xref: /openbmc/linux/kernel/sched/sched.h (revision f3a8b664)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/u64_stats_sync.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/binfmts.h>
8 #include <linux/mutex.h>
9 #include <linux/spinlock.h>
10 #include <linux/stop_machine.h>
11 #include <linux/irq_work.h>
12 #include <linux/tick.h>
13 #include <linux/slab.h>
14 
15 #include "cpupri.h"
16 #include "cpudeadline.h"
17 #include "cpuacct.h"
18 
19 #ifdef CONFIG_SCHED_DEBUG
20 #define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
21 #else
22 #define SCHED_WARN_ON(x)	((void)(x))
23 #endif
24 
25 struct rq;
26 struct cpuidle_state;
27 
28 /* task_struct::on_rq states: */
29 #define TASK_ON_RQ_QUEUED	1
30 #define TASK_ON_RQ_MIGRATING	2
31 
32 extern __read_mostly int scheduler_running;
33 
34 extern unsigned long calc_load_update;
35 extern atomic_long_t calc_load_tasks;
36 
37 extern void calc_global_load_tick(struct rq *this_rq);
38 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
39 
40 #ifdef CONFIG_SMP
41 extern void cpu_load_update_active(struct rq *this_rq);
42 #else
43 static inline void cpu_load_update_active(struct rq *this_rq) { }
44 #endif
45 
46 /*
47  * Helpers for converting nanosecond timing to jiffy resolution
48  */
49 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
50 
51 /*
52  * Increase resolution of nice-level calculations for 64-bit architectures.
53  * The extra resolution improves shares distribution and load balancing of
54  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
55  * hierarchies, especially on larger systems. This is not a user-visible change
56  * and does not change the user-interface for setting shares/weights.
57  *
58  * We increase resolution only if we have enough bits to allow this increased
59  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
60  * pretty high and the returns do not justify the increased costs.
61  *
62  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
63  * increase coverage and consistency always enable it on 64bit platforms.
64  */
65 #ifdef CONFIG_64BIT
66 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
67 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
68 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
69 #else
70 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
71 # define scale_load(w)		(w)
72 # define scale_load_down(w)	(w)
73 #endif
74 
75 /*
76  * Task weight (visible to users) and its load (invisible to users) have
77  * independent resolution, but they should be well calibrated. We use
78  * scale_load() and scale_load_down(w) to convert between them. The
79  * following must be true:
80  *
81  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
82  *
83  */
84 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
85 
86 /*
87  * Single value that decides SCHED_DEADLINE internal math precision.
88  * 10 -> just above 1us
89  * 9  -> just above 0.5us
90  */
91 #define DL_SCALE (10)
92 
93 /*
94  * These are the 'tuning knobs' of the scheduler:
95  */
96 
97 /*
98  * single value that denotes runtime == period, ie unlimited time.
99  */
100 #define RUNTIME_INF	((u64)~0ULL)
101 
102 static inline int idle_policy(int policy)
103 {
104 	return policy == SCHED_IDLE;
105 }
106 static inline int fair_policy(int policy)
107 {
108 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
109 }
110 
111 static inline int rt_policy(int policy)
112 {
113 	return policy == SCHED_FIFO || policy == SCHED_RR;
114 }
115 
116 static inline int dl_policy(int policy)
117 {
118 	return policy == SCHED_DEADLINE;
119 }
120 static inline bool valid_policy(int policy)
121 {
122 	return idle_policy(policy) || fair_policy(policy) ||
123 		rt_policy(policy) || dl_policy(policy);
124 }
125 
126 static inline int task_has_rt_policy(struct task_struct *p)
127 {
128 	return rt_policy(p->policy);
129 }
130 
131 static inline int task_has_dl_policy(struct task_struct *p)
132 {
133 	return dl_policy(p->policy);
134 }
135 
136 /*
137  * Tells if entity @a should preempt entity @b.
138  */
139 static inline bool
140 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
141 {
142 	return dl_time_before(a->deadline, b->deadline);
143 }
144 
145 /*
146  * This is the priority-queue data structure of the RT scheduling class:
147  */
148 struct rt_prio_array {
149 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
150 	struct list_head queue[MAX_RT_PRIO];
151 };
152 
153 struct rt_bandwidth {
154 	/* nests inside the rq lock: */
155 	raw_spinlock_t		rt_runtime_lock;
156 	ktime_t			rt_period;
157 	u64			rt_runtime;
158 	struct hrtimer		rt_period_timer;
159 	unsigned int		rt_period_active;
160 };
161 
162 void __dl_clear_params(struct task_struct *p);
163 
164 /*
165  * To keep the bandwidth of -deadline tasks and groups under control
166  * we need some place where:
167  *  - store the maximum -deadline bandwidth of the system (the group);
168  *  - cache the fraction of that bandwidth that is currently allocated.
169  *
170  * This is all done in the data structure below. It is similar to the
171  * one used for RT-throttling (rt_bandwidth), with the main difference
172  * that, since here we are only interested in admission control, we
173  * do not decrease any runtime while the group "executes", neither we
174  * need a timer to replenish it.
175  *
176  * With respect to SMP, the bandwidth is given on a per-CPU basis,
177  * meaning that:
178  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
179  *  - dl_total_bw array contains, in the i-eth element, the currently
180  *    allocated bandwidth on the i-eth CPU.
181  * Moreover, groups consume bandwidth on each CPU, while tasks only
182  * consume bandwidth on the CPU they're running on.
183  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
184  * that will be shown the next time the proc or cgroup controls will
185  * be red. It on its turn can be changed by writing on its own
186  * control.
187  */
188 struct dl_bandwidth {
189 	raw_spinlock_t dl_runtime_lock;
190 	u64 dl_runtime;
191 	u64 dl_period;
192 };
193 
194 static inline int dl_bandwidth_enabled(void)
195 {
196 	return sysctl_sched_rt_runtime >= 0;
197 }
198 
199 extern struct dl_bw *dl_bw_of(int i);
200 
201 struct dl_bw {
202 	raw_spinlock_t lock;
203 	u64 bw, total_bw;
204 };
205 
206 static inline
207 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
208 {
209 	dl_b->total_bw -= tsk_bw;
210 }
211 
212 static inline
213 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
214 {
215 	dl_b->total_bw += tsk_bw;
216 }
217 
218 static inline
219 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
220 {
221 	return dl_b->bw != -1 &&
222 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
223 }
224 
225 extern struct mutex sched_domains_mutex;
226 
227 #ifdef CONFIG_CGROUP_SCHED
228 
229 #include <linux/cgroup.h>
230 
231 struct cfs_rq;
232 struct rt_rq;
233 
234 extern struct list_head task_groups;
235 
236 struct cfs_bandwidth {
237 #ifdef CONFIG_CFS_BANDWIDTH
238 	raw_spinlock_t lock;
239 	ktime_t period;
240 	u64 quota, runtime;
241 	s64 hierarchical_quota;
242 	u64 runtime_expires;
243 
244 	int idle, period_active;
245 	struct hrtimer period_timer, slack_timer;
246 	struct list_head throttled_cfs_rq;
247 
248 	/* statistics */
249 	int nr_periods, nr_throttled;
250 	u64 throttled_time;
251 #endif
252 };
253 
254 /* task group related information */
255 struct task_group {
256 	struct cgroup_subsys_state css;
257 
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 	/* schedulable entities of this group on each cpu */
260 	struct sched_entity **se;
261 	/* runqueue "owned" by this group on each cpu */
262 	struct cfs_rq **cfs_rq;
263 	unsigned long shares;
264 
265 #ifdef	CONFIG_SMP
266 	/*
267 	 * load_avg can be heavily contended at clock tick time, so put
268 	 * it in its own cacheline separated from the fields above which
269 	 * will also be accessed at each tick.
