xref: /openbmc/linux/kernel/sched/sched.h (revision f79e4d5f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34 
35 #include <uapi/linux/sched/types.h>
36 
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66 
67 #include <asm/tlb.h>
68 
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72 
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75 
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 #endif
81 
82 struct rq;
83 struct cpuidle_state;
84 
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED	1
87 #define TASK_ON_RQ_MIGRATING	2
88 
89 extern __read_mostly int scheduler_running;
90 
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93 
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102 
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w)		(w)
129 # define scale_load_down(w)	(w)
130 #endif
131 
132 /*
133  * Task weight (visible to users) and its load (invisible to users) have
134  * independent resolution, but they should be well calibrated. We use
135  * scale_load() and scale_load_down(w) to convert between them. The
136  * following must be true:
137  *
138  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139  *
140  */
141 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142 
143 /*
144  * Single value that decides SCHED_DEADLINE internal math precision.
145  * 10 -> just above 1us
146  * 9  -> just above 0.5us
147  */
148 #define DL_SCALE		10
149 
150 /*
151  * Single value that denotes runtime == period, ie unlimited time.
152  */
153 #define RUNTIME_INF		((u64)~0ULL)
154 
155 static inline int idle_policy(int policy)
156 {
157 	return policy == SCHED_IDLE;
158 }
159 static inline int fair_policy(int policy)
160 {
161 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163 
164 static inline int rt_policy(int policy)
165 {
166 	return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168 
169 static inline int dl_policy(int policy)
170 {
171 	return policy == SCHED_DEADLINE;
172 }
173 static inline bool valid_policy(int policy)
174 {
175 	return idle_policy(policy) || fair_policy(policy) ||
176 		rt_policy(policy) || dl_policy(policy);
177 }
178 
179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 	return rt_policy(p->policy);
182 }
183 
184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 	return dl_policy(p->policy);
187 }
188 
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190 
191 /*
192  * !! For sched_setattr_nocheck() (kernel) only !!
193  *
194  * This is actually gross. :(
195  *
196  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197  * tasks, but still be able to sleep. We need this on platforms that cannot
198  * atomically change clock frequency. Remove once fast switching will be
199  * available on such platforms.
200  *
201  * SUGOV stands for SchedUtil GOVernor.
202  */
203 #define SCHED_FLAG_SUGOV	0x10000000
204 
205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 	return false;
211 #endif
212 }
213 
214 /*
215  * Tells if entity @a should preempt entity @b.
216  */
217 static inline bool
218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 	return dl_entity_is_special(a) ||
221 	       dl_time_before(a->deadline, b->deadline);
222 }
223 
224 /*
225  * This is the priority-queue data structure of the RT scheduling class:
226  */
227 struct rt_prio_array {
228 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 	struct list_head queue[MAX_RT_PRIO];
230 };
231 
232 struct rt_bandwidth {
233 	/* nests inside the rq lock: */
234 	raw_spinlock_t		rt_runtime_lock;
235 	ktime_t			rt_period;
236 	u64			rt_runtime;
237 	struct hrtimer		rt_period_timer;
238 	unsigned int		rt_period_active;
239 };
240 
241 void __dl_clear_params(struct task_struct *p);
242 
243 /*
244  * To keep the bandwidth of -deadline tasks and groups under control
245  * we need some place where:
246  *  - store the maximum -deadline bandwidth of the system (the group);
247  *  - cache the fraction of that bandwidth that is currently allocated.
248  *
249  * This is all done in the data structure below. It is similar to the
250  * one used for RT-throttling (rt_bandwidth), with the main difference
251  * that, since here we are only interested in admission control, we
252  * do not decrease any runtime while the group "executes", neither we
253  * need a timer to replenish it.
254  *
255  * With respect to SMP, the bandwidth is given on a per-CPU basis,
256  * meaning that:
257  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258  *  - dl_total_bw array contains, in the i-eth element, the currently
259  *    allocated bandwidth on the i-eth CPU.
260  * Moreover, groups consume bandwidth on each CPU, while tasks only
261  * consume bandwidth on the CPU they're running on.
262  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263  * that will be shown the next time the proc or cgroup controls will
264  * be red. It on its turn can be changed by writing on its own
265  * control.
266  */
267 struct dl_bandwidth {
268 	raw_spinlock_t		dl_runtime_lock;
269 	u64			dl_runtime;
270 	u64			dl_period;
271 };
272 
273 static inline int dl_bandwidth_enabled(void)
274 {
275 	return sysctl_sched_rt_runtime >= 0;
276 }
277 
278 struct dl_bw {
279 	raw_spinlock_t		lock;
280 	u64			bw;
281 	u64			total_bw;
282 };
283 
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285 
286 static inline
287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 	dl_b->total_bw -= tsk_bw;
290 	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292 
293 static inline
294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw += tsk_bw;
297 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299 
300 static inline
301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 	return dl_b->bw != -1 &&
304 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306 
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int  sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319 
320 #ifdef CONFIG_CGROUP_SCHED
321 
322 #include <linux/cgroup.h>
323 
324 struct cfs_rq;
325 struct rt_rq;
326 
327 extern struct list_head task_groups;
328 
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 	raw_spinlock_t		lock;
332 	ktime_t			period;
333 	u64			quota;
334 	u64			runtime;
335 	s64			hierarchical_quota;
336 	u64			runtime_expires;
337 	int			expires_seq;
338 
339 	short			idle;
340 	short			period_active;
341 	struct hrtimer		period_timer;
342 	struct hrtimer		slack_timer;
343 	struct list_head	throttled_cfs_rq;
344 
345 	/* Statistics: */
346 	int			nr_periods;
347 	int			nr_throttled;
348 	u64			throttled_time;
349 #endif
350 };
351 
352 /* Task group related information */
353 struct task_group {
354 	struct cgroup_subsys_state css;
355 
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 	/* schedulable entities of this group on each CPU */
358 	struct sched_entity	**se;
359 	/* runqueue "owned" by this group on each CPU */
360 	struct cfs_rq		**cfs_rq;
361 	unsigned long		shares;
362 
363 #ifdef	CONFIG_SMP
364 	/*
365 	 * load_avg can be heavily contended at clock tick time, so put
366 	 * it in its own cacheline separated from the fields above which
367 	 * will also be accessed at each tick.
368 	 */
369 	atomic_long_t		load_avg ____cacheline_aligned;
370 #endif
371 #endif
372 
373 #ifdef CONFIG_RT_GROUP_SCHED
374 	struct sched_rt_entity	**rt_se;
375 	struct rt_rq		**rt_rq;
376 
377 	struct rt_bandwidth	rt_bandwidth;
378 #endif
379 
380 	struct rcu_head		rcu;
381 	struct list_head	list;
382 
383 	struct task_group	*parent;
384 	struct list_head	siblings;
385 	struct list_head	children;
386 
387 #ifdef CONFIG_SCHED_AUTOGROUP
388 	struct autogroup	*autogroup;
389 #endif
390 
391 	struct cfs_bandwidth	cfs_bandwidth;
392 };
393 
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
396 
397 /*
398  * A weight of 0 or 1 can cause arithmetics problems.
399  * A weight of a cfs_rq is the sum of weights of which entities
400  * are queued on this cfs_rq, so a weight of a entity should not be
401  * too large, so as the shares value of a task group.
402  * (The default weight is 1024 - so there's no practical
403  *  limitation from this.)
404  */
405 #define MIN_SHARES		(1UL <<  1)
406 #define MAX_SHARES		(1UL << 18)
407 #endif
408 
409 typedef int (*tg_visitor)(struct task_group *, void *);
410 
411 extern int walk_tg_tree_from(struct task_group *from,
412 			     tg_visitor down, tg_visitor up, void *data);
413 
414 /*
415  * Iterate the full tree, calling @down when first entering a node and @up when
416  * leaving it for the final time.
