1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/mutex.h> 6 #include <linux/spinlock.h> 7 #include <linux/stop_machine.h> 8 #include <linux/tick.h> 9 10 #include "cpupri.h" 11 #include "cpuacct.h" 12 13 extern __read_mostly int scheduler_running; 14 15 /* 16 * Convert user-nice values [ -20 ... 0 ... 19 ] 17 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 18 * and back. 19 */ 20 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 21 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 22 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 23 24 /* 25 * 'User priority' is the nice value converted to something we 26 * can work with better when scaling various scheduler parameters, 27 * it's a [ 0 ... 39 ] range. 28 */ 29 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 30 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 31 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 32 33 /* 34 * Helpers for converting nanosecond timing to jiffy resolution 35 */ 36 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 37 38 /* 39 * Increase resolution of nice-level calculations for 64-bit architectures. 40 * The extra resolution improves shares distribution and load balancing of 41 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 42 * hierarchies, especially on larger systems. This is not a user-visible change 43 * and does not change the user-interface for setting shares/weights. 44 * 45 * We increase resolution only if we have enough bits to allow this increased 46 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 47 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 48 * increased costs. 49 */ 50 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 51 # define SCHED_LOAD_RESOLUTION 10 52 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 53 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 54 #else 55 # define SCHED_LOAD_RESOLUTION 0 56 # define scale_load(w) (w) 57 # define scale_load_down(w) (w) 58 #endif 59 60 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 61 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 62 63 #define NICE_0_LOAD SCHED_LOAD_SCALE 64 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 65 66 /* 67 * These are the 'tuning knobs' of the scheduler: 68 */ 69 70 /* 71 * single value that denotes runtime == period, ie unlimited time. 72 */ 73 #define RUNTIME_INF ((u64)~0ULL) 74 75 static inline int rt_policy(int policy) 76 { 77 if (policy == SCHED_FIFO || policy == SCHED_RR) 78 return 1; 79 return 0; 80 } 81 82 static inline int task_has_rt_policy(struct task_struct *p) 83 { 84 return rt_policy(p->policy); 85 } 86 87 /* 88 * This is the priority-queue data structure of the RT scheduling class: 89 */ 90 struct rt_prio_array { 91 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 92 struct list_head queue[MAX_RT_PRIO]; 93 }; 94 95 struct rt_bandwidth { 96 /* nests inside the rq lock: */ 97 raw_spinlock_t rt_runtime_lock; 98 ktime_t rt_period; 99 u64 rt_runtime; 100 struct hrtimer rt_period_timer; 101 }; 102 103 extern struct mutex sched_domains_mutex; 104 105 #ifdef CONFIG_CGROUP_SCHED 106 107 #include <linux/cgroup.h> 108 109 struct cfs_rq; 110 struct rt_rq; 111 112 extern struct list_head task_groups; 113 114 struct cfs_bandwidth { 115 #ifdef CONFIG_CFS_BANDWIDTH 116 raw_spinlock_t lock; 117 ktime_t period; 118 u64 quota, runtime; 119 s64 hierarchal_quota; 120 u64 runtime_expires; 121 122 int idle, timer_active; 123 struct hrtimer period_timer, slack_timer; 124 struct list_head throttled_cfs_rq; 125 126 /* statistics */ 127 int nr_periods, nr_throttled; 128 u64 throttled_time; 129 #endif 130 }; 131 132 /* task group related information */ 133 struct task_group { 134 struct cgroup_subsys_state css; 135 136 #ifdef CONFIG_FAIR_GROUP_SCHED 137 /* schedulable entities of this group on each cpu */ 138 struct sched_entity **se; 139 /* runqueue "owned" by this group on each cpu */ 140 struct cfs_rq **cfs_rq; 141 unsigned long shares; 142 143 atomic_t load_weight; 144 atomic64_t load_avg; 145 atomic_t runnable_avg; 146 #endif 147 148 #ifdef CONFIG_RT_GROUP_SCHED 149 struct sched_rt_entity **rt_se; 150 struct rt_rq **rt_rq; 151 152 struct rt_bandwidth rt_bandwidth; 153 #endif 154 155 struct rcu_head rcu; 156 struct list_head list; 157 158 struct task_group *parent; 159 struct list_head siblings; 160 struct list_head children; 161 162 #ifdef CONFIG_SCHED_AUTOGROUP 163 struct autogroup *autogroup; 164 #endif 165 166 struct cfs_bandwidth cfs_bandwidth; 167 }; 168 169 #ifdef CONFIG_FAIR_GROUP_SCHED 170 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 171 172 /* 173 * A weight of 0 or 1 can cause arithmetics problems. 174 * A weight of a cfs_rq is the sum of weights of which entities 175 * are queued on this cfs_rq, so a weight of a entity should not be 176 * too large, so as the shares value of a task group. 