xref: /openbmc/linux/kernel/sched/sched.h (revision e8ea5764bdb144847a44de6113dba8d1ab19179e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71 
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75 
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78 
79 #include <trace/events/sched.h>
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
85 #endif
86 
87 struct rq;
88 struct cpuidle_state;
89 
90 /* task_struct::on_rq states: */
91 #define TASK_ON_RQ_QUEUED	1
92 #define TASK_ON_RQ_MIGRATING	2
93 
94 extern __read_mostly int scheduler_running;
95 
96 extern unsigned long calc_load_update;
97 extern atomic_long_t calc_load_tasks;
98 
99 extern void calc_global_load_tick(struct rq *this_rq);
100 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101 
102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) \
126 ({ \
127 	unsigned long __w = (w); \
128 	if (__w) \
129 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 	__w; \
131 })
132 #else
133 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load(w)		(w)
135 # define scale_load_down(w)	(w)
136 #endif
137 
138 /*
139  * Task weight (visible to users) and its load (invisible to users) have
140  * independent resolution, but they should be well calibrated. We use
141  * scale_load() and scale_load_down(w) to convert between them. The
142  * following must be true:
143  *
144  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
145  *
146  */
147 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
148 
149 /*
150  * Single value that decides SCHED_DEADLINE internal math precision.
151  * 10 -> just above 1us
152  * 9  -> just above 0.5us
153  */
154 #define DL_SCALE		10
155 
156 /*
157  * Single value that denotes runtime == period, ie unlimited time.
158  */
159 #define RUNTIME_INF		((u64)~0ULL)
160 
161 static inline int idle_policy(int policy)
162 {
163 	return policy == SCHED_IDLE;
164 }
165 static inline int fair_policy(int policy)
166 {
167 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168 }
169 
170 static inline int rt_policy(int policy)
171 {
172 	return policy == SCHED_FIFO || policy == SCHED_RR;
173 }
174 
175 static inline int dl_policy(int policy)
176 {
177 	return policy == SCHED_DEADLINE;
178 }
179 static inline bool valid_policy(int policy)
180 {
181 	return idle_policy(policy) || fair_policy(policy) ||
182 		rt_policy(policy) || dl_policy(policy);
183 }
184 
185 static inline int task_has_idle_policy(struct task_struct *p)
186 {
187 	return idle_policy(p->policy);
188 }
189 
190 static inline int task_has_rt_policy(struct task_struct *p)
191 {
192 	return rt_policy(p->policy);
193 }
194 
195 static inline int task_has_dl_policy(struct task_struct *p)
196 {
197 	return dl_policy(p->policy);
198 }
199 
200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201 
202 static inline void update_avg(u64 *avg, u64 sample)
203 {
204 	s64 diff = sample - *avg;
205 	*avg += diff / 8;
206 }
207 
208 /*
209  * !! For sched_setattr_nocheck() (kernel) only !!
210  *
211  * This is actually gross. :(
212  *
213  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
214  * tasks, but still be able to sleep. We need this on platforms that cannot
215  * atomically change clock frequency. Remove once fast switching will be
216  * available on such platforms.
217  *
218  * SUGOV stands for SchedUtil GOVernor.
219  */
220 #define SCHED_FLAG_SUGOV	0x10000000
221 
222 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
223 {
224 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
225 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
226 #else
227 	return false;
228 #endif
229 }
230 
231 /*
232  * Tells if entity @a should preempt entity @b.
233  */
234 static inline bool
235 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
236 {
237 	return dl_entity_is_special(a) ||
238 	       dl_time_before(a->deadline, b->deadline);
239 }
240 
241 /*
242  * This is the priority-queue data structure of the RT scheduling class:
243  */
244 struct rt_prio_array {
245 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
246 	struct list_head queue[MAX_RT_PRIO];
247 };
248 
249 struct rt_bandwidth {
250 	/* nests inside the rq lock: */
251 	raw_spinlock_t		rt_runtime_lock;
252 	ktime_t			rt_period;
253 	u64			rt_runtime;
254 	struct hrtimer		rt_period_timer;
255 	unsigned int		rt_period_active;
256 };
257 
258 void __dl_clear_params(struct task_struct *p);
259 
260 /*
261  * To keep the bandwidth of -deadline tasks and groups under control
262  * we need some place where:
263  *  - store the maximum -deadline bandwidth of the system (the group);
264  *  - cache the fraction of that bandwidth that is currently allocated.
265  *
266  * This is all done in the data structure below. It is similar to the
267  * one used for RT-throttling (rt_bandwidth), with the main difference
268  * that, since here we are only interested in admission control, we
269  * do not decrease any runtime while the group "executes", neither we
270  * need a timer to replenish it.
271  *
272  * With respect to SMP, the bandwidth is given on a per-CPU basis,
273  * meaning that:
274  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
275  *  - dl_total_bw array contains, in the i-eth element, the currently
276  *    allocated bandwidth on the i-eth CPU.
277  * Moreover, groups consume bandwidth on each CPU, while tasks only
278  * consume bandwidth on the CPU they're running on.
279  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
280  * that will be shown the next time the proc or cgroup controls will
281  * be red. It on its turn can be changed by writing on its own
282  * control.
283  */
284 struct dl_bandwidth {
285 	raw_spinlock_t		dl_runtime_lock;
286 	u64			dl_runtime;
287 	u64			dl_period;
288 };
289 
290 static inline int dl_bandwidth_enabled(void)
291 {
292 	return sysctl_sched_rt_runtime >= 0;
293 }
294 
295 struct dl_bw {
296 	raw_spinlock_t		lock;
297 	u64			bw;
298 	u64			total_bw;
299 };
300 
301 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
302 
303 static inline
304 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
305 {
306 	dl_b->total_bw -= tsk_bw;
307 	__dl_update(dl_b, (s32)tsk_bw / cpus);
308 }
309 
310 static inline
311 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
312 {
313 	dl_b->total_bw += tsk_bw;
314 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
315 }
316 
317 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
318 				 u64 old_bw, u64 new_bw)
319 {
320 	return dl_b->bw != -1 &&
321 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
322 }
323 
324 /*
325  * Verify the fitness of task @p to run on @cpu taking into account the
326  * CPU original capacity and the runtime/deadline ratio of the task.
327  *
328  * The function will return true if the CPU original capacity of the
329  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330  * task and false otherwise.
331  */
332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333 {
334 	unsigned long cap = arch_scale_cpu_capacity(cpu);
335 
336 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337 }
338 
339 extern void init_dl_bw(struct dl_bw *dl_b);
340 extern int  sched_dl_global_validate(void);
341 extern void sched_dl_do_global(void);
342 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
343 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345 extern bool __checkparam_dl(const struct sched_attr *attr);
346 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
347 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
348 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
349 extern bool dl_cpu_busy(unsigned int cpu);
350 
351 #ifdef CONFIG_CGROUP_SCHED
352 
353 #include <linux/cgroup.h>
354 #include <linux/psi.h>
355 
356 struct cfs_rq;
357 struct rt_rq;
358 
359 extern struct list_head task_groups;
360 
361 struct cfs_bandwidth {
362 #ifdef CONFIG_CFS_BANDWIDTH
363 	raw_spinlock_t		lock;
364 	ktime_t			period;
365 	u64			quota;
366 	u64			runtime;
367 	s64			hierarchical_quota;
368 
369 	u8			idle;
370 	u8			period_active;
371 	u8			slack_started;
372 	struct hrtimer		period_timer;
373 	struct hrtimer		slack_timer;
374 	struct list_head	throttled_cfs_rq;
375 
376 	/* Statistics: */
377 	int			nr_periods;
378 	int			nr_throttled;
379 	u64			throttled_time;
380 #endif
381 };
382 
383 /* Task group related information */
384 struct task_group {
385 	struct cgroup_subsys_state css;
386 
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388 	/* schedulable entities of this group on each CPU */
389 	struct sched_entity	**se;
390 	/* runqueue "owned" by this group on each CPU */
391 	struct cfs_rq		**cfs_rq;
392 	unsigned long		shares;
393 
394 #ifdef	CONFIG_SMP
395 	/*
396 	 * load_avg can be heavily contended at clock tick time, so put
397 	 * it in its own cacheline separated from the fields above which
398 	 * will also be accessed at each tick.
399 	 */
400 	atomic_long_t		load_avg ____cacheline_aligned;
401 #endif
402 #endif
403 
404 #ifdef CONFIG_RT_GROUP_SCHED
405 	struct sched_rt_entity	**rt_se;
406 	struct rt_rq		**rt_rq;
407 
408 	struct rt_bandwidth	rt_bandwidth;
409 #endif
410 
411 	struct rcu_head		rcu;
412 	struct list_head	list;
413 
414 	struct task_group	*parent;
415 	struct list_head	siblings;
416 	struct list_head	children;
417 
418 #ifdef CONFIG_SCHED_AUTOGROUP
419 	struct autogroup	*autogroup;
420 #endif
421 
422 	struct cfs_bandwidth	cfs_bandwidth;
423 
424 #ifdef CONFIG_UCLAMP_TASK_GROUP
425 	/* The two decimal precision [%] value requested from user-space */
426 	unsigned int		uclamp_pct[UCLAMP_CNT];
427 	/* Clamp values requested for a task group */
428 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
429 	/* Effective clamp values used for a task group */
430 	struct uclamp_se	uclamp[UCLAMP_CNT];
431 #endif
432 
433 };
434 
435 #ifdef CONFIG_FAIR_GROUP_SCHED
436 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
437 
438 /*
439  * A weight of 0 or 1 can cause arithmetics problems.