417  *
418  * Caller must hold rcu_lock or sufficient equivalent.
419  */
420 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
421 {
422 	return walk_tg_tree_from(&root_task_group, down, up, data);
423 }
424 
425 extern int tg_nop(struct task_group *tg, void *data);
426 
427 extern void free_fair_sched_group(struct task_group *tg);
428 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
429 extern void online_fair_sched_group(struct task_group *tg);
430 extern void unregister_fair_sched_group(struct task_group *tg);
431 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
432 			struct sched_entity *se, int cpu,
433 			struct sched_entity *parent);
434 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
435 
436 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
437 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
439 
440 extern void free_rt_sched_group(struct task_group *tg);
441 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
442 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
443 		struct sched_rt_entity *rt_se, int cpu,
444 		struct sched_rt_entity *parent);
445 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
446 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
447 extern long sched_group_rt_runtime(struct task_group *tg);
448 extern long sched_group_rt_period(struct task_group *tg);
449 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
450 
451 extern struct task_group *sched_create_group(struct task_group *parent);
452 extern void sched_online_group(struct task_group *tg,
453 			       struct task_group *parent);
454 extern void sched_destroy_group(struct task_group *tg);
455 extern void sched_offline_group(struct task_group *tg);
456 
457 extern void sched_move_task(struct task_struct *tsk);
458 
459 #ifdef CONFIG_FAIR_GROUP_SCHED
460 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
461 
462 #ifdef CONFIG_SMP
463 extern void set_task_rq_fair(struct sched_entity *se,
464 			     struct cfs_rq *prev, struct cfs_rq *next);
465 #else /* !CONFIG_SMP */
466 static inline void set_task_rq_fair(struct sched_entity *se,
467 			     struct cfs_rq *prev, struct cfs_rq *next) { }
468 #endif /* CONFIG_SMP */
469 #endif /* CONFIG_FAIR_GROUP_SCHED */
470 
471 #else /* CONFIG_CGROUP_SCHED */
472 
473 struct cfs_bandwidth { };
474 
475 #endif	/* CONFIG_CGROUP_SCHED */
476 
477 /* CFS-related fields in a runqueue */
478 struct cfs_rq {
479 	struct load_weight	load;
480 	unsigned long		runnable_weight;
481 	unsigned int		nr_running;
482 	unsigned int		h_nr_running;
483 
484 	u64			exec_clock;
485 	u64			min_vruntime;
486 #ifndef CONFIG_64BIT
487 	u64			min_vruntime_copy;
488 #endif
489 
490 	struct rb_root_cached	tasks_timeline;
491 
492 	/*
493 	 * 'curr' points to currently running entity on this cfs_rq.
494 	 * It is set to NULL otherwise (i.e when none are currently running).
495 	 */
496 	struct sched_entity	*curr;
497 	struct sched_entity	*next;
498 	struct sched_entity	*last;
499 	struct sched_entity	*skip;
500 
501 #ifdef	CONFIG_SCHED_DEBUG
502 	unsigned int		nr_spread_over;
503 #endif
504 
505 #ifdef CONFIG_SMP
506 	/*
507 	 * CFS load tracking
508 	 */
509 	struct sched_avg	avg;
510 #ifndef CONFIG_64BIT
511 	u64			load_last_update_time_copy;
512 #endif
513 	struct {
514 		raw_spinlock_t	lock ____cacheline_aligned;
515 		int		nr;
516 		unsigned long	load_avg;
517 		unsigned long	util_avg;
518 		unsigned long	runnable_sum;
519 	} removed;
520 
521 #ifdef CONFIG_FAIR_GROUP_SCHED
522 	unsigned long		tg_load_avg_contrib;
523 	long			propagate;
524 	long			prop_runnable_sum;
525 
526 	/*
527 	 *   h_load = weight * f(tg)
528 	 *
529 	 * Where f(tg) is the recursive weight fraction assigned to
530 	 * this group.
531 	 */
532 	unsigned long		h_load;
533 	u64			last_h_load_update;
534 	struct sched_entity	*h_load_next;
535 #endif /* CONFIG_FAIR_GROUP_SCHED */
536 #endif /* CONFIG_SMP */
537 
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
540 
541 	/*
542 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
543 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
544 	 * (like users, containers etc.)
545 	 *
546 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
547 	 * This list is used during load balance.
548 	 */
549 	int			on_list;
550 	struct list_head	leaf_cfs_rq_list;
551 	struct task_group	*tg;	/* group that "owns" this runqueue */
552 
553 #ifdef CONFIG_CFS_BANDWIDTH
554 	int			runtime_enabled;
555 	int			expires_seq;
556 	u64			runtime_expires;
557 	s64			runtime_remaining;
558 
559 	u64			throttled_clock;
560 	u64			throttled_clock_task;
561 	u64			throttled_clock_task_time;
562 	int			throttled;
563 	int			throttle_count;
564 	struct list_head	throttled_list;
565 #endif /* CONFIG_CFS_BANDWIDTH */
566 #endif /* CONFIG_FAIR_GROUP_SCHED */
567 };
568 
569 static inline int rt_bandwidth_enabled(void)
570 {
571 	return sysctl_sched_rt_runtime >= 0;
572 }
573 
574 /* RT IPI pull logic requires IRQ_WORK */
575 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
576 # define HAVE_RT_PUSH_IPI
577 #endif
578 
579 /* Real-Time classes' related field in a runqueue: */
580 struct rt_rq {
581 	struct rt_prio_array	active;
582 	unsigned int		rt_nr_running;
583 	unsigned int		rr_nr_running;
584 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
585 	struct {
586 		int		curr; /* highest queued rt task prio */
587 #ifdef CONFIG_SMP
588 		int		next; /* next highest */
589 #endif
590 	} highest_prio;
591 #endif
592 #ifdef CONFIG_SMP
593 	unsigned long		rt_nr_migratory;
594 	unsigned long		rt_nr_total;
595 	int			overloaded;
596 	struct plist_head	pushable_tasks;
597 #endif /* CONFIG_SMP */
598 	int			rt_queued;
599 
600 	int			rt_throttled;
601 	u64			rt_time;
602 	u64			rt_runtime;
603 	/* Nests inside the rq lock: */
604 	raw_spinlock_t		rt_runtime_lock;
605 
606 #ifdef CONFIG_RT_GROUP_SCHED
607 	unsigned long		rt_nr_boosted;
608 
609 	struct rq		*rq;
610 	struct task_group	*tg;
611 #endif
612 };
613 
614 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
615 {
616 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
617 }
618 
619 /* Deadline class' related fields in a runqueue */
620 struct dl_rq {
621 	/* runqueue is an rbtree, ordered by deadline */
622 	struct rb_root_cached	root;
623 
624 	unsigned long		dl_nr_running;
625 
626 #ifdef CONFIG_SMP
627 	/*
628 	 * Deadline values of the currently executing and the
629 	 * earliest ready task on this rq. Caching these facilitates
630 	 * the decision wether or not a ready but not running task
631 	 * should migrate somewhere else.
632 	 */
633 	struct {
634 		u64		curr;
635 		u64		next;
636 	} earliest_dl;
637 
638 	unsigned long		dl_nr_migratory;
639 	int			overloaded;
640 
641 	/*
642 	 * Tasks on this rq that can be pushed away. They are kept in
643 	 * an rb-tree, ordered by tasks' deadlines, with caching
644 	 * of the leftmost (earliest deadline) element.
