xref: /openbmc/linux/kernel/sched/sched.h (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34 
35 #include <uapi/linux/sched/types.h>
36 
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66 
67 #include <asm/tlb.h>
68 
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72 
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75 
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 #endif
81 
82 struct rq;
83 struct cpuidle_state;
84 
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED	1
87 #define TASK_ON_RQ_MIGRATING	2
88 
89 extern __read_mostly int scheduler_running;
90 
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93 
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102 
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w)		(w)
129 # define scale_load_down(w)	(w)
130 #endif
131 
132 /*
133  * Task weight (visible to users) and its load (invisible to users) have
134  * independent resolution, but they should be well calibrated. We use
135  * scale_load() and scale_load_down(w) to convert between them. The
136  * following must be true:
137  *
138  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139  *
140  */
141 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142 
143 /*
144  * Single value that decides SCHED_DEADLINE internal math precision.
145  * 10 -> just above 1us
146  * 9  -> just above 0.5us
147  */
148 #define DL_SCALE		10
149 
150 /*
151  * Single value that denotes runtime == period, ie unlimited time.
152  */
153 #define RUNTIME_INF		((u64)~0ULL)
154 
155 static inline int idle_policy(int policy)
156 {
157 	return policy == SCHED_IDLE;
158 }
159 static inline int fair_policy(int policy)
160 {
161 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163 
164 static inline int rt_policy(int policy)
165 {
166 	return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168 
169 static inline int dl_policy(int policy)
170 {
171 	return policy == SCHED_DEADLINE;
172 }
173 static inline bool valid_policy(int policy)
174 {
175 	return idle_policy(policy) || fair_policy(policy) ||
176 		rt_policy(policy) || dl_policy(policy);
177 }
178 
179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 	return rt_policy(p->policy);
182 }
183 
184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 	return dl_policy(p->policy);
187 }
188 
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190 
191 /*
192  * !! For sched_setattr_nocheck() (kernel) only !!
193  *
194  * This is actually gross. :(
195  *
196  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197  * tasks, but still be able to sleep. We need this on platforms that cannot
198  * atomically change clock frequency. Remove once fast switching will be
199  * available on such platforms.
200  *
201  * SUGOV stands for SchedUtil GOVernor.
202  */
203 #define SCHED_FLAG_SUGOV	0x10000000
204 
205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 	return false;
211 #endif
212 }
213 
214 /*
215  * Tells if entity @a should preempt entity @b.
216  */
217 static inline bool
218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 	return dl_entity_is_special(a) ||
221 	       dl_time_before(a->deadline, b->deadline);
222 }
223 
224 /*
225  * This is the priority-queue data structure of the RT scheduling class:
226  */
227 struct rt_prio_array {
228 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 	struct list_head queue[MAX_RT_PRIO];
230 };
231 
232 struct rt_bandwidth {
233 	/* nests inside the rq lock: */
234 	raw_spinlock_t		rt_runtime_lock;
235 	ktime_t			rt_period;
236 	u64			rt_runtime;
237 	struct hrtimer		rt_period_timer;
238 	unsigned int		rt_period_active;
239 };
240 
241 void __dl_clear_params(struct task_struct *p);
242 
243 /*
244  * To keep the bandwidth of -deadline tasks and groups under control
245  * we need some place where:
246  *  - store the maximum -deadline bandwidth of the system (the group);
247  *  - cache the fraction of that bandwidth that is currently allocated.
248  *
249  * This is all done in the data structure below. It is similar to the
250  * one used for RT-throttling (rt_bandwidth), with the main difference
251  * that, since here we are only interested in admission control, we
252  * do not decrease any runtime while the group "executes", neither we
253  * need a timer to replenish it.
254  *
255  * With respect to SMP, the bandwidth is given on a per-CPU basis,
256  * meaning that:
257  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258  *  - dl_total_bw array contains, in the i-eth element, the currently
259  *    allocated bandwidth on the i-eth CPU.
260  * Moreover, groups consume bandwidth on each CPU, while tasks only
261  * consume bandwidth on the CPU they're running on.
262  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263  * that will be shown the next time the proc or cgroup controls will
264  * be red. It on its turn can be changed by writing on its own
265  * control.
266  */
267 struct dl_bandwidth {
268 	raw_spinlock_t		dl_runtime_lock;
269 	u64			dl_runtime;
270 	u64			dl_period;
271 };
272 
273 static inline int dl_bandwidth_enabled(void)
274 {
275 	return sysctl_sched_rt_runtime >= 0;
276 }
277 
278 struct dl_bw {
279 	raw_spinlock_t		lock;
280 	u64			bw;
281 	u64			total_bw;
282 };
283 
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285 
286 static inline
287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 	dl_b->total_bw -= tsk_bw;
290 	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292 
293 static inline
294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw += tsk_bw;
297 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299 
300 static inline
301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 	return dl_b->bw != -1 &&
304 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306 
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int  sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319 
320 #ifdef CONFIG_CGROUP_SCHED
321 
322 #include <linux/cgroup.h>
323 
324 struct cfs_rq;
325 struct rt_rq;
326 
327 extern struct list_head task_groups;
328 
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 	raw_spinlock_t		lock;
332 	ktime_t			period;
333 	u64			quota;
334 	u64			runtime;
335 	s64			hierarchical_quota;
336 	u64			runtime_expires;
337 
338 	int			idle;
339 	int			period_active;
340 	struct hrtimer		period_timer;
341 	struct hrtimer		slack_timer;
342 	struct list_head	throttled_cfs_rq;
343 
344 	/* Statistics: */
345 	int			nr_periods;
346 	int			nr_throttled;
347 	u64			throttled_time;
348 #endif
349 };
350 
351 /* Task group related information */
352 struct task_group {
353 	struct cgroup_subsys_state css;
354 
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 	/* schedulable entities of this group on each CPU */
357 	struct sched_entity	**se;
358 	/* runqueue "owned" by this group on each CPU */
359 	struct cfs_rq		**cfs_rq;
360 	unsigned long		shares;
361 
362 #ifdef	CONFIG_SMP
363 	/*
364 	 * load_avg can be heavily contended at clock tick time, so put
365 	 * it in its own cacheline separated from the fields above which
366 	 * will also be accessed at each tick.
367 	 */
368 	atomic_long_t		load_avg ____cacheline_aligned;
369 #endif
370 #endif
371 
372 #ifdef CONFIG_RT_GROUP_SCHED
373 	struct sched_rt_entity	**rt_se;
374 	struct rt_rq		**rt_rq;
375 
376 	struct rt_bandwidth	rt_bandwidth;
377 #endif
378 
379 	struct rcu_head		rcu;
380 	struct list_head	list;
381 
382 	struct task_group	*parent;
383 	struct list_head	siblings;
384 	struct list_head	children;
385 
386 #ifdef CONFIG_SCHED_AUTOGROUP
387 	struct autogroup	*autogroup;
388 #endif
389 
390 	struct cfs_bandwidth	cfs_bandwidth;
391 };
392 
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
395 
396 /*
397  * A weight of 0 or 1 can cause arithmetics problems.
398  * A weight of a cfs_rq is the sum of weights of which entities
399  * are queued on this cfs_rq, so a weight of a entity should not be
400  * too large, so as the shares value of a task group.
401  * (The default weight is 1024 - so there's no practical
402  *  limitation from this.)
403  */
404 #define MIN_SHARES		(1UL <<  1)
405 #define MAX_SHARES		(1UL << 18)
406 #endif
407 
408 typedef int (*tg_visitor)(struct task_group *, void *);
409 
410 extern int walk_tg_tree_from(struct task_group *from,
411 			     tg_visitor down, tg_visitor up, void *data);
412 
413 /*
414  * Iterate the full tree, calling @down when first entering a node and @up when
415  * leaving it for the final time.