440  * A weight of a cfs_rq is the sum of weights of which entities
441  * are queued on this cfs_rq, so a weight of a entity should not be
442  * too large, so as the shares value of a task group.
443  * (The default weight is 1024 - so there's no practical
444  *  limitation from this.)
445  */
446 #define MIN_SHARES		(1UL <<  1)
447 #define MAX_SHARES		(1UL << 18)
448 #endif
449 
450 typedef int (*tg_visitor)(struct task_group *, void *);
451 
452 extern int walk_tg_tree_from(struct task_group *from,
453 			     tg_visitor down, tg_visitor up, void *data);
454 
455 /*
456  * Iterate the full tree, calling @down when first entering a node and @up when
457  * leaving it for the final time.
458  *
459  * Caller must hold rcu_lock or sufficient equivalent.
460  */
461 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
462 {
463 	return walk_tg_tree_from(&root_task_group, down, up, data);
464 }
465 
466 extern int tg_nop(struct task_group *tg, void *data);
467 
468 extern void free_fair_sched_group(struct task_group *tg);
469 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
470 extern void online_fair_sched_group(struct task_group *tg);
471 extern void unregister_fair_sched_group(struct task_group *tg);
472 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
473 			struct sched_entity *se, int cpu,
474 			struct sched_entity *parent);
475 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
476 
477 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
478 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
479 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
480 
481 extern void free_rt_sched_group(struct task_group *tg);
482 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
483 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
484 		struct sched_rt_entity *rt_se, int cpu,
485 		struct sched_rt_entity *parent);
486 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
487 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
488 extern long sched_group_rt_runtime(struct task_group *tg);
489 extern long sched_group_rt_period(struct task_group *tg);
490 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
491 
492 extern struct task_group *sched_create_group(struct task_group *parent);
493 extern void sched_online_group(struct task_group *tg,
494 			       struct task_group *parent);
495 extern void sched_destroy_group(struct task_group *tg);
496 extern void sched_offline_group(struct task_group *tg);
497 
498 extern void sched_move_task(struct task_struct *tsk);
499 
500 #ifdef CONFIG_FAIR_GROUP_SCHED
501 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
502 
503 #ifdef CONFIG_SMP
504 extern void set_task_rq_fair(struct sched_entity *se,
505 			     struct cfs_rq *prev, struct cfs_rq *next);
506 #else /* !CONFIG_SMP */
507 static inline void set_task_rq_fair(struct sched_entity *se,
508 			     struct cfs_rq *prev, struct cfs_rq *next) { }
509 #endif /* CONFIG_SMP */
510 #endif /* CONFIG_FAIR_GROUP_SCHED */
511 
512 #else /* CONFIG_CGROUP_SCHED */
513 
514 struct cfs_bandwidth { };
515 
516 #endif	/* CONFIG_CGROUP_SCHED */
517 
518 /* CFS-related fields in a runqueue */
519 struct cfs_rq {
520 	struct load_weight	load;
521 	unsigned int		nr_running;
522 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
523 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
524 
525 	u64			exec_clock;
526 	u64			min_vruntime;
527 #ifndef CONFIG_64BIT
528 	u64			min_vruntime_copy;
529 #endif
530 
531 	struct rb_root_cached	tasks_timeline;
532 
533 	/*
534 	 * 'curr' points to currently running entity on this cfs_rq.
535 	 * It is set to NULL otherwise (i.e when none are currently running).
536 	 */
537 	struct sched_entity	*curr;
538 	struct sched_entity	*next;
539 	struct sched_entity	*last;
540 	struct sched_entity	*skip;
541 
542 #ifdef	CONFIG_SCHED_DEBUG
543 	unsigned int		nr_spread_over;
544 #endif
545 
546 #ifdef CONFIG_SMP
547 	/*
548 	 * CFS load tracking
549 	 */
550 	struct sched_avg	avg;
551 #ifndef CONFIG_64BIT
552 	u64			load_last_update_time_copy;
553 #endif
554 	struct {
555 		raw_spinlock_t	lock ____cacheline_aligned;
556 		int		nr;
557 		unsigned long	load_avg;
558 		unsigned long	util_avg;
559 		unsigned long	runnable_avg;
560 	} removed;
561 
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 	unsigned long		tg_load_avg_contrib;
564 	long			propagate;
565 	long			prop_runnable_sum;
566 
567 	/*
568 	 *   h_load = weight * f(tg)
569 	 *
570 	 * Where f(tg) is the recursive weight fraction assigned to
571 	 * this group.
572 	 */
573 	unsigned long		h_load;
574 	u64			last_h_load_update;
575 	struct sched_entity	*h_load_next;
576 #endif /* CONFIG_FAIR_GROUP_SCHED */
577 #endif /* CONFIG_SMP */
578 
579 #ifdef CONFIG_FAIR_GROUP_SCHED
580 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
581 
582 	/*
583 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
584 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
585 	 * (like users, containers etc.)
586 	 *
587 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
588 	 * This list is used during load balance.
589 	 */
590 	int			on_list;
591 	struct list_head	leaf_cfs_rq_list;
592 	struct task_group	*tg;	/* group that "owns" this runqueue */
593 
594 #ifdef CONFIG_CFS_BANDWIDTH
595 	int			runtime_enabled;
596 	s64			runtime_remaining;
597 
598 	u64			throttled_clock;
599 	u64			throttled_clock_task;
600 	u64			throttled_clock_task_time;
601 	int			throttled;
602 	int			throttle_count;
603 	struct list_head	throttled_list;
604 #endif /* CONFIG_CFS_BANDWIDTH */
605 #endif /* CONFIG_FAIR_GROUP_SCHED */
606 };
607 
608 static inline int rt_bandwidth_enabled(void)
609 {
610 	return sysctl_sched_rt_runtime >= 0;
611 }
612 
613 /* RT IPI pull logic requires IRQ_WORK */
614 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
615 # define HAVE_RT_PUSH_IPI
616 #endif
617 
618 /* Real-Time classes' related field in a runqueue: */
619 struct rt_rq {
620 	struct rt_prio_array	active;
621 	unsigned int		rt_nr_running;
622 	unsigned int		rr_nr_running;
623 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
624 	struct {
625 		int		curr; /* highest queued rt task prio */
626 #ifdef CONFIG_SMP
627 		int		next; /* next highest */
628 #endif
629 	} highest_prio;
630 #endif
631 #ifdef CONFIG_SMP
632 	unsigned long		rt_nr_migratory;
633 	unsigned long		rt_nr_total;
634 	int			overloaded;
635 	struct plist_head	pushable_tasks;
636 
637 #endif /* CONFIG_SMP */
638 	int			rt_queued;
639 
640 	int			rt_throttled;
641 	u64			rt_time;
642 	u64			rt_runtime;
643 	/* Nests inside the rq lock: */
644 	raw_spinlock_t		rt_runtime_lock;
645 
646 #ifdef CONFIG_RT_GROUP_SCHED
647 	unsigned long		rt_nr_boosted;
648 
649 	struct rq		*rq;
650 	struct task_group	*tg;
651 #endif
652 };
653 
654 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
655 {
656 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
657 }
658 
659 /* Deadline class' related fields in a runqueue */
660 struct dl_rq {
661 	/* runqueue is an rbtree, ordered by deadline */
662 	struct rb_root_cached	root;
663 
664 	unsigned long		dl_nr_running;
665 
666 #ifdef CONFIG_SMP
667 	/*
668 	 * Deadline values of the currently executing and the
669 	 * earliest ready task on this rq. Caching these facilitates
670 	 * the decision whether or not a ready but not running task
671 	 * should migrate somewhere else.
672 	 */
673 	struct {
674 		u64		curr;
675 		u64		next;
676 	} earliest_dl;
677 
678 	unsigned long		dl_nr_migratory;
679 	int			overloaded;
680 
681 	/*
682 	 * Tasks on this rq that can be pushed away. They are kept in
683 	 * an rb-tree, ordered by tasks' deadlines, with caching
684 	 * of the leftmost (earliest deadline) element.
685 	 */
686 	struct rb_root_cached	pushable_dl_tasks_root;
687 #else
688 	struct dl_bw		dl_bw;
689 #endif
690 	/*
691 	 * "Active utilization" for this runqueue: increased when a
692 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
693 	 * task blocks
694 	 */
695 	u64			running_bw;
696 
697 	/*
698 	 * Utilization of the tasks "assigned" to this runqueue (including
699 	 * the tasks that are in runqueue and the tasks that executed on this
700 	 * CPU and blocked). Increased when a task moves to this runqueue, and
701 	 * decreased when the task moves away (migrates, changes scheduling
702 	 * policy, or terminates).
703 	 * This is needed to compute the "inactive utilization" for the
704 	 * runqueue (inactive utilization = this_bw - running_bw).
705 	 */
706 	u64			this_bw;
707 	u64			extra_bw;
708 
709 	/*
710 	 * Inverse of the fraction of CPU utilization that can be reclaimed
711 	 * by the GRUB algorithm.