270 	 */
271 	atomic_long_t load_avg ____cacheline_aligned;
272 #endif
273 #endif
274 
275 #ifdef CONFIG_RT_GROUP_SCHED
276 	struct sched_rt_entity **rt_se;
277 	struct rt_rq **rt_rq;
278 
279 	struct rt_bandwidth rt_bandwidth;
280 #endif
281 
282 	struct rcu_head rcu;
283 	struct list_head list;
284 
285 	struct task_group *parent;
286 	struct list_head siblings;
287 	struct list_head children;
288 
289 #ifdef CONFIG_SCHED_AUTOGROUP
290 	struct autogroup *autogroup;
291 #endif
292 
293 	struct cfs_bandwidth cfs_bandwidth;
294 };
295 
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
298 
299 /*
300  * A weight of 0 or 1 can cause arithmetics problems.
301  * A weight of a cfs_rq is the sum of weights of which entities
302  * are queued on this cfs_rq, so a weight of a entity should not be
303  * too large, so as the shares value of a task group.
304  * (The default weight is 1024 - so there's no practical
305  *  limitation from this.)
306  */
307 #define MIN_SHARES	(1UL <<  1)
308 #define MAX_SHARES	(1UL << 18)
309 #endif
310 
311 typedef int (*tg_visitor)(struct task_group *, void *);
312 
313 extern int walk_tg_tree_from(struct task_group *from,
314 			     tg_visitor down, tg_visitor up, void *data);
315 
316 /*
317  * Iterate the full tree, calling @down when first entering a node and @up when
318  * leaving it for the final time.
319  *
320  * Caller must hold rcu_lock or sufficient equivalent.
321  */
322 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
323 {
324 	return walk_tg_tree_from(&root_task_group, down, up, data);
325 }
326 
327 extern int tg_nop(struct task_group *tg, void *data);
328 
329 extern void free_fair_sched_group(struct task_group *tg);
330 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
331 extern void online_fair_sched_group(struct task_group *tg);
332 extern void unregister_fair_sched_group(struct task_group *tg);
333 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
334 			struct sched_entity *se, int cpu,
335 			struct sched_entity *parent);
336 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
337 
338 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
339 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
340 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
341 
342 extern void free_rt_sched_group(struct task_group *tg);
343 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
344 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
345 		struct sched_rt_entity *rt_se, int cpu,
346 		struct sched_rt_entity *parent);
347 
348 extern struct task_group *sched_create_group(struct task_group *parent);
349 extern void sched_online_group(struct task_group *tg,
350 			       struct task_group *parent);
351 extern void sched_destroy_group(struct task_group *tg);
352 extern void sched_offline_group(struct task_group *tg);
353 
354 extern void sched_move_task(struct task_struct *tsk);
355 
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
358 
359 #ifdef CONFIG_SMP
360 extern void set_task_rq_fair(struct sched_entity *se,
361 			     struct cfs_rq *prev, struct cfs_rq *next);
362 #else /* !CONFIG_SMP */
363 static inline void set_task_rq_fair(struct sched_entity *se,
364 			     struct cfs_rq *prev, struct cfs_rq *next) { }
365 #endif /* CONFIG_SMP */
366 #endif /* CONFIG_FAIR_GROUP_SCHED */
367 
368 #else /* CONFIG_CGROUP_SCHED */
369 
370 struct cfs_bandwidth { };
371 
372 #endif	/* CONFIG_CGROUP_SCHED */
373 
374 /* CFS-related fields in a runqueue */
375 struct cfs_rq {
376 	struct load_weight load;
377 	unsigned int nr_running, h_nr_running;
378 
379 	u64 exec_clock;
380 	u64 min_vruntime;
381 #ifndef CONFIG_64BIT
382 	u64 min_vruntime_copy;
383 #endif
384 
385 	struct rb_root tasks_timeline;
386 	struct rb_node *rb_leftmost;
387 
388 	/*
389 	 * 'curr' points to currently running entity on this cfs_rq.
390 	 * It is set to NULL otherwise (i.e when none are currently running).
391 	 */
392 	struct sched_entity *curr, *next, *last, *skip;
393 
394 #ifdef	CONFIG_SCHED_DEBUG
395 	unsigned int nr_spread_over;
396 #endif
397 
398 #ifdef CONFIG_SMP
399 	/*
400 	 * CFS load tracking
401 	 */
402 	struct sched_avg avg;
403 	u64 runnable_load_sum;
404 	unsigned long runnable_load_avg;
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 	unsigned long tg_load_avg_contrib;
407 #endif
408 	atomic_long_t removed_load_avg, removed_util_avg;
409 #ifndef CONFIG_64BIT
410 	u64 load_last_update_time_copy;
411 #endif
412 
413 #ifdef CONFIG_FAIR_GROUP_SCHED
414 	/*
415 	 *   h_load = weight * f(tg)
416 	 *
417 	 * Where f(tg) is the recursive weight fraction assigned to
418 	 * this group.
419 	 */
420 	unsigned long h_load;
421 	u64 last_h_load_update;
422 	struct sched_entity *h_load_next;
423 #endif /* CONFIG_FAIR_GROUP_SCHED */
424 #endif /* CONFIG_SMP */
425 
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
428 
429 	/*
430 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
431 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
432 	 * (like users, containers etc.)
433 	 *
434 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
435 	 * list is used during load balance.