177 * (The default weight is 1024 - so there's no practical 178 * limitation from this.) 179 */ 180 #define MIN_SHARES (1UL << 1) 181 #define MAX_SHARES (1UL << 18) 182 #endif 183 184 typedef int (*tg_visitor)(struct task_group *, void *); 185 186 extern int walk_tg_tree_from(struct task_group *from, 187 tg_visitor down, tg_visitor up, void *data); 188 189 /* 190 * Iterate the full tree, calling @down when first entering a node and @up when 191 * leaving it for the final time. 192 * 193 * Caller must hold rcu_lock or sufficient equivalent. 194 */ 195 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 196 { 197 return walk_tg_tree_from(&root_task_group, down, up, data); 198 } 199 200 extern int tg_nop(struct task_group *tg, void *data); 201 202 extern void free_fair_sched_group(struct task_group *tg); 203 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 204 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 205 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 206 struct sched_entity *se, int cpu, 207 struct sched_entity *parent); 208 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 209 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 210 211 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 212 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 213 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 214 215 extern void free_rt_sched_group(struct task_group *tg); 216 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 217 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 218 struct sched_rt_entity *rt_se, int cpu, 219 struct sched_rt_entity *parent); 220 221 extern struct task_group *sched_create_group(struct task_group *parent); 222 extern void sched_online_group(struct task_group *tg, 223 struct task_group *parent); 224 extern void sched_destroy_group(struct task_group *tg); 225 extern void sched_offline_group(struct task_group *tg); 226 227 extern void sched_move_task(struct task_struct *tsk); 228 229 #ifdef CONFIG_FAIR_GROUP_SCHED 230 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 231 #endif 232 233 #else /* CONFIG_CGROUP_SCHED */ 234 235 struct cfs_bandwidth { }; 236 237 #endif /* CONFIG_CGROUP_SCHED */ 238 239 /* CFS-related fields in a runqueue */ 240 struct cfs_rq { 241 struct load_weight load; 242 unsigned int nr_running, h_nr_running; 243 244 u64 exec_clock; 245 u64 min_vruntime; 246 #ifndef CONFIG_64BIT 247 u64 min_vruntime_copy; 248 #endif 249 250 struct rb_root tasks_timeline; 251 struct rb_node *rb_leftmost; 252 253 /* 254 * 'curr' points to currently running entity on this cfs_rq. 255 * It is set to NULL otherwise (i.e when none are currently running). 256 */ 257 struct sched_entity *curr, *next, *last, *skip; 258 259 #ifdef CONFIG_SCHED_DEBUG 260 unsigned int nr_spread_over; 261 #endif 262 263 #ifdef CONFIG_SMP 264 /* 265 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 266 * removed when useful for applications beyond shares distribution (e.g. 267 * load-balance). 268 */ 269 #ifdef CONFIG_FAIR_GROUP_SCHED 270 /* 271 * CFS Load tracking 272 * Under CFS, load is tracked on a per-entity basis and aggregated up. 273 * This allows for the description of both thread and group usage (in 274 * the FAIR_GROUP_SCHED case). 275 */ 276 u64 runnable_load_avg, blocked_load_avg; 277 atomic64_t decay_counter, removed_load; 278 u64 last_decay; 279 #endif /* CONFIG_FAIR_GROUP_SCHED */ 280 /* These always depend on CONFIG_FAIR_GROUP_SCHED */ 281 #ifdef CONFIG_FAIR_GROUP_SCHED 282 u32 tg_runnable_contrib; 283 u64 tg_load_contrib; 284 #endif /* CONFIG_FAIR_GROUP_SCHED */ 285 286 /* 287 * h_load = weight * f(tg) 288 * 289 * Where f(tg) is the recursive weight fraction assigned to 290 * this group. 291 */ 292 unsigned long h_load; 293 #endif /* CONFIG_SMP */ 294 295 #ifdef CONFIG_FAIR_GROUP_SCHED 296 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 297 298 /* 299 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 300 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 301 * (like users, containers etc.) 302 * 303 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 304 * list is used during load balance. 305 */ 306 int on_list; 307 struct list_head leaf_cfs_rq_list; 308 struct task_group *tg; /* group that "owns" this runqueue */ 309 310 #ifdef CONFIG_CFS_BANDWIDTH 311 int runtime_enabled; 312 u64 runtime_expires; 313 s64 runtime_remaining; 314 315 u64 throttled_clock, throttled_clock_task; 316 u64 throttled_clock_task_time; 317 int throttled, throttle_count; 318 struct list_head throttled_list; 319 #endif /* CONFIG_CFS_BANDWIDTH */ 320 #endif /* CONFIG_FAIR_GROUP_SCHED */ 321 }; 322 323 static inline int rt_bandwidth_enabled(void) 324 { 325 return sysctl_sched_rt_runtime >= 0; 326 } 327 328 /* Real-Time classes' related field in a runqueue: */ 329 struct rt_rq { 330 struct rt_prio_array active; 331 unsigned int rt_nr_running; 332 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 333 