416  *
417  * Caller must hold rcu_lock or sufficient equivalent.
418  */
419 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
420 {
421 	return walk_tg_tree_from(&root_task_group, down, up, data);
422 }
423 
424 extern int tg_nop(struct task_group *tg, void *data);
425 
426 extern void free_fair_sched_group(struct task_group *tg);
427 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
428 extern void online_fair_sched_group(struct task_group *tg);
429 extern void unregister_fair_sched_group(struct task_group *tg);
430 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
431 			struct sched_entity *se, int cpu,
432 			struct sched_entity *parent);
433 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
434 
435 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
436 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
437 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
438 
439 extern void free_rt_sched_group(struct task_group *tg);
440 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
441 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
442 		struct sched_rt_entity *rt_se, int cpu,
443 		struct sched_rt_entity *parent);
444 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
445 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
446 extern long sched_group_rt_runtime(struct task_group *tg);
447 extern long sched_group_rt_period(struct task_group *tg);
448 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
449 
450 extern struct task_group *sched_create_group(struct task_group *parent);
451 extern void sched_online_group(struct task_group *tg,
452 			       struct task_group *parent);
453 extern void sched_destroy_group(struct task_group *tg);
454 extern void sched_offline_group(struct task_group *tg);
455 
456 extern void sched_move_task(struct task_struct *tsk);
457 
458 #ifdef CONFIG_FAIR_GROUP_SCHED
459 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
460 
461 #ifdef CONFIG_SMP
462 extern void set_task_rq_fair(struct sched_entity *se,
463 			     struct cfs_rq *prev, struct cfs_rq *next);
464 #else /* !CONFIG_SMP */
465 static inline void set_task_rq_fair(struct sched_entity *se,
466 			     struct cfs_rq *prev, struct cfs_rq *next) { }
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_FAIR_GROUP_SCHED */
469 
470 #else /* CONFIG_CGROUP_SCHED */
471 
472 struct cfs_bandwidth { };
473 
474 #endif	/* CONFIG_CGROUP_SCHED */
475 
476 /* CFS-related fields in a runqueue */
477 struct cfs_rq {
478 	struct load_weight	load;
479 	unsigned long		runnable_weight;
480 	unsigned int		nr_running;
481 	unsigned int		h_nr_running;
482 
483 	u64			exec_clock;
484 	u64			min_vruntime;
485 #ifndef CONFIG_64BIT
486 	u64			min_vruntime_copy;
487 #endif
488 
489 	struct rb_root_cached	tasks_timeline;
490 
491 	/*
492 	 * 'curr' points to currently running entity on this cfs_rq.
493 	 * It is set to NULL otherwise (i.e when none are currently running).
494 	 */
495 	struct sched_entity	*curr;
496 	struct sched_entity	*next;
497 	struct sched_entity	*last;
498 	struct sched_entity	*skip;
499 
500 #ifdef	CONFIG_SCHED_DEBUG
501 	unsigned int		nr_spread_over;
502 #endif
503 
504 #ifdef CONFIG_SMP
505 	/*
506 	 * CFS load tracking
507 	 */
508 	struct sched_avg	avg;
509 #ifndef CONFIG_64BIT
510 	u64			load_last_update_time_copy;
511 #endif
512 	struct {
513 		raw_spinlock_t	lock ____cacheline_aligned;
514 		int		nr;
515 		unsigned long	load_avg;
516 		unsigned long	util_avg;
517 		unsigned long	runnable_sum;
518 	} removed;
519 
520 #ifdef CONFIG_FAIR_GROUP_SCHED
521 	unsigned long		tg_load_avg_contrib;
522 	long			propagate;
523 	long			prop_runnable_sum;
524 
525 	/*
526 	 *   h_load = weight * f(tg)
527 	 *
528 	 * Where f(tg) is the recursive weight fraction assigned to
529 	 * this group.
530 	 */
531 	unsigned long		h_load;
532 	u64			last_h_load_update;
533 	struct sched_entity	*h_load_next;
534 #endif /* CONFIG_FAIR_GROUP_SCHED */
535 #endif /* CONFIG_SMP */
536 
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
539 
540 	/*
541 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
542 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
543 	 * (like users, containers etc.)
544 	 *
545 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
546 	 * This list is used during load balance.
547 	 */
548 	int			on_list;
549 	struct list_head	leaf_cfs_rq_list;
550 	struct task_group	*tg;	/* group that "owns" this runqueue */
551 
552 #ifdef CONFIG_CFS_BANDWIDTH
553 	int			runtime_enabled;
554 	u64			runtime_expires;
555 	s64			runtime_remaining;
556 
557 	u64			throttled_clock;
558 	u64			throttled_clock_task;
559 	u64			throttled_clock_task_time;
560 	int			throttled;
561 	int			throttle_count;
562 	struct list_head	throttled_list;
563 #endif /* CONFIG_CFS_BANDWIDTH */
564 #endif /* CONFIG_FAIR_GROUP_SCHED */
565 };
566 
567 static inline int rt_bandwidth_enabled(void)
568 {
569 	return sysctl_sched_rt_runtime >= 0;
570 }
571 
572 /* RT IPI pull logic requires IRQ_WORK */
573 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
574 # define HAVE_RT_PUSH_IPI
575 #endif
576 
577 /* Real-Time classes' related field in a runqueue: */
578 struct rt_rq {
579 	struct rt_prio_array	active;
580 	unsigned int		rt_nr_running;
581 	unsigned int		rr_nr_running;
582 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
583 	struct {
584 		int		curr; /* highest queued rt task prio */
585 #ifdef CONFIG_SMP
586 		int		next; /* next highest */
587 #endif
588 	} highest_prio;
589 #endif
590 #ifdef CONFIG_SMP
591 	unsigned long		rt_nr_migratory;
592 	unsigned long		rt_nr_total;
593 	int			overloaded;
594 	struct plist_head	pushable_tasks;
595 #endif /* CONFIG_SMP */
596 	int			rt_queued;
597 
598 	int			rt_throttled;
599 	u64			rt_time;
600 	u64			rt_runtime;
601 	/* Nests inside the rq lock: */
602 	raw_spinlock_t		rt_runtime_lock;
603 
604 #ifdef CONFIG_RT_GROUP_SCHED
605 	unsigned long		rt_nr_boosted;
606 
607 	struct rq		*rq;
608 	struct task_group	*tg;
609 #endif
610 };
611 
612 /* Deadline class' related fields in a runqueue */
613 struct dl_rq {
614 	/* runqueue is an rbtree, ordered by deadline */
615 	struct rb_root_cached	root;
616 
617 	unsigned long		dl_nr_running;
618 
619 #ifdef CONFIG_SMP
620 	/*
621 	 * Deadline values of the currently executing and the
622 	 * earliest ready task on this rq. Caching these facilitates
623 	 * the decision wether or not a ready but not running task
624 	 * should migrate somewhere else.
625 	 */
626 	struct {
627 		u64		curr;
628 		u64		next;
629 	} earliest_dl;
630 
631 	unsigned long		dl_nr_migratory;
632 	int			overloaded;
633 
634 	/*
635 	 * Tasks on this rq that can be pushed away. They are kept in
636 	 * an rb-tree, ordered by tasks' deadlines, with caching
637 	 * of the leftmost (earliest deadline) element.
638 	 */
639 	struct rb_root_cached	pushable_dl_tasks_root;
640 #else
641 	struct dl_bw		dl_bw;
642 #endif
643 	/*
644 	 * "Active utilization" for this runqueue: increased when a
645 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
646 	 * task blocks
647 	 */
648 	u64			running_bw;
649 
650 	/*
651 	 * Utilization of the tasks "assigned" to this runqueue (including
652 	 * the tasks that are in runqueue and the tasks that executed on this
653 	 * CPU and blocked). Increased when a task moves to this runqueue, and
654 	 * decreased when the task moves away (migrates, changes scheduling
655 	 * policy, or terminates).