645 	 */
646 	struct rb_root_cached	pushable_dl_tasks_root;
647 #else
648 	struct dl_bw		dl_bw;
649 #endif
650 	/*
651 	 * "Active utilization" for this runqueue: increased when a
652 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
653 	 * task blocks
654 	 */
655 	u64			running_bw;
656 
657 	/*
658 	 * Utilization of the tasks "assigned" to this runqueue (including
659 	 * the tasks that are in runqueue and the tasks that executed on this
660 	 * CPU and blocked). Increased when a task moves to this runqueue, and
661 	 * decreased when the task moves away (migrates, changes scheduling
662 	 * policy, or terminates).
663 	 * This is needed to compute the "inactive utilization" for the
664 	 * runqueue (inactive utilization = this_bw - running_bw).
665 	 */
666 	u64			this_bw;
667 	u64			extra_bw;
668 
669 	/*
670 	 * Inverse of the fraction of CPU utilization that can be reclaimed
671 	 * by the GRUB algorithm.
672 	 */
673 	u64			bw_ratio;
674 };
675 
676 #ifdef CONFIG_SMP
677 
678 static inline bool sched_asym_prefer(int a, int b)
679 {
680 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
681 }
682 
683 /*
684  * We add the notion of a root-domain which will be used to define per-domain
685  * variables. Each exclusive cpuset essentially defines an island domain by
686  * fully partitioning the member CPUs from any other cpuset. Whenever a new
687  * exclusive cpuset is created, we also create and attach a new root-domain
688  * object.
689  *
690  */
691 struct root_domain {
692 	atomic_t		refcount;
693 	atomic_t		rto_count;
694 	struct rcu_head		rcu;
695 	cpumask_var_t		span;
696 	cpumask_var_t		online;
697 
698 	/* Indicate more than one runnable task for any CPU */
699 	bool			overload;
700 
701 	/*
702 	 * The bit corresponding to a CPU gets set here if such CPU has more
703 	 * than one runnable -deadline task (as it is below for RT tasks).
704 	 */
705 	cpumask_var_t		dlo_mask;
706 	atomic_t		dlo_count;
707 	struct dl_bw		dl_bw;
708 	struct cpudl		cpudl;
709 
710 #ifdef HAVE_RT_PUSH_IPI
711 	/*
712 	 * For IPI pull requests, loop across the rto_mask.
713 	 */
714 	struct irq_work		rto_push_work;
715 	raw_spinlock_t		rto_lock;
716 	/* These are only updated and read within rto_lock */
717 	int			rto_loop;
718 	int			rto_cpu;
719 	/* These atomics are updated outside of a lock */
720 	atomic_t		rto_loop_next;
721 	atomic_t		rto_loop_start;
722 #endif
723 	/*
724 	 * The "RT overload" flag: it gets set if a CPU has more than
725 	 * one runnable RT task.
726 	 */
727 	cpumask_var_t		rto_mask;
728 	struct cpupri		cpupri;
729 
730 	unsigned long		max_cpu_capacity;
731 };
732 
733 extern struct root_domain def_root_domain;
734 extern struct mutex sched_domains_mutex;
735 
736 extern void init_defrootdomain(void);
737 extern int sched_init_domains(const struct cpumask *cpu_map);
738 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
739 extern void sched_get_rd(struct root_domain *rd);
740 extern void sched_put_rd(struct root_domain *rd);
741 
742 #ifdef HAVE_RT_PUSH_IPI
743 extern void rto_push_irq_work_func(struct irq_work *work);
744 #endif
745 #endif /* CONFIG_SMP */
746 
747 /*
748  * This is the main, per-CPU runqueue data structure.
749  *
750  * Locking rule: those places that want to lock multiple runqueues
751  * (such as the load balancing or the thread migration code), lock
752  * acquire operations must be ordered by ascending &runqueue.
753  */
754 struct rq {
755 	/* runqueue lock: */
756 	raw_spinlock_t		lock;
757 
758 	/*
759 	 * nr_running and cpu_load should be in the same cacheline because
760 	 * remote CPUs use both these fields when doing load calculation.
761 	 */
762 	unsigned int		nr_running;
763 #ifdef CONFIG_NUMA_BALANCING
764 	unsigned int		nr_numa_running;
765 	unsigned int		nr_preferred_running;
766 #endif
767 	#define CPU_LOAD_IDX_MAX 5
768 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
769 #ifdef CONFIG_NO_HZ_COMMON
770 #ifdef CONFIG_SMP
771 	unsigned long		last_load_update_tick;
772 	unsigned long		last_blocked_load_update_tick;
773 	unsigned int		has_blocked_load;
774 #endif /* CONFIG_SMP */
775 	unsigned int		nohz_tick_stopped;
776 	atomic_t nohz_flags;
777 #endif /* CONFIG_NO_HZ_COMMON */
778 
779 	/* capture load from *all* tasks on this CPU: */
780 	struct load_weight	load;
781 	unsigned long		nr_load_updates;
782 	u64			nr_switches;
783 
784 	struct cfs_rq		cfs;
785 	struct rt_rq		rt;
786 	struct dl_rq		dl;
787 
788 #ifdef CONFIG_FAIR_GROUP_SCHED
789 	/* list of leaf cfs_rq on this CPU: */
790 	struct list_head	leaf_cfs_rq_list;
791 	struct list_head	*tmp_alone_branch;
792 #endif /* CONFIG_FAIR_GROUP_SCHED */
793 
794 	/*
795 	 * This is part of a global counter where only the total sum
796 	 * over all CPUs matters. A task can increase this counter on
797 	 * one CPU and if it got migrated afterwards it may decrease
798 	 * it on another CPU. Always updated under the runqueue lock:
799 	 */
800 	unsigned long		nr_uninterruptible;
801 
802 	struct task_struct	*curr;
803 	struct task_struct	*idle;
804 	struct task_struct	*stop;
805 	unsigned long		next_balance;
806 	struct mm_struct	*prev_mm;
807 
808 	unsigned int		clock_update_flags;
809 	u64			clock;
810 	u64			clock_task;
811 
812 	atomic_t		nr_iowait;
813 
814 #ifdef CONFIG_SMP
815 	struct root_domain	*rd;
816 	struct sched_domain	*sd;
817 
818 	unsigned long		cpu_capacity;
819 	unsigned long		cpu_capacity_orig;
820 
821 	struct callback_head	*balance_callback;
822 
823 	unsigned char		idle_balance;
824 
825 	/* For active balancing */
826 	int			active_balance;
827 	int			push_cpu;
828 	struct cpu_stop_work	active_balance_work;
829 
830 	/* CPU of this runqueue: */
831 	int			cpu;
832 	int			online;
833 
834 	struct list_head cfs_tasks;
835 
836 	u64			rt_avg;
837 	u64			age_stamp;
838 	u64			idle_stamp;
839 	u64			avg_idle;
840 
841 	/* This is used to determine avg_idle's max value */
842 	u64			max_idle_balance_cost;
843 #endif
844 
845 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
846 	u64			prev_irq_time;
847 #endif
848 #ifdef CONFIG_PARAVIRT
849 	u64			prev_steal_time;
850 #endif
851 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
852 	u64			prev_steal_time_rq;
853 #endif
854 
855 	/* calc_load related fields */
856 	unsigned long		calc_load_update;
857 	long			calc_load_active;
858 
859 #ifdef CONFIG_SCHED_HRTICK
860 #ifdef CONFIG_SMP
861 	int			hrtick_csd_pending;
862 	call_single_data_t	hrtick_csd;
863 #endif
864 	struct hrtimer		hrtick_timer;
865 #endif
866 
867 #ifdef CONFIG_SCHEDSTATS
868 	/* latency stats */
869 	struct sched_info	rq_sched_info;
870 	unsigned long long	rq_cpu_time;
871 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
872 
873 	/* sys_sched_yield() stats */
874 	unsigned int		yld_count;
875 
876 	/* schedule() stats */
877 	unsigned int		sched_count;
878 	unsigned int		sched_goidle;
879 
880 	/* try_to_wake_up() stats */
881 	unsigned int		ttwu_count;
882 	unsigned int		ttwu_local;
883 #endif
884 
885 #ifdef CONFIG_SMP
886 	struct llist_head	wake_list;
887 #endif
888 
889 #ifdef CONFIG_CPU_IDLE
890 	/* Must be inspected within a rcu lock section */
891 	struct cpuidle_state	*idle_state;
892 #endif
893 };
894 
895 static inline int cpu_of(struct rq *rq)
896 {
897 #ifdef CONFIG_SMP
898 	return rq->cpu;
899 #else
900 	return 0;
901 #endif
902 }
903 
904 
905 #ifdef CONFIG_SCHED_SMT
906 
907 extern struct static_key_false sched_smt_present;
908 
909 extern void __update_idle_core(struct rq *rq);
910 
911 static inline void update_idle_core(struct rq *rq)
912 {
913 	if (static_branch_unlikely(&sched_smt_present))
914 		__update_idle_core(rq);
915 }
916 
917 #else
918 static inline void update_idle_core(struct rq *rq) { }
919 #endif
920 
921 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
922 
923 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
924 #define this_rq()		this_cpu_ptr(&runqueues)
925 #define task_rq(p)		cpu_rq(task_cpu(p))
926 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
927 #define raw_rq()		raw_cpu_ptr(&runqueues)
928 
929 static inline u64 __rq_clock_broken(struct rq *rq)
930 {
931 	return READ_ONCE(rq->clock);
932 }
933 
934 /*
935  * rq::clock_update_flags bits
936  *
937  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
938  *  call to __schedule(). This is an optimisation to avoid
939  *  neighbouring rq clock updates.