struct { 334 int curr; /* highest queued rt task prio */ 335 #ifdef CONFIG_SMP 336 int next; /* next highest */ 337 #endif 338 } highest_prio; 339 #endif 340 #ifdef CONFIG_SMP 341 unsigned long rt_nr_migratory; 342 unsigned long rt_nr_total; 343 int overloaded; 344 struct plist_head pushable_tasks; 345 #endif 346 int rt_throttled; 347 u64 rt_time; 348 u64 rt_runtime; 349 /* Nests inside the rq lock: */ 350 raw_spinlock_t rt_runtime_lock; 351 352 #ifdef CONFIG_RT_GROUP_SCHED 353 unsigned long rt_nr_boosted; 354 355 struct rq *rq; 356 struct list_head leaf_rt_rq_list; 357 struct task_group *tg; 358 #endif 359 }; 360 361 #ifdef CONFIG_SMP 362 363 /* 364 * We add the notion of a root-domain which will be used to define per-domain 365 * variables. Each exclusive cpuset essentially defines an island domain by 366 * fully partitioning the member cpus from any other cpuset. Whenever a new 367 * exclusive cpuset is created, we also create and attach a new root-domain 368 * object. 369 * 370 */ 371 struct root_domain { 372 atomic_t refcount; 373 atomic_t rto_count; 374 struct rcu_head rcu; 375 cpumask_var_t span; 376 cpumask_var_t online; 377 378 /* 379 * The "RT overload" flag: it gets set if a CPU has more than 380 * one runnable RT task. 381 */ 382 cpumask_var_t rto_mask; 383 struct cpupri cpupri; 384 }; 385 386 extern struct root_domain def_root_domain; 387 388 #endif /* CONFIG_SMP */ 389 390 /* 391 * This is the main, per-CPU runqueue data structure. 392 * 393 * Locking rule: those places that want to lock multiple runqueues 394 * (such as the load balancing or the thread migration code), lock 395 * acquire operations must be ordered by ascending &runqueue. 396 */ 397 struct rq { 398 /* runqueue lock: */ 399 raw_spinlock_t lock; 400 401 /* 402 * nr_running and cpu_load should be in the same cacheline because 403 * remote CPUs use both these fields when doing load calculation. 404 */ 405 unsigned int nr_running; 406 #define CPU_LOAD_IDX_MAX 5 407 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 408 unsigned long last_load_update_tick; 409 #ifdef CONFIG_NO_HZ_COMMON 410 u64 nohz_stamp; 411 unsigned long nohz_flags; 412 #endif 413 #ifdef CONFIG_NO_HZ_FULL 414 unsigned long last_sched_tick; 415 #endif 416 int skip_clock_update; 417 418 /* capture load from *all* tasks on this cpu: */ 419 struct load_weight load; 420 unsigned long nr_load_updates; 421 u64 nr_switches; 422 423 struct cfs_rq cfs; 424 struct rt_rq rt; 425 426 #ifdef CONFIG_FAIR_GROUP_SCHED 427 /* list of leaf cfs_rq on this cpu: */ 428 struct list_head leaf_cfs_rq_list; 429 #ifdef CONFIG_SMP 430 unsigned long h_load_throttle; 431 #endif /* CONFIG_SMP */ 432 #endif /* CONFIG_FAIR_GROUP_SCHED */ 433 434 #ifdef CONFIG_RT_GROUP_SCHED 435 struct list_head leaf_rt_rq_list; 436 #endif 437 438 /* 439 * This is part of a global counter where only the total sum 440 * over all CPUs matters. A task can increase this counter on 441 * one CPU and if it got migrated afterwards it may decrease 442 * it on another CPU. Always updated under the runqueue lock: 443 */ 444 unsigned long nr_uninterruptible; 445 446 struct task_struct *curr, *idle, *stop; 447 unsigned long next_balance; 448 struct mm_struct *prev_mm; 449 450 u64 clock; 451 u64 clock_task; 452 453 atomic_t nr_iowait; 454 455 #ifdef CONFIG_SMP 456 struct root_domain *rd; 457 struct sched_domain *sd; 458 459 unsigned long cpu_power; 460 461 unsigned char idle_balance; 462 /* For active balancing */ 463 int post_schedule; 464 int active_balance; 465 int push_cpu; 466 struct cpu_stop_work active_balance_work; 467 /* cpu of this runqueue: */ 468 int cpu; 469 int online; 470 471 struct list_head cfs_tasks; 472 473 u64 rt_avg; 474 u64 age_stamp; 475 u64 idle_stamp; 476 u64 avg_idle; 477 #endif 478 479 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 480 u64 prev_irq_time; 481 #endif 482 #ifdef CONFIG_PARAVIRT 483 u64 prev_steal_time; 484 #endif 485 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 486 u64 prev_steal_time_rq; 487 #endif 488 489 /* calc_load related fields */ 490 unsigned long calc_load_update; 491 long calc_load_active; 492 493 #ifdef CONFIG_SCHED_HRTICK 494 #ifdef CONFIG_SMP 495 int hrtick_csd_pending; 496 struct call_single_data hrtick_csd; 497 #endif 498 struct hrtimer hrtick_timer; 499 #endif 500 501 #ifdef CONFIG_SCHEDSTATS 502 /* latency stats */ 503 struct sched_info rq_sched_info; 504 unsigned long long rq_cpu_time; 505 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 506 507 /* sys_sched_yield() stats */ 508 unsigned int yld_count; 509 510 /* schedule() stats */ 511 unsigned int sched_count; 512 unsigned int sched_goidle; 513 514 /* try_to_wake_up() stats */ 515 unsigned int ttwu_count; 516 unsigned int ttwu_local; 517 #endif 518 519 #ifdef CONFIG_SMP 520 struct llist_head wake_list; 521 #endif 522 523 struct sched_avg avg; 524 }; 525 526 static inline int cpu_of(struct rq *rq) 527 { 528 #ifdef CONFIG_SMP 529 return rq->cpu; 530 #else 531 return 0; 532 #endif 533 } 534 535 DECLARE_PER_CPU(struct rq, runqueues); 536 537 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 538 #define this_rq() (&__get_cpu_var(runqueues)) 539 #define task_rq(p) cpu_rq(task_cpu(p)) 540 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 541 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 542 543 #ifdef CONFIG_SMP 544 545 #define rcu_dereference_check_sched_domain(p) \ 546 rcu_dereference_check((p), \ 547 lockdep_is_held(&sched_domains_mutex)) 548 549 /* 550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 551 * See detach_destroy_domains: synchronize_sched for details. 