xref: /openbmc/linux/kernel/sched/sched.h (revision e4c881d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include <asm/barrier.h>
92 
93 #include "cpupri.h"
94 #include "cpudeadline.h"
95 
96 #ifdef CONFIG_SCHED_DEBUG
97 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
98 #else
99 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
100 #endif
101 
102 struct rq;
103 struct cpuidle_state;
104 
105 /* task_struct::on_rq states: */
106 #define TASK_ON_RQ_QUEUED	1
107 #define TASK_ON_RQ_MIGRATING	2
108 
109 extern __read_mostly int scheduler_running;
110 
111 extern unsigned long calc_load_update;
112 extern atomic_long_t calc_load_tasks;
113 
114 extern unsigned int sysctl_sched_child_runs_first;
115 
116 extern void calc_global_load_tick(struct rq *this_rq);
117 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
118 
119 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
120 
121 extern unsigned int sysctl_sched_rt_period;
122 extern int sysctl_sched_rt_runtime;
123 extern int sched_rr_timeslice;
124 
125 /*
126  * Helpers for converting nanosecond timing to jiffy resolution
127  */
128 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
129 
130 /*
131  * Increase resolution of nice-level calculations for 64-bit architectures.
132  * The extra resolution improves shares distribution and load balancing of
133  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
134  * hierarchies, especially on larger systems. This is not a user-visible change
135  * and does not change the user-interface for setting shares/weights.
136  *
137  * We increase resolution only if we have enough bits to allow this increased
138  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
139  * are pretty high and the returns do not justify the increased costs.
140  *
141  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
142  * increase coverage and consistency always enable it on 64-bit platforms.
143  */
144 #ifdef CONFIG_64BIT
145 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
146 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
147 # define scale_load_down(w) \
148 ({ \
149 	unsigned long __w = (w); \
150 	if (__w) \
151 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
152 	__w; \
153 })
154 #else
155 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
156 # define scale_load(w)		(w)
157 # define scale_load_down(w)	(w)
158 #endif
159 
160 /*
161  * Task weight (visible to users) and its load (invisible to users) have
162  * independent resolution, but they should be well calibrated. We use
163  * scale_load() and scale_load_down(w) to convert between them. The
164  * following must be true:
165  *
166  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
167  *
168  */
169 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
170 
171 /*
172  * Single value that decides SCHED_DEADLINE internal math precision.
173  * 10 -> just above 1us
174  * 9  -> just above 0.5us
175  */
176 #define DL_SCALE		10
177 
178 /*
179  * Single value that denotes runtime == period, ie unlimited time.
180  */
181 #define RUNTIME_INF		((u64)~0ULL)
182 
183 static inline int idle_policy(int policy)
184 {
185 	return policy == SCHED_IDLE;
186 }
187 static inline int fair_policy(int policy)
188 {
189 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
190 }
191 
192 static inline int rt_policy(int policy)
193 {
194 	return policy == SCHED_FIFO || policy == SCHED_RR;
195 }
196 
197 static inline int dl_policy(int policy)
198 {
199 	return policy == SCHED_DEADLINE;
200 }
201 static inline bool valid_policy(int policy)
202 {
203 	return idle_policy(policy) || fair_policy(policy) ||
204 		rt_policy(policy) || dl_policy(policy);
205 }
206 
207 static inline int task_has_idle_policy(struct task_struct *p)
208 {
209 	return idle_policy(p->policy);
210 }
211 
212 static inline int task_has_rt_policy(struct task_struct *p)
213 {
214 	return rt_policy(p->policy);
215 }
216 
217 static inline int task_has_dl_policy(struct task_struct *p)
218 {
219 	return dl_policy(p->policy);
220 }
221 
222 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
223 
224 static inline void update_avg(u64 *avg, u64 sample)
225 {
226 	s64 diff = sample - *avg;
227 	*avg += diff / 8;
228 }
229 
230 /*
231  * Shifting a value by an exponent greater *or equal* to the size of said value
232  * is UB; cap at size-1.