436 	 */
437 	int on_list;
438 	struct list_head leaf_cfs_rq_list;
439 	struct task_group *tg;	/* group that "owns" this runqueue */
440 
441 #ifdef CONFIG_CFS_BANDWIDTH
442 	int runtime_enabled;
443 	u64 runtime_expires;
444 	s64 runtime_remaining;
445 
446 	u64 throttled_clock, throttled_clock_task;
447 	u64 throttled_clock_task_time;
448 	int throttled, throttle_count;
449 	struct list_head throttled_list;
450 #endif /* CONFIG_CFS_BANDWIDTH */
451 #endif /* CONFIG_FAIR_GROUP_SCHED */
452 };
453 
454 static inline int rt_bandwidth_enabled(void)
455 {
456 	return sysctl_sched_rt_runtime >= 0;
457 }
458 
459 /* RT IPI pull logic requires IRQ_WORK */
460 #ifdef CONFIG_IRQ_WORK
461 # define HAVE_RT_PUSH_IPI
462 #endif
463 
464 /* Real-Time classes' related field in a runqueue: */
465 struct rt_rq {
466 	struct rt_prio_array active;
467 	unsigned int rt_nr_running;
468 	unsigned int rr_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 	struct {
471 		int curr; /* highest queued rt task prio */
472 #ifdef CONFIG_SMP
473 		int next; /* next highest */
474 #endif
475 	} highest_prio;
476 #endif
477 #ifdef CONFIG_SMP
478 	unsigned long rt_nr_migratory;
479 	unsigned long rt_nr_total;
480 	int overloaded;
481 	struct plist_head pushable_tasks;
482 #ifdef HAVE_RT_PUSH_IPI
483 	int push_flags;
484 	int push_cpu;
485 	struct irq_work push_work;
486 	raw_spinlock_t push_lock;
487 #endif
488 #endif /* CONFIG_SMP */
489 	int rt_queued;
490 
491 	int rt_throttled;
492 	u64 rt_time;
493 	u64 rt_runtime;
494 	/* Nests inside the rq lock: */
495 	raw_spinlock_t rt_runtime_lock;
496 
497 #ifdef CONFIG_RT_GROUP_SCHED
498 	unsigned long rt_nr_boosted;
499 
500 	struct rq *rq;
501 	struct task_group *tg;
502 #endif
503 };
504 
505 /* Deadline class' related fields in a runqueue */
506 struct dl_rq {
507 	/* runqueue is an rbtree, ordered by deadline */
508 	struct rb_root rb_root;
509 	struct rb_node *rb_leftmost;
510 
511 	unsigned long dl_nr_running;
512 
513 #ifdef CONFIG_SMP
514 	/*
515 	 * Deadline values of the currently executing and the
516 	 * earliest ready task on this rq. Caching these facilitates
517 	 * the decision wether or not a ready but not running task
518 	 * should migrate somewhere else.
519 	 */
520 	struct {
521 		u64 curr;
522 		u64 next;
523 	} earliest_dl;
524 
525 	unsigned long dl_nr_migratory;
526 	int overloaded;
527 
528 	/*
529 	 * Tasks on this rq that can be pushed away. They are kept in
530 	 * an rb-tree, ordered by tasks' deadlines, with caching
531 	 * of the leftmost (earliest deadline) element.
532 	 */
533 	struct rb_root pushable_dl_tasks_root;
534 	struct rb_node *pushable_dl_tasks_leftmost;
535 #else
536 	struct dl_bw dl_bw;
537 #endif
538 };
539 
540 #ifdef CONFIG_SMP
541 
542 /*
543  * We add the notion of a root-domain which will be used to define per-domain
544  * variables. Each exclusive cpuset essentially defines an island domain by
545  * fully partitioning the member cpus from any other cpuset. Whenever a new
546  * exclusive cpuset is created, we also create and attach a new root-domain
547  * object.
548  *
549  */
550 struct root_domain {
551 	atomic_t refcount;
552 	atomic_t rto_count;
553 	struct rcu_head rcu;
554 	cpumask_var_t span;
555 	cpumask_var_t online;
556 
557 	/* Indicate more than one runnable task for any CPU */
558 	bool overload;
559 
560 	/*
561 	 * The bit corresponding to a CPU gets set here if such CPU has more
562 	 * than one runnable -deadline task (as it is below for RT tasks).
563 	 */
564 	cpumask_var_t dlo_mask;
565 	atomic_t dlo_count;
566 	struct dl_bw dl_bw;
567 	struct cpudl cpudl;
568 
569 	/*
570 	 * The "RT overload" flag: it gets set if a CPU has more than
571 	 * one runnable RT task.
572 	 */
573 	cpumask_var_t rto_mask;
574 	struct cpupri cpupri;
575 
576 	unsigned long max_cpu_capacity;
577 };
578 
579 extern struct root_domain def_root_domain;
580 
581 #endif /* CONFIG_SMP */
582 
583 /*
584  * This is the main, per-CPU runqueue data structure.
585  *
586  * Locking rule: those places that want to lock multiple runqueues
587  * (such as the load balancing or the thread migration code), lock
588  * acquire operations must be ordered by ascending &runqueue.
589  */
590 struct rq {
591 	/* runqueue lock: */
592 	raw_spinlock_t lock;
593 
594 	/*
595 	 * nr_running and cpu_load should be in the same cacheline because
596 	 * remote CPUs use both these fields when doing load calculation.
597 	 */
598 	unsigned int nr_running;
599 #ifdef CONFIG_NUMA_BALANCING
600 	unsigned int nr_numa_running;
601 	unsigned int nr_preferred_running;
602 #endif
603 	#define CPU_LOAD_IDX_MAX 5
604 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
605 #ifdef CONFIG_NO_HZ_COMMON
606 #ifdef CONFIG_SMP
607 	unsigned long last_load_update_tick;
608 #endif /* CONFIG_SMP */
609 	unsigned long nohz_flags;
610 #endif /* CONFIG_NO_HZ_COMMON */
611 #ifdef CONFIG_NO_HZ_FULL
612 	unsigned long last_sched_tick;
613 #endif
614 	/* capture load from *all* tasks on this cpu: */
615 	struct load_weight load;
616 	unsigned long nr_load_updates;
617 	u64 nr_switches;
618 
619 	struct cfs_rq cfs;
620 	struct rt_rq rt;
621 	struct dl_rq dl;
622 
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 	/* list of leaf cfs_rq on this cpu: */
625 	struct list_head leaf_cfs_rq_list;
626 #endif /* CONFIG_FAIR_GROUP_SCHED */
627 
628 	/*
629 	 * This is part of a global counter where only the total sum
630 	 * over all CPUs matters. A task can increase this counter on
631 	 * one CPU and if it got migrated afterwards it may decrease
632 	 * it on another CPU. Always updated under the runqueue lock:
633 	 */
634 	unsigned long nr_uninterruptible;
635 
636 	struct task_struct *curr, *idle, *stop;
637 	unsigned long next_balance;
638 	struct mm_struct *prev_mm;
639 
640 	unsigned int clock_skip_update;
641 	u64 clock;
642 	u64 clock_task;
643 
644 	atomic_t nr_iowait;
645 
646 #ifdef CONFIG_SMP
647 	struct root_domain *rd;
648 	struct sched_domain *sd;
649 
650 	unsigned long cpu_capacity;
651 	unsigned long cpu_capacity_orig;
652 
653 	struct callback_head *balance_callback;
654 
655 	unsigned char idle_balance;
656 	/* For active balancing */
