!sg)
563 		return;
564 
565 	first = sg;
566 	do {
567 		tmp = sg->next;
568 
569 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
570 			kfree(sg->sgc);
571 
572 		if (atomic_dec_and_test(&sg->ref))
573 			kfree(sg);
574 		sg = tmp;
575 	} while (sg != first);
576 }
577 
578 static void destroy_sched_domain(struct sched_domain *sd)
579 {
580 	/*
581 	 * A normal sched domain may have multiple group references, an
582 	 * overlapping domain, having private groups, only one.  Iterate,
583 	 * dropping group/capacity references, freeing where none remain.
584 	 */
585 	free_sched_groups(sd->groups, 1);
586 
587 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
588 		kfree(sd->shared);
589 	kfree(sd);
590 }
591 
592 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
593 {
594 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
595 
596 	while (sd) {
597 		struct sched_domain *parent = sd->parent;
598 		destroy_sched_domain(sd);
599 		sd = parent;
600 	}
601 }
602 
603 static void destroy_sched_domains(struct sched_domain *sd)
604 {
605 	if (sd)
606 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
607 }
608 
609 /*
610  * Keep a special pointer to the highest sched_domain that has
611  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
612  * allows us to avoid some pointer chasing select_idle_sibling().
613  *
614  * Also keep a unique ID per domain (we use the first CPU number in
615  * the cpumask of the domain), this allows us to quickly tell if
616  * two CPUs are in the same cache domain, see cpus_share_cache().
617  */
618 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
619 DEFINE_PER_CPU(int, sd_llc_size);
620 DEFINE_PER_CPU(int, sd_llc_id);
621 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
622 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
623 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
624 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
625 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
626 
627 static void update_top_cache_domain(int cpu)
628 {
629 	struct sched_domain_shared *sds = NULL;
630 	struct sched_domain *sd;
631 	int id = cpu;
632 	int size = 1;
633 
634 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
635 	if (sd) {
636 		id = cpumask_first(sched_domain_span(sd));
637 		size = cpumask_weight(sched_domain_span(sd));
638 		sds = sd->shared;
639 	}
640 
641 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
642 	per_cpu(sd_llc_size, cpu) = size;
643 	per_cpu(sd_llc_id, cpu) = id;
644 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
645 
646 	sd = lowest_flag_domain(cpu, SD_NUMA);
647 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
648 
649 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
650 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
651 
652 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
653 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
654 }
655 
656 /*
657  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
658  * hold the hotplug lock.
659  */
660 static void
661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
662 {
663 	struct rq *rq = cpu_rq(cpu);
664 	struct sched_domain *tmp;
665 
666 	/* Remove the sched domains which do not contribute to scheduling. */
667 	for (tmp = sd; tmp; ) {
668 		struct sched_domain *parent = tmp->parent;
669 		if (!parent)
670 			break;
671 
672 		if (sd_parent_degenerate(tmp, parent)) {
673 			tmp->parent = parent->parent;
674 			if (parent->parent)
675 				parent->parent->child = tmp;
676 			/*
677 			 * Transfer SD_PREFER_SIBLING down in case of a
678 			 * degenerate parent; the spans match for this
679 			 * so the property transfers.
680 			 */
681 			if (parent->flags & SD_PREFER_SIBLING)
682 				tmp->flags |= SD_PREFER_SIBLING;
683 			destroy_sched_domain(parent);
684 		} else
685 			tmp = tmp->parent;
686 	}
687 
688 	if (sd && sd_degenerate(sd)) {
689 		tmp = sd;
690 		sd = sd->parent;
691 		destroy_sched_domain(tmp);
692 		if (sd)
693 			sd->child = NULL;
694 	}
695 
696 	sched_domain_debug(sd, cpu);
697 
698 	rq_attach_root(rq, rd);
699 	tmp = rq->sd;
700 	rcu_assign_pointer(rq->sd, sd);
701 	dirty_sched_domain_sysctl(cpu);
702 	destroy_sched_domains(tmp);
703 
704 	update_top_cache_domain(cpu);
705 }
706 
707 struct s_data {
708 	struct sched_domain * __percpu *sd;
709 	struct root_domain	*rd;
710 };
711 
712 enum s_alloc {
713 	sa_rootdomain,
714 	sa_sd,
715 	sa_sd_storage,
716 	sa_none,
717 };
718 
719 /*
720  * Return the canonical balance CPU for this group, this is the first CPU
721  * of this group that's also in the balance mask.
722  *
723  * The balance mask are all those CPUs that could actually end up at this
724  * group. See build_balance_mask().
725  *
726  * Also see should_we_balance().
727  */
728 int group_balance_cpu(struct sched_group *sg)
729 {
730 	return cpumask_first(group_balance_mask(sg));
731 }
732 
733 
734 /*
735  * NUMA topology (first read the regular topology blurb below)
736  *
737  * Given a node-distance table, for example:
738  *
739  *   node   0   1   2   3
740  *     0:  10  20  30  20
741  *     1:  20  10  20  30
742  *     2:  30  20  10  20
743  *     3:  20  30  20  10
744  *
745  * which represents a 4 node ring topology like:
746  *
747  *   0 ----- 1
748  *   |       |
749  *   |       |
750  *   |       |
751  *   3 ----- 2
752  *
753  * We want to construct domains and groups to represent this. The way we go
754  * about doing this is to build the domains on 'hops'. For each NUMA level we
755  * construct the mask of all nodes reachable in @level hops.
756  *
757  * For the above NUMA topology that gives 3 levels:
758  *
759  * NUMA-2	0-3		0-3		0-3		0-3
760  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
761  *
762  * NUMA-1	0-1,3		0-2		1-3		0,2-3
763  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
764  *
765  * NUMA-0	0		1		2		3
766  *
767  *
768  * As can be seen; things don't nicely line up as with the regular topology.
769  * When we iterate a domain in child domain chunks some nodes can be
770  * represented multiple times -- hence the "overlap" naming for this part of
771  * the topology.
772  *
773  * In order to minimize this overlap, we only build enough groups to cover the
774  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
775  *
776  * Because:
777  *
778  *  - the first group of each domain is its child domain; this
779  *    gets us the first 0-1,3
780  *  - the only uncovered node is 2, who's child domain is 1-3.
781  *
782  * However, because of the overlap, computing a unique CPU for each group is
783  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
784  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
785  * end up at those groups (they would end up in group: 0-1,3).
786  *
787  * To correct this we have to introduce the group balance mask. This mask
788  * will contain those CPUs in the group that can reach this group given the
789  * (child) domain tree.