712 	 */
713 	u64			bw_ratio;
714 };
715 
716 #ifdef CONFIG_FAIR_GROUP_SCHED
717 /* An entity is a task if it doesn't "own" a runqueue */
718 #define entity_is_task(se)	(!se->my_q)
719 
720 static inline void se_update_runnable(struct sched_entity *se)
721 {
722 	if (!entity_is_task(se))
723 		se->runnable_weight = se->my_q->h_nr_running;
724 }
725 
726 static inline long se_runnable(struct sched_entity *se)
727 {
728 	if (entity_is_task(se))
729 		return !!se->on_rq;
730 	else
731 		return se->runnable_weight;
732 }
733 
734 #else
735 #define entity_is_task(se)	1
736 
737 static inline void se_update_runnable(struct sched_entity *se) {}
738 
739 static inline long se_runnable(struct sched_entity *se)
740 {
741 	return !!se->on_rq;
742 }
743 #endif
744 
745 #ifdef CONFIG_SMP
746 /*
747  * XXX we want to get rid of these helpers and use the full load resolution.
748  */
749 static inline long se_weight(struct sched_entity *se)
750 {
751 	return scale_load_down(se->load.weight);
752 }
753 
754 
755 static inline bool sched_asym_prefer(int a, int b)
756 {
757 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
758 }
759 
760 struct perf_domain {
761 	struct em_perf_domain *em_pd;
762 	struct perf_domain *next;
763 	struct rcu_head rcu;
764 };
765 
766 /* Scheduling group status flags */
767 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
768 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
769 
770 /*
771  * We add the notion of a root-domain which will be used to define per-domain
772  * variables. Each exclusive cpuset essentially defines an island domain by
773  * fully partitioning the member CPUs from any other cpuset. Whenever a new
774  * exclusive cpuset is created, we also create and attach a new root-domain
775  * object.
776  *
777  */
778 struct root_domain {
779 	atomic_t		refcount;
780 	atomic_t		rto_count;
781 	struct rcu_head		rcu;
782 	cpumask_var_t		span;
783 	cpumask_var_t		online;
784 
785 	/*
786 	 * Indicate pullable load on at least one CPU, e.g:
787 	 * - More than one runnable task
788 	 * - Running task is misfit
789 	 */
790 	int			overload;
791 
792 	/* Indicate one or more cpus over-utilized (tipping point) */
793 	int			overutilized;
794 
795 	/*
796 	 * The bit corresponding to a CPU gets set here if such CPU has more
797 	 * than one runnable -deadline task (as it is below for RT tasks).
798 	 */
799 	cpumask_var_t		dlo_mask;
800 	atomic_t		dlo_count;
801 	struct dl_bw		dl_bw;
802 	struct cpudl		cpudl;
803 
804 #ifdef HAVE_RT_PUSH_IPI
805 	/*
806 	 * For IPI pull requests, loop across the rto_mask.
807 	 */
808 	struct irq_work		rto_push_work;
809 	raw_spinlock_t		rto_lock;
810 	/* These are only updated and read within rto_lock */
811 	int			rto_loop;
812 	int			rto_cpu;
813 	/* These atomics are updated outside of a lock */
814 	atomic_t		rto_loop_next;
815 	atomic_t		rto_loop_start;
816 #endif
817 	/*
818 	 * The "RT overload" flag: it gets set if a CPU has more than
819 	 * one runnable RT task.
820 	 */
821 	cpumask_var_t		rto_mask;
822 	struct cpupri		cpupri;
823 
824 	unsigned long		max_cpu_capacity;
825 
826 	/*
827 	 * NULL-terminated list of performance domains intersecting with the
828 	 * CPUs of the rd. Protected by RCU.
829 	 */
830 	struct perf_domain __rcu *pd;
831 };
832 
833 extern void init_defrootdomain(void);
834 extern int sched_init_domains(const struct cpumask *cpu_map);
835 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
836 extern void sched_get_rd(struct root_domain *rd);
837 extern void sched_put_rd(struct root_domain *rd);
838 
839 #ifdef HAVE_RT_PUSH_IPI
840 extern void rto_push_irq_work_func(struct irq_work *work);
841 #endif
842 #endif /* CONFIG_SMP */
843 
844 #ifdef CONFIG_UCLAMP_TASK
845 /*
846  * struct uclamp_bucket - Utilization clamp bucket
847  * @value: utilization clamp value for tasks on this clamp bucket
848  * @tasks: number of RUNNABLE tasks on this clamp bucket
849  *
850  * Keep track of how many tasks are RUNNABLE for a given utilization
851  * clamp value.
852  */
853 struct uclamp_bucket {
854 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
855 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
856 };
857 
858 /*
859  * struct uclamp_rq - rq's utilization clamp
860  * @value: currently active clamp values for a rq
861  * @bucket: utilization clamp buckets affecting a rq
862  *
863  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
864  * A clamp value is affecting a rq when there is at least one task RUNNABLE
865  * (or actually running) with that value.
866  *
867  * There are up to UCLAMP_CNT possible different clamp values, currently there
868  * are only two: minimum utilization and maximum utilization.
869  *
870  * All utilization clamping values are MAX aggregated, since:
871  * - for util_min: we want to run the CPU at least at the max of the minimum
872  *   utilization required by its currently RUNNABLE tasks.
873  * - for util_max: we want to allow the CPU to run up to the max of the
874  *   maximum utilization allowed by its currently RUNNABLE tasks.
875  *
876  * Since on each system we expect only a limited number of different
877  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
878  * the metrics required to compute all the per-rq utilization clamp values.
879  */
880 struct uclamp_rq {
881 	unsigned int value;
882 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
883 };
884 
885 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
886 #endif /* CONFIG_UCLAMP_TASK */
887 
888 /*
889  * This is the main, per-CPU runqueue data structure.
890  *
891  * Locking rule: those places that want to lock multiple runqueues
892  * (such as the load balancing or the thread migration code), lock
893  * acquire operations must be ordered by ascending &runqueue.
894  */
895 struct rq {
896 	/* runqueue lock: */
897 	raw_spinlock_t		lock;
898 
899 	/*
900 	 * nr_running and cpu_load should be in the same cacheline because
901 	 * remote CPUs use both these fields when doing load calculation.
902 	 */
903 	unsigned int		nr_running;
904 #ifdef CONFIG_NUMA_BALANCING
905 	unsigned int		nr_numa_running;
906 	unsigned int		nr_preferred_running;
907 	unsigned int		numa_migrate_on;
908 #endif
909 #ifdef CONFIG_NO_HZ_COMMON
910 #ifdef CONFIG_SMP
911 	unsigned long		last_blocked_load_update_tick;
912 	unsigned int		has_blocked_load;
913 	call_single_data_t	nohz_csd;
914 #endif /* CONFIG_SMP */
915 	unsigned int		nohz_tick_stopped;
916 	atomic_t		nohz_flags;
917 #endif /* CONFIG_NO_HZ_COMMON */
918 
919 #ifdef CONFIG_SMP
920 	unsigned int		ttwu_pending;
921 #endif
922 	u64			nr_switches;
923 
924 #ifdef CONFIG_UCLAMP_TASK
925 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
926 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
927 	unsigned int		uclamp_flags;
928 #define UCLAMP_FLAG_IDLE 0x01
929 #endif
930 
931 	struct cfs_rq		cfs;
932 	struct rt_rq		rt;
933 	struct dl_rq		dl;
934 
935 #ifdef CONFIG_FAIR_GROUP_SCHED
936 	/* list of leaf cfs_rq on this CPU: */
937 	struct list_head	leaf_cfs_rq_list;
938 	struct list_head	*tmp_alone_branch;
939 #endif /* CONFIG_FAIR_GROUP_SCHED */
940 
941 	/*
942 	 * This is part of a global counter where only the total sum
943 	 * over all CPUs matters. A task can increase this counter on
944 	 * one CPU and if it got migrated afterwards it may decrease
945 	 * it on another CPU. Always updated under the runqueue lock:
946 	 */
947 	unsigned long		nr_uninterruptible;
948 
949 	struct task_struct __rcu	*curr;
950 	struct task_struct	*idle;
951 	struct task_struct	*stop;
952 	unsigned long		next_balance;
953 	struct mm_struct	*prev_mm;
954 
955 	unsigned int		clock_update_flags;
956 	u64			clock;
957 	/* Ensure that all clocks are in the same cache line */
958 	u64			clock_task ____cacheline_aligned;
959 	u64			clock_pelt;
960 	unsigned long		lost_idle_time;
961 
962 	atomic_t		nr_iowait;
963 
964 #ifdef CONFIG_MEMBARRIER
965 	int membarrier_state;
966 #endif
967 
968 #ifdef CONFIG_SMP
969 	struct root_domain		*rd;
970 	struct sched_domain __rcu	*sd;
971 
972 	unsigned long		cpu_capacity;
973 	unsigned long		cpu_capacity_orig;
974 
975 	struct callback_head	*balance_callback;
976 
977 	unsigned char		nohz_idle_balance;
978 	unsigned char		idle_balance;
979 
980 	unsigned long		misfit_task_load;
981 
982 	/* For active balancing */
983 	int			active_balance;
984 	int			push_cpu;
985 	struct cpu_stop_work	active_balance_work;
986 
987 	/* CPU of this runqueue: */
988 	int			cpu;
989 	int			online;
990 
991 	struct list_head cfs_tasks;
992 
993 	struct sched_avg	avg_rt;
994 	struct sched_avg	avg_dl;
995 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
996 	struct sched_avg	avg_irq;
997 #endif
998 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
999 	struct sched_avg	avg_thermal;
1000 #endif
1001 	u64			idle_stamp;
1002 	u64			avg_idle;
1003 
1004 	/* This is used to determine avg_idle's max value */
1005 	u64			max_idle_balance_cost;
1006 #endif /* CONFIG_SMP */
1007 
1008 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1009 	u64			prev_irq_time;
1010 #endif
1011 #ifdef CONFIG_PARAVIRT
1012 	u64			prev_steal_time;
1013 #endif
1014 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1015 	u64			prev_steal_time_rq;
1016 #endif
1017 
1018 	/* calc_load related fields */
1019 	unsigned long		calc_load_update;
1020 	long			calc_load_active;
1021 
1022 #ifdef CONFIG_SCHED_HRTICK
1023 #ifdef CONFIG_SMP
1024 	call_single_data_t	hrtick_csd;
1025 #endif
1026 	struct hrtimer		hrtick_timer;
1027 #endif
1028 
1029 #ifdef CONFIG_SCHEDSTATS
1030 	/* latency stats */
1031 	struct sched_info	rq_sched_info;
1032 	unsigned long long	rq_cpu_time;
1033 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1034 
1035 	/* sys_sched_yield() stats */
1036 	unsigned int		yld_count;
1037 
1038 	/* schedule() stats */
1039 	unsigned int		sched_count;
1040 	unsigned int		sched_goidle;
1041 
1042 	/* try_to_wake_up() stats */
1043 	unsigned int		ttwu_count;
1044 	unsigned int		ttwu_local;
1045 #endif
1046 
1047 #ifdef CONFIG_CPU_IDLE
1048 	/* Must be inspected within a rcu lock section */