552 * 553 * The domain tree of any CPU may only be accessed from within 554 * preempt-disabled sections. 555 */ 556 #define for_each_domain(cpu, __sd) \ 557 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 558 __sd; __sd = __sd->parent) 559 560 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 561 562 /** 563 * highest_flag_domain - Return highest sched_domain containing flag. 564 * @cpu: The cpu whose highest level of sched domain is to 565 * be returned. 566 * @flag: The flag to check for the highest sched_domain 567 * for the given cpu. 568 * 569 * Returns the highest sched_domain of a cpu which contains the given flag. 570 */ 571 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 572 { 573 struct sched_domain *sd, *hsd = NULL; 574 575 for_each_domain(cpu, sd) { 576 if (!(sd->flags & flag)) 577 break; 578 hsd = sd; 579 } 580 581 return hsd; 582 } 583 584 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 585 DECLARE_PER_CPU(int, sd_llc_id); 586 587 struct sched_group_power { 588 atomic_t ref; 589 /* 590 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 591 * single CPU. 592 */ 593 unsigned int power, power_orig; 594 unsigned long next_update; 595 /* 596 * Number of busy cpus in this group. 597 */ 598 atomic_t nr_busy_cpus; 599 600 unsigned long cpumask[0]; /* iteration mask */ 601 }; 602 603 struct sched_group { 604 struct sched_group *next; /* Must be a circular list */ 605 atomic_t ref; 606 607 unsigned int group_weight; 608 struct sched_group_power *sgp; 609 610 /* 611 * The CPUs this group covers. 612 * 613 * NOTE: this field is variable length. (Allocated dynamically 614 * by attaching extra space to the end of the structure, 615 * depending on how many CPUs the kernel has booted up with) 616 */ 617 unsigned long cpumask[0]; 618 }; 619 620 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 621 { 622 return to_cpumask(sg->cpumask); 623 } 624 625 /* 626 * cpumask masking which cpus in the group are allowed to iterate up the domain 627 * tree. 628 */ 629 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 630 { 631 return to_cpumask(sg->sgp->cpumask); 632 } 633 634 /** 635 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 636 * @group: The group whose first cpu is to be returned. 637 */ 638 static inline unsigned int group_first_cpu(struct sched_group *group) 639 { 640 return cpumask_first(sched_group_cpus(group)); 641 } 642 643 extern int group_balance_cpu(struct sched_group *sg); 644 645 #endif /* CONFIG_SMP */ 646 647 #include "stats.h" 648 #include "auto_group.h" 649 650 #ifdef CONFIG_CGROUP_SCHED 651 652 /* 653 * Return the group to which this tasks belongs. 654 * 655 * We cannot use task_subsys_state() and friends because the cgroup 656 * subsystem changes that value before the cgroup_subsys::attach() method 657 * is called, therefore we cannot pin it and might observe the wrong value. 658 * 659 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 660 * core changes this before calling sched_move_task(). 661 * 662 * Instead we use a 'copy' which is updated from sched_move_task() while 663 * holding both task_struct::pi_lock and rq::lock. 664 */ 665 static inline struct task_group *task_group(struct task_struct *p) 666 { 667 return p->sched_task_group; 668 } 669 670 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 671 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 672 { 673 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 674 struct task_group *tg = task_group(p); 675 #endif 676 677 #ifdef CONFIG_FAIR_GROUP_SCHED 678 p->se.cfs_rq = tg->cfs_rq[cpu]; 679 p->se.parent = tg->se[cpu]; 680 #endif 681 682 #ifdef CONFIG_RT_GROUP_SCHED 683 p->rt.rt_rq = tg->rt_rq[cpu]; 684 p->rt.parent = tg->rt_se[cpu]; 685 #endif 686 } 687 688 #else /* CONFIG_CGROUP_SCHED */ 689 690 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 691 static inline struct task_group *task_group(struct task_struct *p) 692 { 693 return NULL; 694 } 695 696 #endif /* CONFIG_CGROUP_SCHED */ 697 698 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 699 { 700 set_task_rq(p, cpu); 701 #ifdef CONFIG_SMP 702 /* 703 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 704 * successfuly executed on another CPU. We must ensure that updates of 705 * per-task data have been completed by this moment. 