790  *
791  * With this we can once again compute balance_cpu and sched_group_capacity
792  * relations.
793  *
794  * XXX include words on how balance_cpu is unique and therefore can be
795  * used for sched_group_capacity links.
796  *
797  *
798  * Another 'interesting' topology is:
799  *
800  *   node   0   1   2   3
801  *     0:  10  20  20  30
802  *     1:  20  10  20  20
803  *     2:  20  20  10  20
804  *     3:  30  20  20  10
805  *
806  * Which looks a little like:
807  *
808  *   0 ----- 1
809  *   |     / |
810  *   |   /   |
811  *   | /     |
812  *   2 ----- 3
813  *
814  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
815  * are not.
816  *
817  * This leads to a few particularly weird cases where the sched_domain's are
818  * not of the same number for each CPU. Consider:
819  *
820  * NUMA-2	0-3						0-3
821  *  groups:	{0-2},{1-3}					{1-3},{0-2}
822  *
823  * NUMA-1	0-2		0-3		0-3		1-3
824  *
825  * NUMA-0	0		1		2		3
826  *
827  */
828 
829 
830 /*
831  * Build the balance mask; it contains only those CPUs that can arrive at this
832  * group and should be considered to continue balancing.
833  *
834  * We do this during the group creation pass, therefore the group information
835  * isn't complete yet, however since each group represents a (child) domain we
836  * can fully construct this using the sched_domain bits (which are already
837  * complete).
838  */
839 static void
840 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
841 {
842 	const struct cpumask *sg_span = sched_group_span(sg);
843 	struct sd_data *sdd = sd->private;
844 	struct sched_domain *sibling;
845 	int i;
846 
847 	cpumask_clear(mask);
848 
849 	for_each_cpu(i, sg_span) {
850 		sibling = *per_cpu_ptr(sdd->sd, i);
851 
852 		/*
853 		 * Can happen in the asymmetric case, where these siblings are
854 		 * unused. The mask will not be empty because those CPUs that
855 		 * do have the top domain _should_ span the domain.
856 		 */
857 		if (!sibling->child)
858 			continue;
859 
860 		/* If we would not end up here, we can't continue from here */
861 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
862 			continue;
863 
864 		cpumask_set_cpu(i, mask);
865 	}
866 
867 	/* We must not have empty masks here */
868 	WARN_ON_ONCE(cpumask_empty(mask));
869 }
870 
871 /*
872  * XXX: This creates per-node group entries; since the load-balancer will
873  * immediately access remote memory to construct this group's load-balance
874  * statistics having the groups node local is of dubious benefit.
875  */
876 static struct sched_group *
877 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
878 {
879 	struct sched_group *sg;
880 	struct cpumask *sg_span;
881 
882 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
883 			GFP_KERNEL, cpu_to_node(cpu));
884 
885 	if (!sg)
886 		return NULL;
887 
888 	sg_span = sched_group_span(sg);
889 	if (sd->child)
890 		cpumask_copy(sg_span, sched_domain_span(sd->child));
891 	else
892 		cpumask_copy(sg_span, sched_domain_span(sd));
893 
894 	atomic_inc(&sg->ref);
895 	return sg;
896 }
897 
898 static void init_overlap_sched_group(struct sched_domain *sd,
899 				     struct sched_group *sg)
900 {
901 	struct cpumask *mask = sched_domains_tmpmask2;
902 	struct sd_data *sdd = sd->private;
903 	struct cpumask *sg_span;
904 	int cpu;
905 
906 	build_balance_mask(sd, sg, mask);
907 	cpu = cpumask_first_and(sched_group_span(sg), mask);
908 
909 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
910 	if (atomic_inc_return(&sg->sgc->ref) == 1)
911 		cpumask_copy(group_balance_mask(sg), mask);
912 	else
913 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
914 
915 	/*
916 	 * Initialize sgc->capacity such that even if we mess up the
917 	 * domains and no possible iteration will get us here, we won't
918 	 * die on a /0 trap.
919 	 */
920 	sg_span = sched_group_span(sg);
921 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
922 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
923 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
924 }
925 
926 static int
927 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
928 {
929 	struct sched_group *first = NULL, *last = NULL, *sg;
930 	const struct cpumask *span = sched_domain_span(sd);
931 	struct cpumask *covered = sched_domains_tmpmask;
932 	struct sd_data *sdd = sd->private;
933 	struct sched_domain *sibling;
934 	int i;
935 
936 	cpumask_clear(covered);
937 
938 	for_each_cpu_wrap(i, span, cpu) {
939 		struct cpumask *sg_span;
940 
941 		if (cpumask_test_cpu(i, covered))
942 			continue;
943 
944 		sibling = *per_cpu_ptr(sdd->sd, i);
945 
946 		/*
947 		 * Asymmetric node setups can result in situations where the
948 		 * domain tree is of unequal depth, make sure to skip domains
949 		 * that already cover the entire range.
950 		 *
951 		 * In that case build_sched_domains() will have terminated the
952 		 * iteration early and our sibling sd spans will be empty.
953 		 * Domains should always include the CPU they're built on, so
954 		 * check that.
955 		 */
956 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
957 			continue;
958 
959 		sg = build_group_from_child_sched_domain(sibling, cpu);
960 		if (!sg)
961 			goto fail;
962 
963 		sg_span = sched_group_span(sg);
964 		cpumask_or(covered, covered, sg_span);
965 
966 		init_overlap_sched_group(sd, sg);
967 
968 		if (!first)
969 			first = sg;
970 		if (last)
971 			last->next = sg;
972 		last = sg;
973 		last->next = first;
974 	}
975 	sd->groups = first;
976 
977 	return 0;
978 
979 fail:
980 	free_sched_groups(first, 0);
981 
982 	return -ENOMEM;
983 }
984 
985 
986 /*
987  * Package topology (also see the load-balance blurb in fair.c)
988  *
989  * The scheduler builds a tree structure to represent a number of important
990  * topology features. By default (default_topology[]) these include:
991  *
992  *  - Simultaneous multithreading (SMT)
993  *  - Multi-Core Cache (MC)
994  *  - Package (DIE)
995  *
996  * Where the last one more or less denotes everything up to a NUMA node.
997  *
998  * The tree consists of 3 primary data structures:
999  *
1000  *	sched_domain -> sched_group -> sched_group_capacity
1001  *	    ^ ^             ^ ^
1002  *          `-'             `-'
1003  *
1004  * The sched_domains are per-CPU and have a two way link (parent & child) and
1005  * denote the ever growing mask of CPUs belonging to that level of topology.