656 	 * This is needed to compute the "inactive utilization" for the
657 	 * runqueue (inactive utilization = this_bw - running_bw).
658 	 */
659 	u64			this_bw;
660 	u64			extra_bw;
661 
662 	/*
663 	 * Inverse of the fraction of CPU utilization that can be reclaimed
664 	 * by the GRUB algorithm.
665 	 */
666 	u64			bw_ratio;
667 };
668 
669 #ifdef CONFIG_SMP
670 
671 static inline bool sched_asym_prefer(int a, int b)
672 {
673 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
674 }
675 
676 /*
677  * We add the notion of a root-domain which will be used to define per-domain
678  * variables. Each exclusive cpuset essentially defines an island domain by
679  * fully partitioning the member CPUs from any other cpuset. Whenever a new
680  * exclusive cpuset is created, we also create and attach a new root-domain
681  * object.
682  *
683  */
684 struct root_domain {
685 	atomic_t		refcount;
686 	atomic_t		rto_count;
687 	struct rcu_head		rcu;
688 	cpumask_var_t		span;
689 	cpumask_var_t		online;
690 
691 	/* Indicate more than one runnable task for any CPU */
692 	bool			overload;
693 
694 	/*
695 	 * The bit corresponding to a CPU gets set here if such CPU has more
696 	 * than one runnable -deadline task (as it is below for RT tasks).
697 	 */
698 	cpumask_var_t		dlo_mask;
699 	atomic_t		dlo_count;
700 	struct dl_bw		dl_bw;
701 	struct cpudl		cpudl;
702 
703 #ifdef HAVE_RT_PUSH_IPI
704 	/*
705 	 * For IPI pull requests, loop across the rto_mask.
706 	 */
707 	struct irq_work		rto_push_work;
708 	raw_spinlock_t		rto_lock;
709 	/* These are only updated and read within rto_lock */
710 	int			rto_loop;
711 	int			rto_cpu;
712 	/* These atomics are updated outside of a lock */
713 	atomic_t		rto_loop_next;
714 	atomic_t		rto_loop_start;
715 #endif
716 	/*
717 	 * The "RT overload" flag: it gets set if a CPU has more than
718 	 * one runnable RT task.
719 	 */
720 	cpumask_var_t		rto_mask;
721 	struct cpupri		cpupri;
722 
723 	unsigned long		max_cpu_capacity;
724 };
725 
726 extern struct root_domain def_root_domain;
727 extern struct mutex sched_domains_mutex;
728 
729 extern void init_defrootdomain(void);
730 extern int sched_init_domains(const struct cpumask *cpu_map);
731 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
732 extern void sched_get_rd(struct root_domain *rd);
733 extern void sched_put_rd(struct root_domain *rd);
734 
735 #ifdef HAVE_RT_PUSH_IPI
736 extern void rto_push_irq_work_func(struct irq_work *work);
737 #endif
738 #endif /* CONFIG_SMP */
739 
740 /*
741  * This is the main, per-CPU runqueue data structure.
742  *
743  * Locking rule: those places that want to lock multiple runqueues
744  * (such as the load balancing or the thread migration code), lock
745  * acquire operations must be ordered by ascending &runqueue.
746  */
747 struct rq {
748 	/* runqueue lock: */
749 	raw_spinlock_t		lock;
750 
751 	/*
752 	 * nr_running and cpu_load should be in the same cacheline because
753 	 * remote CPUs use both these fields when doing load calculation.
754 	 */
755 	unsigned int		nr_running;
756 #ifdef CONFIG_NUMA_BALANCING
757 	unsigned int		nr_numa_running;
758 	unsigned int		nr_preferred_running;
759 #endif
760 	#define CPU_LOAD_IDX_MAX 5
761 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
762 #ifdef CONFIG_NO_HZ_COMMON
763 #ifdef CONFIG_SMP
764 	unsigned long		last_load_update_tick;
765 	unsigned long		last_blocked_load_update_tick;
766 	unsigned int		has_blocked_load;
767 #endif /* CONFIG_SMP */
768 	unsigned int		nohz_tick_stopped;
769 	atomic_t nohz_flags;
770 #endif /* CONFIG_NO_HZ_COMMON */
771 
772 	/* capture load from *all* tasks on this CPU: */
773 	struct load_weight	load;
774 	unsigned long		nr_load_updates;
775 	u64			nr_switches;
776 
777 	struct cfs_rq		cfs;
778 	struct rt_rq		rt;
779 	struct dl_rq		dl;
780 
781 #ifdef CONFIG_FAIR_GROUP_SCHED
782 	/* list of leaf cfs_rq on this CPU: */
783 	struct list_head	leaf_cfs_rq_list;
784 	struct list_head	*tmp_alone_branch;
785 #endif /* CONFIG_FAIR_GROUP_SCHED */
786 
787 	/*
788 	 * This is part of a global counter where only the total sum
789 	 * over all CPUs matters. A task can increase this counter on
790 	 * one CPU and if it got migrated afterwards it may decrease
791 	 * it on another CPU. Always updated under the runqueue lock:
792 	 */
793 	unsigned long		nr_uninterruptible;
794 
795 	struct task_struct	*curr;
796 	struct task_struct	*idle;
797 	struct task_struct	*stop;
798 	unsigned long		next_balance;
799 	struct mm_struct	*prev_mm;
800 
801 	unsigned int		clock_update_flags;
802 	u64			clock;
803 	u64			clock_task;
804 
805 	atomic_t		nr_iowait;
806 
807 #ifdef CONFIG_SMP
808 	struct root_domain	*rd;
809 	struct sched_domain	*sd;
810 
811 	unsigned long		cpu_capacity;
812 	unsigned long		cpu_capacity_orig;
813 
814 	struct callback_head	*balance_callback;
815 
816 	unsigned char		idle_balance;
817 
818 	/* For active balancing */
819 	int			active_balance;
820 	int			push_cpu;
821 	struct cpu_stop_work	active_balance_work;
822 
823 	/* CPU of this runqueue: */
824 	int			cpu;
825 	int			online;
826 
827 	struct list_head cfs_tasks;
828 
829 	u64			rt_avg;
830 	u64			age_stamp;
831 	u64			idle_stamp;
832 	u64			avg_idle;
833 
834 	/* This is used to determine avg_idle's max value */
835 	u64			max_idle_balance_cost;
836 #endif
837 
838 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
839 	u64			prev_irq_time;
840 #endif
841 #ifdef CONFIG_PARAVIRT
842 	u64			prev_steal_time;
843 #endif
844 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
845 	u64			prev_steal_time_rq;
846 #endif
847 
848 	/* calc_load related fields */
849 	unsigned long		calc_load_update;
850 	long			calc_load_active;
851 
852 #ifdef CONFIG_SCHED_HRTICK
853 #ifdef CONFIG_SMP
854 	int			hrtick_csd_pending;
855 	call_single_data_t	hrtick_csd;
856 #endif
857 	struct hrtimer		hrtick_timer;
858 #endif
859 
860 #ifdef CONFIG_SCHEDSTATS
861 	/* latency stats */
862 	struct sched_info	rq_sched_info;
863 	unsigned long long	rq_cpu_time;
864 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
865 
866 	/* sys_sched_yield() stats */
867 	unsigned int		yld_count;
868 
869 	/* schedule() stats */
870 	unsigned int		sched_count;
871 	unsigned int		sched_goidle;
872 
873 	/* try_to_wake_up() stats */
874 	unsigned int		ttwu_count;
875 	unsigned int		ttwu_local;
876 #endif
877 
878 #ifdef CONFIG_SMP
879 	struct llist_head	wake_list;
880 #endif
881 
882 #ifdef CONFIG_CPU_IDLE
883 	/* Must be inspected within a rcu lock section */
884 	struct cpuidle_state	*idle_state;
885 #endif
886 };
887 
888 static inline int cpu_of(struct rq *rq)
889 {
890 #ifdef CONFIG_SMP
891 	return rq->cpu;
892 #else
893 	return 0;
894 #endif
895 }
896 
897 
898 #ifdef CONFIG_SCHED_SMT
899 
900 extern struct static_key_false sched_smt_present;
901 
902 extern void __update_idle_core(struct rq *rq);
903 
904 static inline void update_idle_core(struct rq *rq)
905 {
906 	if (static_branch_unlikely(&sched_smt_present))
907 		__update_idle_core(rq);
908 }
909 
910 #else
911 static inline void update_idle_core(struct rq *rq) { }
912 #endif
913 
914 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
915 
916 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
917 #define this_rq()		this_cpu_ptr(&runqueues)
918 #define task_rq(p)		cpu_rq(task_cpu(p))
919 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
920 #define raw_rq()		raw_cpu_ptr(&runqueues)
921 
922 static inline u64 __rq_clock_broken(struct rq *rq)
923 {
924 	return READ_ONCE(rq->clock);
925 }
926 
927 /*
928  * rq::clock_update_flags bits
929  *
930  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
931  *  call to __schedule(). This is an optimisation to avoid
932  *  neighbouring rq clock updates.