1049 	struct cpuidle_state	*idle_state;
1050 #endif
1051 };
1052 
1053 #ifdef CONFIG_FAIR_GROUP_SCHED
1054 
1055 /* CPU runqueue to which this cfs_rq is attached */
1056 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1057 {
1058 	return cfs_rq->rq;
1059 }
1060 
1061 #else
1062 
1063 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1064 {
1065 	return container_of(cfs_rq, struct rq, cfs);
1066 }
1067 #endif
1068 
1069 static inline int cpu_of(struct rq *rq)
1070 {
1071 #ifdef CONFIG_SMP
1072 	return rq->cpu;
1073 #else
1074 	return 0;
1075 #endif
1076 }
1077 
1078 
1079 #ifdef CONFIG_SCHED_SMT
1080 extern void __update_idle_core(struct rq *rq);
1081 
1082 static inline void update_idle_core(struct rq *rq)
1083 {
1084 	if (static_branch_unlikely(&sched_smt_present))
1085 		__update_idle_core(rq);
1086 }
1087 
1088 #else
1089 static inline void update_idle_core(struct rq *rq) { }
1090 #endif
1091 
1092 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1093 
1094 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1095 #define this_rq()		this_cpu_ptr(&runqueues)
1096 #define task_rq(p)		cpu_rq(task_cpu(p))
1097 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1098 #define raw_rq()		raw_cpu_ptr(&runqueues)
1099 
1100 extern void update_rq_clock(struct rq *rq);
1101 
1102 static inline u64 __rq_clock_broken(struct rq *rq)
1103 {
1104 	return READ_ONCE(rq->clock);
1105 }
1106 
1107 /*
1108  * rq::clock_update_flags bits
1109  *
1110  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1111  *  call to __schedule(). This is an optimisation to avoid
1112  *  neighbouring rq clock updates.
1113  *
1114  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1115  *  in effect and calls to update_rq_clock() are being ignored.
1116  *
1117  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1118  *  made to update_rq_clock() since the last time rq::lock was pinned.
1119  *
1120  * If inside of __schedule(), clock_update_flags will have been
1121  * shifted left (a left shift is a cheap operation for the fast path
1122  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1123  *
1124  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1125  *
1126  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1127  * one position though, because the next rq_unpin_lock() will shift it
1128  * back.
1129  */
1130 #define RQCF_REQ_SKIP		0x01
1131 #define RQCF_ACT_SKIP		0x02
1132 #define RQCF_UPDATED		0x04
1133 
1134 static inline void assert_clock_updated(struct rq *rq)
1135 {
1136 	/*
1137 	 * The only reason for not seeing a clock update since the
1138 	 * last rq_pin_lock() is if we're currently skipping updates.
1139 	 */
1140 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1141 }
1142 
1143 static inline u64 rq_clock(struct rq *rq)
1144 {
1145 	lockdep_assert_held(&rq->lock);
1146 	assert_clock_updated(rq);
1147 
1148 	return rq->clock;
1149 }
1150 
1151 static inline u64 rq_clock_task(struct rq *rq)
1152 {
1153 	lockdep_assert_held(&rq->lock);
1154 	assert_clock_updated(rq);
1155 
1156 	return rq->clock_task;
1157 }
1158 
1159 /**
1160  * By default the decay is the default pelt decay period.
1161  * The decay shift can change the decay period in
1162  * multiples of 32.
1163  *  Decay shift		Decay period(ms)
1164  *	0			32
1165  *	1			64
1166  *	2			128
1167  *	3			256
1168  *	4			512
1169  */
1170 extern int sched_thermal_decay_shift;
1171 
1172 static inline u64 rq_clock_thermal(struct rq *rq)
1173 {
1174 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1175 }
1176 
1177 static inline void rq_clock_skip_update(struct rq *rq)
1178 {
1179 	lockdep_assert_held(&rq->lock);
1180 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1181 }
1182 
1183 /*
1184  * See rt task throttling, which is the only time a skip
1185  * request is cancelled.
1186  */
1187 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1188 {
1189 	lockdep_assert_held(&rq->lock);
1190 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1191 }
1192 
1193 struct rq_flags {
1194 	unsigned long flags;
1195 	struct pin_cookie cookie;
1196 #ifdef CONFIG_SCHED_DEBUG
1197 	/*
1198 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1199 	 * current pin context is stashed here in case it needs to be
1200 	 * restored in rq_repin_lock().
1201 	 */
1202 	unsigned int clock_update_flags;
1203 #endif
1204 };
1205 
1206 /*
1207  * Lockdep annotation that avoids accidental unlocks; it's like a
1208  * sticky/continuous lockdep_assert_held().
1209  *
1210  * This avoids code that has access to 'struct rq *rq' (basically everything in
1211  * the scheduler) from accidentally unlocking the rq if they do not also have a
1212  * copy of the (on-stack) 'struct rq_flags rf'.
1213  *
1214  * Also see Documentation/locking/lockdep-design.rst.
1215  */
1216 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1217 {
1218 	rf->cookie = lockdep_pin_lock(&rq->lock);
1219 
1220 #ifdef CONFIG_SCHED_DEBUG
1221 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1222 	rf->clock_update_flags = 0;
1223 #endif
1224 }
1225 
1226 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1227 {
1228 #ifdef CONFIG_SCHED_DEBUG
1229 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1230 		rf->clock_update_flags = RQCF_UPDATED;
1231 #endif
1232 
1233 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1234 }
1235 
1236 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1237 {
1238 	lockdep_repin_lock(&rq->lock, rf->cookie);
1239 
1240 #ifdef CONFIG_SCHED_DEBUG
1241 	/*
1242 	 * Restore the value we stashed in @rf for this pin context.
1243 	 */
1244 	rq->clock_update_flags |= rf->clock_update_flags;
1245 #endif
1246 }
1247 
1248 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1249 	__acquires(rq->lock);
1250 
1251 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1252 	__acquires(p->pi_lock)
1253 	__acquires(rq->lock);
1254 
1255 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1256 	__releases(rq->lock)
1257 {
1258 	rq_unpin_lock(rq, rf);
1259 	raw_spin_unlock(&rq->lock);
1260 }
1261 
1262 static inline void
1263 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1264 	__releases(rq->lock)
1265 	__releases(p->pi_lock)
1266 {
1267 	rq_unpin_lock(rq, rf);
1268 	raw_spin_unlock(&rq->lock);
1269 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1270 }
1271 
1272 static inline void
1273 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1274 	__acquires(rq->lock)
1275 {
1276 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1277 	rq_pin_lock(rq, rf);
1278 }
1279 
1280 static inline void
1281 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1282 	__acquires(rq->lock)
1283 {
1284 	raw_spin_lock_irq(&rq->lock);
1285 	rq_pin_lock(rq, rf);
1286 }
1287 
1288 static inline void
1289 rq_lock(struct rq *rq, struct rq_flags *rf)
1290 	__acquires(rq->lock)
1291 {
1292 	raw_spin_lock(&rq->lock);
1293 	rq_pin_lock(rq, rf);
1294 }
1295 
1296 static inline void
1297 rq_relock(struct rq *rq, struct rq_flags *rf)
1298 	__acquires(rq->lock)
1299 {
1300 	raw_spin_lock(&rq->lock);
1301 	rq_repin_lock(rq, rf);
1302 }
1303 
1304 static inline void
1305 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1306 	__releases(rq->lock)
1307 {
1308 	rq_unpin_lock(rq, rf);
1309 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1310 }
1311 
1312 static inline void
1313 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1314 	__releases(rq->lock)
1315 {
1316 	rq_unpin_lock(rq, rf);
1317 	raw_spin_unlock_irq(&rq->lock);
1318 }
1319 
1320 static inline void
1321 rq_unlock(struct rq *rq, struct rq_flags *rf)
1322 	__releases(rq->lock)
1323 {
1324 	rq_unpin_lock(rq, rf);
1325 	raw_spin_unlock(&rq->lock);
1326 }
1327 
1328 static inline struct rq *
1329 this_rq_lock_irq(struct rq_flags *rf)
1330 	__acquires(rq->lock)
1331 {
1332 	struct rq *rq;
1333 
1334 	local_irq_disable();
1335 	rq = this_rq();
1336 	rq_lock(rq, rf);
1337 	return rq;
1338 }
1339 
1340 #ifdef CONFIG_NUMA
1341 enum numa_topology_type {
1342 	NUMA_DIRECT,
1343 	NUMA_GLUELESS_MESH,
1344 	NUMA_BACKPLANE,
1345 };
1346 extern enum numa_topology_type sched_numa_topology_type;
1347 extern int sched_max_numa_distance;
1348 extern bool find_numa_distance(int distance);
1349 extern void sched_init_numa(void);
1350 extern void sched_domains_numa_masks_set(unsigned int cpu);
1351 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1352 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1353 #else
1354 static inline void sched_init_numa(void) { }
1355 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1356 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1357 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1358 {
1359 	return nr_cpu_ids;
1360 }
1361 #endif
1362 
1363 #ifdef CONFIG_NUMA_BALANCING
1364 /* The regions in numa_faults array from task_struct */
1365 enum numa_faults_stats {
1366 	NUMA_MEM = 0,
1367 	NUMA_CPU,
1368 	NUMA_MEMBUF,
1369 	NUMA_CPUBUF
1370 };
1371 extern void sched_setnuma(struct task_struct *p, int node);
1372 extern int migrate_task_to(struct task_struct *p, int cpu);
1373 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1374 			int cpu, int scpu);
1375 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1376 #else
1377 static inline void
1378 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1379 {
1380 }
1381 #endif /* CONFIG_NUMA_BALANCING */
1382 
1383 #ifdef CONFIG_SMP
1384 
1385 static inline void
1386 queue_balance_callback(struct rq *rq,
1387 		       struct callback_head *head,
1388 		       void (*func)(struct rq *rq))
1389 {
1390 	lockdep_assert_held(&rq->lock);
1391 
1392 	if (unlikely(head->next))
1393 		return;
1394 
1395 	head->func = (void (*)(struct callback_head *))func;
1396 	head->next = rq->balance_callback;
1397 	rq->balance_callback = head;
1398 }
1399 
1400 #define rcu_dereference_check_sched_domain(p) \
1401 	rcu_dereference_check((p), \
1402 			      lockdep_is_held(&sched_domains_mutex))
1403 
1404 /*
1405  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1406  * See destroy_sched_domains: call_rcu for details.