1006  *
1007  * Each sched_domain has a circular (double) linked list of sched_group's, each
1008  * denoting the domains of the level below (or individual CPUs in case of the
1009  * first domain level). The sched_group linked by a sched_domain includes the
1010  * CPU of that sched_domain [*].
1011  *
1012  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1013  *
1014  * CPU   0   1   2   3   4   5   6   7
1015  *
1016  * DIE  [                             ]
1017  * MC   [             ] [             ]
1018  * SMT  [     ] [     ] [     ] [     ]
1019  *
1020  *  - or -
1021  *
1022  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1023  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1024  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1025  *
1026  * CPU   0   1   2   3   4   5   6   7
1027  *
1028  * One way to think about it is: sched_domain moves you up and down among these
1029  * topology levels, while sched_group moves you sideways through it, at child
1030  * domain granularity.
1031  *
1032  * sched_group_capacity ensures each unique sched_group has shared storage.
1033  *
1034  * There are two related construction problems, both require a CPU that
1035  * uniquely identify each group (for a given domain):
1036  *
1037  *  - The first is the balance_cpu (see should_we_balance() and the
1038  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1039  *    continue balancing at a higher domain.
1040  *
1041  *  - The second is the sched_group_capacity; we want all identical groups
1042  *    to share a single sched_group_capacity.
1043  *
1044  * Since these topologies are exclusive by construction. That is, its
1045  * impossible for an SMT thread to belong to multiple cores, and cores to
1046  * be part of multiple caches. There is a very clear and unique location
1047  * for each CPU in the hierarchy.
1048  *
1049  * Therefore computing a unique CPU for each group is trivial (the iteration
1050  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1051  * group), we can simply pick the first CPU in each group.
1052  *
1053  *
1054  * [*] in other words, the first group of each domain is its child domain.
1055  */
1056 
1057 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1058 {
1059 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1060 	struct sched_domain *child = sd->child;
1061 	struct sched_group *sg;
1062 	bool already_visited;
1063 
1064 	if (child)
1065 		cpu = cpumask_first(sched_domain_span(child));
1066 
1067 	sg = *per_cpu_ptr(sdd->sg, cpu);
1068 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1069 
1070 	/* Increase refcounts for claim_allocations: */
1071 	already_visited = atomic_inc_return(&sg->ref) > 1;
1072 	/* sgc visits should follow a similar trend as sg */
1073 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1074 
1075 	/* If we have already visited that group, it's already initialized. */
1076 	if (already_visited)
1077 		return sg;
1078 
1079 	if (child) {
1080 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1081 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1082 	} else {
1083 		cpumask_set_cpu(cpu, sched_group_span(sg));
1084 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1085 	}
1086 
1087 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1088 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1089 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1090 
1091 	return sg;
1092 }
1093 
1094 /*
1095  * build_sched_groups will build a circular linked list of the groups
1096  * covered by the given span, will set each group's ->cpumask correctly,
1097  * and will initialize their ->sgc.
1098  *
1099  * Assumes the sched_domain tree is fully constructed
1100  */
1101 static int
1102 build_sched_groups(struct sched_domain *sd, int cpu)
1103 {
1104 	struct sched_group *first = NULL, *last = NULL;
1105 	struct sd_data *sdd = sd->private;
1106 	const struct cpumask *span = sched_domain_span(sd);
1107 	struct cpumask *covered;
1108 	int i;
1109 
1110 	lockdep_assert_held(&sched_domains_mutex);
1111 	covered = sched_domains_tmpmask;
1112 
1113 	cpumask_clear(covered);
1114 
1115 	for_each_cpu_wrap(i, span, cpu) {
1116 		struct sched_group *sg;
1117 
1118 		if (cpumask_test_cpu(i, covered))
1119 			continue;
1120 
1121 		sg = get_group(i, sdd);
1122 
1123 		cpumask_or(covered, covered, sched_group_span(sg));
1124 
1125 		if (!first)
1126 			first = sg;
1127 		if (last)
1128 			last->next = sg;
1129 		last = sg;
1130 	}
1131 	last->next = first;
1132 	sd->groups = first;
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Initialize sched groups cpu_capacity.
1139  *
1140  * cpu_capacity indicates the capacity of sched group, which is used while
1141  * distributing the load between different sched groups in a sched domain.
1142  * Typically cpu_capacity for all the groups in a sched domain will be same
1143  * unless there are asymmetries in the topology. If there are asymmetries,
1144  * group having more cpu_capacity will pickup more load compared to the
1145  * group having less cpu_capacity.
1146  */
1147 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1148 {
1149 	struct sched_group *sg = sd->groups;
1150 
1151 	WARN_ON(!sg);
1152 
1153 	do {
1154 		int cpu, max_cpu = -1;
1155 
1156 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1157 
1158 		if (!(sd->flags & SD_ASYM_PACKING))
1159 			goto next;
1160 
1161 		for_each_cpu(cpu, sched_group_span(sg)) {
1162 			if (max_cpu < 0)
1163 				max_cpu = cpu;
1164 			else if (sched_asym_prefer(cpu, max_cpu))
1165 				max_cpu = cpu;
1166 		}
1167 		sg->asym_prefer_cpu = max_cpu;
1168 
1169 next:
1170 		sg = sg->next;
1171 	} while (sg != sd->groups);
1172 
1173 	if (cpu != group_balance_cpu(sg))
1174 		return;
1175 
1176 	update_group_capacity(sd, cpu);
1177 }
1178 
1179 /*
1180  * Initializers for schedule domains
1181  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1182  */
1183 
1184 static int default_relax_domain_level = -1;
1185 int sched_domain_level_max;
1186 
1187 static int __init setup_relax_domain_level(char *str)
1188 {
1189 	if (kstrtoint(str, 0, &default_relax_domain_level))
1190 		pr_warn("Unable to set relax_domain_level\n");
1191 
1192 	return 1;
1193 }
1194 __setup("relax_domain_level=", setup_relax_domain_level);
1195 
1196 static void set_domain_attribute(struct sched_domain *sd,
1197 				 struct sched_domain_attr *attr)
1198 {
1199 	int request;
1200 
1201 	if (!attr || attr->relax_domain_level < 0) {
1202 		if (default_relax_domain_level < 0)
1203 			return;
1204 		else
1205 			request = default_relax_domain_level;
1206 	} else
1207 		request = attr->relax_domain_level;
1208 	if (request < sd->level) {
1209 		/* Turn off idle balance on this domain: */
1210 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1211 	} else {
1212 		/* Turn on idle balance on this domain: */
1213 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1214 	}
1215 }
1216 
1217 static void __sdt_free(const struct cpumask *cpu_map);
1218 static int __sdt_alloc(const struct cpumask *cpu_map);
1219 
1220 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1221 				 const struct cpumask *cpu_map)
1222 {
1223 	switch (what) {
1224 	case sa_rootdomain:
1225 		if (!atomic_read(&d->rd->refcount))
1226 			free_rootdomain(&d->rd->rcu);
1227 		/* Fall through */
1228 	case sa_sd:
1229 		free_percpu(d->sd);
1230 		/* Fall through */
1231 	case sa_sd_storage:
1232 		__sdt_free(cpu_map);
1233 		/* Fall through */
1234 	case sa_none:
1235 		break;
1236 	}
1237 }
1238 
1239 static enum s_alloc
1240 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1241 {
1242 	memset(d, 0, sizeof(*d));
1243 
1244 	if (__sdt_alloc(cpu_map))
1245 		return sa_sd_storage;
1246 	d->sd = alloc_percpu(struct sched_domain *);
1247 	if (!d->sd)
1248 		return sa_sd_storage;
1249 	d->rd = alloc_rootdomain();
1250 	if (!d->rd)
1251 		return sa_sd;
1252 
1253 	return sa_rootdomain;
1254 }
1255 
1256 /*
1257  * NULL the sd_data elements we've used to build the sched_domain and
1258  * sched_group structure so that the subsequent __free_domain_allocs()
1259  * will not free the data we're using.