933  *
934  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
935  *  in effect and calls to update_rq_clock() are being ignored.
936  *
937  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
938  *  made to update_rq_clock() since the last time rq::lock was pinned.
939  *
940  * If inside of __schedule(), clock_update_flags will have been
941  * shifted left (a left shift is a cheap operation for the fast path
942  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
943  *
944  *	if (rq-clock_update_flags >= RQCF_UPDATED)
945  *
946  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
947  * one position though, because the next rq_unpin_lock() will shift it
948  * back.
949  */
950 #define RQCF_REQ_SKIP		0x01
951 #define RQCF_ACT_SKIP		0x02
952 #define RQCF_UPDATED		0x04
953 
954 static inline void assert_clock_updated(struct rq *rq)
955 {
956 	/*
957 	 * The only reason for not seeing a clock update since the
958 	 * last rq_pin_lock() is if we're currently skipping updates.
959 	 */
960 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
961 }
962 
963 static inline u64 rq_clock(struct rq *rq)
964 {
965 	lockdep_assert_held(&rq->lock);
966 	assert_clock_updated(rq);
967 
968 	return rq->clock;
969 }
970 
971 static inline u64 rq_clock_task(struct rq *rq)
972 {
973 	lockdep_assert_held(&rq->lock);
974 	assert_clock_updated(rq);
975 
976 	return rq->clock_task;
977 }
978 
979 static inline void rq_clock_skip_update(struct rq *rq)
980 {
981 	lockdep_assert_held(&rq->lock);
982 	rq->clock_update_flags |= RQCF_REQ_SKIP;
983 }
984 
985 /*
986  * See rt task throttling, which is the only time a skip
987  * request is cancelled.
988  */
989 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
990 {
991 	lockdep_assert_held(&rq->lock);
992 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
993 }
994 
995 struct rq_flags {
996 	unsigned long flags;
997 	struct pin_cookie cookie;
998 #ifdef CONFIG_SCHED_DEBUG
999 	/*
1000 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1001 	 * current pin context is stashed here in case it needs to be
1002 	 * restored in rq_repin_lock().
1003 	 */
1004 	unsigned int clock_update_flags;
1005 #endif
1006 };
1007 
1008 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1009 {
1010 	rf->cookie = lockdep_pin_lock(&rq->lock);
1011 
1012 #ifdef CONFIG_SCHED_DEBUG
1013 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1014 	rf->clock_update_flags = 0;
1015 #endif
1016 }
1017 
1018 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1019 {
1020 #ifdef CONFIG_SCHED_DEBUG
1021 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1022 		rf->clock_update_flags = RQCF_UPDATED;
1023 #endif
1024 
1025 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1026 }
1027 
1028 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1029 {
1030 	lockdep_repin_lock(&rq->lock, rf->cookie);
1031 
1032 #ifdef CONFIG_SCHED_DEBUG
1033 	/*
1034 	 * Restore the value we stashed in @rf for this pin context.
1035 	 */
1036 	rq->clock_update_flags |= rf->clock_update_flags;
1037 #endif
1038 }
1039 
1040 #ifdef CONFIG_NUMA
1041 enum numa_topology_type {
1042 	NUMA_DIRECT,
1043 	NUMA_GLUELESS_MESH,
1044 	NUMA_BACKPLANE,
1045 };
1046 extern enum numa_topology_type sched_numa_topology_type;
1047 extern int sched_max_numa_distance;
1048 extern bool find_numa_distance(int distance);
1049 #endif
1050 
1051 #ifdef CONFIG_NUMA
1052 extern void sched_init_numa(void);
1053 extern void sched_domains_numa_masks_set(unsigned int cpu);
1054 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1055 #else
1056 static inline void sched_init_numa(void) { }
1057 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1058 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1059 #endif
1060 
1061 #ifdef CONFIG_NUMA_BALANCING
1062 /* The regions in numa_faults array from task_struct */
1063 enum numa_faults_stats {
1064 	NUMA_MEM = 0,
1065 	NUMA_CPU,
1066 	NUMA_MEMBUF,
1067 	NUMA_CPUBUF
1068 };
1069 extern void sched_setnuma(struct task_struct *p, int node);
1070 extern int migrate_task_to(struct task_struct *p, int cpu);
1071 extern int migrate_swap(struct task_struct *, struct task_struct *);
1072 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1073 #else
1074 static inline void
1075 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1076 {
1077 }
1078 #endif /* CONFIG_NUMA_BALANCING */
1079 
1080 #ifdef CONFIG_SMP
1081 
1082 static inline void
1083 queue_balance_callback(struct rq *rq,
1084 		       struct callback_head *head,
1085 		       void (*func)(struct rq *rq))
1086 {
1087 	lockdep_assert_held(&rq->lock);
1088 
1089 	if (unlikely(head->next))
1090 		return;
1091 
1092 	head->func = (void (*)(struct callback_head *))func;
1093 	head->next = rq->balance_callback;
1094 	rq->balance_callback = head;
1095 }
1096 
1097 extern void sched_ttwu_pending(void);
1098 
1099 #define rcu_dereference_check_sched_domain(p) \
1100 	rcu_dereference_check((p), \
1101 			      lockdep_is_held(&sched_domains_mutex))
1102 
1103 /*
1104  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1105  * See detach_destroy_domains: synchronize_sched for details.
1106  *
1107  * The domain tree of any CPU may only be accessed from within
1108  * preempt-disabled sections.
1109  */
1110 #define for_each_domain(cpu, __sd) \
1111 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1112 			__sd; __sd = __sd->parent)
1113 
1114 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1115 
1116 /**
1117  * highest_flag_domain - Return highest sched_domain containing flag.
1118  * @cpu:	The CPU whose highest level of sched domain is to
1119  *		be returned.
1120  * @flag:	The flag to check for the highest sched_domain
1121  *		for the given CPU.
1122  *
1123  * Returns the highest sched_domain of a CPU which contains the given flag.