1407  *
1408  * The domain tree of any CPU may only be accessed from within
1409  * preempt-disabled sections.
1410  */
1411 #define for_each_domain(cpu, __sd) \
1412 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1413 			__sd; __sd = __sd->parent)
1414 
1415 /**
1416  * highest_flag_domain - Return highest sched_domain containing flag.
1417  * @cpu:	The CPU whose highest level of sched domain is to
1418  *		be returned.
1419  * @flag:	The flag to check for the highest sched_domain
1420  *		for the given CPU.
1421  *
1422  * Returns the highest sched_domain of a CPU which contains the given flag.
1423  */
1424 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1425 {
1426 	struct sched_domain *sd, *hsd = NULL;
1427 
1428 	for_each_domain(cpu, sd) {
1429 		if (!(sd->flags & flag))
1430 			break;
1431 		hsd = sd;
1432 	}
1433 
1434 	return hsd;
1435 }
1436 
1437 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1438 {
1439 	struct sched_domain *sd;
1440 
1441 	for_each_domain(cpu, sd) {
1442 		if (sd->flags & flag)
1443 			break;
1444 	}
1445 
1446 	return sd;
1447 }
1448 
1449 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1450 DECLARE_PER_CPU(int, sd_llc_size);
1451 DECLARE_PER_CPU(int, sd_llc_id);
1452 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1453 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1454 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1455 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1456 extern struct static_key_false sched_asym_cpucapacity;
1457 
1458 struct sched_group_capacity {
1459 	atomic_t		ref;
1460 	/*
1461 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1462 	 * for a single CPU.
1463 	 */
1464 	unsigned long		capacity;
1465 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1466 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1467 	unsigned long		next_update;
1468 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1469 
1470 #ifdef CONFIG_SCHED_DEBUG
1471 	int			id;
1472 #endif
1473 
1474 	unsigned long		cpumask[];		/* Balance mask */
1475 };
1476 
1477 struct sched_group {
1478 	struct sched_group	*next;			/* Must be a circular list */
1479 	atomic_t		ref;
1480 
1481 	unsigned int		group_weight;
1482 	struct sched_group_capacity *sgc;
1483 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1484 
1485 	/*
1486 	 * The CPUs this group covers.
1487 	 *
1488 	 * NOTE: this field is variable length. (Allocated dynamically
1489 	 * by attaching extra space to the end of the structure,
1490 	 * depending on how many CPUs the kernel has booted up with)
1491 	 */
1492 	unsigned long		cpumask[];
1493 };
1494 
1495 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1496 {
1497 	return to_cpumask(sg->cpumask);
1498 }
1499 
1500 /*
1501  * See build_balance_mask().
1502  */
1503 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1504 {
1505 	return to_cpumask(sg->sgc->cpumask);
1506 }
1507 
1508 /**
1509  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1510  * @group: The group whose first CPU is to be returned.
1511  */
1512 static inline unsigned int group_first_cpu(struct sched_group *group)
1513 {
1514 	return cpumask_first(sched_group_span(group));
1515 }
1516 
1517 extern int group_balance_cpu(struct sched_group *sg);
1518 
1519 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1520 void register_sched_domain_sysctl(void);
1521 void dirty_sched_domain_sysctl(int cpu);
1522 void unregister_sched_domain_sysctl(void);
1523 #else
1524 static inline void register_sched_domain_sysctl(void)
1525 {
1526 }
1527 static inline void dirty_sched_domain_sysctl(int cpu)
1528 {
1529 }
1530 static inline void unregister_sched_domain_sysctl(void)
1531 {
1532 }
1533 #endif
1534 
1535 extern void flush_smp_call_function_from_idle(void);
1536 
1537 #else /* !CONFIG_SMP: */
1538 static inline void flush_smp_call_function_from_idle(void) { }
1539 #endif
1540 
1541 #include "stats.h"
1542 #include "autogroup.h"
1543 
1544 #ifdef CONFIG_CGROUP_SCHED
1545 
1546 /*
1547  * Return the group to which this tasks belongs.
1548  *
1549  * We cannot use task_css() and friends because the cgroup subsystem
1550  * changes that value before the cgroup_subsys::attach() method is called,
1551  * therefore we cannot pin it and might observe the wrong value.
1552  *
1553  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1554  * core changes this before calling sched_move_task().
1555  *
1556  * Instead we use a 'copy' which is updated from sched_move_task() while
1557  * holding both task_struct::pi_lock and rq::lock.
1558  */
1559 static inline struct task_group *task_group(struct task_struct *p)
1560 {
1561 	return p->sched_task_group;
1562 }
1563 
1564 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1565 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1566 {
1567 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1568 	struct task_group *tg = task_group(p);
1569 #endif
1570 
1571 #ifdef CONFIG_FAIR_GROUP_SCHED
1572 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1573 	p->se.cfs_rq = tg->cfs_rq[cpu];
1574 	p->se.parent = tg->se[cpu];
1575 #endif
1576 
1577 #ifdef CONFIG_RT_GROUP_SCHED
1578 	p->rt.rt_rq  = tg->rt_rq[cpu];
1579 	p->rt.parent = tg->rt_se[cpu];
1580 #endif
1581 }
1582 
1583 #else /* CONFIG_CGROUP_SCHED */
1584 
1585 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1586 static inline struct task_group *task_group(struct task_struct *p)
1587 {
1588 	return NULL;
1589 }
1590 
1591 #endif /* CONFIG_CGROUP_SCHED */
1592 
1593 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1594 {
1595 	set_task_rq(p, cpu);
1596 #ifdef CONFIG_SMP
1597 	/*
1598 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1599 	 * successfully executed on another CPU. We must ensure that updates of
1600 	 * per-task data have been completed by this moment.
1601 	 */
1602 	smp_wmb();
1603 #ifdef CONFIG_THREAD_INFO_IN_TASK
1604 	WRITE_ONCE(p->cpu, cpu);
1605 #else
1606 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1607 #endif
1608 	p->wake_cpu = cpu;
1609 #endif
1610 }
1611 
1612 /*
1613  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1614  */
1615 #ifdef CONFIG_SCHED_DEBUG
1616 # include <linux/static_key.h>
1617 # define const_debug __read_mostly
1618 #else
1619 # define const_debug const
1620 #endif
1621 
1622 #define SCHED_FEAT(name, enabled)	\
1623 	__SCHED_FEAT_##name ,
1624 
1625 enum {
1626 #include "features.h"
1627 	__SCHED_FEAT_NR,
1628 };
1629 
1630 #undef SCHED_FEAT
1631 
1632 #ifdef CONFIG_SCHED_DEBUG
1633 
1634 /*
1635  * To support run-time toggling of sched features, all the translation units
1636  * (but core.c) reference the sysctl_sched_features defined in core.c.
1637  */
1638 extern const_debug unsigned int sysctl_sched_features;
1639 
1640 #ifdef CONFIG_JUMP_LABEL
1641 #define SCHED_FEAT(name, enabled)					\
1642 static __always_inline bool static_branch_##name(struct static_key *key) \
1643 {									\
1644 	return static_key_##enabled(key);				\
1645 }
1646 
1647 #include "features.h"
1648 #undef SCHED_FEAT
1649 
1650 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1651 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1652 
1653 #else /* !CONFIG_JUMP_LABEL */
1654 
1655 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1656 
1657 #endif /* CONFIG_JUMP_LABEL */
1658 
1659 #else /* !SCHED_DEBUG */
1660 
1661 /*
1662  * Each translation unit has its own copy of sysctl_sched_features to allow
1663  * constants propagation at compile time and compiler optimization based on
1664  * features default.