1260  */
1261 static void claim_allocations(int cpu, struct sched_domain *sd)
1262 {
1263 	struct sd_data *sdd = sd->private;
1264 
1265 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1266 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1267 
1268 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1269 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1270 
1271 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1272 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1273 
1274 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1275 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1276 }
1277 
1278 #ifdef CONFIG_NUMA
1279 enum numa_topology_type sched_numa_topology_type;
1280 
1281 static int			sched_domains_numa_levels;
1282 static int			sched_domains_curr_level;
1283 
1284 int				sched_max_numa_distance;
1285 static int			*sched_domains_numa_distance;
1286 static struct cpumask		***sched_domains_numa_masks;
1287 #endif
1288 
1289 /*
1290  * SD_flags allowed in topology descriptions.
1291  *
1292  * These flags are purely descriptive of the topology and do not prescribe
1293  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1294  * function:
1295  *
1296  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1297  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1298  *   SD_NUMA                - describes NUMA topologies
1299  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1300  *
1301  * Odd one out, which beside describing the topology has a quirk also
1302  * prescribes the desired behaviour that goes along with it:
1303  *
1304  *   SD_ASYM_PACKING        - describes SMT quirks
1305  */
1306 #define TOPOLOGY_SD_FLAGS		\
1307 	(SD_SHARE_CPUCAPACITY	|	\
1308 	 SD_SHARE_PKG_RESOURCES |	\
1309 	 SD_NUMA		|	\
1310 	 SD_ASYM_PACKING	|	\
1311 	 SD_SHARE_POWERDOMAIN)
1312 
1313 static struct sched_domain *
1314 sd_init(struct sched_domain_topology_level *tl,
1315 	const struct cpumask *cpu_map,
1316 	struct sched_domain *child, int dflags, int cpu)
1317 {
1318 	struct sd_data *sdd = &tl->data;
1319 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1320 	int sd_id, sd_weight, sd_flags = 0;
1321 
1322 #ifdef CONFIG_NUMA
1323 	/*
1324 	 * Ugly hack to pass state to sd_numa_mask()...
1325 	 */
1326 	sched_domains_curr_level = tl->numa_level;
1327 #endif
1328 
1329 	sd_weight = cpumask_weight(tl->mask(cpu));
1330 
1331 	if (tl->sd_flags)
1332 		sd_flags = (*tl->sd_flags)();
1333 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1334 			"wrong sd_flags in topology description\n"))
1335 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1336 
1337 	/* Apply detected topology flags */
1338 	sd_flags |= dflags;
1339 
1340 	*sd = (struct sched_domain){
1341 		.min_interval		= sd_weight,
1342 		.max_interval		= 2*sd_weight,
1343 		.busy_factor		= 32,
1344 		.imbalance_pct		= 125,
1345 
1346 		.cache_nice_tries	= 0,
1347 		.busy_idx		= 0,
1348 		.idle_idx		= 0,
1349 		.newidle_idx		= 0,
1350 		.wake_idx		= 0,
1351 		.forkexec_idx		= 0,
1352 
1353 		.flags			= 1*SD_LOAD_BALANCE
1354 					| 1*SD_BALANCE_NEWIDLE
1355 					| 1*SD_BALANCE_EXEC
1356 					| 1*SD_BALANCE_FORK
1357 					| 0*SD_BALANCE_WAKE
1358 					| 1*SD_WAKE_AFFINE
1359 					| 0*SD_SHARE_CPUCAPACITY
1360 					| 0*SD_SHARE_PKG_RESOURCES
1361 					| 0*SD_SERIALIZE
1362 					| 1*SD_PREFER_SIBLING
1363 					| 0*SD_NUMA
1364 					| sd_flags
1365 					,
1366 
1367 		.last_balance		= jiffies,
1368 		.balance_interval	= sd_weight,
1369 		.max_newidle_lb_cost	= 0,
1370 		.next_decay_max_lb_cost	= jiffies,
1371 		.child			= child,
1372 #ifdef CONFIG_SCHED_DEBUG
1373 		.name			= tl->name,
1374 #endif
1375 	};
1376 
1377 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1378 	sd_id = cpumask_first(sched_domain_span(sd));
1379 
1380 	/*
1381 	 * Convert topological properties into behaviour.
1382 	 */
1383 
1384 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1385 		struct sched_domain *t = sd;
1386 
1387 		/*
1388 		 * Don't attempt to spread across CPUs of different capacities.
1389 		 */
1390 		if (sd->child)
1391 			sd->child->flags &= ~SD_PREFER_SIBLING;
1392 
1393 		for_each_lower_domain(t)
1394 			t->flags |= SD_BALANCE_WAKE;
1395 	}
1396 
1397 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1398 		sd->imbalance_pct = 110;
1399 
1400 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1401 		sd->imbalance_pct = 117;
1402 		sd->cache_nice_tries = 1;
1403 		sd->busy_idx = 2;
1404 
1405 #ifdef CONFIG_NUMA
1406 	} else if (sd->flags & SD_NUMA) {
1407 		sd->cache_nice_tries = 2;
1408 		sd->busy_idx = 3;
1409 		sd->idle_idx = 2;
1410 
1411 		sd->flags &= ~SD_PREFER_SIBLING;
1412 		sd->flags |= SD_SERIALIZE;
1413 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1414 			sd->flags &= ~(SD_BALANCE_EXEC |
1415 				       SD_BALANCE_FORK |
1416 				       SD_WAKE_AFFINE);
1417 		}
1418 
1419 #endif
1420 	} else {
1421 		sd->cache_nice_tries = 1;
1422 		sd->busy_idx = 2;
1423 		sd->idle_idx = 1;
1424 	}
1425 
1426 	/*
1427 	 * For all levels sharing cache; connect a sched_domain_shared
1428 	 * instance.