940  *
941  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
942  *  in effect and calls to update_rq_clock() are being ignored.
943  *
944  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
945  *  made to update_rq_clock() since the last time rq::lock was pinned.
946  *
947  * If inside of __schedule(), clock_update_flags will have been
948  * shifted left (a left shift is a cheap operation for the fast path
949  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
950  *
951  *	if (rq-clock_update_flags >= RQCF_UPDATED)
952  *
953  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
954  * one position though, because the next rq_unpin_lock() will shift it
955  * back.
956  */
957 #define RQCF_REQ_SKIP		0x01
958 #define RQCF_ACT_SKIP		0x02
959 #define RQCF_UPDATED		0x04
960 
961 static inline void assert_clock_updated(struct rq *rq)
962 {
963 	/*
964 	 * The only reason for not seeing a clock update since the
965 	 * last rq_pin_lock() is if we're currently skipping updates.
966 	 */
967 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
968 }
969 
970 static inline u64 rq_clock(struct rq *rq)
971 {
972 	lockdep_assert_held(&rq->lock);
973 	assert_clock_updated(rq);
974 
975 	return rq->clock;
976 }
977 
978 static inline u64 rq_clock_task(struct rq *rq)
979 {
980 	lockdep_assert_held(&rq->lock);
981 	assert_clock_updated(rq);
982 
983 	return rq->clock_task;
984 }
985 
986 static inline void rq_clock_skip_update(struct rq *rq)
987 {
988 	lockdep_assert_held(&rq->lock);
989 	rq->clock_update_flags |= RQCF_REQ_SKIP;
990 }
991 
992 /*
993  * See rt task throttling, which is the only time a skip
994  * request is cancelled.
995  */
996 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
997 {
998 	lockdep_assert_held(&rq->lock);
999 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1000 }
1001 
1002 struct rq_flags {
1003 	unsigned long flags;
1004 	struct pin_cookie cookie;
1005 #ifdef CONFIG_SCHED_DEBUG
1006 	/*
1007 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1008 	 * current pin context is stashed here in case it needs to be
1009 	 * restored in rq_repin_lock().
1010 	 */
1011 	unsigned int clock_update_flags;
1012 #endif
1013 };
1014 
1015 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1016 {
1017 	rf->cookie = lockdep_pin_lock(&rq->lock);
1018 
1019 #ifdef CONFIG_SCHED_DEBUG
1020 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1021 	rf->clock_update_flags = 0;
1022 #endif
1023 }
1024 
1025 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1026 {
1027 #ifdef CONFIG_SCHED_DEBUG
1028 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1029 		rf->clock_update_flags = RQCF_UPDATED;
1030 #endif
1031 
1032 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1033 }
1034 
1035 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1036 {
1037 	lockdep_repin_lock(&rq->lock, rf->cookie);
1038 
1039 #ifdef CONFIG_SCHED_DEBUG
1040 	/*
1041 	 * Restore the value we stashed in @rf for this pin context.
1042 	 */
1043 	rq->clock_update_flags |= rf->clock_update_flags;
1044 #endif
1045 }
1046 
1047 #ifdef CONFIG_NUMA
1048 enum numa_topology_type {
1049 	NUMA_DIRECT,
1050 	NUMA_GLUELESS_MESH,
1051 	NUMA_BACKPLANE,
1052 };
1053 extern enum numa_topology_type sched_numa_topology_type;
1054 extern int sched_max_numa_distance;
1055 extern bool find_numa_distance(int distance);
1056 #endif
1057 
1058 #ifdef CONFIG_NUMA
1059 extern void sched_init_numa(void);
1060 extern void sched_domains_numa_masks_set(unsigned int cpu);
1061 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1062 #else
1063 static inline void sched_init_numa(void) { }
1064 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1065 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1066 #endif
1067 
1068 #ifdef CONFIG_NUMA_BALANCING
1069 /* The regions in numa_faults array from task_struct */
1070 enum numa_faults_stats {
1071 	NUMA_MEM = 0,
1072 	NUMA_CPU,
1073 	NUMA_MEMBUF,
1074 	NUMA_CPUBUF
1075 };
1076 extern void sched_setnuma(struct task_struct *p, int node);
1077 extern int migrate_task_to(struct task_struct *p, int cpu);
1078 extern int migrate_swap(struct task_struct *, struct task_struct *);
1079 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1080 #else
1081 static inline void
1082 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1083 {
1084 }
1085 #endif /* CONFIG_NUMA_BALANCING */
1086 
1087 #ifdef CONFIG_SMP
1088 
1089 static inline void
1090 queue_balance_callback(struct rq *rq,
1091 		       struct callback_head *head,
1092 		       void (*func)(struct rq *rq))
1093 {
1094 	lockdep_assert_held(&rq->lock);
1095 
1096 	if (unlikely(head->next))
1097 		return;
1098 
1099 	head->func = (void (*)(struct callback_head *))func;
1100 	head->next = rq->balance_callback;
1101 	rq->balance_callback = head;
1102 }
1103 
1104 extern void sched_ttwu_pending(void);
1105 
1106 #define rcu_dereference_check_sched_domain(p) \
1107 	rcu_dereference_check((p), \
1108 			      lockdep_is_held(&sched_domains_mutex))
1109 
1110 /*
1111  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1112  * See detach_destroy_domains: synchronize_sched for details.
1113  *
1114  * The domain tree of any CPU may only be accessed from within
1115  * preempt-disabled sections.
1116  */
1117 #define for_each_domain(cpu, __sd) \
1118 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1119 			__sd; __sd = __sd->parent)
1120 
1121 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1122 
1123 /**
1124  * highest_flag_domain - Return highest sched_domain containing flag.
1125  * @cpu:	The CPU whose highest level of sched domain is to
1126  *		be returned.
1127  * @flag:	The flag to check for the highest sched_domain
1128  *		for the given CPU.
1129  *
1130  * Returns the highest sched_domain of a CPU which contains the given flag.