1124  */
1125 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1126 {
1127 	struct sched_domain *sd, *hsd = NULL;
1128 
1129 	for_each_domain(cpu, sd) {
1130 		if (!(sd->flags & flag))
1131 			break;
1132 		hsd = sd;
1133 	}
1134 
1135 	return hsd;
1136 }
1137 
1138 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1139 {
1140 	struct sched_domain *sd;
1141 
1142 	for_each_domain(cpu, sd) {
1143 		if (sd->flags & flag)
1144 			break;
1145 	}
1146 
1147 	return sd;
1148 }
1149 
1150 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1151 DECLARE_PER_CPU(int, sd_llc_size);
1152 DECLARE_PER_CPU(int, sd_llc_id);
1153 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1154 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1155 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1156 
1157 struct sched_group_capacity {
1158 	atomic_t		ref;
1159 	/*
1160 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1161 	 * for a single CPU.
1162 	 */
1163 	unsigned long		capacity;
1164 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1165 	unsigned long		next_update;
1166 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1167 
1168 #ifdef CONFIG_SCHED_DEBUG
1169 	int			id;
1170 #endif
1171 
1172 	unsigned long		cpumask[0];		/* Balance mask */
1173 };
1174 
1175 struct sched_group {
1176 	struct sched_group	*next;			/* Must be a circular list */
1177 	atomic_t		ref;
1178 
1179 	unsigned int		group_weight;
1180 	struct sched_group_capacity *sgc;
1181 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1182 
1183 	/*
1184 	 * The CPUs this group covers.
1185 	 *
1186 	 * NOTE: this field is variable length. (Allocated dynamically
1187 	 * by attaching extra space to the end of the structure,
1188 	 * depending on how many CPUs the kernel has booted up with)
1189 	 */
1190 	unsigned long		cpumask[0];
1191 };
1192 
1193 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1194 {
1195 	return to_cpumask(sg->cpumask);
1196 }
1197 
1198 /*
1199  * See build_balance_mask().
1200  */
1201 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1202 {
1203 	return to_cpumask(sg->sgc->cpumask);
1204 }
1205 
1206 /**
1207  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1208  * @group: The group whose first CPU is to be returned.
1209  */
1210 static inline unsigned int group_first_cpu(struct sched_group *group)
1211 {
1212 	return cpumask_first(sched_group_span(group));
1213 }
1214 
1215 extern int group_balance_cpu(struct sched_group *sg);
1216 
1217 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1218 void register_sched_domain_sysctl(void);
1219 void dirty_sched_domain_sysctl(int cpu);
1220 void unregister_sched_domain_sysctl(void);
1221 #else
1222 static inline void register_sched_domain_sysctl(void)
1223 {
1224 }
1225 static inline void dirty_sched_domain_sysctl(int cpu)
1226 {
1227 }
1228 static inline void unregister_sched_domain_sysctl(void)
1229 {
1230 }
1231 #endif
1232 
1233 #else
1234 
1235 static inline void sched_ttwu_pending(void) { }
1236 
1237 #endif /* CONFIG_SMP */
1238 
1239 #include "stats.h"
1240 #include "autogroup.h"
1241 
1242 #ifdef CONFIG_CGROUP_SCHED
1243 
1244 /*
1245  * Return the group to which this tasks belongs.
1246  *
1247  * We cannot use task_css() and friends because the cgroup subsystem
1248  * changes that value before the cgroup_subsys::attach() method is called,
1249  * therefore we cannot pin it and might observe the wrong value.
1250  *
1251  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1252  * core changes this before calling sched_move_task().
1253  *
1254  * Instead we use a 'copy' which is updated from sched_move_task() while
1255  * holding both task_struct::pi_lock and rq::lock.
1256  */
1257 static inline struct task_group *task_group(struct task_struct *p)
1258 {
1259 	return p->sched_task_group;
1260 }
1261 
1262 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1263 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1264 {
1265 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1266 	struct task_group *tg = task_group(p);
1267 #endif
1268 
1269 #ifdef CONFIG_FAIR_GROUP_SCHED
1270 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1271 	p->se.cfs_rq = tg->cfs_rq[cpu];
1272 	p->se.parent = tg->se[cpu];
1273 #endif
1274 
1275 #ifdef CONFIG_RT_GROUP_SCHED
1276 	p->rt.rt_rq  = tg->rt_rq[cpu];
1277 	p->rt.parent = tg->rt_se[cpu];
1278 #endif
1279 }
1280 
1281 #else /* CONFIG_CGROUP_SCHED */
1282 
1283 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1284 static inline struct task_group *task_group(struct task_struct *p)
1285 {
1286 	return NULL;
1287 }
1288 
1289 #endif /* CONFIG_CGROUP_SCHED */
1290 
1291 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1292 {
1293 	set_task_rq(p, cpu);
1294 #ifdef CONFIG_SMP
1295 	/*
1296 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1297 	 * successfuly executed on another CPU. We must ensure that updates of
1298 	 * per-task data have been completed by this moment.
1299 	 */
1300 	smp_wmb();
1301 #ifdef CONFIG_THREAD_INFO_IN_TASK
1302 	p->cpu = cpu;
1303 #else
1304 	task_thread_info(p)->cpu = cpu;
1305 #endif
1306 	p->wake_cpu = cpu;
1307 #endif
1308 }
1309 
1310 /*
1311  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1312  */
1313 #ifdef CONFIG_SCHED_DEBUG
1314 # include <linux/static_key.h>
1315 # define const_debug __read_mostly
1316 #else
1317 # define const_debug const
1318 #endif
1319 
1320 #define SCHED_FEAT(name, enabled)	\
1321 	__SCHED_FEAT_##name ,
1322 
1323 enum {
1324 #include "features.h"
1325 	__SCHED_FEAT_NR,
1326 };
1327 
1328 #undef SCHED_FEAT
1329 
1330 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1331 
1332 /*
1333  * To support run-time toggling of sched features, all the translation units
1334  * (but core.c) reference the sysctl_sched_features defined in core.c.
1335  */
1336 extern const_debug unsigned int sysctl_sched_features;
1337 
1338 #define SCHED_FEAT(name, enabled)					\
1339 static __always_inline bool static_branch_##name(struct static_key *key) \
1340 {									\
1341 	return static_key_##enabled(key);				\
1342 }
1343 
1344 #include "features.h"
1345 #undef SCHED_FEAT
1346 
1347 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1348 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1349 
1350 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1351 
1352 /*
1353  * Each translation unit has its own copy of sysctl_sched_features to allow
1354  * constants propagation at compile time and compiler optimization based on
1355  * features default.
1356  */
1357 #define SCHED_FEAT(name, enabled)	\
1358 	(1UL << __SCHED_FEAT_##name) * enabled |
1359 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1360 #include "features.h"
1361 	0;
1362 #undef SCHED_FEAT
1363 
1364 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1365 
1366 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1367 
1368 extern struct static_key_false sched_numa_balancing;
1369 extern struct static_key_false sched_schedstats;
1370 
1371 static inline u64 global_rt_period(void)
1372 {
1373 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1374 }
1375 
1376 static inline u64 global_rt_runtime(void)
1377 {
1378 	if (sysctl_sched_rt_runtime < 0)
1379 		return RUNTIME_INF;
1380 
1381 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1382 }
1383 
1384 static inline int task_current(struct rq *rq, struct task_struct *p)
1385 {
1386 	return rq->curr == p;
1387 }
1388 
1389 static inline int task_running(struct rq *rq, struct task_struct *p)
1390 {
1391 #ifdef CONFIG_SMP
1392 	return p->on_cpu;
1393 #else
1394 	return task_current(rq, p);
1395 #endif
1396 }
1397 
1398 static inline int task_on_rq_queued(struct task_struct *p)
1399 {
1400 	return p->on_rq == TASK_ON_RQ_QUEUED;
1401 }
1402 
1403 static inline int task_on_rq_migrating(struct task_struct *p)
1404 {
1405 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1406 }
1407 
1408 /*
1409  * wake flags
1410  */
1411 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1412 #define WF_FORK			0x02		/* Child wakeup after fork */
1413 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1414 
1415 /*
1416  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1417  * of tasks with abnormal "nice" values across CPUs the contribution that
1418  * each task makes to its run queue's load is weighted according to its
1419  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1420  * scaled version of the new time slice allocation that they receive on time
1421  * slice expiry etc.