1429 	 */
1430 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1431 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1432 		atomic_inc(&sd->shared->ref);
1433 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1434 	}
1435 
1436 	sd->private = sdd;
1437 
1438 	return sd;
1439 }
1440 
1441 /*
1442  * Topology list, bottom-up.
1443  */
1444 static struct sched_domain_topology_level default_topology[] = {
1445 #ifdef CONFIG_SCHED_SMT
1446 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1447 #endif
1448 #ifdef CONFIG_SCHED_MC
1449 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1450 #endif
1451 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1452 	{ NULL, },
1453 };
1454 
1455 static struct sched_domain_topology_level *sched_domain_topology =
1456 	default_topology;
1457 
1458 #define for_each_sd_topology(tl)			\
1459 	for (tl = sched_domain_topology; tl->mask; tl++)
1460 
1461 void set_sched_topology(struct sched_domain_topology_level *tl)
1462 {
1463 	if (WARN_ON_ONCE(sched_smp_initialized))
1464 		return;
1465 
1466 	sched_domain_topology = tl;
1467 }
1468 
1469 #ifdef CONFIG_NUMA
1470 
1471 static const struct cpumask *sd_numa_mask(int cpu)
1472 {
1473 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1474 }
1475 
1476 static void sched_numa_warn(const char *str)
1477 {
1478 	static int done = false;
1479 	int i,j;
1480 
1481 	if (done)
1482 		return;
1483 
1484 	done = true;
1485 
1486 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1487 
1488 	for (i = 0; i < nr_node_ids; i++) {
1489 		printk(KERN_WARNING "  ");
1490 		for (j = 0; j < nr_node_ids; j++)
1491 			printk(KERN_CONT "%02d ", node_distance(i,j));
1492 		printk(KERN_CONT "\n");
1493 	}
1494 	printk(KERN_WARNING "\n");
1495 }
1496 
1497 bool find_numa_distance(int distance)
1498 {
1499 	int i;
1500 
1501 	if (distance == node_distance(0, 0))
1502 		return true;
1503 
1504 	for (i = 0; i < sched_domains_numa_levels; i++) {
1505 		if (sched_domains_numa_distance[i] == distance)
1506 			return true;
1507 	}
1508 
1509 	return false;
1510 }
1511 
1512 /*
1513  * A system can have three types of NUMA topology:
1514  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1515  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1516  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1517  *
1518  * The difference between a glueless mesh topology and a backplane
1519  * topology lies in whether communication between not directly
1520  * connected nodes goes through intermediary nodes (where programs
1521  * could run), or through backplane controllers. This affects
1522  * placement of programs.
1523  *
1524  * The type of topology can be discerned with the following tests:
1525  * - If the maximum distance between any nodes is 1 hop, the system
1526  *   is directly connected.
1527  * - If for two nodes A and B, located N > 1 hops away from each other,
1528  *   there is an intermediary node C, which is < N hops away from both
1529  *   nodes A and B, the system is a glueless mesh.
1530  */
1531 static void init_numa_topology_type(void)
1532 {
1533 	int a, b, c, n;
1534 
1535 	n = sched_max_numa_distance;
1536 
1537 	if (sched_domains_numa_levels <= 2) {
1538 		sched_numa_topology_type = NUMA_DIRECT;
1539 		return;
1540 	}
1541 
1542 	for_each_online_node(a) {
1543 		for_each_online_node(b) {
1544 			/* Find two nodes furthest removed from each other. */
1545 			if (node_distance(a, b) < n)
1546 				continue;
1547 
1548 			/* Is there an intermediary node between a and b? */
1549 			for_each_online_node(c) {
1550 				if (node_distance(a, c) < n &&
1551 				    node_distance(b, c) < n) {
1552 					sched_numa_topology_type =
1553 							NUMA_GLUELESS_MESH;
1554 					return;
1555 				}
1556 			}
1557 
1558 			sched_numa_topology_type = NUMA_BACKPLANE;
1559 			return;
1560 		}
1561 	}
1562 }
1563 
1564 void sched_init_numa(void)
1565 {
1566 	int next_distance, curr_distance = node_distance(0, 0);
1567 	struct sched_domain_topology_level *tl;
1568 	int level = 0;
1569 	int i, j, k;
1570 
1571 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1572 	if (!sched_domains_numa_distance)
1573 		return;
1574 
1575 	/* Includes NUMA identity node at level 0. */
1576 	sched_domains_numa_distance[level++] = curr_distance;
1577 	sched_domains_numa_levels = level;
1578 
1579 	/*
1580 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1581 	 * unique distances in the node_distance() table.
1582 	 *
1583 	 * Assumes node_distance(0,j) includes all distances in
1584 	 * node_distance(i,j) in order to avoid cubic time.
1585 	 */
1586 	next_distance = curr_distance;
1587 	for (i = 0; i < nr_node_ids; i++) {
1588 		for (j = 0; j < nr_node_ids; j++) {
1589 			for (k = 0; k < nr_node_ids; k++) {
1590 				int distance = node_distance(i, k);
1591 
1592 				if (distance > curr_distance &&
1593 				    (distance < next_distance ||
1594 				     next_distance == curr_distance))
1595 					next_distance = distance;
1596 
1597 				/*
1598 				 * While not a strong assumption it would be nice to know
1599 				 * about cases where if node A is connected to B, B is not
1600 				 * equally connected to A.
1601 				 */
1602 				if (sched_debug() && node_distance(k, i) != distance)
1603 					sched_numa_warn("Node-distance not symmetric");
1604 
1605 				if (sched_debug() && i && !find_numa_distance(distance))
1606 					sched_numa_warn("Node-0 not representative");
1607 			}
1608 			if (next_distance != curr_distance) {
1609 				sched_domains_numa_distance[level++] = next_distance;
1610 				sched_domains_numa_levels = level;
1611 				curr_distance = next_distance;
1612 			} else break;
1613 		}
1614 
1615 		/*
1616 		 * In case of sched_debug() we verify the above assumption.