1131  */
1132 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1133 {
1134 	struct sched_domain *sd, *hsd = NULL;
1135 
1136 	for_each_domain(cpu, sd) {
1137 		if (!(sd->flags & flag))
1138 			break;
1139 		hsd = sd;
1140 	}
1141 
1142 	return hsd;
1143 }
1144 
1145 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1146 {
1147 	struct sched_domain *sd;
1148 
1149 	for_each_domain(cpu, sd) {
1150 		if (sd->flags & flag)
1151 			break;
1152 	}
1153 
1154 	return sd;
1155 }
1156 
1157 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1158 DECLARE_PER_CPU(int, sd_llc_size);
1159 DECLARE_PER_CPU(int, sd_llc_id);
1160 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1161 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1162 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1163 
1164 struct sched_group_capacity {
1165 	atomic_t		ref;
1166 	/*
1167 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1168 	 * for a single CPU.
1169 	 */
1170 	unsigned long		capacity;
1171 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1172 	unsigned long		next_update;
1173 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1174 
1175 #ifdef CONFIG_SCHED_DEBUG
1176 	int			id;
1177 #endif
1178 
1179 	unsigned long		cpumask[0];		/* Balance mask */
1180 };
1181 
1182 struct sched_group {
1183 	struct sched_group	*next;			/* Must be a circular list */
1184 	atomic_t		ref;
1185 
1186 	unsigned int		group_weight;
1187 	struct sched_group_capacity *sgc;
1188 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1189 
1190 	/*
1191 	 * The CPUs this group covers.
1192 	 *
1193 	 * NOTE: this field is variable length. (Allocated dynamically
1194 	 * by attaching extra space to the end of the structure,
1195 	 * depending on how many CPUs the kernel has booted up with)
1196 	 */
1197 	unsigned long		cpumask[0];
1198 };
1199 
1200 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1201 {
1202 	return to_cpumask(sg->cpumask);
1203 }
1204 
1205 /*
1206  * See build_balance_mask().
1207  */
1208 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1209 {
1210 	return to_cpumask(sg->sgc->cpumask);
1211 }
1212 
1213 /**
1214  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1215  * @group: The group whose first CPU is to be returned.
1216  */
1217 static inline unsigned int group_first_cpu(struct sched_group *group)
1218 {
1219 	return cpumask_first(sched_group_span(group));
1220 }
1221 
1222 extern int group_balance_cpu(struct sched_group *sg);
1223 
1224 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1225 void register_sched_domain_sysctl(void);
1226 void dirty_sched_domain_sysctl(int cpu);
1227 void unregister_sched_domain_sysctl(void);
1228 #else
1229 static inline void register_sched_domain_sysctl(void)
1230 {
1231 }
1232 static inline void dirty_sched_domain_sysctl(int cpu)
1233 {
1234 }
1235 static inline void unregister_sched_domain_sysctl(void)
1236 {
1237 }
1238 #endif
1239 
1240 #else
1241 
1242 static inline void sched_ttwu_pending(void) { }
1243 
1244 #endif /* CONFIG_SMP */
1245 
1246 #include "stats.h"
1247 #include "autogroup.h"
1248 
1249 #ifdef CONFIG_CGROUP_SCHED
1250 
1251 /*
1252  * Return the group to which this tasks belongs.
1253  *
1254  * We cannot use task_css() and friends because the cgroup subsystem
1255  * changes that value before the cgroup_subsys::attach() method is called,
1256  * therefore we cannot pin it and might observe the wrong value.
1257  *
1258  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1259  * core changes this before calling sched_move_task().
1260  *
1261  * Instead we use a 'copy' which is updated from sched_move_task() while
1262  * holding both task_struct::pi_lock and rq::lock.
1263  */
1264 static inline struct task_group *task_group(struct task_struct *p)
1265 {
1266 	return p->sched_task_group;
1267 }
1268 
1269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1270 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1271 {
1272 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1273 	struct task_group *tg = task_group(p);
1274 #endif
1275 
1276 #ifdef CONFIG_FAIR_GROUP_SCHED
1277 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1278 	p->se.cfs_rq = tg->cfs_rq[cpu];
1279 	p->se.parent = tg->se[cpu];
1280 #endif
1281 
1282 #ifdef CONFIG_RT_GROUP_SCHED
1283 	p->rt.rt_rq  = tg->rt_rq[cpu];
1284 	p->rt.parent = tg->rt_se[cpu];
1285 #endif
1286 }
1287 
1288 #else /* CONFIG_CGROUP_SCHED */
1289 
1290 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1291 static inline struct task_group *task_group(struct task_struct *p)
1292 {
1293 	return NULL;
1294 }
1295 
1296 #endif /* CONFIG_CGROUP_SCHED */
1297 
1298 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1299 {
1300 	set_task_rq(p, cpu);
1301 #ifdef CONFIG_SMP
1302 	/*
1303 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1304 	 * successfuly executed on another CPU. We must ensure that updates of
1305 	 * per-task data have been completed by this moment.
1306 	 */
1307 	smp_wmb();
1308 #ifdef CONFIG_THREAD_INFO_IN_TASK
1309 	p->cpu = cpu;
1310 #else
1311 	task_thread_info(p)->cpu = cpu;
1312 #endif
1313 	p->wake_cpu = cpu;
1314 #endif
1315 }
1316 
1317 /*
1318  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1319  */
1320 #ifdef CONFIG_SCHED_DEBUG
1321 # include <linux/static_key.h>
1322 # define const_debug __read_mostly
1323 #else
1324 # define const_debug const
1325 #endif
1326 
1327 #define SCHED_FEAT(name, enabled)	\
1328 	__SCHED_FEAT_##name ,
1329 
1330 enum {
1331 #include "features.h"
1332 	__SCHED_FEAT_NR,
1333 };
1334 
1335 #undef SCHED_FEAT
1336 
1337 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1338 
1339 /*
1340  * To support run-time toggling of sched features, all the translation units
1341  * (but core.c) reference the sysctl_sched_features defined in core.c.
1342  */
1343 extern const_debug unsigned int sysctl_sched_features;
1344 
1345 #define SCHED_FEAT(name, enabled)					\
1346 static __always_inline bool static_branch_##name(struct static_key *key) \
1347 {									\
1348 	return static_key_##enabled(key);				\
1349 }
1350 
1351 #include "features.h"
1352 #undef SCHED_FEAT
1353 
1354 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1355 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1356 
1357 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1358 
1359 /*
1360  * Each translation unit has its own copy of sysctl_sched_features to allow
1361  * constants propagation at compile time and compiler optimization based on
1362  * features default.
1363  */
1364 #define SCHED_FEAT(name, enabled)	\
1365 	(1UL << __SCHED_FEAT_##name) * enabled |
1366 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1367 #include "features.h"
1368 	0;
1369 #undef SCHED_FEAT
1370 
1371 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1372 
1373 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1374 
1375 extern struct static_key_false sched_numa_balancing;
1376 extern struct static_key_false sched_schedstats;
1377 
1378 static inline u64 global_rt_period(void)
1379 {
1380 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1381 }
1382 
1383 static inline u64 global_rt_runtime(void)
1384 {
1385 	if (sysctl_sched_rt_runtime < 0)
1386 		return RUNTIME_INF;
1387 
1388 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1389 }
1390 
1391 static inline int task_current(struct rq *rq, struct task_struct *p)
1392 {
1393 	return rq->curr == p;
1394 }
1395 
1396 static inline int task_running(struct rq *rq, struct task_struct *p)
1397 {
1398 #ifdef CONFIG_SMP
1399 	return p->on_cpu;
1400 #else
1401 	return task_current(rq, p);
1402 #endif
1403 }
1404 
1405 static inline int task_on_rq_queued(struct task_struct *p)
1406 {
1407 	return p->on_rq == TASK_ON_RQ_QUEUED;
1408 }
1409 
1410 static inline int task_on_rq_migrating(struct task_struct *p)
1411 {
1412 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1413 }
1414 
1415 /*
1416  * wake flags
1417  */
1418 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1419 #define WF_FORK			0x02		/* Child wakeup after fork */
1420 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1421 
1422 /*
1423  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1424  * of tasks with abnormal "nice" values across CPUs the contribution that
1425  * each task makes to its run queue's load is weighted according to its
1426  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1427  * scaled version of the new time slice allocation that they receive on time
1428  * slice expiry etc.