1422  */
1423 
1424 #define WEIGHT_IDLEPRIO		3
1425 #define WMULT_IDLEPRIO		1431655765
1426 
1427 extern const int		sched_prio_to_weight[40];
1428 extern const u32		sched_prio_to_wmult[40];
1429 
1430 /*
1431  * {de,en}queue flags:
1432  *
1433  * DEQUEUE_SLEEP  - task is no longer runnable
1434  * ENQUEUE_WAKEUP - task just became runnable
1435  *
1436  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1437  *                are in a known state which allows modification. Such pairs
1438  *                should preserve as much state as possible.
1439  *
1440  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1441  *        in the runqueue.
1442  *
1443  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1444  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1445  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1446  *
1447  */
1448 
1449 #define DEQUEUE_SLEEP		0x01
1450 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1451 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1452 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1453 
1454 #define ENQUEUE_WAKEUP		0x01
1455 #define ENQUEUE_RESTORE		0x02
1456 #define ENQUEUE_MOVE		0x04
1457 #define ENQUEUE_NOCLOCK		0x08
1458 
1459 #define ENQUEUE_HEAD		0x10
1460 #define ENQUEUE_REPLENISH	0x20
1461 #ifdef CONFIG_SMP
1462 #define ENQUEUE_MIGRATED	0x40
1463 #else
1464 #define ENQUEUE_MIGRATED	0x00
1465 #endif
1466 
1467 #define RETRY_TASK		((void *)-1UL)
1468 
1469 struct sched_class {
1470 	const struct sched_class *next;
1471 
1472 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1473 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1474 	void (*yield_task)   (struct rq *rq);
1475 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1476 
1477 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1478 
1479 	/*
1480 	 * It is the responsibility of the pick_next_task() method that will
1481 	 * return the next task to call put_prev_task() on the @prev task or
1482 	 * something equivalent.
1483 	 *
1484 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1485 	 * tasks.
1486 	 */
1487 	struct task_struct * (*pick_next_task)(struct rq *rq,
1488 					       struct task_struct *prev,
1489 					       struct rq_flags *rf);
1490 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1491 
1492 #ifdef CONFIG_SMP
1493 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1494 	void (*migrate_task_rq)(struct task_struct *p);
1495 
1496 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1497 
1498 	void (*set_cpus_allowed)(struct task_struct *p,
1499 				 const struct cpumask *newmask);
1500 
1501 	void (*rq_online)(struct rq *rq);
1502 	void (*rq_offline)(struct rq *rq);
1503 #endif
1504 
1505 	void (*set_curr_task)(struct rq *rq);
1506 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1507 	void (*task_fork)(struct task_struct *p);
1508 	void (*task_dead)(struct task_struct *p);
1509 
1510 	/*
1511 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1512 	 * cannot assume the switched_from/switched_to pair is serliazed by
1513 	 * rq->lock. They are however serialized by p->pi_lock.
1514 	 */
1515 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1516 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1517 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1518 			      int oldprio);
1519 
1520 	unsigned int (*get_rr_interval)(struct rq *rq,
1521 					struct task_struct *task);
1522 
1523 	void (*update_curr)(struct rq *rq);
1524 
1525 #define TASK_SET_GROUP		0
1526 #define TASK_MOVE_GROUP		1
1527 
1528 #ifdef CONFIG_FAIR_GROUP_SCHED
1529 	void (*task_change_group)(struct task_struct *p, int type);
1530 #endif
1531 };
1532 
1533 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1534 {
1535 	prev->sched_class->put_prev_task(rq, prev);
1536 }
1537 
1538 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1539 {
1540 	curr->sched_class->set_curr_task(rq);
1541 }
1542 
1543 #ifdef CONFIG_SMP
1544 #define sched_class_highest (&stop_sched_class)
1545 #else
1546 #define sched_class_highest (&dl_sched_class)
1547 #endif
1548 #define for_each_class(class) \
1549    for (class = sched_class_highest; class; class = class->next)
1550 
1551 extern const struct sched_class stop_sched_class;
1552 extern const struct sched_class dl_sched_class;
1553 extern const struct sched_class rt_sched_class;
1554 extern const struct sched_class fair_sched_class;
1555 extern const struct sched_class idle_sched_class;
1556 
1557 
1558 #ifdef CONFIG_SMP
1559 
1560 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1561 
1562 extern void trigger_load_balance(struct rq *rq);
1563 
1564 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1565 
1566 #endif
1567 
1568 #ifdef CONFIG_CPU_IDLE
1569 static inline void idle_set_state(struct rq *rq,
1570 				  struct cpuidle_state *idle_state)
1571 {
1572 	rq->idle_state = idle_state;
1573 }
1574 
1575 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1576 {
1577 	SCHED_WARN_ON(!rcu_read_lock_held());
1578 
1579 	return rq->idle_state;
1580 }
1581 #else
1582 static inline void idle_set_state(struct rq *rq,
1583 				  struct cpuidle_state *idle_state)
1584 {
1585 }
1586 
1587 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1588 {
1589 	return NULL;
1590 }
1591 #endif
1592 
1593 extern void schedule_idle(void);
1594 
1595 extern void sysrq_sched_debug_show(void);
1596 extern void sched_init_granularity(void);
1597 extern void update_max_interval(void);
1598 
1599 extern void init_sched_dl_class(void);
1600 extern void init_sched_rt_class(void);
1601 extern void init_sched_fair_class(void);
1602 
1603 extern void reweight_task(struct task_struct *p, int prio);
1604 
1605 extern void resched_curr(struct rq *rq);
1606 extern void resched_cpu(int cpu);
1607 
1608 extern struct rt_bandwidth def_rt_bandwidth;
1609 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1610 
1611 extern struct dl_bandwidth def_dl_bandwidth;
1612 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1613 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1614 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1615 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1616 
1617 #define BW_SHIFT		20
1618 #define BW_UNIT			(1 << BW_SHIFT)
1619 #define RATIO_SHIFT		8
1620 unsigned long to_ratio(u64 period, u64 runtime);
1621 
1622 extern void init_entity_runnable_average(struct sched_entity *se);
1623 extern void post_init_entity_util_avg(struct sched_entity *se);
1624 
1625 #ifdef CONFIG_NO_HZ_FULL
1626 extern bool sched_can_stop_tick(struct rq *rq);
1627 extern int __init sched_tick_offload_init(void);
1628 
1629 /*
1630  * Tick may be needed by tasks in the runqueue depending on their policy and
1631  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1632  * nohz mode if necessary.