657 	int active_balance;
658 	int push_cpu;
659 	struct cpu_stop_work active_balance_work;
660 	/* cpu of this runqueue: */
661 	int cpu;
662 	int online;
663 
664 	struct list_head cfs_tasks;
665 
666 	u64 rt_avg;
667 	u64 age_stamp;
668 	u64 idle_stamp;
669 	u64 avg_idle;
670 
671 	/* This is used to determine avg_idle's max value */
672 	u64 max_idle_balance_cost;
673 #endif
674 
675 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
676 	u64 prev_irq_time;
677 #endif
678 #ifdef CONFIG_PARAVIRT
679 	u64 prev_steal_time;
680 #endif
681 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
682 	u64 prev_steal_time_rq;
683 #endif
684 
685 	/* calc_load related fields */
686 	unsigned long calc_load_update;
687 	long calc_load_active;
688 
689 #ifdef CONFIG_SCHED_HRTICK
690 #ifdef CONFIG_SMP
691 	int hrtick_csd_pending;
692 	struct call_single_data hrtick_csd;
693 #endif
694 	struct hrtimer hrtick_timer;
695 #endif
696 
697 #ifdef CONFIG_SCHEDSTATS
698 	/* latency stats */
699 	struct sched_info rq_sched_info;
700 	unsigned long long rq_cpu_time;
701 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
702 
703 	/* sys_sched_yield() stats */
704 	unsigned int yld_count;
705 
706 	/* schedule() stats */
707 	unsigned int sched_count;
708 	unsigned int sched_goidle;
709 
710 	/* try_to_wake_up() stats */
711 	unsigned int ttwu_count;
712 	unsigned int ttwu_local;
713 #endif
714 
715 #ifdef CONFIG_SMP
716 	struct llist_head wake_list;
717 #endif
718 
719 #ifdef CONFIG_CPU_IDLE
720 	/* Must be inspected within a rcu lock section */
721 	struct cpuidle_state *idle_state;
722 #endif
723 };
724 
725 static inline int cpu_of(struct rq *rq)
726 {
727 #ifdef CONFIG_SMP
728 	return rq->cpu;
729 #else
730 	return 0;
731 #endif
732 }
733 
734 
735 #ifdef CONFIG_SCHED_SMT
736 
737 extern struct static_key_false sched_smt_present;
738 
739 extern void __update_idle_core(struct rq *rq);
740 
741 static inline void update_idle_core(struct rq *rq)
742 {
743 	if (static_branch_unlikely(&sched_smt_present))
744 		__update_idle_core(rq);
745 }
746 
747 #else
748 static inline void update_idle_core(struct rq *rq) { }
749 #endif
750 
751 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
752 
753 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
754 #define this_rq()		this_cpu_ptr(&runqueues)
755 #define task_rq(p)		cpu_rq(task_cpu(p))
756 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
757 #define raw_rq()		raw_cpu_ptr(&runqueues)
758 
759 static inline u64 __rq_clock_broken(struct rq *rq)
760 {
761 	return READ_ONCE(rq->clock);
762 }
763 
764 static inline u64 rq_clock(struct rq *rq)
765 {
766 	lockdep_assert_held(&rq->lock);
767 	return rq->clock;
768 }
769 
770 static inline u64 rq_clock_task(struct rq *rq)
771 {
772 	lockdep_assert_held(&rq->lock);
773 	return rq->clock_task;
774 }
775 
776 #define RQCF_REQ_SKIP	0x01
777 #define RQCF_ACT_SKIP	0x02
778 
779 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
780 {
781 	lockdep_assert_held(&rq->lock);
782 	if (skip)
783 		rq->clock_skip_update |= RQCF_REQ_SKIP;
784 	else
785 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
786 }
787 
788 #ifdef CONFIG_NUMA
789 enum numa_topology_type {
790 	NUMA_DIRECT,
791 	NUMA_GLUELESS_MESH,
792 	NUMA_BACKPLANE,
793 };
794 extern enum numa_topology_type sched_numa_topology_type;
795 extern int sched_max_numa_distance;
796 extern bool find_numa_distance(int distance);
797 #endif
798 
799 #ifdef CONFIG_NUMA_BALANCING
800 /* The regions in numa_faults array from task_struct */
801 enum numa_faults_stats {
802 	NUMA_MEM = 0,
803 	NUMA_CPU,
804 	NUMA_MEMBUF,
805 	NUMA_CPUBUF
806 };
807 extern void sched_setnuma(struct task_struct *p, int node);
808 extern int migrate_task_to(struct task_struct *p, int cpu);
809 extern int migrate_swap(struct task_struct *, struct task_struct *);
810 #endif /* CONFIG_NUMA_BALANCING */
811 
812 #ifdef CONFIG_SMP
813 
814 static inline void
815 queue_balance_callback(struct rq *rq,
816 		       struct callback_head *head,
817 		       void (*func)(struct rq *rq))
818 {
819 	lockdep_assert_held(&rq->lock);
820 
821 	if (unlikely(head->next))
822 		return;
823 
824 	head->func = (void (*)(struct callback_head *))func;
825 	head->next = rq->balance_callback;
826 	rq->balance_callback = head;
827 }
828 
829 extern void sched_ttwu_pending(void);
830 
831 #define rcu_dereference_check_sched_domain(p) \
832 	rcu_dereference_check((p), \
833 			      lockdep_is_held(&sched_domains_mutex))
834 
835 /*
836  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
837  * See detach_destroy_domains: synchronize_sched for details.
838  *
839  * The domain tree of any CPU may only be accessed from within
840  * preempt-disabled sections.
841  */
842 #define for_each_domain(cpu, __sd) \
843 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
844 			__sd; __sd = __sd->parent)
845 
846 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
847 
848 /**
849  * highest_flag_domain - Return highest sched_domain containing flag.
850  * @cpu:	The cpu whose highest level of sched domain is to
851  *		be returned.
852  * @flag:	The flag to check for the highest sched_domain
853  *		for the given cpu.
854  *
855  * Returns the highest sched_domain of a cpu which contains the given flag.
856  */
857 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
858 {
859 	struct sched_domain *sd, *hsd = NULL;
860 
861 	for_each_domain(cpu, sd) {
862 		if (!(sd->flags & flag))
863 			break;
864 		hsd = sd;
865 	}
866 
867 	return hsd;
868 }
869 
870 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
871 {
872 	struct sched_domain *sd;
873 
874 	for_each_domain(cpu, sd) {
875 		if (sd->flags & flag)
876 			break;
877 	}
878 
879 	return sd;
880 }
881 
882 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
883 DECLARE_PER_CPU(int, sd_llc_size);
884 DECLARE_PER_CPU(int, sd_llc_id);
885 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
886 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
887 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
888 
889 struct sched_group_capacity {
890 	atomic_t ref;
891 	/*
892 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
893 	 * for a single CPU.