1429  */
1430 
1431 #define WEIGHT_IDLEPRIO		3
1432 #define WMULT_IDLEPRIO		1431655765
1433 
1434 extern const int		sched_prio_to_weight[40];
1435 extern const u32		sched_prio_to_wmult[40];
1436 
1437 /*
1438  * {de,en}queue flags:
1439  *
1440  * DEQUEUE_SLEEP  - task is no longer runnable
1441  * ENQUEUE_WAKEUP - task just became runnable
1442  *
1443  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1444  *                are in a known state which allows modification. Such pairs
1445  *                should preserve as much state as possible.
1446  *
1447  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1448  *        in the runqueue.
1449  *
1450  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1451  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1452  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1453  *
1454  */
1455 
1456 #define DEQUEUE_SLEEP		0x01
1457 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1458 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1459 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1460 
1461 #define ENQUEUE_WAKEUP		0x01
1462 #define ENQUEUE_RESTORE		0x02
1463 #define ENQUEUE_MOVE		0x04
1464 #define ENQUEUE_NOCLOCK		0x08
1465 
1466 #define ENQUEUE_HEAD		0x10
1467 #define ENQUEUE_REPLENISH	0x20
1468 #ifdef CONFIG_SMP
1469 #define ENQUEUE_MIGRATED	0x40
1470 #else
1471 #define ENQUEUE_MIGRATED	0x00
1472 #endif
1473 
1474 #define RETRY_TASK		((void *)-1UL)
1475 
1476 struct sched_class {
1477 	const struct sched_class *next;
1478 
1479 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1480 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1481 	void (*yield_task)   (struct rq *rq);
1482 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1483 
1484 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1485 
1486 	/*
1487 	 * It is the responsibility of the pick_next_task() method that will
1488 	 * return the next task to call put_prev_task() on the @prev task or
1489 	 * something equivalent.
1490 	 *
1491 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1492 	 * tasks.
1493 	 */
1494 	struct task_struct * (*pick_next_task)(struct rq *rq,
1495 					       struct task_struct *prev,
1496 					       struct rq_flags *rf);
1497 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1498 
1499 #ifdef CONFIG_SMP
1500 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1501 	void (*migrate_task_rq)(struct task_struct *p);
1502 
1503 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1504 
1505 	void (*set_cpus_allowed)(struct task_struct *p,
1506 				 const struct cpumask *newmask);
1507 
1508 	void (*rq_online)(struct rq *rq);
1509 	void (*rq_offline)(struct rq *rq);
1510 #endif
1511 
1512 	void (*set_curr_task)(struct rq *rq);
1513 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1514 	void (*task_fork)(struct task_struct *p);
1515 	void (*task_dead)(struct task_struct *p);
1516 
1517 	/*
1518 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1519 	 * cannot assume the switched_from/switched_to pair is serliazed by
1520 	 * rq->lock. They are however serialized by p->pi_lock.
1521 	 */
1522 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1523 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1524 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1525 			      int oldprio);
1526 
1527 	unsigned int (*get_rr_interval)(struct rq *rq,
1528 					struct task_struct *task);
1529 
1530 	void (*update_curr)(struct rq *rq);
1531 
1532 #define TASK_SET_GROUP		0
1533 #define TASK_MOVE_GROUP		1
1534 
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536 	void (*task_change_group)(struct task_struct *p, int type);
1537 #endif
1538 };
1539 
1540 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1541 {
1542 	prev->sched_class->put_prev_task(rq, prev);
1543 }
1544 
1545 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1546 {
1547 	curr->sched_class->set_curr_task(rq);
1548 }
1549 
1550 #ifdef CONFIG_SMP
1551 #define sched_class_highest (&stop_sched_class)
1552 #else
1553 #define sched_class_highest (&dl_sched_class)
1554 #endif
1555 #define for_each_class(class) \
1556    for (class = sched_class_highest; class; class = class->next)
1557 
1558 extern const struct sched_class stop_sched_class;
1559 extern const struct sched_class dl_sched_class;
1560 extern const struct sched_class rt_sched_class;
1561 extern const struct sched_class fair_sched_class;
1562 extern const struct sched_class idle_sched_class;
1563 
1564 
1565 #ifdef CONFIG_SMP
1566 
1567 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1568 
1569 extern void trigger_load_balance(struct rq *rq);
1570 
1571 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1572 
1573 #endif
1574 
1575 #ifdef CONFIG_CPU_IDLE
1576 static inline void idle_set_state(struct rq *rq,
1577 				  struct cpuidle_state *idle_state)
1578 {
1579 	rq->idle_state = idle_state;
1580 }
1581 
1582 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1583 {
1584 	SCHED_WARN_ON(!rcu_read_lock_held());
1585 
1586 	return rq->idle_state;
1587 }
1588 #else
1589 static inline void idle_set_state(struct rq *rq,
1590 				  struct cpuidle_state *idle_state)
1591 {
1592 }
1593 
1594 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1595 {
1596 	return NULL;
1597 }
1598 #endif
1599 
1600 extern void schedule_idle(void);
1601 
1602 extern void sysrq_sched_debug_show(void);
1603 extern void sched_init_granularity(void);
1604 extern void update_max_interval(void);
1605 
1606 extern void init_sched_dl_class(void);
1607 extern void init_sched_rt_class(void);
1608 extern void init_sched_fair_class(void);
1609 
1610 extern void reweight_task(struct task_struct *p, int prio);
1611 
1612 extern void resched_curr(struct rq *rq);
1613 extern void resched_cpu(int cpu);
1614 
1615 extern struct rt_bandwidth def_rt_bandwidth;
1616 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1617 
1618 extern struct dl_bandwidth def_dl_bandwidth;
1619 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1620 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1621 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1622 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1623 
1624 #define BW_SHIFT		20
1625 #define BW_UNIT			(1 << BW_SHIFT)
1626 #define RATIO_SHIFT		8
1627 unsigned long to_ratio(u64 period, u64 runtime);
1628 
1629 extern void init_entity_runnable_average(struct sched_entity *se);
1630 extern void post_init_entity_util_avg(struct sched_entity *se);
1631 
1632 #ifdef CONFIG_NO_HZ_FULL
1633 extern bool sched_can_stop_tick(struct rq *rq);
1634 extern int __init sched_tick_offload_init(void);
1635 
1636 /*
1637  * Tick may be needed by tasks in the runqueue depending on their policy and
1638  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1639  * nohz mode if necessary.