1633  */
1634 static inline void sched_update_tick_dependency(struct rq *rq)
1635 {
1636 	int cpu;
1637 
1638 	if (!tick_nohz_full_enabled())
1639 		return;
1640 
1641 	cpu = cpu_of(rq);
1642 
1643 	if (!tick_nohz_full_cpu(cpu))
1644 		return;
1645 
1646 	if (sched_can_stop_tick(rq))
1647 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1648 	else
1649 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1650 }
1651 #else
1652 static inline int sched_tick_offload_init(void) { return 0; }
1653 static inline void sched_update_tick_dependency(struct rq *rq) { }
1654 #endif
1655 
1656 static inline void add_nr_running(struct rq *rq, unsigned count)
1657 {
1658 	unsigned prev_nr = rq->nr_running;
1659 
1660 	rq->nr_running = prev_nr + count;
1661 
1662 	if (prev_nr < 2 && rq->nr_running >= 2) {
1663 #ifdef CONFIG_SMP
1664 		if (!rq->rd->overload)
1665 			rq->rd->overload = true;
1666 #endif
1667 	}
1668 
1669 	sched_update_tick_dependency(rq);
1670 }
1671 
1672 static inline void sub_nr_running(struct rq *rq, unsigned count)
1673 {
1674 	rq->nr_running -= count;
1675 	/* Check if we still need preemption */
1676 	sched_update_tick_dependency(rq);
1677 }
1678 
1679 extern void update_rq_clock(struct rq *rq);
1680 
1681 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1682 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1683 
1684 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1685 
1686 extern const_debug unsigned int sysctl_sched_time_avg;
1687 extern const_debug unsigned int sysctl_sched_nr_migrate;
1688 extern const_debug unsigned int sysctl_sched_migration_cost;
1689 
1690 static inline u64 sched_avg_period(void)
1691 {
1692 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1693 }
1694 
1695 #ifdef CONFIG_SCHED_HRTICK
1696 
1697 /*
1698  * Use hrtick when:
1699  *  - enabled by features
1700  *  - hrtimer is actually high res
1701  */
1702 static inline int hrtick_enabled(struct rq *rq)
1703 {
1704 	if (!sched_feat(HRTICK))
1705 		return 0;
1706 	if (!cpu_active(cpu_of(rq)))
1707 		return 0;
1708 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1709 }
1710 
1711 void hrtick_start(struct rq *rq, u64 delay);
1712 
1713 #else
1714 
1715 static inline int hrtick_enabled(struct rq *rq)
1716 {
1717 	return 0;
1718 }
1719 
1720 #endif /* CONFIG_SCHED_HRTICK */
1721 
1722 #ifndef arch_scale_freq_capacity
1723 static __always_inline
1724 unsigned long arch_scale_freq_capacity(int cpu)
1725 {
1726 	return SCHED_CAPACITY_SCALE;
1727 }
1728 #endif
1729 
1730 #ifdef CONFIG_SMP
1731 extern void sched_avg_update(struct rq *rq);
1732 
1733 #ifndef arch_scale_cpu_capacity
1734 static __always_inline
1735 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1736 {
1737 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1738 		return sd->smt_gain / sd->span_weight;
1739 
1740 	return SCHED_CAPACITY_SCALE;
1741 }
1742 #endif
1743 
1744 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1745 {
1746 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
1747 	sched_avg_update(rq);
1748 }
1749 #else
1750 #ifndef arch_scale_cpu_capacity
1751 static __always_inline
1752 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1753 {
1754 	return SCHED_CAPACITY_SCALE;
1755 }
1756 #endif
1757 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1758 static inline void sched_avg_update(struct rq *rq) { }
1759 #endif
1760 
1761 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1762 	__acquires(rq->lock);
1763 
1764 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1765 	__acquires(p->pi_lock)
1766 	__acquires(rq->lock);
1767 
1768 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1769 	__releases(rq->lock)
1770 {
1771 	rq_unpin_lock(rq, rf);
1772 	raw_spin_unlock(&rq->lock);
1773 }
1774 
1775 static inline void
1776 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1777 	__releases(rq->lock)
1778 	__releases(p->pi_lock)
1779 {
1780 	rq_unpin_lock(rq, rf);
1781 	raw_spin_unlock(&rq->lock);
1782 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1783 }
1784 
1785 static inline void
1786 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1787 	__acquires(rq->lock)
1788 {
1789 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1790 	rq_pin_lock(rq, rf);
1791 }
1792 
1793 static inline void
1794 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1795 	__acquires(rq->lock)
1796 {
1797 	raw_spin_lock_irq(&rq->lock);
1798 	rq_pin_lock(rq, rf);
1799 }
1800 
1801 static inline void
1802 rq_lock(struct rq *rq, struct rq_flags *rf)
1803 	__acquires(rq->lock)
1804 {
1805 	raw_spin_lock(&rq->lock);
1806 	rq_pin_lock(rq, rf);
1807 }
1808 
1809 static inline void
1810 rq_relock(struct rq *rq, struct rq_flags *rf)
1811 	__acquires(rq->lock)
1812 {
1813 	raw_spin_lock(&rq->lock);
1814 	rq_repin_lock(rq, rf);
1815 }
1816 
1817 static inline void
1818 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1819 	__releases(rq->lock)
1820 {
1821 	rq_unpin_lock(rq, rf);
1822 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1823 }
1824 
1825 static inline void
1826 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1827 	__releases(rq->lock)
1828 {
1829 	rq_unpin_lock(rq, rf);
1830 	raw_spin_unlock_irq(&rq->lock);
1831 }
1832 
1833 static inline void
1834 rq_unlock(struct rq *rq, struct rq_flags *rf)
1835 	__releases(rq->lock)
1836 {
1837 	rq_unpin_lock(rq, rf);
1838 	raw_spin_unlock(&rq->lock);
1839 }
1840 
1841 #ifdef CONFIG_SMP
1842 #ifdef CONFIG_PREEMPT
1843 
1844 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1845 
1846 /*
1847  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1848  * way at the expense of forcing extra atomic operations in all
1849  * invocations.  This assures that the double_lock is acquired using the
1850  * same underlying policy as the spinlock_t on this architecture, which
1851  * reduces latency compared to the unfair variant below.  However, it
1852  * also adds more overhead and therefore may reduce throughput.
1853  */
1854 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1855 	__releases(this_rq->lock)
1856 	__acquires(busiest->lock)
1857 	__acquires(this_rq->lock)
1858 {
1859 	raw_spin_unlock(&this_rq->lock);
1860 	double_rq_lock(this_rq, busiest);
1861 
1862 	return 1;
1863 }
1864 
1865 #else
1866 /*
1867  * Unfair double_lock_balance: Optimizes throughput at the expense of
1868  * latency by eliminating extra atomic operations when the locks are
1869  * already in proper order on entry.  This favors lower CPU-ids and will
1870  * grant the double lock to lower CPUs over higher ids under contention,
1871  * regardless of entry order into the function.
1872  */
1873 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1874 	__releases(this_rq->lock)
1875 	__acquires(busiest->lock)
1876 	__acquires(this_rq->lock)
1877 {
1878 	int ret = 0;
1879 
1880 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1881 		if (busiest < this_rq) {
1882 			raw_spin_unlock(&this_rq->lock);
1883 			raw_spin_lock(&busiest->lock);
1884 			raw_spin_lock_nested(&this_rq->lock,
1885 					      SINGLE_DEPTH_NESTING);
1886 			ret = 1;
1887 		} else
1888 			raw_spin_lock_nested(&busiest->lock,
1889 					      SINGLE_DEPTH_NESTING);
1890 	}
1891 	return ret;
1892 }
1893 
1894 #endif /* CONFIG_PREEMPT */
1895 
1896 /*
1897  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1898  */
1899 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1900 {
1901 	if (unlikely(!irqs_disabled())) {
1902 		/* printk() doesn't work well under rq->lock */
1903 		raw_spin_unlock(&this_rq->lock);
1904 		BUG_ON(1);
1905 	}
1906 
1907 	return _double_lock_balance(this_rq, busiest);
1908 }
1909 
1910 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1911 	__releases(busiest->lock)
1912 {
1913 	raw_spin_unlock(&busiest->lock);
1914 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1915 }
1916 
1917 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1918 {
1919 	if (l1 > l2)
1920 		swap(l1, l2);
1921 
1922 	spin_lock(l1);
1923 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1924 }
1925 
1926 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1927 {
1928 	if (l1 > l2)
1929 		swap(l1, l2);
1930 
1931 	spin_lock_irq(l1);
1932 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1933 }
1934 
1935 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1936 {
1937 	if (l1 > l2)
1938 		swap(l1, l2);
1939 
1940 	raw_spin_lock(l1);
1941 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1942 }
1943 
1944 /*
1945  * double_rq_lock - safely lock two runqueues
1946  *
1947  * Note this does not disable interrupts like task_rq_lock,
1948  * you need to do so manually before calling.