1665  */
1666 #define SCHED_FEAT(name, enabled)	\
1667 	(1UL << __SCHED_FEAT_##name) * enabled |
1668 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1669 #include "features.h"
1670 	0;
1671 #undef SCHED_FEAT
1672 
1673 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1674 
1675 #endif /* SCHED_DEBUG */
1676 
1677 extern struct static_key_false sched_numa_balancing;
1678 extern struct static_key_false sched_schedstats;
1679 
1680 static inline u64 global_rt_period(void)
1681 {
1682 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1683 }
1684 
1685 static inline u64 global_rt_runtime(void)
1686 {
1687 	if (sysctl_sched_rt_runtime < 0)
1688 		return RUNTIME_INF;
1689 
1690 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1691 }
1692 
1693 static inline int task_current(struct rq *rq, struct task_struct *p)
1694 {
1695 	return rq->curr == p;
1696 }
1697 
1698 static inline int task_running(struct rq *rq, struct task_struct *p)
1699 {
1700 #ifdef CONFIG_SMP
1701 	return p->on_cpu;
1702 #else
1703 	return task_current(rq, p);
1704 #endif
1705 }
1706 
1707 static inline int task_on_rq_queued(struct task_struct *p)
1708 {
1709 	return p->on_rq == TASK_ON_RQ_QUEUED;
1710 }
1711 
1712 static inline int task_on_rq_migrating(struct task_struct *p)
1713 {
1714 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1715 }
1716 
1717 /*
1718  * wake flags
1719  */
1720 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1721 #define WF_FORK			0x02		/* Child wakeup after fork */
1722 #define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1723 #define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1724 
1725 /*
1726  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1727  * of tasks with abnormal "nice" values across CPUs the contribution that
1728  * each task makes to its run queue's load is weighted according to its
1729  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1730  * scaled version of the new time slice allocation that they receive on time
1731  * slice expiry etc.
1732  */
1733 
1734 #define WEIGHT_IDLEPRIO		3
1735 #define WMULT_IDLEPRIO		1431655765
1736 
1737 extern const int		sched_prio_to_weight[40];
1738 extern const u32		sched_prio_to_wmult[40];
1739 
1740 /*
1741  * {de,en}queue flags:
1742  *
1743  * DEQUEUE_SLEEP  - task is no longer runnable
1744  * ENQUEUE_WAKEUP - task just became runnable
1745  *
1746  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1747  *                are in a known state which allows modification. Such pairs
1748  *                should preserve as much state as possible.
1749  *
1750  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1751  *        in the runqueue.
1752  *
1753  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1754  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1755  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1756  *
1757  */
1758 
1759 #define DEQUEUE_SLEEP		0x01
1760 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1761 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1762 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1763 
1764 #define ENQUEUE_WAKEUP		0x01
1765 #define ENQUEUE_RESTORE		0x02
1766 #define ENQUEUE_MOVE		0x04
1767 #define ENQUEUE_NOCLOCK		0x08
1768 
1769 #define ENQUEUE_HEAD		0x10
1770 #define ENQUEUE_REPLENISH	0x20
1771 #ifdef CONFIG_SMP
1772 #define ENQUEUE_MIGRATED	0x40
1773 #else
1774 #define ENQUEUE_MIGRATED	0x00
1775 #endif
1776 
1777 #define RETRY_TASK		((void *)-1UL)
1778 
1779 struct sched_class {
1780 
1781 #ifdef CONFIG_UCLAMP_TASK
1782 	int uclamp_enabled;
1783 #endif
1784 
1785 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1786 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1787 	void (*yield_task)   (struct rq *rq);
1788 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1789 
1790 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1791 
1792 	struct task_struct *(*pick_next_task)(struct rq *rq);
1793 
1794 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1795 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1796 
1797 #ifdef CONFIG_SMP
1798 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1799 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1800 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1801 
1802 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1803 
1804 	void (*set_cpus_allowed)(struct task_struct *p,
1805 				 const struct cpumask *newmask);
1806 
1807 	void (*rq_online)(struct rq *rq);
1808 	void (*rq_offline)(struct rq *rq);
1809 #endif
1810 
1811 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1812 	void (*task_fork)(struct task_struct *p);
1813 	void (*task_dead)(struct task_struct *p);
1814 
1815 	/*
1816 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1817 	 * cannot assume the switched_from/switched_to pair is serliazed by
1818 	 * rq->lock. They are however serialized by p->pi_lock.
1819 	 */
1820 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1821 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1822 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1823 			      int oldprio);
1824 
1825 	unsigned int (*get_rr_interval)(struct rq *rq,
1826 					struct task_struct *task);
1827 
1828 	void (*update_curr)(struct rq *rq);
1829 
1830 #define TASK_SET_GROUP		0
1831 #define TASK_MOVE_GROUP		1
1832 
1833 #ifdef CONFIG_FAIR_GROUP_SCHED
1834 	void (*task_change_group)(struct task_struct *p, int type);
1835 #endif
1836 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1837 
1838 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1839 {
1840 	WARN_ON_ONCE(rq->curr != prev);
1841 	prev->sched_class->put_prev_task(rq, prev);
1842 }
1843 
1844 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1845 {
1846 	WARN_ON_ONCE(rq->curr != next);
1847 	next->sched_class->set_next_task(rq, next, false);
1848 }
1849 
1850 /* Defined in include/asm-generic/vmlinux.lds.h */
1851 extern struct sched_class __begin_sched_classes[];
1852 extern struct sched_class __end_sched_classes[];
1853 
1854 #define sched_class_highest (__end_sched_classes - 1)
1855 #define sched_class_lowest  (__begin_sched_classes - 1)
1856 
1857 #define for_class_range(class, _from, _to) \
1858 	for (class = (_from); class != (_to); class--)
1859 
1860 #define for_each_class(class) \
1861 	for_class_range(class, sched_class_highest, sched_class_lowest)
1862 
1863 extern const struct sched_class stop_sched_class;
1864 extern const struct sched_class dl_sched_class;
1865 extern const struct sched_class rt_sched_class;
1866 extern const struct sched_class fair_sched_class;
1867 extern const struct sched_class idle_sched_class;
1868 
1869 static inline bool sched_stop_runnable(struct rq *rq)
1870 {
1871 	return rq->stop && task_on_rq_queued(rq->stop);
1872 }
1873 
1874 static inline bool sched_dl_runnable(struct rq *rq)
1875 {
1876 	return rq->dl.dl_nr_running > 0;
1877 }
1878 
1879 static inline bool sched_rt_runnable(struct rq *rq)
1880 {
1881 	return rq->rt.rt_queued > 0;
1882 }
1883 
1884 static inline bool sched_fair_runnable(struct rq *rq)
1885 {
1886 	return rq->cfs.nr_running > 0;
1887 }
1888 
1889 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1890 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1891 
1892 #ifdef CONFIG_SMP
1893 
1894 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1895 
1896 extern void trigger_load_balance(struct rq *rq);
1897 
1898 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1899 
1900 #endif
1901 
1902 #ifdef CONFIG_CPU_IDLE
1903 static inline void idle_set_state(struct rq *rq,
1904 				  struct cpuidle_state *idle_state)
1905 {
1906 	rq->idle_state = idle_state;
1907 }
1908 
1909 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1910 {
1911 	SCHED_WARN_ON(!rcu_read_lock_held());
1912 
1913 	return rq->idle_state;
1914 }
1915 #else
1916 static inline void idle_set_state(struct rq *rq,
1917 				  struct cpuidle_state *idle_state)
1918 {
1919 }
1920 
1921 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1922 {
1923 	return NULL;
1924 }
1925 #endif
1926 
1927 extern void schedule_idle(void);
1928 
1929 extern void sysrq_sched_debug_show(void);
1930 extern void sched_init_granularity(void);
1931 extern void update_max_interval(void);
1932 
1933 extern void init_sched_dl_class(void);
1934 extern void init_sched_rt_class(void);
1935 extern void init_sched_fair_class(void);
1936 
1937 extern void reweight_task(struct task_struct *p, int prio);
1938 
1939 extern void resched_curr(struct rq *rq);
1940 extern void resched_cpu(int cpu);
1941 
1942 extern struct rt_bandwidth def_rt_bandwidth;
1943 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1944 
1945 extern struct dl_bandwidth def_dl_bandwidth;
1946 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1947 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1948 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1949 
1950 #define BW_SHIFT		20
1951 #define BW_UNIT			(1 << BW_SHIFT)
1952 #define RATIO_SHIFT		8
1953 #define MAX_BW_BITS		(64 - BW_SHIFT)
1954 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
1955 unsigned long to_ratio(u64 period, u64 runtime);
1956 
1957 extern void init_entity_runnable_average(struct sched_entity *se);
1958 extern void post_init_entity_util_avg(struct task_struct *p);
1959 
1960 #ifdef CONFIG_NO_HZ_FULL
1961 extern bool sched_can_stop_tick(struct rq *rq);
1962 extern int __init sched_tick_offload_init(void);
1963 
1964 /*
1965  * Tick may be needed by tasks in the runqueue depending on their policy and
1966  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1967  * nohz mode if necessary.