706 */ 707 smp_wmb(); 708 task_thread_info(p)->cpu = cpu; 709 #endif 710 } 711 712 /* 713 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 714 */ 715 #ifdef CONFIG_SCHED_DEBUG 716 # include <linux/static_key.h> 717 # define const_debug __read_mostly 718 #else 719 # define const_debug const 720 #endif 721 722 extern const_debug unsigned int sysctl_sched_features; 723 724 #define SCHED_FEAT(name, enabled) \ 725 __SCHED_FEAT_##name , 726 727 enum { 728 #include "features.h" 729 __SCHED_FEAT_NR, 730 }; 731 732 #undef SCHED_FEAT 733 734 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 735 static __always_inline bool static_branch__true(struct static_key *key) 736 { 737 return static_key_true(key); /* Not out of line branch. */ 738 } 739 740 static __always_inline bool static_branch__false(struct static_key *key) 741 { 742 return static_key_false(key); /* Out of line branch. */ 743 } 744 745 #define SCHED_FEAT(name, enabled) \ 746 static __always_inline bool static_branch_##name(struct static_key *key) \ 747 { \ 748 return static_branch__##enabled(key); \ 749 } 750 751 #include "features.h" 752 753 #undef SCHED_FEAT 754 755 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 756 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 757 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 758 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 759 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 760 761 #ifdef CONFIG_NUMA_BALANCING 762 #define sched_feat_numa(x) sched_feat(x) 763 #ifdef CONFIG_SCHED_DEBUG 764 #define numabalancing_enabled sched_feat_numa(NUMA) 765 #else 766 extern bool numabalancing_enabled; 767 #endif /* CONFIG_SCHED_DEBUG */ 768 #else 769 #define sched_feat_numa(x) (0) 770 #define numabalancing_enabled (0) 771 #endif /* CONFIG_NUMA_BALANCING */ 772 773 static inline u64 global_rt_period(void) 774 { 775 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 776 } 777 778 static inline u64 global_rt_runtime(void) 779 { 780 if (sysctl_sched_rt_runtime < 0) 781 return RUNTIME_INF; 782 783 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 784 } 785 786 787 788 static inline int task_current(struct rq *rq, struct task_struct *p) 789 { 790 return rq->curr == p; 791 } 792 793 static inline int task_running(struct rq *rq, struct task_struct *p) 794 { 795 #ifdef CONFIG_SMP 796 return p->on_cpu; 797 #else 798 return task_current(rq, p); 799 #endif 800 } 801 802 803 #ifndef prepare_arch_switch 804 # define prepare_arch_switch(next) do { } while (0) 805 #endif 806 #ifndef finish_arch_switch 807 # define finish_arch_switch(prev) do { } while (0) 808 #endif 809 #ifndef finish_arch_post_lock_switch 810 # define finish_arch_post_lock_switch() do { } while (0) 811 #endif 812 813 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 814 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 815 { 816 #ifdef CONFIG_SMP 817 /* 818 * We can optimise this out completely for !SMP, because the 819 * SMP rebalancing from interrupt is the only thing that cares 820 * here. 821 */ 822 next->on_cpu = 1; 823 #endif 824 } 825 826 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 827 { 828 #ifdef CONFIG_SMP 829 /* 830 * After ->on_cpu is cleared, the task can be moved to a different CPU. 831 * We must ensure this doesn't happen until the switch is completely 832 * finished. 833 */ 834 smp_wmb(); 835 prev->on_cpu = 0; 836 #endif 837 #ifdef CONFIG_DEBUG_SPINLOCK 838 /* this is a valid case when another task releases the spinlock */ 839 rq->lock.owner = current; 840 #endif 841 /* 842 * If we are tracking spinlock dependencies then we have to 843 * fix up the runqueue lock - which gets 'carried over' from 844 * prev into current: 845 */ 846 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 847 848 raw_spin_unlock_irq(&rq->lock); 849 } 850 851 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 853 { 854 #ifdef CONFIG_SMP 855 /* 856 * We can optimise this out completely for !SMP, because the 857 * SMP rebalancing from interrupt is the only thing that cares 858 * here. 859 */ 860 next->on_cpu = 1; 861 #endif 862 raw_spin_unlock(&rq->lock); 863 } 864 865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 866 { 867 #ifdef CONFIG_SMP 868 /* 869 * After ->on_cpu is cleared, the task can be moved to a different CPU. 870 * We must ensure this doesn't happen until the switch is completely 871 * finished. 