894 	 */
895 	unsigned int capacity;
896 	unsigned long next_update;
897 	int imbalance; /* XXX unrelated to capacity but shared group state */
898 
899 	unsigned long cpumask[0]; /* iteration mask */
900 };
901 
902 struct sched_group {
903 	struct sched_group *next;	/* Must be a circular list */
904 	atomic_t ref;
905 
906 	unsigned int group_weight;
907 	struct sched_group_capacity *sgc;
908 
909 	/*
910 	 * The CPUs this group covers.
911 	 *
912 	 * NOTE: this field is variable length. (Allocated dynamically
913 	 * by attaching extra space to the end of the structure,
914 	 * depending on how many CPUs the kernel has booted up with)
915 	 */
916 	unsigned long cpumask[0];
917 };
918 
919 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
920 {
921 	return to_cpumask(sg->cpumask);
922 }
923 
924 /*
925  * cpumask masking which cpus in the group are allowed to iterate up the domain
926  * tree.
927  */
928 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
929 {
930 	return to_cpumask(sg->sgc->cpumask);
931 }
932 
933 /**
934  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
935  * @group: The group whose first cpu is to be returned.
936  */
937 static inline unsigned int group_first_cpu(struct sched_group *group)
938 {
939 	return cpumask_first(sched_group_cpus(group));
940 }
941 
942 extern int group_balance_cpu(struct sched_group *sg);
943 
944 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
945 void register_sched_domain_sysctl(void);
946 void unregister_sched_domain_sysctl(void);
947 #else
948 static inline void register_sched_domain_sysctl(void)
949 {
950 }
951 static inline void unregister_sched_domain_sysctl(void)
952 {
953 }
954 #endif
955 
956 #else
957 
958 static inline void sched_ttwu_pending(void) { }
959 
960 #endif /* CONFIG_SMP */
961 
962 #include "stats.h"
963 #include "auto_group.h"
964 
965 #ifdef CONFIG_CGROUP_SCHED
966 
967 /*
968  * Return the group to which this tasks belongs.
969  *
970  * We cannot use task_css() and friends because the cgroup subsystem
971  * changes that value before the cgroup_subsys::attach() method is called,
972  * therefore we cannot pin it and might observe the wrong value.
973  *
974  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
975  * core changes this before calling sched_move_task().
976  *
977  * Instead we use a 'copy' which is updated from sched_move_task() while
978  * holding both task_struct::pi_lock and rq::lock.
979  */
980 static inline struct task_group *task_group(struct task_struct *p)
981 {
982 	return p->sched_task_group;
983 }
984 
985 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
986 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
987 {
988 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
989 	struct task_group *tg = task_group(p);
990 #endif
991 
992 #ifdef CONFIG_FAIR_GROUP_SCHED
993 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
994 	p->se.cfs_rq = tg->cfs_rq[cpu];
995 	p->se.parent = tg->se[cpu];
996 #endif
997 
998 #ifdef CONFIG_RT_GROUP_SCHED
999 	p->rt.rt_rq  = tg->rt_rq[cpu];
1000 	p->rt.parent = tg->rt_se[cpu];
1001 #endif
1002 }
1003 
1004 #else /* CONFIG_CGROUP_SCHED */
1005 
1006 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1007 static inline struct task_group *task_group(struct task_struct *p)
1008 {
1009 	return NULL;
1010 }
1011 
1012 #endif /* CONFIG_CGROUP_SCHED */
1013 
1014 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1015 {
1016 	set_task_rq(p, cpu);
1017 #ifdef CONFIG_SMP
1018 	/*
1019 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1020 	 * successfuly executed on another CPU. We must ensure that updates of
1021 	 * per-task data have been completed by this moment.
1022 	 */
1023 	smp_wmb();
1024 #ifdef CONFIG_THREAD_INFO_IN_TASK
1025 	p->cpu = cpu;
1026 #else
1027 	task_thread_info(p)->cpu = cpu;
1028 #endif
1029 	p->wake_cpu = cpu;
1030 #endif
1031 }
1032 
1033 /*
1034  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1035  */
1036 #ifdef CONFIG_SCHED_DEBUG
1037 # include <linux/static_key.h>
1038 # define const_debug __read_mostly
1039 #else
1040 # define const_debug const
1041 #endif
1042 
1043 extern const_debug unsigned int sysctl_sched_features;
1044 
1045 #define SCHED_FEAT(name, enabled)	\
1046 	__SCHED_FEAT_##name ,
1047 
1048 enum {
1049 #include "features.h"
1050 	__SCHED_FEAT_NR,
1051 };
1052 
1053 #undef SCHED_FEAT
1054 
1055 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1056 #define SCHED_FEAT(name, enabled)					\
1057 static __always_inline bool static_branch_##name(struct static_key *key) \
1058 {									\
1059 	return static_key_##enabled(key);				\
1060 }
1061 
1062 #include "features.h"
1063 
1064 #undef SCHED_FEAT
1065 
1066 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1067 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1068 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1069 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1070 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1071 
1072 extern struct static_key_false sched_numa_balancing;
1073 extern struct static_key_false sched_schedstats;
1074 
1075 static inline u64 global_rt_period(void)
1076 {
1077 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1078 }
1079 
1080 static inline u64 global_rt_runtime(void)
1081 {
1082 	if (sysctl_sched_rt_runtime < 0)
1083 		return RUNTIME_INF;
1084 
1085 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1086 }
1087 
1088 static inline int task_current(struct rq *rq, struct task_struct *p)
1089 {
1090 	return rq->curr == p;
1091 }
1092 
1093 static inline int task_running(struct rq *rq, struct task_struct *p)
1094 {
1095 #ifdef CONFIG_SMP
1096 	return p->on_cpu;
1097 #else
1098 	return task_current(rq, p);
1099 #endif
1100 }
1101 
1102 static inline int task_on_rq_queued(struct task_struct *p)
1103 {
1104 	return p->on_rq == TASK_ON_RQ_QUEUED;
1105 }
1106 
1107 static inline int task_on_rq_migrating(struct task_struct *p)
1108 {
1109 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1110 }
1111 
1112 #ifndef prepare_arch_switch
1113 # define prepare_arch_switch(next)	do { } while (0)
1114 #endif
1115 #ifndef finish_arch_post_lock_switch
1116 # define finish_arch_post_lock_switch()	do { } while (0)
1117 #endif
1118 
1119 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1120 {
1121 #ifdef CONFIG_SMP
1122 	/*
1123 	 * We can optimise this out completely for !SMP, because the
1124 	 * SMP rebalancing from interrupt is the only thing that cares
1125 	 * here.
1126 	 */
1127 	next->on_cpu = 1;
1128 #endif
1129 }
1130 
1131 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1132 {
1133 #ifdef CONFIG_SMP
1134 	/*
1135 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1136 	 * We must ensure this doesn't happen until the switch is completely
1137 	 * finished.