1617 		 */
1618 		if (!sched_debug())
1619 			break;
1620 	}
1621 
1622 	/*
1623 	 * 'level' contains the number of unique distances
1624 	 *
1625 	 * The sched_domains_numa_distance[] array includes the actual distance
1626 	 * numbers.
1627 	 */
1628 
1629 	/*
1630 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1631 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1632 	 * the array will contain less then 'level' members. This could be
1633 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1634 	 * in other functions.
1635 	 *
1636 	 * We reset it to 'level' at the end of this function.
1637 	 */
1638 	sched_domains_numa_levels = 0;
1639 
1640 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1641 	if (!sched_domains_numa_masks)
1642 		return;
1643 
1644 	/*
1645 	 * Now for each level, construct a mask per node which contains all
1646 	 * CPUs of nodes that are that many hops away from us.
1647 	 */
1648 	for (i = 0; i < level; i++) {
1649 		sched_domains_numa_masks[i] =
1650 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1651 		if (!sched_domains_numa_masks[i])
1652 			return;
1653 
1654 		for (j = 0; j < nr_node_ids; j++) {
1655 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1656 			if (!mask)
1657 				return;
1658 
1659 			sched_domains_numa_masks[i][j] = mask;
1660 
1661 			for_each_node(k) {
1662 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1663 					continue;
1664 
1665 				cpumask_or(mask, mask, cpumask_of_node(k));
1666 			}
1667 		}
1668 	}
1669 
1670 	/* Compute default topology size */
1671 	for (i = 0; sched_domain_topology[i].mask; i++);
1672 
1673 	tl = kzalloc((i + level + 1) *
1674 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1675 	if (!tl)
1676 		return;
1677 
1678 	/*
1679 	 * Copy the default topology bits..
1680 	 */
1681 	for (i = 0; sched_domain_topology[i].mask; i++)
1682 		tl[i] = sched_domain_topology[i];
1683 
1684 	/*
1685 	 * Add the NUMA identity distance, aka single NODE.
1686 	 */
1687 	tl[i++] = (struct sched_domain_topology_level){
1688 		.mask = sd_numa_mask,
1689 		.numa_level = 0,
1690 		SD_INIT_NAME(NODE)
1691 	};
1692 
1693 	/*
1694 	 * .. and append 'j' levels of NUMA goodness.
1695 	 */
1696 	for (j = 1; j < level; i++, j++) {
1697 		tl[i] = (struct sched_domain_topology_level){
1698 			.mask = sd_numa_mask,
1699 			.sd_flags = cpu_numa_flags,
1700 			.flags = SDTL_OVERLAP,
1701 			.numa_level = j,
1702 			SD_INIT_NAME(NUMA)
1703 		};
1704 	}
1705 
1706 	sched_domain_topology = tl;
1707 
1708 	sched_domains_numa_levels = level;
1709 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1710 
1711 	init_numa_topology_type();
1712 }
1713 
1714 void sched_domains_numa_masks_set(unsigned int cpu)
1715 {
1716 	int node = cpu_to_node(cpu);
1717 	int i, j;
1718 
1719 	for (i = 0; i < sched_domains_numa_levels; i++) {
1720 		for (j = 0; j < nr_node_ids; j++) {
1721 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1722 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1723 		}
1724 	}
1725 }
1726 
1727 void sched_domains_numa_masks_clear(unsigned int cpu)
1728 {
1729 	int i, j;
1730 
1731 	for (i = 0; i < sched_domains_numa_levels; i++) {
1732 		for (j = 0; j < nr_node_ids; j++)
1733 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1734 	}
1735 }
1736 
1737 #endif /* CONFIG_NUMA */
1738 
1739 static int __sdt_alloc(const struct cpumask *cpu_map)
1740 {
1741 	struct sched_domain_topology_level *tl;
1742 	int j;
1743 
1744 	for_each_sd_topology(tl) {
1745 		struct sd_data *sdd = &tl->data;
1746 
1747 		sdd->sd = alloc_percpu(struct sched_domain *);
1748 		if (!sdd->sd)
1749 			return -ENOMEM;
1750 
1751 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1752 		if (!sdd->sds)
1753 			return -ENOMEM;
1754 
1755 		sdd->sg = alloc_percpu(struct sched_group *);
1756 		if (!sdd->sg)
1757 			return -ENOMEM;
1758 
1759 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1760 		if (!sdd->sgc)
1761 			return -ENOMEM;
1762 
1763 		for_each_cpu(j, cpu_map) {
1764 			struct sched_domain *sd;
1765 			struct sched_domain_shared *sds;
1766 			struct sched_group *sg;
1767 			struct sched_group_capacity *sgc;
1768 
1769 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1770 					GFP_KERNEL, cpu_to_node(j));
1771 			if (!sd)
1772 				return -ENOMEM;
1773 
1774 			*per_cpu_ptr(sdd->sd, j) = sd;
1775 
1776 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1777 					GFP_KERNEL, cpu_to_node(j));
1778 			if (!sds)
1779 				return -ENOMEM;
1780 
1781 			*per_cpu_ptr(sdd->sds, j) = sds;
1782 
1783 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1784 					GFP_KERNEL, cpu_to_node(j));
1785 			if (!sg)
1786 				return -ENOMEM;
1787 
1788 			sg->next = sg;
1789 
1790 			*per_cpu_ptr(sdd->sg, j) = sg;
1791 
1792 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1793 					GFP_KERNEL, cpu_to_node(j));
1794 			if (!sgc)
1795 				return -ENOMEM;
1796 
1797 #ifdef CONFIG_SCHED_DEBUG
1798 			sgc->id = j;
1799 #endif
1800 
1801 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1802 		}
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static void __sdt_free(const struct cpumask *cpu_map)
1809 {
1810 	struct sched_domain_topology_level *tl;
1811 	int j;
1812 
1813 	for_each_sd_topology(tl) {
1814 		struct sd_data *sdd = &tl->data;
1815 
1816 		for_each_cpu(j, cpu_map) {
1817 			struct sched_domain *sd;
1818 
1819 			if (sdd->sd) {
1820 				sd = *per_cpu_ptr(sdd->sd, j);
1821 				if (sd && (sd->flags & SD_OVERLAP))
1822 					free_sched_groups(sd->groups, 0);
1823 				kfree(*per_cpu_ptr(sdd->sd, j));
1824 			}
1825 
1826 			if (sdd->sds)
1827 				kfree(*per_cpu_ptr(sdd->sds, j));
1828 			if (sdd->sg)
1829 				kfree(*per_cpu_ptr(sdd->sg, j));
1830 			if (sdd->sgc)
1831 				kfree(*per_cpu_ptr(sdd->sgc, j));
1832 		}
1833 		free_percpu(sdd->sd);
1834 		sdd->sd = NULL;
1835 		free_percpu(sdd->sds);
1836 		sdd->sds = NULL;
1837 		free_percpu(sdd->sg);
1838 		sdd->sg = NULL;
1839 		free_percpu(sdd->sgc);
1840 		sdd->sgc = NULL;
1841 	}
1842 }
1843 
1844 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1845 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1846 		struct sched_domain *child, int dflags, int cpu)
1847 {
1848 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1849 
1850 	if (child) {
1851 		sd->level = child->level + 1;
1852 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1853 		child->parent = sd;
1854 
1855 		if (!cpumask_subset(sched_domain_span(child),
1856 				    sched_domain_span(sd))) {
1857 			pr_err("BUG: arch topology borken\n");
1858 #ifdef CONFIG_SCHED_DEBUG
1859 			pr_err("     the %s domain not a subset of the %s domain\n",
1860 					child->name, sd->name);
1861 #endif
1862 			/* Fixup, ensure @sd has at least @child CPUs. */
1863 			cpumask_or(sched_domain_span(sd),
1864 				   sched_domain_span(sd),
1865 				   sched_domain_span(child));
1866 		}
1867 
1868 	}
1869 	set_domain_attribute(sd, attr);
1870 
1871 	return sd;
1872 }
1873 
1874 /*
1875  * Find the sched_domain_topology_level where all CPU capacities are visible
1876  * for all CPUs.