872 */ 873 smp_wmb(); 874 prev->on_cpu = 0; 875 #endif 876 local_irq_enable(); 877 } 878 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 879 880 /* 881 * wake flags 882 */ 883 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 884 #define WF_FORK 0x02 /* child wakeup after fork */ 885 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 886 887 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 888 { 889 lw->weight += inc; 890 lw->inv_weight = 0; 891 } 892 893 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 894 { 895 lw->weight -= dec; 896 lw->inv_weight = 0; 897 } 898 899 static inline void update_load_set(struct load_weight *lw, unsigned long w) 900 { 901 lw->weight = w; 902 lw->inv_weight = 0; 903 } 904 905 /* 906 * To aid in avoiding the subversion of "niceness" due to uneven distribution 907 * of tasks with abnormal "nice" values across CPUs the contribution that 908 * each task makes to its run queue's load is weighted according to its 909 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 910 * scaled version of the new time slice allocation that they receive on time 911 * slice expiry etc. 912 */ 913 914 #define WEIGHT_IDLEPRIO 3 915 #define WMULT_IDLEPRIO 1431655765 916 917 /* 918 * Nice levels are multiplicative, with a gentle 10% change for every 919 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 920 * nice 1, it will get ~10% less CPU time than another CPU-bound task 921 * that remained on nice 0. 922 * 923 * The "10% effect" is relative and cumulative: from _any_ nice level, 924 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 925 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 926 * If a task goes up by ~10% and another task goes down by ~10% then 927 * the relative distance between them is ~25%.) 928 */ 929 static const int prio_to_weight[40] = { 930 /* -20 */ 88761, 71755, 56483, 46273, 36291, 931 /* -15 */ 29154, 23254, 18705, 14949, 11916, 932 /* -10 */ 9548, 7620, 6100, 4904, 3906, 933 /* -5 */ 3121, 2501, 1991, 1586, 1277, 934 /* 0 */ 1024, 820, 655, 526, 423, 935 /* 5 */ 335, 272, 215, 172, 137, 936 /* 10 */ 110, 87, 70, 56, 45, 937 /* 15 */ 36, 29, 23, 18, 15, 938 }; 939 940 /* 941 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 942 * 943 * In cases where the weight does not change often, we can use the 944 * precalculated inverse to speed up arithmetics by turning divisions 945 * into multiplications: 946 */ 947 static const u32 prio_to_wmult[40] = { 948 /* -20 */ 48388, 59856, 76040, 92818, 118348, 949 /* -15 */ 147320, 184698, 229616, 287308, 360437, 950 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 951 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 952 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 953 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 954 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 955 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 956 }; 957 958 #define ENQUEUE_WAKEUP 1 959 #define ENQUEUE_HEAD 2 960 #ifdef CONFIG_SMP 961 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 962 #else 963 #define ENQUEUE_WAKING 0 964 #endif 965 966 #define DEQUEUE_SLEEP 1 967 968 struct sched_class { 969 const struct sched_class *next; 970 971 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 972 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 973 void (*yield_task) (struct rq *rq); 974 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 975 976 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 977 978 struct task_struct * (*pick_next_task) (struct rq *rq); 979 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 980 981 #ifdef CONFIG_SMP 982 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 983 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 984 985 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 986 void (*post_schedule) (struct rq *this_rq); 987 void (*task_waking) (struct task_struct *task); 988 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 989 990 void (*set_cpus_allowed)(struct task_struct *p, 991 const struct cpumask *newmask); 992 993 void (*rq_online)(struct rq *rq); 994 void (*rq_offline)(struct rq *rq); 995 #endif 996 997 void (*set_curr_task) (struct rq *rq); 998 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 999 void (*task_fork) (struct task_struct *p); 1000 1001 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1002 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1003 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1004 int oldprio); 1005 1006 unsigned int (*get_rr_interval) (struct rq *rq, 1007 struct task_struct *task); 1008 1009 #ifdef CONFIG_FAIR_GROUP_SCHED 1010 void (*task_move_group) (struct task_struct *p, int on_rq); 1011 #endif 1012 }; 1013 1014 #define sched_class_highest (&stop_sched_class) 1015 #define for_each_class(class) \ 1016 for (class = sched_class_highest; class; class = class->next) 1017 1018 extern const struct sched_class stop_sched_class; 1019 extern const struct sched_class rt_sched_class; 1020 extern const struct sched_class fair_sched_class; 1021 extern const struct sched_class idle_sched_class; 1022 1023 1024 #ifdef CONFIG_SMP 1025 1026 extern void update_group_power(struct sched_domain *sd, int cpu); 1027 1028 extern void trigger_load_balance(struct rq *rq, int cpu); 1029 extern void idle_balance(int