1949  */
1950 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1951 	__acquires(rq1->lock)
1952 	__acquires(rq2->lock)
1953 {
1954 	BUG_ON(!irqs_disabled());
1955 	if (rq1 == rq2) {
1956 		raw_spin_lock(&rq1->lock);
1957 		__acquire(rq2->lock);	/* Fake it out ;) */
1958 	} else {
1959 		if (rq1 < rq2) {
1960 			raw_spin_lock(&rq1->lock);
1961 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1962 		} else {
1963 			raw_spin_lock(&rq2->lock);
1964 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1965 		}
1966 	}
1967 }
1968 
1969 /*
1970  * double_rq_unlock - safely unlock two runqueues
1971  *
1972  * Note this does not restore interrupts like task_rq_unlock,
1973  * you need to do so manually after calling.
1974  */
1975 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1976 	__releases(rq1->lock)
1977 	__releases(rq2->lock)
1978 {
1979 	raw_spin_unlock(&rq1->lock);
1980 	if (rq1 != rq2)
1981 		raw_spin_unlock(&rq2->lock);
1982 	else
1983 		__release(rq2->lock);
1984 }
1985 
1986 extern void set_rq_online (struct rq *rq);
1987 extern void set_rq_offline(struct rq *rq);
1988 extern bool sched_smp_initialized;
1989 
1990 #else /* CONFIG_SMP */
1991 
1992 /*
1993  * double_rq_lock - safely lock two runqueues
1994  *
1995  * Note this does not disable interrupts like task_rq_lock,
1996  * you need to do so manually before calling.
1997  */
1998 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1999 	__acquires(rq1->lock)
2000 	__acquires(rq2->lock)
2001 {
2002 	BUG_ON(!irqs_disabled());
2003 	BUG_ON(rq1 != rq2);
2004 	raw_spin_lock(&rq1->lock);
2005 	__acquire(rq2->lock);	/* Fake it out ;) */
2006 }
2007 
2008 /*
2009  * double_rq_unlock - safely unlock two runqueues
2010  *
2011  * Note this does not restore interrupts like task_rq_unlock,
2012  * you need to do so manually after calling.
2013  */
2014 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2015 	__releases(rq1->lock)
2016 	__releases(rq2->lock)
2017 {
2018 	BUG_ON(rq1 != rq2);
2019 	raw_spin_unlock(&rq1->lock);
2020 	__release(rq2->lock);
2021 }
2022 
2023 #endif
2024 
2025 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2026 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2027 
2028 #ifdef	CONFIG_SCHED_DEBUG
2029 extern bool sched_debug_enabled;
2030 
2031 extern void print_cfs_stats(struct seq_file *m, int cpu);
2032 extern void print_rt_stats(struct seq_file *m, int cpu);
2033 extern void print_dl_stats(struct seq_file *m, int cpu);
2034 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2035 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2036 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2037 #ifdef CONFIG_NUMA_BALANCING
2038 extern void
2039 show_numa_stats(struct task_struct *p, struct seq_file *m);
2040 extern void
2041 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2042 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2043 #endif /* CONFIG_NUMA_BALANCING */
2044 #endif /* CONFIG_SCHED_DEBUG */
2045 
2046 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2047 extern void init_rt_rq(struct rt_rq *rt_rq);
2048 extern void init_dl_rq(struct dl_rq *dl_rq);
2049 
2050 extern void cfs_bandwidth_usage_inc(void);
2051 extern void cfs_bandwidth_usage_dec(void);
2052 
2053 #ifdef CONFIG_NO_HZ_COMMON
2054 #define NOHZ_BALANCE_KICK_BIT	0
2055 #define NOHZ_STATS_KICK_BIT	1
2056 
2057 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2058 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2059 
2060 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2061 
2062 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2063 
2064 extern void nohz_balance_exit_idle(struct rq *rq);
2065 #else
2066 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2067 #endif
2068 
2069 
2070 #ifdef CONFIG_SMP
2071 static inline
2072 void __dl_update(struct dl_bw *dl_b, s64 bw)
2073 {
2074 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2075 	int i;
2076 
2077 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2078 			 "sched RCU must be held");
2079 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2080 		struct rq *rq = cpu_rq(i);
2081 
2082 		rq->dl.extra_bw += bw;
2083 	}
2084 }
2085 #else
2086 static inline
2087 void __dl_update(struct dl_bw *dl_b, s64 bw)
2088 {
2089 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2090 
2091 	dl->extra_bw += bw;
2092 }
2093 #endif
2094 
2095 
2096 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2097 struct irqtime {
2098 	u64			total;
2099 	u64			tick_delta;
2100 	u64			irq_start_time;
2101 	struct u64_stats_sync	sync;
2102 };
2103 
2104 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2105 
2106 /*
2107  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2108  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2109  * and never move forward.
2110  */
2111 static inline u64 irq_time_read(int cpu)
2112 {
2113 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2114 	unsigned int seq;
2115 	u64 total;
2116 
2117 	do {
2118 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2119 		total = irqtime->total;
2120 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2121 
2122 	return total;
2123 }
2124 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2125 
2126 #ifdef CONFIG_CPU_FREQ
2127 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2128 
2129 /**
2130  * cpufreq_update_util - Take a note about CPU utilization changes.
2131  * @rq: Runqueue to carry out the update for.
2132  * @flags: Update reason flags.
2133  *
2134  * This function is called by the scheduler on the CPU whose utilization is
2135  * being updated.
2136  *
2137  * It can only be called from RCU-sched read-side critical sections.
2138  *
2139  * The way cpufreq is currently arranged requires it to evaluate the CPU
2140  * performance state (frequency/voltage) on a regular basis to prevent it from
2141  * being stuck in a completely inadequate performance level for too long.
2142  * That is not guaranteed to happen if the updates are only triggered from CFS
2143  * and DL, though, because they may not be coming in if only RT tasks are
2144  * active all the time (or there are RT tasks only).
2145  *
2146  * As a workaround for that issue, this function is called periodically by the
2147  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2148  * but that really is a band-aid.  Going forward it should be replaced with
2149  * solutions targeted more specifically at RT tasks.
2150  */
2151 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2152 {
2153 	struct update_util_data *data;
2154 
2155 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2156 						  cpu_of(rq)));
2157 	if (data)
2158 		data->func(data, rq_clock(rq), flags);
2159 }
2160 #else
2161 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2162 #endif /* CONFIG_CPU_FREQ */
2163 
2164 #ifdef arch_scale_freq_capacity
2165 # ifndef arch_scale_freq_invariant
2166 #  define arch_scale_freq_invariant()	true
2167 # endif
2168 #else
2169 # define arch_scale_freq_invariant()	false
2170 #endif
2171 
2172 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2173 static inline unsigned long cpu_util_dl(struct rq *rq)
2174 {
2175 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2176 }
2177 
2178 static inline unsigned long cpu_util_cfs(struct rq *rq)
2179 {
2180 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2181 
2182 	if (sched_feat(UTIL_EST)) {
2183 		util = max_t(unsigned long, util,
2184 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2185 	}
2186 
2187 	return util;
2188 }
2189 #endif
2190