1138 	 *
1139 	 * In particular, the load of prev->state in finish_task_switch() must
1140 	 * happen before this.
1141 	 *
1142 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1143 	 */
1144 	smp_store_release(&prev->on_cpu, 0);
1145 #endif
1146 #ifdef CONFIG_DEBUG_SPINLOCK
1147 	/* this is a valid case when another task releases the spinlock */
1148 	rq->lock.owner = current;
1149 #endif
1150 	/*
1151 	 * If we are tracking spinlock dependencies then we have to
1152 	 * fix up the runqueue lock - which gets 'carried over' from
1153 	 * prev into current:
1154 	 */
1155 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1156 
1157 	raw_spin_unlock_irq(&rq->lock);
1158 }
1159 
1160 /*
1161  * wake flags
1162  */
1163 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1164 #define WF_FORK		0x02		/* child wakeup after fork */
1165 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1166 
1167 /*
1168  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1169  * of tasks with abnormal "nice" values across CPUs the contribution that
1170  * each task makes to its run queue's load is weighted according to its
1171  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1172  * scaled version of the new time slice allocation that they receive on time
1173  * slice expiry etc.
1174  */
1175 
1176 #define WEIGHT_IDLEPRIO                3
1177 #define WMULT_IDLEPRIO         1431655765
1178 
1179 extern const int sched_prio_to_weight[40];
1180 extern const u32 sched_prio_to_wmult[40];
1181 
1182 /*
1183  * {de,en}queue flags:
1184  *
1185  * DEQUEUE_SLEEP  - task is no longer runnable
1186  * ENQUEUE_WAKEUP - task just became runnable
1187  *
1188  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1189  *                are in a known state which allows modification. Such pairs
1190  *                should preserve as much state as possible.
1191  *
1192  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1193  *        in the runqueue.
1194  *
1195  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1196  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1197  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1198  *
1199  */
1200 
1201 #define DEQUEUE_SLEEP		0x01
1202 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1203 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1204 
1205 #define ENQUEUE_WAKEUP		0x01
1206 #define ENQUEUE_RESTORE		0x02
1207 #define ENQUEUE_MOVE		0x04
1208 
1209 #define ENQUEUE_HEAD		0x08
1210 #define ENQUEUE_REPLENISH	0x10
1211 #ifdef CONFIG_SMP
1212 #define ENQUEUE_MIGRATED	0x20
1213 #else
1214 #define ENQUEUE_MIGRATED	0x00
1215 #endif
1216 
1217 #define RETRY_TASK		((void *)-1UL)
1218 
1219 struct sched_class {
1220 	const struct sched_class *next;
1221 
1222 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1223 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1224 	void (*yield_task) (struct rq *rq);
1225 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1226 
1227 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1228 
1229 	/*
1230 	 * It is the responsibility of the pick_next_task() method that will
1231 	 * return the next task to call put_prev_task() on the @prev task or
1232 	 * something equivalent.
1233 	 *
1234 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1235 	 * tasks.
1236 	 */
1237 	struct task_struct * (*pick_next_task) (struct rq *rq,
1238 						struct task_struct *prev,
1239 						struct pin_cookie cookie);
1240 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1241 
1242 #ifdef CONFIG_SMP
1243 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1244 	void (*migrate_task_rq)(struct task_struct *p);
1245 
1246 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1247 
1248 	void (*set_cpus_allowed)(struct task_struct *p,
1249 				 const struct cpumask *newmask);
1250 
1251 	void (*rq_online)(struct rq *rq);
1252 	void (*rq_offline)(struct rq *rq);
1253 #endif
1254 
1255 	void (*set_curr_task) (struct rq *rq);
1256 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1257 	void (*task_fork) (struct task_struct *p);
1258 	void (*task_dead) (struct task_struct *p);
1259 
1260 	/*
1261 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1262 	 * cannot assume the switched_from/switched_to pair is serliazed by
1263 	 * rq->lock. They are however serialized by p->pi_lock.
1264 	 */
1265 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1266 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1267 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1268 			     int oldprio);
1269 
1270 	unsigned int (*get_rr_interval) (struct rq *rq,
1271 					 struct task_struct *task);
1272 
1273 	void (*update_curr) (struct rq *rq);
1274 
1275 #define TASK_SET_GROUP  0
1276 #define TASK_MOVE_GROUP	1
1277 
1278 #ifdef CONFIG_FAIR_GROUP_SCHED
1279 	void (*task_change_group) (struct task_struct *p, int type);
1280 #endif
1281 };
1282 
1283 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1284 {
1285 	prev->sched_class->put_prev_task(rq, prev);
1286 }
1287 
1288 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1289 {
1290 	curr->sched_class->set_curr_task(rq);
1291 }
1292 
1293 #define sched_class_highest (&stop_sched_class)
1294 #define for_each_class(class) \
1295    for (class = sched_class_highest; class; class = class->next)
1296 
1297 extern const struct sched_class stop_sched_class;
1298 extern const struct sched_class dl_sched_class;
1299 extern const struct sched_class rt_sched_class;
1300 extern const struct sched_class fair_sched_class;
1301 extern const struct sched_class idle_sched_class;
1302 
1303 
1304 #ifdef CONFIG_SMP
1305 
1306 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1307 
1308 extern void trigger_load_balance(struct rq *rq);
1309 
1310 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1311 
1312 #endif
1313 
1314 #ifdef CONFIG_CPU_IDLE
1315 static inline void idle_set_state(struct rq *rq,
1316 				  struct cpuidle_state *idle_state)
1317 {
1318 	rq->idle_state = idle_state;
1319 }
1320 
1321 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1322 {
1323 	SCHED_WARN_ON(!rcu_read_lock_held());
1324 	return rq->idle_state;
1325 }
1326 #else
1327 static inline void idle_set_state(struct rq *rq,
1328 				  struct cpuidle_state *idle_state)
1329 {
1330 }
1331 
1332 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1333 {
1334 	return NULL;
1335 }
1336 #endif
1337 
1338 extern void sysrq_sched_debug_show(void);
1339 extern void sched_init_granularity(void);
1340 extern void update_max_interval(void);
1341 
1342 extern void init_sched_dl_class(void);
1343 extern void init_sched_rt_class(void);
1344 extern void init_sched_fair_class(void);
1345 
1346 extern void resched_curr(struct rq *rq);
1347 extern void resched_cpu(int cpu);
1348 
1349 extern struct rt_bandwidth def_rt_bandwidth;
1350 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1351 
1352 extern struct dl_bandwidth def_dl_bandwidth;
1353 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1354 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1355 
1356 unsigned long to_ratio(u64 period, u64 runtime);
1357 
1358 extern void init_entity_runnable_average(struct sched_entity *se);
1359 extern void post_init_entity_util_avg(struct sched_entity *se);
1360 
1361 #ifdef CONFIG_NO_HZ_FULL
1362 extern bool sched_can_stop_tick(struct rq *rq);
1363 
1364 /*
1365  * Tick may be needed by tasks in the runqueue depending on their policy and
1366  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1367  * nohz mode if necessary.