this_cpu, struct rq *this_rq); 1030 1031 /* 1032 * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg 1033 * becomes useful in lb 1034 */ 1035 #if defined(CONFIG_FAIR_GROUP_SCHED) 1036 extern void idle_enter_fair(struct rq *this_rq); 1037 extern void idle_exit_fair(struct rq *this_rq); 1038 #else 1039 static inline void idle_enter_fair(struct rq *this_rq) {} 1040 static inline void idle_exit_fair(struct rq *this_rq) {} 1041 #endif 1042 1043 #else /* CONFIG_SMP */ 1044 1045 static inline void idle_balance(int cpu, struct rq *rq) 1046 { 1047 } 1048 1049 #endif 1050 1051 extern void sysrq_sched_debug_show(void); 1052 extern void sched_init_granularity(void); 1053 extern void update_max_interval(void); 1054 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); 1055 extern void init_sched_rt_class(void); 1056 extern void init_sched_fair_class(void); 1057 1058 extern void resched_task(struct task_struct *p); 1059 extern void resched_cpu(int cpu); 1060 1061 extern struct rt_bandwidth def_rt_bandwidth; 1062 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1063 1064 extern void update_idle_cpu_load(struct rq *this_rq); 1065 1066 #ifdef CONFIG_PARAVIRT 1067 static inline u64 steal_ticks(u64 steal) 1068 { 1069 if (unlikely(steal > NSEC_PER_SEC)) 1070 return div_u64(steal, TICK_NSEC); 1071 1072 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 1073 } 1074 #endif 1075 1076 static inline void inc_nr_running(struct rq *rq) 1077 { 1078 rq->nr_running++; 1079 1080 #ifdef CONFIG_NO_HZ_FULL 1081 if (rq->nr_running == 2) { 1082 if (tick_nohz_full_cpu(rq->cpu)) { 1083 /* Order rq->nr_running write against the IPI */ 1084 smp_wmb(); 1085 smp_send_reschedule(rq->cpu); 1086 } 1087 } 1088 #endif 1089 } 1090 1091 static inline void dec_nr_running(struct rq *rq) 1092 { 1093 rq->nr_running--; 1094 } 1095 1096 static inline void rq_last_tick_reset(struct rq *rq) 1097 { 1098 #ifdef CONFIG_NO_HZ_FULL 1099 rq->last_sched_tick = jiffies; 1100 #endif 1101 } 1102 1103 extern void update_rq_clock(struct rq *rq); 1104 1105 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1106 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1107 1108 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1109 1110 extern const_debug unsigned int sysctl_sched_time_avg; 1111 extern const_debug unsigned int sysctl_sched_nr_migrate; 1112 extern const_debug unsigned int sysctl_sched_migration_cost; 1113 1114 static inline u64 sched_avg_period(void) 1115 { 1116 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1117 } 1118 1119 #ifdef CONFIG_SCHED_HRTICK 1120 1121 /* 1122 * Use hrtick when: 1123 * - enabled by features 1124 * - hrtimer is actually high res 1125 */ 1126 static inline int hrtick_enabled(struct rq *rq) 1127 { 1128 if (!sched_feat(HRTICK)) 1129 return 0; 1130 if (!cpu_active(cpu_of(rq))) 1131 return 0; 1132 return hrtimer_is_hres_active(&rq->hrtick_timer); 1133 } 1134 1135 void hrtick_start(struct rq *rq, u64 delay); 1136 1137 #else 1138 1139 static inline int hrtick_enabled(struct rq *rq) 1140 { 1141 return 0; 1142 } 1143 1144 #endif /* CONFIG_SCHED_HRTICK */ 1145 1146 #ifdef CONFIG_SMP 1147 extern void sched_avg_update(struct rq *rq); 1148 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1149 { 1150 rq->rt_avg += rt_delta; 1151 sched_avg_update(rq); 1152 } 1153 #else 1154 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1155 static inline void sched_avg_update(struct rq *rq) { } 1156 #endif 1157 1158 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1159 1160 #ifdef CONFIG_SMP 1161 #ifdef CONFIG_PREEMPT 1162 1163 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1164 1165 /* 1166 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1167 * way at the expense of forcing extra atomic operations in all 1168 * invocations. This assures that the double_lock is acquired using the 1169 * same underlying policy as the spinlock_t on this architecture, which 1170 * reduces latency compared to the unfair variant below. However, it 1171 * also adds more overhead and therefore may reduce throughput. 1172 */ 1173 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1174 __releases(this_rq->lock) 1175 __acquires(busiest->lock) 1176 __acquires(this_rq->lock) 1177 { 1178 raw_spin_unlock(&this_rq->lock); 1179 double_rq_lock(this_rq, busiest); 1180 1181 return 1; 1182 } 1183 1184 #else 1185 /* 1186 * Unfair double_lock_balance: Optimizes throughput at the expense of 1187 * latency by eliminating extra atomic operations when the locks are 1188 * already in proper order on entry. This favors lower cpu-ids and will 1189 * grant the double lock to lower cpus over higher ids under contention, 1190 * regardless of entry order into the function. 