233  */
234 #define shr_bound(val, shift)							\
235 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
236 
237 /*
238  * !! For sched_setattr_nocheck() (kernel) only !!
239  *
240  * This is actually gross. :(
241  *
242  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
243  * tasks, but still be able to sleep. We need this on platforms that cannot
244  * atomically change clock frequency. Remove once fast switching will be
245  * available on such platforms.
246  *
247  * SUGOV stands for SchedUtil GOVernor.
248  */
249 #define SCHED_FLAG_SUGOV	0x10000000
250 
251 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
252 
253 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
254 {
255 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
256 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
257 #else
258 	return false;
259 #endif
260 }
261 
262 /*
263  * Tells if entity @a should preempt entity @b.
264  */
265 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
266 				     const struct sched_dl_entity *b)
267 {
268 	return dl_entity_is_special(a) ||
269 	       dl_time_before(a->deadline, b->deadline);
270 }
271 
272 /*
273  * This is the priority-queue data structure of the RT scheduling class:
274  */
275 struct rt_prio_array {
276 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
277 	struct list_head queue[MAX_RT_PRIO];
278 };
279 
280 struct rt_bandwidth {
281 	/* nests inside the rq lock: */
282 	raw_spinlock_t		rt_runtime_lock;
283 	ktime_t			rt_period;
284 	u64			rt_runtime;
285 	struct hrtimer		rt_period_timer;
286 	unsigned int		rt_period_active;
287 };
288 
289 void __dl_clear_params(struct task_struct *p);
290 
291 static inline int dl_bandwidth_enabled(void)
292 {
293 	return sysctl_sched_rt_runtime >= 0;
294 }
295 
296 /*
297  * To keep the bandwidth of -deadline tasks under control
298  * we need some place where:
299  *  - store the maximum -deadline bandwidth of each cpu;
300  *  - cache the fraction of bandwidth that is currently allocated in
301  *    each root domain;
302  *
303  * This is all done in the data structure below. It is similar to the
304  * one used for RT-throttling (rt_bandwidth), with the main difference
305  * that, since here we are only interested in admission control, we
306  * do not decrease any runtime while the group "executes", neither we
307  * need a timer to replenish it.
308  *
309  * With respect to SMP, bandwidth is given on a per root domain basis,
310  * meaning that:
311  *  - bw (< 100%) is the deadline bandwidth of each CPU;
312  *  - total_bw is the currently allocated bandwidth in each root domain;
313  */
314 struct dl_bw {
315 	raw_spinlock_t		lock;
316 	u64			bw;
317 	u64			total_bw;
318 };
319 
320 extern void init_dl_bw(struct dl_bw *dl_b);
321 extern int  sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
324 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
325 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
326 extern bool __checkparam_dl(const struct sched_attr *attr);
327 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
328 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
329 extern int  dl_bw_check_overflow(int cpu);
330 
331 #ifdef CONFIG_CGROUP_SCHED
332 
333 struct cfs_rq;
334 struct rt_rq;
335 
336 extern struct list_head task_groups;
337 
338 struct cfs_bandwidth {
339 #ifdef CONFIG_CFS_BANDWIDTH
340 	raw_spinlock_t		lock;
341 	ktime_t			period;
342 	u64			quota;
343 	u64			runtime;
344 	u64			burst;
345 	u64			runtime_snap;
346 	s64			hierarchical_quota;
347 
348 	u8			idle;
349 	u8			period_active;
350 	u8			slack_started;
351 	struct hrtimer		period_timer;
352 	struct hrtimer		slack_timer;
353 	struct list_head	throttled_cfs_rq;
354 
355 	/* Statistics: */
356 	int			nr_periods;
357 	int			nr_throttled;
358 	int			nr_burst;
359 	u64			throttled_time;
360 	u64			burst_time;
361 #endif
362 };
363 
364 /* Task group related information */
365 struct task_group {
366 	struct cgroup_subsys_state css;
367 
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 	/* schedulable entities of this group on each CPU */
370 	struct sched_entity	**se;
371 	/* runqueue "owned" by this group on each CPU */
372 	struct cfs_rq		**cfs_rq;
373 	unsigned long		shares;
374 
375 	/* A positive value indicates that this is a SCHED_IDLE group. */
376 	int			idle;
377 
378 #ifdef	CONFIG_SMP
379 	/*
380 	 * load_avg can be heavily contended at clock tick time, so put
381 	 * it in its own cacheline separated from the fields above which
382 	 * will also be accessed at each tick.