1368  */
1369 static inline void sched_update_tick_dependency(struct rq *rq)
1370 {
1371 	int cpu;
1372 
1373 	if (!tick_nohz_full_enabled())
1374 		return;
1375 
1376 	cpu = cpu_of(rq);
1377 
1378 	if (!tick_nohz_full_cpu(cpu))
1379 		return;
1380 
1381 	if (sched_can_stop_tick(rq))
1382 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1383 	else
1384 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1385 }
1386 #else
1387 static inline void sched_update_tick_dependency(struct rq *rq) { }
1388 #endif
1389 
1390 static inline void add_nr_running(struct rq *rq, unsigned count)
1391 {
1392 	unsigned prev_nr = rq->nr_running;
1393 
1394 	rq->nr_running = prev_nr + count;
1395 
1396 	if (prev_nr < 2 && rq->nr_running >= 2) {
1397 #ifdef CONFIG_SMP
1398 		if (!rq->rd->overload)
1399 			rq->rd->overload = true;
1400 #endif
1401 	}
1402 
1403 	sched_update_tick_dependency(rq);
1404 }
1405 
1406 static inline void sub_nr_running(struct rq *rq, unsigned count)
1407 {
1408 	rq->nr_running -= count;
1409 	/* Check if we still need preemption */
1410 	sched_update_tick_dependency(rq);
1411 }
1412 
1413 static inline void rq_last_tick_reset(struct rq *rq)
1414 {
1415 #ifdef CONFIG_NO_HZ_FULL
1416 	rq->last_sched_tick = jiffies;
1417 #endif
1418 }
1419 
1420 extern void update_rq_clock(struct rq *rq);
1421 
1422 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1423 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1424 
1425 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1426 
1427 extern const_debug unsigned int sysctl_sched_time_avg;
1428 extern const_debug unsigned int sysctl_sched_nr_migrate;
1429 extern const_debug unsigned int sysctl_sched_migration_cost;
1430 
1431 static inline u64 sched_avg_period(void)
1432 {
1433 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1434 }
1435 
1436 #ifdef CONFIG_SCHED_HRTICK
1437 
1438 /*
1439  * Use hrtick when:
1440  *  - enabled by features
1441  *  - hrtimer is actually high res
1442  */
1443 static inline int hrtick_enabled(struct rq *rq)
1444 {
1445 	if (!sched_feat(HRTICK))
1446 		return 0;
1447 	if (!cpu_active(cpu_of(rq)))
1448 		return 0;
1449 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1450 }
1451 
1452 void hrtick_start(struct rq *rq, u64 delay);
1453 
1454 #else
1455 
1456 static inline int hrtick_enabled(struct rq *rq)
1457 {
1458 	return 0;
1459 }
1460 
1461 #endif /* CONFIG_SCHED_HRTICK */
1462 
1463 #ifdef CONFIG_SMP
1464 extern void sched_avg_update(struct rq *rq);
1465 
1466 #ifndef arch_scale_freq_capacity
1467 static __always_inline
1468 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1469 {
1470 	return SCHED_CAPACITY_SCALE;
1471 }
1472 #endif
1473 
1474 #ifndef arch_scale_cpu_capacity
1475 static __always_inline
1476 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1477 {
1478 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1479 		return sd->smt_gain / sd->span_weight;
1480 
1481 	return SCHED_CAPACITY_SCALE;
1482 }
1483 #endif
1484 
1485 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1486 {
1487 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1488 	sched_avg_update(rq);
1489 }
1490 #else
1491 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1492 static inline void sched_avg_update(struct rq *rq) { }
1493 #endif
1494 
1495 struct rq_flags {
1496 	unsigned long flags;
1497 	struct pin_cookie cookie;
1498 };
1499 
1500 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1501 	__acquires(rq->lock);
1502 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1503 	__acquires(p->pi_lock)
1504 	__acquires(rq->lock);
1505 
1506 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1507 	__releases(rq->lock)
1508 {
1509 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1510 	raw_spin_unlock(&rq->lock);
1511 }
1512 
1513 static inline void
1514 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1515 	__releases(rq->lock)
1516 	__releases(p->pi_lock)
1517 {
1518 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1519 	raw_spin_unlock(&rq->lock);
1520 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1521 }
1522 
1523 #ifdef CONFIG_SMP
1524 #ifdef CONFIG_PREEMPT
1525 
1526 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1527 
1528 /*
1529  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1530  * way at the expense of forcing extra atomic operations in all
1531  * invocations.  This assures that the double_lock is acquired using the
1532  * same underlying policy as the spinlock_t on this architecture, which
1533  * reduces latency compared to the unfair variant below.  However, it
1534  * also adds more overhead and therefore may reduce throughput.
1535  */
1536 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1537 	__releases(this_rq->lock)
1538 	__acquires(busiest->lock)
1539 	__acquires(this_rq->lock)
1540 {
1541 	raw_spin_unlock(&this_rq->lock);
1542 	double_rq_lock(this_rq, busiest);
1543 
1544 	return 1;
1545 }
1546 
1547 #else
1548 /*
1549  * Unfair double_lock_balance: Optimizes throughput at the expense of
1550  * latency by eliminating extra atomic operations when the locks are
1551  * already in proper order on entry.  This favors lower cpu-ids and will
1552  * grant the double lock to lower cpus over higher ids under contention,
1553  * regardless of entry order into the function.
1554  */
1555 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1556 	__releases(this_rq->lock)
1557 	__acquires(busiest->lock)
1558 	__acquires(this_rq->lock)
1559 {
1560 	int ret = 0;
1561 
1562 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1563 		if (busiest < this_rq) {
1564 			raw_spin_unlock(&this_rq->lock);
1565 			raw_spin_lock(&busiest->lock);
1566 			raw_spin_lock_nested(&this_rq->lock,
1567 					      SINGLE_DEPTH_NESTING);
1568 			ret = 1;
1569 		} else
1570 			raw_spin_lock_nested(&busiest->lock,
1571 					      SINGLE_DEPTH_NESTING);
1572 	}
1573 	return ret;
1574 }
1575 
1576 #endif /* CONFIG_PREEMPT */
1577 
1578 /*
1579  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1580  */
1581 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1582 {
1583 	if (unlikely(!irqs_disabled())) {
1584 		/* printk() doesn't work good under rq->lock */
1585 		raw_spin_unlock(&this_rq->lock);
1586 		BUG_ON(1);
1587 	}
1588 
1589 	return _double_lock_balance(this_rq, busiest);
1590 }
1591 
1592 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1593 	__releases(busiest->lock)
1594 {
1595 	raw_spin_unlock(&busiest->lock);
1596 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1597 }
1598 
1599 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1600 {
1601 	if (l1 > l2)
1602 		swap(l1, l2);
1603 
1604 	spin_lock(l1);
1605 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1606 }
1607 
1608 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1609 {
1610 	if (l1 > l2)
1611 		swap(l1, l2);
1612 
1613 	spin_lock_irq(l1);
1614 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1615 }
1616 
1617 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1618 {
1619 	if (l1 > l2)
1620 		swap(l1, l2);
1621 
1622 	raw_spin_lock(l1);
1623 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1624 }
1625 
1626 /*
1627  * double_rq_lock - safely lock two runqueues
1628  *
1629  * Note this does not disable interrupts like task_rq_lock,
1630  * you need to do so manually before calling.