1191 */ 1192 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1193 __releases(this_rq->lock) 1194 __acquires(busiest->lock) 1195 __acquires(this_rq->lock) 1196 { 1197 int ret = 0; 1198 1199 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1200 if (busiest < this_rq) { 1201 raw_spin_unlock(&this_rq->lock); 1202 raw_spin_lock(&busiest->lock); 1203 raw_spin_lock_nested(&this_rq->lock, 1204 SINGLE_DEPTH_NESTING); 1205 ret = 1; 1206 } else 1207 raw_spin_lock_nested(&busiest->lock, 1208 SINGLE_DEPTH_NESTING); 1209 } 1210 return ret; 1211 } 1212 1213 #endif /* CONFIG_PREEMPT */ 1214 1215 /* 1216 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1217 */ 1218 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1219 { 1220 if (unlikely(!irqs_disabled())) { 1221 /* printk() doesn't work good under rq->lock */ 1222 raw_spin_unlock(&this_rq->lock); 1223 BUG_ON(1); 1224 } 1225 1226 return _double_lock_balance(this_rq, busiest); 1227 } 1228 1229 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1230 __releases(busiest->lock) 1231 { 1232 raw_spin_unlock(&busiest->lock); 1233 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1234 } 1235 1236 /* 1237 * double_rq_lock - safely lock two runqueues 1238 * 1239 * Note this does not disable interrupts like task_rq_lock, 1240 * you need to do so manually before calling. 1241 */ 1242 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1243 __acquires(rq1->lock) 1244 __acquires(rq2->lock) 1245 { 1246 BUG_ON(!irqs_disabled()); 1247 if (rq1 == rq2) { 1248 raw_spin_lock(&rq1->lock); 1249 __acquire(rq2->lock); /* Fake it out ;) */ 1250 } else { 1251 if (rq1 < rq2) { 1252 raw_spin_lock(&rq1->lock); 1253 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1254 } else { 1255 raw_spin_lock(&rq2->lock); 1256 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1257 } 1258 } 1259 } 1260 1261 /* 1262 * double_rq_unlock - safely unlock two runqueues 1263 * 1264 * Note this does not restore interrupts like task_rq_unlock, 1265 * you need to do so manually after calling. 1266 */ 1267 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1268 __releases(rq1->lock) 1269 __releases(rq2->lock) 1270 { 1271 raw_spin_unlock(&rq1->lock); 1272 if (rq1 != rq2) 1273 raw_spin_unlock(&rq2->lock); 1274 else 1275 __release(rq2->lock); 1276 } 1277 1278 #else /* CONFIG_SMP */ 1279 1280 /* 1281 * double_rq_lock - safely lock two runqueues 1282 * 1283 * Note this does not disable interrupts like task_rq_lock, 1284 * you need to do so manually before calling. 1285 */ 1286 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1287 __acquires(rq1->lock) 1288 __acquires(rq2->lock) 1289 { 1290 BUG_ON(!irqs_disabled()); 1291 BUG_ON(rq1 != rq2); 1292 raw_spin_lock(&rq1->lock); 1293 __acquire(rq2->lock); /* Fake it out ;) */ 1294 } 1295 1296 /* 1297 * double_rq_unlock - safely unlock two runqueues 1298 * 1299 * Note this does not restore interrupts like task_rq_unlock, 1300 * you need to do so manually after calling. 1301 */ 1302 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1303 __releases(rq1->lock) 1304 __releases(rq2->lock) 1305 { 1306 BUG_ON(rq1 != rq2); 1307 raw_spin_unlock(&rq1->lock); 1308 __release(rq2->lock); 1309 } 1310 1311 #endif 1312 1313 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1314 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1315 extern void print_cfs_stats(struct seq_file *m, int cpu); 1316 extern void print_rt_stats(struct seq_file *m, int cpu); 1317 1318 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1319 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1320 1321 extern void account_cfs_bandwidth_used(int enabled, int was_enabled); 1322 1323 #ifdef CONFIG_NO_HZ_COMMON 1324 enum rq_nohz_flag_bits { 1325 NOHZ_TICK_STOPPED, 1326 NOHZ_BALANCE_KICK, 1327 }; 1328 1329 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1330 #endif 1331 1332 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1333 1334 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1335 DECLARE_PER_CPU(u64, cpu_softirq_time); 1336 1337 #ifndef CONFIG_64BIT 1338 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1339 1340 static inline void irq_time_write_begin(void) 1341 { 1342 __this_cpu_inc(irq_time_seq.sequence); 1343 smp_wmb(); 1344 } 1345 1346 static inline void irq_time_write_end(void) 1347 { 1348 smp_wmb(); 1349 __this_cpu_inc(irq_time_seq.sequence); 1350 } 1351 1352 static inline u64 irq_time_read(int cpu) 1353 { 1354 u64 irq_time; 1355 unsigned seq; 1356 1357 do { 1358 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1359 irq_time = per_cpu(cpu_softirq_time, cpu) + 1360 per_cpu(cpu_hardirq_time, cpu); 1361 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1362 1363 return irq_time; 1364 } 1365 #else /* CONFIG_64BIT */ 1366 static inline void irq_time_write_begin(void) 1367 { 1368 } 1369 1370 static inline void irq_time_write_end(void) 1371 { 1372 } 1373 1374 static inline u64 irq_time_read(int cpu) 1375 { 1376 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1377 } 1378 #endif /* CONFIG_64BIT */ 1379 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1380