1640  */
1641 static inline void sched_update_tick_dependency(struct rq *rq)
1642 {
1643 	int cpu;
1644 
1645 	if (!tick_nohz_full_enabled())
1646 		return;
1647 
1648 	cpu = cpu_of(rq);
1649 
1650 	if (!tick_nohz_full_cpu(cpu))
1651 		return;
1652 
1653 	if (sched_can_stop_tick(rq))
1654 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1655 	else
1656 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1657 }
1658 #else
1659 static inline int sched_tick_offload_init(void) { return 0; }
1660 static inline void sched_update_tick_dependency(struct rq *rq) { }
1661 #endif
1662 
1663 static inline void add_nr_running(struct rq *rq, unsigned count)
1664 {
1665 	unsigned prev_nr = rq->nr_running;
1666 
1667 	rq->nr_running = prev_nr + count;
1668 
1669 	if (prev_nr < 2 && rq->nr_running >= 2) {
1670 #ifdef CONFIG_SMP
1671 		if (!rq->rd->overload)
1672 			rq->rd->overload = true;
1673 #endif
1674 	}
1675 
1676 	sched_update_tick_dependency(rq);
1677 }
1678 
1679 static inline void sub_nr_running(struct rq *rq, unsigned count)
1680 {
1681 	rq->nr_running -= count;
1682 	/* Check if we still need preemption */
1683 	sched_update_tick_dependency(rq);
1684 }
1685 
1686 extern void update_rq_clock(struct rq *rq);
1687 
1688 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1689 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1690 
1691 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1692 
1693 extern const_debug unsigned int sysctl_sched_time_avg;
1694 extern const_debug unsigned int sysctl_sched_nr_migrate;
1695 extern const_debug unsigned int sysctl_sched_migration_cost;
1696 
1697 static inline u64 sched_avg_period(void)
1698 {
1699 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1700 }
1701 
1702 #ifdef CONFIG_SCHED_HRTICK
1703 
1704 /*
1705  * Use hrtick when:
1706  *  - enabled by features
1707  *  - hrtimer is actually high res
1708  */
1709 static inline int hrtick_enabled(struct rq *rq)
1710 {
1711 	if (!sched_feat(HRTICK))
1712 		return 0;
1713 	if (!cpu_active(cpu_of(rq)))
1714 		return 0;
1715 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1716 }
1717 
1718 void hrtick_start(struct rq *rq, u64 delay);
1719 
1720 #else
1721 
1722 static inline int hrtick_enabled(struct rq *rq)
1723 {
1724 	return 0;
1725 }
1726 
1727 #endif /* CONFIG_SCHED_HRTICK */
1728 
1729 #ifndef arch_scale_freq_capacity
1730 static __always_inline
1731 unsigned long arch_scale_freq_capacity(int cpu)
1732 {
1733 	return SCHED_CAPACITY_SCALE;
1734 }
1735 #endif
1736 
1737 #ifdef CONFIG_SMP
1738 extern void sched_avg_update(struct rq *rq);
1739 
1740 #ifndef arch_scale_cpu_capacity
1741 static __always_inline
1742 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1743 {
1744 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1745 		return sd->smt_gain / sd->span_weight;
1746 
1747 	return SCHED_CAPACITY_SCALE;
1748 }
1749 #endif
1750 
1751 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1752 {
1753 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
1754 	sched_avg_update(rq);
1755 }
1756 #else
1757 #ifndef arch_scale_cpu_capacity
1758 static __always_inline
1759 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1760 {
1761 	return SCHED_CAPACITY_SCALE;
1762 }
1763 #endif
1764 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1765 static inline void sched_avg_update(struct rq *rq) { }
1766 #endif
1767 
1768 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1769 	__acquires(rq->lock);
1770 
1771 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1772 	__acquires(p->pi_lock)
1773 	__acquires(rq->lock);
1774 
1775 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1776 	__releases(rq->lock)
1777 {
1778 	rq_unpin_lock(rq, rf);
1779 	raw_spin_unlock(&rq->lock);
1780 }
1781 
1782 static inline void
1783 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1784 	__releases(rq->lock)
1785 	__releases(p->pi_lock)
1786 {
1787 	rq_unpin_lock(rq, rf);
1788 	raw_spin_unlock(&rq->lock);
1789 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1790 }
1791 
1792 static inline void
1793 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1794 	__acquires(rq->lock)
1795 {
1796 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1797 	rq_pin_lock(rq, rf);
1798 }
1799 
1800 static inline void
1801 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1802 	__acquires(rq->lock)
1803 {
1804 	raw_spin_lock_irq(&rq->lock);
1805 	rq_pin_lock(rq, rf);
1806 }
1807 
1808 static inline void
1809 rq_lock(struct rq *rq, struct rq_flags *rf)
1810 	__acquires(rq->lock)
1811 {
1812 	raw_spin_lock(&rq->lock);
1813 	rq_pin_lock(rq, rf);
1814 }
1815 
1816 static inline void
1817 rq_relock(struct rq *rq, struct rq_flags *rf)
1818 	__acquires(rq->lock)
1819 {
1820 	raw_spin_lock(&rq->lock);
1821 	rq_repin_lock(rq, rf);
1822 }
1823 
1824 static inline void
1825 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1826 	__releases(rq->lock)
1827 {
1828 	rq_unpin_lock(rq, rf);
1829 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1830 }
1831 
1832 static inline void
1833 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1834 	__releases(rq->lock)
1835 {
1836 	rq_unpin_lock(rq, rf);
1837 	raw_spin_unlock_irq(&rq->lock);
1838 }
1839 
1840 static inline void
1841 rq_unlock(struct rq *rq, struct rq_flags *rf)
1842 	__releases(rq->lock)
1843 {
1844 	rq_unpin_lock(rq, rf);
1845 	raw_spin_unlock(&rq->lock);
1846 }
1847 
1848 #ifdef CONFIG_SMP
1849 #ifdef CONFIG_PREEMPT
1850 
1851 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1852 
1853 /*
1854  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1855  * way at the expense of forcing extra atomic operations in all
1856  * invocations.  This assures that the double_lock is acquired using the
1857  * same underlying policy as the spinlock_t on this architecture, which
1858  * reduces latency compared to the unfair variant below.  However, it
1859  * also adds more overhead and therefore may reduce throughput.
1860  */
1861 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1862 	__releases(this_rq->lock)
1863 	__acquires(busiest->lock)
1864 	__acquires(this_rq->lock)
1865 {
1866 	raw_spin_unlock(&this_rq->lock);
1867 	double_rq_lock(this_rq, busiest);
1868 
1869 	return 1;
1870 }
1871 
1872 #else
1873 /*
1874  * Unfair double_lock_balance: Optimizes throughput at the expense of
1875  * latency by eliminating extra atomic operations when the locks are
1876  * already in proper order on entry.  This favors lower CPU-ids and will
1877  * grant the double lock to lower CPUs over higher ids under contention,
1878  * regardless of entry order into the function.
1879  */
1880 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1881 	__releases(this_rq->lock)
1882 	__acquires(busiest->lock)
1883 	__acquires(this_rq->lock)
1884 {
1885 	int ret = 0;
1886 
1887 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1888 		if (busiest < this_rq) {
1889 			raw_spin_unlock(&this_rq->lock);
1890 			raw_spin_lock(&busiest->lock);
1891 			raw_spin_lock_nested(&this_rq->lock,
1892 					      SINGLE_DEPTH_NESTING);
1893 			ret = 1;
1894 		} else
1895 			raw_spin_lock_nested(&busiest->lock,
1896 					      SINGLE_DEPTH_NESTING);
1897 	}
1898 	return ret;
1899 }
1900 
1901 #endif /* CONFIG_PREEMPT */
1902 
1903 /*
1904  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1905  */
1906 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1907 {
1908 	if (unlikely(!irqs_disabled())) {
1909 		/* printk() doesn't work well under rq->lock */
1910 		raw_spin_unlock(&this_rq->lock);
1911 		BUG_ON(1);
1912 	}
1913 
1914 	return _double_lock_balance(this_rq, busiest);
1915 }
1916 
1917 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1918 	__releases(busiest->lock)
1919 {
1920 	raw_spin_unlock(&busiest->lock);
1921 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1922 }
1923 
1924 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1925 {
1926 	if (l1 > l2)
1927 		swap(l1, l2);
1928 
1929 	spin_lock(l1);
1930 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1931 }
1932 
1933 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1934 {
1935 	if (l1 > l2)
1936 		swap(l1, l2);
1937 
1938 	spin_lock_irq(l1);
1939 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1940 }
1941 
1942 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1943 {
1944 	if (l1 > l2)
1945 		swap(l1, l2);
1946 
1947 	raw_spin_lock(l1);
1948 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949 }
1950 
1951 /*
1952  * double_rq_lock - safely lock two runqueues
1953  *
1954  * Note this does not disable interrupts like task_rq_lock,
1955  * you need to do so manually before calling.