1631  */
1632 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1633 	__acquires(rq1->lock)
1634 	__acquires(rq2->lock)
1635 {
1636 	BUG_ON(!irqs_disabled());
1637 	if (rq1 == rq2) {
1638 		raw_spin_lock(&rq1->lock);
1639 		__acquire(rq2->lock);	/* Fake it out ;) */
1640 	} else {
1641 		if (rq1 < rq2) {
1642 			raw_spin_lock(&rq1->lock);
1643 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1644 		} else {
1645 			raw_spin_lock(&rq2->lock);
1646 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1647 		}
1648 	}
1649 }
1650 
1651 /*
1652  * double_rq_unlock - safely unlock two runqueues
1653  *
1654  * Note this does not restore interrupts like task_rq_unlock,
1655  * you need to do so manually after calling.
1656  */
1657 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1658 	__releases(rq1->lock)
1659 	__releases(rq2->lock)
1660 {
1661 	raw_spin_unlock(&rq1->lock);
1662 	if (rq1 != rq2)
1663 		raw_spin_unlock(&rq2->lock);
1664 	else
1665 		__release(rq2->lock);
1666 }
1667 
1668 #else /* CONFIG_SMP */
1669 
1670 /*
1671  * double_rq_lock - safely lock two runqueues
1672  *
1673  * Note this does not disable interrupts like task_rq_lock,
1674  * you need to do so manually before calling.
1675  */
1676 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1677 	__acquires(rq1->lock)
1678 	__acquires(rq2->lock)
1679 {
1680 	BUG_ON(!irqs_disabled());
1681 	BUG_ON(rq1 != rq2);
1682 	raw_spin_lock(&rq1->lock);
1683 	__acquire(rq2->lock);	/* Fake it out ;) */
1684 }
1685 
1686 /*
1687  * double_rq_unlock - safely unlock two runqueues
1688  *
1689  * Note this does not restore interrupts like task_rq_unlock,
1690  * you need to do so manually after calling.
1691  */
1692 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1693 	__releases(rq1->lock)
1694 	__releases(rq2->lock)
1695 {
1696 	BUG_ON(rq1 != rq2);
1697 	raw_spin_unlock(&rq1->lock);
1698 	__release(rq2->lock);
1699 }
1700 
1701 #endif
1702 
1703 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1704 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1705 
1706 #ifdef	CONFIG_SCHED_DEBUG
1707 extern void print_cfs_stats(struct seq_file *m, int cpu);
1708 extern void print_rt_stats(struct seq_file *m, int cpu);
1709 extern void print_dl_stats(struct seq_file *m, int cpu);
1710 extern void
1711 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1712 
1713 #ifdef CONFIG_NUMA_BALANCING
1714 extern void
1715 show_numa_stats(struct task_struct *p, struct seq_file *m);
1716 extern void
1717 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1718 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1719 #endif /* CONFIG_NUMA_BALANCING */
1720 #endif /* CONFIG_SCHED_DEBUG */
1721 
1722 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1723 extern void init_rt_rq(struct rt_rq *rt_rq);
1724 extern void init_dl_rq(struct dl_rq *dl_rq);
1725 
1726 extern void cfs_bandwidth_usage_inc(void);
1727 extern void cfs_bandwidth_usage_dec(void);
1728 
1729 #ifdef CONFIG_NO_HZ_COMMON
1730 enum rq_nohz_flag_bits {
1731 	NOHZ_TICK_STOPPED,
1732 	NOHZ_BALANCE_KICK,
1733 };
1734 
1735 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1736 
1737 extern void nohz_balance_exit_idle(unsigned int cpu);
1738 #else
1739 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1740 #endif
1741 
1742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1743 struct irqtime {
1744 	u64			hardirq_time;
1745 	u64			softirq_time;
1746 	u64			irq_start_time;
1747 	struct u64_stats_sync	sync;
1748 };
1749 
1750 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1751 
1752 static inline u64 irq_time_read(int cpu)
1753 {
1754 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1755 	unsigned int seq;
1756 	u64 total;
1757 
1758 	do {
1759 		seq = __u64_stats_fetch_begin(&irqtime->sync);
1760 		total = irqtime->softirq_time + irqtime->hardirq_time;
1761 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1762 
1763 	return total;
1764 }
1765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1766 
1767 #ifdef CONFIG_CPU_FREQ
1768 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1769 
1770 /**
1771  * cpufreq_update_util - Take a note about CPU utilization changes.
1772  * @rq: Runqueue to carry out the update for.
1773  * @flags: Update reason flags.
1774  *
1775  * This function is called by the scheduler on the CPU whose utilization is
1776  * being updated.
1777  *
1778  * It can only be called from RCU-sched read-side critical sections.
1779  *
1780  * The way cpufreq is currently arranged requires it to evaluate the CPU
1781  * performance state (frequency/voltage) on a regular basis to prevent it from
1782  * being stuck in a completely inadequate performance level for too long.
1783  * That is not guaranteed to happen if the updates are only triggered from CFS,
1784  * though, because they may not be coming in if RT or deadline tasks are active
1785  * all the time (or there are RT and DL tasks only).
1786  *
1787  * As a workaround for that issue, this function is called by the RT and DL
1788  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1789  * but that really is a band-aid.  Going forward it should be replaced with
1790  * solutions targeted more specifically at RT and DL tasks.
1791  */
1792 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1793 {
1794 	struct update_util_data *data;
1795 
1796 	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1797 	if (data)
1798 		data->func(data, rq_clock(rq), flags);
1799 }
1800 
1801 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1802 {
1803 	if (cpu_of(rq) == smp_processor_id())
1804 		cpufreq_update_util(rq, flags);
1805 }
1806 #else
1807 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1808 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1809 #endif /* CONFIG_CPU_FREQ */
1810 
1811 #ifdef arch_scale_freq_capacity
1812 #ifndef arch_scale_freq_invariant
1813 #define arch_scale_freq_invariant()	(true)
1814 #endif
1815 #else /* arch_scale_freq_capacity */
1816 #define arch_scale_freq_invariant()	(false)
1817 #endif
1818