1877  */
1878 static struct sched_domain_topology_level
1879 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1880 {
1881 	int i, j, asym_level = 0;
1882 	bool asym = false;
1883 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1884 	unsigned long cap;
1885 
1886 	/* Is there any asymmetry? */
1887 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1888 
1889 	for_each_cpu(i, cpu_map) {
1890 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
1891 			asym = true;
1892 			break;
1893 		}
1894 	}
1895 
1896 	if (!asym)
1897 		return NULL;
1898 
1899 	/*
1900 	 * Examine topology from all CPU's point of views to detect the lowest
1901 	 * sched_domain_topology_level where a highest capacity CPU is visible
1902 	 * to everyone.
1903 	 */
1904 	for_each_cpu(i, cpu_map) {
1905 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1906 		int tl_id = 0;
1907 
1908 		for_each_sd_topology(tl) {
1909 			if (tl_id < asym_level)
1910 				goto next_level;
1911 
1912 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1913 				unsigned long capacity;
1914 
1915 				capacity = arch_scale_cpu_capacity(NULL, j);
1916 
1917 				if (capacity <= max_capacity)
1918 					continue;
1919 
1920 				max_capacity = capacity;
1921 				asym_level = tl_id;
1922 				asym_tl = tl;
1923 			}
1924 next_level:
1925 			tl_id++;
1926 		}
1927 	}
1928 
1929 	return asym_tl;
1930 }
1931 
1932 
1933 /*
1934  * Build sched domains for a given set of CPUs and attach the sched domains
1935  * to the individual CPUs
1936  */
1937 static int
1938 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1939 {
1940 	enum s_alloc alloc_state;
1941 	struct sched_domain *sd;
1942 	struct s_data d;
1943 	struct rq *rq = NULL;
1944 	int i, ret = -ENOMEM;
1945 	struct sched_domain_topology_level *tl_asym;
1946 	bool has_asym = false;
1947 
1948 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1949 	if (alloc_state != sa_rootdomain)
1950 		goto error;
1951 
1952 	tl_asym = asym_cpu_capacity_level(cpu_map);
1953 
1954 	/* Set up domains for CPUs specified by the cpu_map: */
1955 	for_each_cpu(i, cpu_map) {
1956 		struct sched_domain_topology_level *tl;
1957 
1958 		sd = NULL;
1959 		for_each_sd_topology(tl) {
1960 			int dflags = 0;
1961 
1962 			if (tl == tl_asym) {
1963 				dflags |= SD_ASYM_CPUCAPACITY;
1964 				has_asym = true;
1965 			}
1966 
1967 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1968 
1969 			if (tl == sched_domain_topology)
1970 				*per_cpu_ptr(d.sd, i) = sd;
1971 			if (tl->flags & SDTL_OVERLAP)
1972 				sd->flags |= SD_OVERLAP;
1973 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1974 				break;
1975 		}
1976 	}
1977 
1978 	/* Build the groups for the domains */
1979 	for_each_cpu(i, cpu_map) {
1980 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1981 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1982 			if (sd->flags & SD_OVERLAP) {
1983 				if (build_overlap_sched_groups(sd, i))
1984 					goto error;
1985 			} else {
1986 				if (build_sched_groups(sd, i))
1987 					goto error;
1988 			}
1989 		}
1990 	}
1991 
1992 	/* Calculate CPU capacity for physical packages and nodes */
1993 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1994 		if (!cpumask_test_cpu(i, cpu_map))
1995 			continue;
1996 
1997 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1998 			claim_allocations(i, sd);
1999 			init_sched_groups_capacity(i, sd);
2000 		}
2001 	}
2002 
2003 	/* Attach the domains */
2004 	rcu_read_lock();
2005 	for_each_cpu(i, cpu_map) {
2006 		rq = cpu_rq(i);
2007 		sd = *per_cpu_ptr(d.sd, i);
2008 
2009 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2010 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2011 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2012 
2013 		cpu_attach_domain(sd, d.rd, i);
2014 	}
2015 	rcu_read_unlock();
2016 
2017 	if (has_asym)
2018 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
2019 
2020 	if (rq && sched_debug_enabled) {
2021 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2022 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2023 	}
2024 
2025 	ret = 0;
2026 error:
2027 	__free_domain_allocs(&d, alloc_state, cpu_map);
2028 
2029 	return ret;
2030 }
2031 
2032 /* Current sched domains: */
2033 static cpumask_var_t			*doms_cur;
2034 
2035 /* Number of sched domains in 'doms_cur': */
2036 static int				ndoms_cur;
2037 
2038 /* Attribues of custom domains in 'doms_cur' */
2039 static struct sched_domain_attr		*dattr_cur;
2040 
2041 /*
2042  * Special case: If a kmalloc() of a doms_cur partition (array of
2043  * cpumask) fails, then fallback to a single sched domain,
2044  * as determined by the single cpumask fallback_doms.
2045  */
2046 static cpumask_var_t			fallback_doms;
2047 
2048 /*
2049  * arch_update_cpu_topology lets virtualized architectures update the
2050  * CPU core maps. It is supposed to return 1 if the topology changed
2051  * or 0 if it stayed the same.