1968  */
1969 static inline void sched_update_tick_dependency(struct rq *rq)
1970 {
1971 	int cpu = cpu_of(rq);
1972 
1973 	if (!tick_nohz_full_cpu(cpu))
1974 		return;
1975 
1976 	if (sched_can_stop_tick(rq))
1977 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1978 	else
1979 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1980 }
1981 #else
1982 static inline int sched_tick_offload_init(void) { return 0; }
1983 static inline void sched_update_tick_dependency(struct rq *rq) { }
1984 #endif
1985 
1986 static inline void add_nr_running(struct rq *rq, unsigned count)
1987 {
1988 	unsigned prev_nr = rq->nr_running;
1989 
1990 	rq->nr_running = prev_nr + count;
1991 	if (trace_sched_update_nr_running_tp_enabled()) {
1992 		call_trace_sched_update_nr_running(rq, count);
1993 	}
1994 
1995 #ifdef CONFIG_SMP
1996 	if (prev_nr < 2 && rq->nr_running >= 2) {
1997 		if (!READ_ONCE(rq->rd->overload))
1998 			WRITE_ONCE(rq->rd->overload, 1);
1999 	}
2000 #endif
2001 
2002 	sched_update_tick_dependency(rq);
2003 }
2004 
2005 static inline void sub_nr_running(struct rq *rq, unsigned count)
2006 {
2007 	rq->nr_running -= count;
2008 	if (trace_sched_update_nr_running_tp_enabled()) {
2009 		call_trace_sched_update_nr_running(rq, -count);
2010 	}
2011 
2012 	/* Check if we still need preemption */
2013 	sched_update_tick_dependency(rq);
2014 }
2015 
2016 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2017 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2018 
2019 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2020 
2021 extern const_debug unsigned int sysctl_sched_nr_migrate;
2022 extern const_debug unsigned int sysctl_sched_migration_cost;
2023 
2024 #ifdef CONFIG_SCHED_HRTICK
2025 
2026 /*
2027  * Use hrtick when:
2028  *  - enabled by features
2029  *  - hrtimer is actually high res
2030  */
2031 static inline int hrtick_enabled(struct rq *rq)
2032 {
2033 	if (!sched_feat(HRTICK))
2034 		return 0;
2035 	if (!cpu_active(cpu_of(rq)))
2036 		return 0;
2037 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2038 }
2039 
2040 void hrtick_start(struct rq *rq, u64 delay);
2041 
2042 #else
2043 
2044 static inline int hrtick_enabled(struct rq *rq)
2045 {
2046 	return 0;
2047 }
2048 
2049 #endif /* CONFIG_SCHED_HRTICK */
2050 
2051 #ifndef arch_scale_freq_tick
2052 static __always_inline
2053 void arch_scale_freq_tick(void)
2054 {
2055 }
2056 #endif
2057 
2058 #ifndef arch_scale_freq_capacity
2059 /**
2060  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2061  * @cpu: the CPU in question.
2062  *
2063  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2064  *
2065  *     f_curr
2066  *     ------ * SCHED_CAPACITY_SCALE
2067  *     f_max
2068  */
2069 static __always_inline
2070 unsigned long arch_scale_freq_capacity(int cpu)
2071 {
2072 	return SCHED_CAPACITY_SCALE;
2073 }
2074 #endif
2075 
2076 #ifdef CONFIG_SMP
2077 #ifdef CONFIG_PREEMPTION
2078 
2079 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2080 
2081 /*
2082  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2083  * way at the expense of forcing extra atomic operations in all
2084  * invocations.  This assures that the double_lock is acquired using the
2085  * same underlying policy as the spinlock_t on this architecture, which
2086  * reduces latency compared to the unfair variant below.  However, it
2087  * also adds more overhead and therefore may reduce throughput.
2088  */
2089 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2090 	__releases(this_rq->lock)
2091 	__acquires(busiest->lock)
2092 	__acquires(this_rq->lock)
2093 {
2094 	raw_spin_unlock(&this_rq->lock);
2095 	double_rq_lock(this_rq, busiest);
2096 
2097 	return 1;
2098 }
2099 
2100 #else
2101 /*
2102  * Unfair double_lock_balance: Optimizes throughput at the expense of
2103  * latency by eliminating extra atomic operations when the locks are
2104  * already in proper order on entry.  This favors lower CPU-ids and will
2105  * grant the double lock to lower CPUs over higher ids under contention,
2106  * regardless of entry order into the function.
2107  */
2108 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2109 	__releases(this_rq->lock)
2110 	__acquires(busiest->lock)
2111 	__acquires(this_rq->lock)
2112 {
2113 	int ret = 0;
2114 
2115 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2116 		if (busiest < this_rq) {
2117 			raw_spin_unlock(&this_rq->lock);
2118 			raw_spin_lock(&busiest->lock);
2119 			raw_spin_lock_nested(&this_rq->lock,
2120 					      SINGLE_DEPTH_NESTING);
2121 			ret = 1;
2122 		} else
2123 			raw_spin_lock_nested(&busiest->lock,
2124 					      SINGLE_DEPTH_NESTING);
2125 	}
2126 	return ret;
2127 }
2128 
2129 #endif /* CONFIG_PREEMPTION */
2130 
2131 /*
2132  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2133  */
2134 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2135 {
2136 	if (unlikely(!irqs_disabled())) {
2137 		/* printk() doesn't work well under rq->lock */
2138 		raw_spin_unlock(&this_rq->lock);
2139 		BUG_ON(1);
2140 	}
2141 
2142 	return _double_lock_balance(this_rq, busiest);
2143 }
2144 
2145 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2146 	__releases(busiest->lock)
2147 {
2148 	raw_spin_unlock(&busiest->lock);
2149 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2150 }
2151 
2152 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2153 {
2154 	if (l1 > l2)
2155 		swap(l1, l2);
2156 
2157 	spin_lock(l1);
2158 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2159 }
2160 
2161 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2162 {
2163 	if (l1 > l2)
2164 		swap(l1, l2);
2165 
2166 	spin_lock_irq(l1);
2167 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2168 }
2169 
2170 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2171 {
2172 	if (l1 > l2)
2173 		swap(l1, l2);
2174 
2175 	raw_spin_lock(l1);
2176 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2177 }
2178 
2179 /*
2180  * double_rq_lock - safely lock two runqueues
2181  *
2182  * Note this does not disable interrupts like task_rq_lock,
2183  * you need to do so manually before calling.
2184  */
2185 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2186 	__acquires(rq1->lock)
2187 	__acquires(rq2->lock)
2188 {
2189 	BUG_ON(!irqs_disabled());
2190 	if (rq1 == rq2) {
2191 		raw_spin_lock(&rq1->lock);
2192 		__acquire(rq2->lock);	/* Fake it out ;) */
2193 	} else {
2194 		if (rq1 < rq2) {
2195 			raw_spin_lock(&rq1->lock);
2196 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2197 		} else {
2198 			raw_spin_lock(&rq2->lock);
2199 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2200 		}
2201 	}
2202 }
2203 
2204 /*
2205  * double_rq_unlock - safely unlock two runqueues
2206  *
2207  * Note this does not restore interrupts like task_rq_unlock,
2208  * you need to do so manually after calling.
2209  */
2210 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2211 	__releases(rq1->lock)
2212 	__releases(rq2->lock)
2213 {
2214 	raw_spin_unlock(&rq1->lock);
2215 	if (rq1 != rq2)
2216 		raw_spin_unlock(&rq2->lock);
2217 	else
2218 		__release(rq2->lock);
2219 }
2220 
2221 extern void set_rq_online (struct rq *rq);
2222 extern void set_rq_offline(struct rq *rq);
2223 extern bool sched_smp_initialized;
2224 
2225 #else /* CONFIG_SMP */
2226 
2227 /*
2228  * double_rq_lock - safely lock two runqueues
2229  *
2230  * Note this does not disable interrupts like task_rq_lock,
2231  * you need to do so manually before calling.
2232  */
2233 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2234 	__acquires(rq1->lock)
2235 	__acquires(rq2->lock)
2236 {
2237 	BUG_ON(!irqs_disabled());
2238 	BUG_ON(rq1 != rq2);
2239 	raw_spin_lock(&rq1->lock);
2240 	__acquire(rq2->lock);	/* Fake it out ;) */
2241 }
2242 
2243 /*
2244  * double_rq_unlock - safely unlock two runqueues
2245  *
2246  * Note this does not restore interrupts like task_rq_unlock,
2247  * you need to do so manually after calling.