1956  */
1957 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1958 	__acquires(rq1->lock)
1959 	__acquires(rq2->lock)
1960 {
1961 	BUG_ON(!irqs_disabled());
1962 	if (rq1 == rq2) {
1963 		raw_spin_lock(&rq1->lock);
1964 		__acquire(rq2->lock);	/* Fake it out ;) */
1965 	} else {
1966 		if (rq1 < rq2) {
1967 			raw_spin_lock(&rq1->lock);
1968 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1969 		} else {
1970 			raw_spin_lock(&rq2->lock);
1971 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1972 		}
1973 	}
1974 }
1975 
1976 /*
1977  * double_rq_unlock - safely unlock two runqueues
1978  *
1979  * Note this does not restore interrupts like task_rq_unlock,
1980  * you need to do so manually after calling.
1981  */
1982 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1983 	__releases(rq1->lock)
1984 	__releases(rq2->lock)
1985 {
1986 	raw_spin_unlock(&rq1->lock);
1987 	if (rq1 != rq2)
1988 		raw_spin_unlock(&rq2->lock);
1989 	else
1990 		__release(rq2->lock);
1991 }
1992 
1993 extern void set_rq_online (struct rq *rq);
1994 extern void set_rq_offline(struct rq *rq);
1995 extern bool sched_smp_initialized;
1996 
1997 #else /* CONFIG_SMP */
1998 
1999 /*
2000  * double_rq_lock - safely lock two runqueues
2001  *
2002  * Note this does not disable interrupts like task_rq_lock,
2003  * you need to do so manually before calling.
2004  */
2005 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2006 	__acquires(rq1->lock)
2007 	__acquires(rq2->lock)
2008 {
2009 	BUG_ON(!irqs_disabled());
2010 	BUG_ON(rq1 != rq2);
2011 	raw_spin_lock(&rq1->lock);
2012 	__acquire(rq2->lock);	/* Fake it out ;) */
2013 }
2014 
2015 /*
2016  * double_rq_unlock - safely unlock two runqueues
2017  *
2018  * Note this does not restore interrupts like task_rq_unlock,
2019  * you need to do so manually after calling.
2020  */
2021 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2022 	__releases(rq1->lock)
2023 	__releases(rq2->lock)
2024 {
2025 	BUG_ON(rq1 != rq2);
2026 	raw_spin_unlock(&rq1->lock);
2027 	__release(rq2->lock);
2028 }
2029 
2030 #endif
2031 
2032 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2033 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2034 
2035 #ifdef	CONFIG_SCHED_DEBUG
2036 extern bool sched_debug_enabled;
2037 
2038 extern void print_cfs_stats(struct seq_file *m, int cpu);
2039 extern void print_rt_stats(struct seq_file *m, int cpu);
2040 extern void print_dl_stats(struct seq_file *m, int cpu);
2041 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2042 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2043 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2044 #ifdef CONFIG_NUMA_BALANCING
2045 extern void
2046 show_numa_stats(struct task_struct *p, struct seq_file *m);
2047 extern void
2048 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2049 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2050 #endif /* CONFIG_NUMA_BALANCING */
2051 #endif /* CONFIG_SCHED_DEBUG */
2052 
2053 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2054 extern void init_rt_rq(struct rt_rq *rt_rq);
2055 extern void init_dl_rq(struct dl_rq *dl_rq);
2056 
2057 extern void cfs_bandwidth_usage_inc(void);
2058 extern void cfs_bandwidth_usage_dec(void);
2059 
2060 #ifdef CONFIG_NO_HZ_COMMON
2061 #define NOHZ_BALANCE_KICK_BIT	0
2062 #define NOHZ_STATS_KICK_BIT	1
2063 
2064 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2065 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2066 
2067 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2068 
2069 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2070 
2071 extern void nohz_balance_exit_idle(struct rq *rq);
2072 #else
2073 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2074 #endif
2075 
2076 
2077 #ifdef CONFIG_SMP
2078 static inline
2079 void __dl_update(struct dl_bw *dl_b, s64 bw)
2080 {
2081 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2082 	int i;
2083 
2084 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2085 			 "sched RCU must be held");
2086 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2087 		struct rq *rq = cpu_rq(i);
2088 
2089 		rq->dl.extra_bw += bw;
2090 	}
2091 }
2092 #else
2093 static inline
2094 void __dl_update(struct dl_bw *dl_b, s64 bw)
2095 {
2096 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2097 
2098 	dl->extra_bw += bw;
2099 }
2100 #endif
2101 
2102 
2103 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2104 struct irqtime {
2105 	u64			total;
2106 	u64			tick_delta;
2107 	u64			irq_start_time;
2108 	struct u64_stats_sync	sync;
2109 };
2110 
2111 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2112 
2113 /*
2114  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2115  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2116  * and never move forward.
2117  */
2118 static inline u64 irq_time_read(int cpu)
2119 {
2120 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2121 	unsigned int seq;
2122 	u64 total;
2123 
2124 	do {
2125 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2126 		total = irqtime->total;
2127 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2128 
2129 	return total;
2130 }
2131 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2132 
2133 #ifdef CONFIG_CPU_FREQ
2134 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2135 
2136 /**
2137  * cpufreq_update_util - Take a note about CPU utilization changes.
2138  * @rq: Runqueue to carry out the update for.
2139  * @flags: Update reason flags.
2140  *
2141  * This function is called by the scheduler on the CPU whose utilization is
2142  * being updated.
2143  *
2144  * It can only be called from RCU-sched read-side critical sections.
2145  *
2146  * The way cpufreq is currently arranged requires it to evaluate the CPU
2147  * performance state (frequency/voltage) on a regular basis to prevent it from
2148  * being stuck in a completely inadequate performance level for too long.
2149  * That is not guaranteed to happen if the updates are only triggered from CFS
2150  * and DL, though, because they may not be coming in if only RT tasks are
2151  * active all the time (or there are RT tasks only).
2152  *
2153  * As a workaround for that issue, this function is called periodically by the
2154  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2155  * but that really is a band-aid.  Going forward it should be replaced with
2156  * solutions targeted more specifically at RT tasks.
2157  */
2158 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2159 {
2160 	struct update_util_data *data;
2161 
2162 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2163 						  cpu_of(rq)));
2164 	if (data)
2165 		data->func(data, rq_clock(rq), flags);
2166 }
2167 #else
2168 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2169 #endif /* CONFIG_CPU_FREQ */
2170 
2171 #ifdef arch_scale_freq_capacity
2172 # ifndef arch_scale_freq_invariant
2173 #  define arch_scale_freq_invariant()	true
2174 # endif
2175 #else
2176 # define arch_scale_freq_invariant()	false
2177 #endif
2178 
2179 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2180 static inline unsigned long cpu_util_dl(struct rq *rq)
2181 {
2182 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2183 }
2184 
2185 static inline unsigned long cpu_util_cfs(struct rq *rq)
2186 {
2187 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2188 
2189 	if (sched_feat(UTIL_EST)) {
2190 		util = max_t(unsigned long, util,
2191 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2192 	}
2193 
2194 	return util;
2195 }
2196 #endif
2197