2052  */
2053 int __weak arch_update_cpu_topology(void)
2054 {
2055 	return 0;
2056 }
2057 
2058 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2059 {
2060 	int i;
2061 	cpumask_var_t *doms;
2062 
2063 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2064 	if (!doms)
2065 		return NULL;
2066 	for (i = 0; i < ndoms; i++) {
2067 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2068 			free_sched_domains(doms, i);
2069 			return NULL;
2070 		}
2071 	}
2072 	return doms;
2073 }
2074 
2075 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2076 {
2077 	unsigned int i;
2078 	for (i = 0; i < ndoms; i++)
2079 		free_cpumask_var(doms[i]);
2080 	kfree(doms);
2081 }
2082 
2083 /*
2084  * Set up scheduler domains and groups.  For now this just excludes isolated
2085  * CPUs, but could be used to exclude other special cases in the future.
2086  */
2087 int sched_init_domains(const struct cpumask *cpu_map)
2088 {
2089 	int err;
2090 
2091 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2092 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2093 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2094 
2095 	arch_update_cpu_topology();
2096 	ndoms_cur = 1;
2097 	doms_cur = alloc_sched_domains(ndoms_cur);
2098 	if (!doms_cur)
2099 		doms_cur = &fallback_doms;
2100 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2101 	err = build_sched_domains(doms_cur[0], NULL);
2102 	register_sched_domain_sysctl();
2103 
2104 	return err;
2105 }
2106 
2107 /*
2108  * Detach sched domains from a group of CPUs specified in cpu_map
2109  * These CPUs will now be attached to the NULL domain
2110  */
2111 static void detach_destroy_domains(const struct cpumask *cpu_map)
2112 {
2113 	int i;
2114 
2115 	rcu_read_lock();
2116 	for_each_cpu(i, cpu_map)
2117 		cpu_attach_domain(NULL, &def_root_domain, i);
2118 	rcu_read_unlock();
2119 }
2120 
2121 /* handle null as "default" */
2122 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2123 			struct sched_domain_attr *new, int idx_new)
2124 {
2125 	struct sched_domain_attr tmp;
2126 
2127 	/* Fast path: */
2128 	if (!new && !cur)
2129 		return 1;
2130 
2131 	tmp = SD_ATTR_INIT;
2132 
2133 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2134 			new ? (new + idx_new) : &tmp,
2135 			sizeof(struct sched_domain_attr));
2136 }
2137 
2138 /*
2139  * Partition sched domains as specified by the 'ndoms_new'
2140  * cpumasks in the array doms_new[] of cpumasks. This compares
2141  * doms_new[] to the current sched domain partitioning, doms_cur[].
2142  * It destroys each deleted domain and builds each new domain.
2143  *
2144  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2145  * The masks don't intersect (don't overlap.) We should setup one
2146  * sched domain for each mask. CPUs not in any of the cpumasks will
2147  * not be load balanced. If the same cpumask appears both in the
2148  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2149  * it as it is.
2150  *
2151  * The passed in 'doms_new' should be allocated using
2152  * alloc_sched_domains.  This routine takes ownership of it and will
2153  * free_sched_domains it when done with it. If the caller failed the
2154  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2155  * and partition_sched_domains() will fallback to the single partition
2156  * 'fallback_doms', it also forces the domains to be rebuilt.
2157  *
2158  * If doms_new == NULL it will be replaced with cpu_online_mask.
2159  * ndoms_new == 0 is a special case for destroying existing domains,
2160  * and it will not create the default domain.
2161  *
2162  * Call with hotplug lock held
2163  */
2164 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2165 			     struct sched_domain_attr *dattr_new)
2166 {
2167 	bool __maybe_unused has_eas = false;
2168 	int i, j, n;
2169 	int new_topology;
2170 
2171 	mutex_lock(&sched_domains_mutex);
2172 
2173 	/* Always unregister in case we don't destroy any domains: */
2174 	unregister_sched_domain_sysctl();
2175 
2176 	/* Let the architecture update CPU core mappings: */
2177 	new_topology = arch_update_cpu_topology();
2178 
2179 	if (!doms_new) {
2180 		WARN_ON_ONCE(dattr_new);
2181 		n = 0;
2182 		doms_new = alloc_sched_domains(1);
2183 		if (doms_new) {
2184 			n = 1;
2185 			cpumask_and(doms_new[0], cpu_active_mask,
2186 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2187 		}
2188 	} else {
2189 		n = ndoms_new;
2190 	}
2191 
2192 	/* Destroy deleted domains: */
2193 	for (i = 0; i < ndoms_cur; i++) {
2194 		for (j = 0; j < n && !new_topology; j++) {
2195 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2196 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2197 				goto match1;
2198 		}
2199 		/* No match - a current sched domain not in new doms_new[] */
2200 		detach_destroy_domains(doms_cur[i]);
2201 match1:
2202 		;
2203 	}
2204 
2205 	n = ndoms_cur;
2206 	if (!doms_new) {
2207 		n = 0;
2208 		doms_new = &fallback_doms;
2209 		cpumask_and(doms_new[0], cpu_active_mask,
2210 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2211 	}
2212 
2213 	/* Build new domains: */
2214 	for (i = 0; i < ndoms_new; i++) {
2215 		for (j = 0; j < n && !new_topology; j++) {
2216 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2217 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2218 				goto match2;
2219 		}
2220 		/* No match - add a new doms_new */
2221 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2222 match2:
2223 		;
2224 	}
2225 
2226 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2227 	/* Build perf. domains: */
2228 	for (i = 0; i < ndoms_new; i++) {
2229 		for (j = 0; j < n && !sched_energy_update; j++) {
2230 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2231 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2232 				has_eas = true;
2233 				goto match3;
2234 			}
2235 		}
2236 		/* No match - add perf. domains for a new rd */
2237 		has_eas |= build_perf_domains(doms_new[i]);
2238 match3:
2239 		;
2240 	}
2241 	sched_energy_set(has_eas);
2242 #endif
2243 
2244 	/* Remember the new sched domains: */
2245 	if (doms_cur != &fallback_doms)
2246 		free_sched_domains(doms_cur, ndoms_cur);
2247 
2248 	kfree(dattr_cur);
2249 	doms_cur = doms_new;
2250 	dattr_cur = dattr_new;
2251 	ndoms_cur = ndoms_new;
2252 
2253 	register_sched_domain_sysctl();
2254 
2255 	mutex_unlock(&sched_domains_mutex);
2256 }
2257