2248  */
2249 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2250 	__releases(rq1->lock)
2251 	__releases(rq2->lock)
2252 {
2253 	BUG_ON(rq1 != rq2);
2254 	raw_spin_unlock(&rq1->lock);
2255 	__release(rq2->lock);
2256 }
2257 
2258 #endif
2259 
2260 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2261 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2262 
2263 #ifdef	CONFIG_SCHED_DEBUG
2264 extern bool sched_debug_enabled;
2265 
2266 extern void print_cfs_stats(struct seq_file *m, int cpu);
2267 extern void print_rt_stats(struct seq_file *m, int cpu);
2268 extern void print_dl_stats(struct seq_file *m, int cpu);
2269 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2270 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2271 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2272 #ifdef CONFIG_NUMA_BALANCING
2273 extern void
2274 show_numa_stats(struct task_struct *p, struct seq_file *m);
2275 extern void
2276 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2277 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2278 #endif /* CONFIG_NUMA_BALANCING */
2279 #endif /* CONFIG_SCHED_DEBUG */
2280 
2281 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2282 extern void init_rt_rq(struct rt_rq *rt_rq);
2283 extern void init_dl_rq(struct dl_rq *dl_rq);
2284 
2285 extern void cfs_bandwidth_usage_inc(void);
2286 extern void cfs_bandwidth_usage_dec(void);
2287 
2288 #ifdef CONFIG_NO_HZ_COMMON
2289 #define NOHZ_BALANCE_KICK_BIT	0
2290 #define NOHZ_STATS_KICK_BIT	1
2291 
2292 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2293 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2294 
2295 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2296 
2297 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2298 
2299 extern void nohz_balance_exit_idle(struct rq *rq);
2300 #else
2301 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2302 #endif
2303 
2304 
2305 #ifdef CONFIG_SMP
2306 static inline
2307 void __dl_update(struct dl_bw *dl_b, s64 bw)
2308 {
2309 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2310 	int i;
2311 
2312 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2313 			 "sched RCU must be held");
2314 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2315 		struct rq *rq = cpu_rq(i);
2316 
2317 		rq->dl.extra_bw += bw;
2318 	}
2319 }
2320 #else
2321 static inline
2322 void __dl_update(struct dl_bw *dl_b, s64 bw)
2323 {
2324 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2325 
2326 	dl->extra_bw += bw;
2327 }
2328 #endif
2329 
2330 
2331 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2332 struct irqtime {
2333 	u64			total;
2334 	u64			tick_delta;
2335 	u64			irq_start_time;
2336 	struct u64_stats_sync	sync;
2337 };
2338 
2339 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2340 
2341 /*
2342  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2343  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2344  * and never move forward.
2345  */
2346 static inline u64 irq_time_read(int cpu)
2347 {
2348 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2349 	unsigned int seq;
2350 	u64 total;
2351 
2352 	do {
2353 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2354 		total = irqtime->total;
2355 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2356 
2357 	return total;
2358 }
2359 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2360 
2361 #ifdef CONFIG_CPU_FREQ
2362 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2363 
2364 /**
2365  * cpufreq_update_util - Take a note about CPU utilization changes.
2366  * @rq: Runqueue to carry out the update for.
2367  * @flags: Update reason flags.
2368  *
2369  * This function is called by the scheduler on the CPU whose utilization is
2370  * being updated.
2371  *
2372  * It can only be called from RCU-sched read-side critical sections.
2373  *
2374  * The way cpufreq is currently arranged requires it to evaluate the CPU
2375  * performance state (frequency/voltage) on a regular basis to prevent it from
2376  * being stuck in a completely inadequate performance level for too long.
2377  * That is not guaranteed to happen if the updates are only triggered from CFS
2378  * and DL, though, because they may not be coming in if only RT tasks are
2379  * active all the time (or there are RT tasks only).
2380  *
2381  * As a workaround for that issue, this function is called periodically by the
2382  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2383  * but that really is a band-aid.  Going forward it should be replaced with
2384  * solutions targeted more specifically at RT tasks.
2385  */
2386 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2387 {
2388 	struct update_util_data *data;
2389 
2390 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2391 						  cpu_of(rq)));
2392 	if (data)
2393 		data->func(data, rq_clock(rq), flags);
2394 }
2395 #else
2396 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2397 #endif /* CONFIG_CPU_FREQ */
2398 
2399 #ifdef CONFIG_UCLAMP_TASK
2400 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2401 
2402 /**
2403  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2404  * @rq:		The rq to clamp against. Must not be NULL.
2405  * @util:	The util value to clamp.
2406  * @p:		The task to clamp against. Can be NULL if you want to clamp
2407  *		against @rq only.
2408  *
2409  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2410  *
2411  * If sched_uclamp_used static key is disabled, then just return the util
2412  * without any clamping since uclamp aggregation at the rq level in the fast
2413  * path is disabled, rendering this operation a NOP.
2414  *
2415  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2416  * will return the correct effective uclamp value of the task even if the
2417  * static key is disabled.
2418  */
2419 static __always_inline
2420 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2421 				  struct task_struct *p)
2422 {
2423 	unsigned long min_util;
2424 	unsigned long max_util;
2425 
2426 	if (!static_branch_likely(&sched_uclamp_used))
2427 		return util;
2428 
2429 	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2430 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2431 
2432 	if (p) {
2433 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2434 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2435 	}
2436 
2437 	/*
2438 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2439 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2440 	 * inversion. Fix it now when the clamps are applied.
2441 	 */
2442 	if (unlikely(min_util >= max_util))
2443 		return min_util;
2444 
2445 	return clamp(util, min_util, max_util);
2446 }
2447 
2448 /*
2449  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2450  * by default in the fast path and only gets turned on once userspace performs
2451  * an operation that requires it.
2452  *
2453  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2454  * hence is active.
2455  */
2456 static inline bool uclamp_is_used(void)
2457 {
2458 	return static_branch_likely(&sched_uclamp_used);
2459 }
2460 #else /* CONFIG_UCLAMP_TASK */
2461 static inline
2462 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2463 				  struct task_struct *p)
2464 {
2465 	return util;
2466 }
2467 
2468 static inline bool uclamp_is_used(void)
2469 {
2470 	return false;
2471 }
2472 #endif /* CONFIG_UCLAMP_TASK */
2473 
2474 #ifdef arch_scale_freq_capacity
2475 # ifndef arch_scale_freq_invariant
2476 #  define arch_scale_freq_invariant()	true
2477 # endif
2478 #else
2479 # define arch_scale_freq_invariant()	false
2480 #endif
2481 
2482 #ifdef CONFIG_SMP
2483 static inline unsigned long capacity_orig_of(int cpu)
2484 {
2485 	return cpu_rq(cpu)->cpu_capacity_orig;
2486 }
2487 #endif
2488 
2489 /**
2490  * enum schedutil_type - CPU utilization type
2491  * @FREQUENCY_UTIL:	Utilization used to select frequency
2492  * @ENERGY_UTIL:	Utilization used during energy calculation
2493  *
2494  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2495  * need to be aggregated differently depending on the usage made of them. This
2496  * enum is used within schedutil_freq_util() to differentiate the types of
2497  * utilization expected by the callers, and adjust the aggregation accordingly.
2498  */
2499 enum schedutil_type {
2500 	FREQUENCY_UTIL,
2501 	ENERGY_UTIL,
2502 };
2503 
2504 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2505 
2506 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2507 				 unsigned long max, enum schedutil_type type,
2508 				 struct task_struct *p);
2509 
2510 static inline unsigned long cpu_bw_dl(struct rq *rq)
2511 {
2512 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2513 }
2514 
2515 static inline unsigned long cpu_util_dl(struct rq *rq)
2516 {
2517 	return READ_ONCE(rq->avg_dl.util_avg);
2518 }
2519 
2520 static inline unsigned long cpu_util_cfs(struct rq *rq)
2521 {
2522 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2523 
2524 	if (sched_feat(UTIL_EST)) {
2525 		util = max_t(unsigned long, util,
2526 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2527 	}
2528 
2529 	return util;
2530 }
2531 
2532 static inline unsigned long cpu_util_rt(struct rq *rq)
2533 {
2534 	return READ_ONCE(rq->avg_rt.util_avg);
2535 }
2536 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2537 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2538 				 unsigned long max, enum schedutil_type type,
2539 				 struct task_struct *p)
2540 {
2541 	return 0;
2542 }
2543 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2544 
2545 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2546 static inline unsigned long cpu_util_irq(struct rq *rq)
2547 {
2548 	return rq->avg_irq.util_avg;
2549 }
2550 
2551 static inline
2552 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2553 {
2554 	util *= (max - irq);
2555 	util /= max;
2556 
2557 	return util;
2558 
2559 }
2560 #else
2561 static inline unsigned long cpu_util_irq(struct rq *rq)
2562 {
2563 	return 0;
2564 }
2565 
2566 static inline
2567 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2568 {
2569 	return util;
2570 }
2571 #endif
2572 
2573 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2574 
2575 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2576 
2577 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2578 
2579 static inline bool sched_energy_enabled(void)
2580 {
2581 	return static_branch_unlikely(&sched_energy_present);
2582 }
2583 
2584 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2585 
2586 #define perf_domain_span(pd) NULL
2587 static inline bool sched_energy_enabled(void) { return false; }
2588 
2589 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2590 
2591 #ifdef CONFIG_MEMBARRIER
2592 /*
2593  * The scheduler provides memory barriers required by membarrier between:
2594  * - prior user-space memory accesses and store to rq->membarrier_state,
2595  * - store to rq->membarrier_state and following user-space memory accesses.
2596  * In the same way it provides those guarantees around store to rq->curr.
2597  */
2598 static inline void membarrier_switch_mm(struct rq *rq,
2599 					struct mm_struct *prev_mm,
2600 					struct mm_struct *next_mm)
2601 {
2602 	int membarrier_state;
2603 
2604 	if (prev_mm == next_mm)
2605 		return;
2606 
2607 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2608 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2609 		return;
2610 
2611 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2612 }
2613 #else
2614 static inline void membarrier_switch_mm(struct rq *rq,
2615 					struct mm_struct *prev_mm,
2616 					struct mm_struct *next_mm)
2617 {
2618 }
2619 #endif
2620 
2621 #ifdef CONFIG_SMP
2622 static inline bool is_per_cpu_kthread(struct task_struct *p)
2623 {
2624 	if (!(p->flags & PF_KTHREAD))
2625 		return false;
2626 
2627 	if (p->nr_cpus_allowed != 1)
2628 		return false;
2629 
2630 	return true;
2631 }
2632 #endif
2633 
2634 void swake_up_all_locked(struct swait_queue_head *q);
2635 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2636