383 	 */
384 	atomic_long_t		load_avg ____cacheline_aligned;
385 #endif
386 #endif
387 
388 #ifdef CONFIG_RT_GROUP_SCHED
389 	struct sched_rt_entity	**rt_se;
390 	struct rt_rq		**rt_rq;
391 
392 	struct rt_bandwidth	rt_bandwidth;
393 #endif
394 
395 	struct rcu_head		rcu;
396 	struct list_head	list;
397 
398 	struct task_group	*parent;
399 	struct list_head	siblings;
400 	struct list_head	children;
401 
402 #ifdef CONFIG_SCHED_AUTOGROUP
403 	struct autogroup	*autogroup;
404 #endif
405 
406 	struct cfs_bandwidth	cfs_bandwidth;
407 
408 #ifdef CONFIG_UCLAMP_TASK_GROUP
409 	/* The two decimal precision [%] value requested from user-space */
410 	unsigned int		uclamp_pct[UCLAMP_CNT];
411 	/* Clamp values requested for a task group */
412 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
413 	/* Effective clamp values used for a task group */
414 	struct uclamp_se	uclamp[UCLAMP_CNT];
415 #endif
416 
417 };
418 
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
421 
422 /*
423  * A weight of 0 or 1 can cause arithmetics problems.
424  * A weight of a cfs_rq is the sum of weights of which entities
425  * are queued on this cfs_rq, so a weight of a entity should not be
426  * too large, so as the shares value of a task group.
427  * (The default weight is 1024 - so there's no practical
428  *  limitation from this.)
429  */
430 #define MIN_SHARES		(1UL <<  1)
431 #define MAX_SHARES		(1UL << 18)
432 #endif
433 
434 typedef int (*tg_visitor)(struct task_group *, void *);
435 
436 extern int walk_tg_tree_from(struct task_group *from,
437 			     tg_visitor down, tg_visitor up, void *data);
438 
439 /*
440  * Iterate the full tree, calling @down when first entering a node and @up when
441  * leaving it for the final time.
442  *
443  * Caller must hold rcu_lock or sufficient equivalent.
444  */
445 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
446 {
447 	return walk_tg_tree_from(&root_task_group, down, up, data);
448 }
449 
450 extern int tg_nop(struct task_group *tg, void *data);
451 
452 extern void free_fair_sched_group(struct task_group *tg);
453 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
454 extern void online_fair_sched_group(struct task_group *tg);
455 extern void unregister_fair_sched_group(struct task_group *tg);
456 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
457 			struct sched_entity *se, int cpu,
458 			struct sched_entity *parent);
459 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
460 
461 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
462 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
463 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
464 extern bool cfs_task_bw_constrained(struct task_struct *p);
465 
466 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
467 		struct sched_rt_entity *rt_se, int cpu,
468 		struct sched_rt_entity *parent);
469 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
470 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
471 extern long sched_group_rt_runtime(struct task_group *tg);
472 extern long sched_group_rt_period(struct task_group *tg);
473 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
474 
475 extern struct task_group *sched_create_group(struct task_group *parent);
476 extern void sched_online_group(struct task_group *tg,
477 			       struct task_group *parent);
478 extern void sched_destroy_group(struct task_group *tg);
479 extern void sched_release_group(struct task_group *tg);
480 
481 extern void sched_move_task(struct task_struct *tsk);
482 
483 #ifdef CONFIG_FAIR_GROUP_SCHED
484 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
485 
486 extern int sched_group_set_idle(struct task_group *tg, long idle);
487 
488 #ifdef CONFIG_SMP
489 extern void set_task_rq_fair(struct sched_entity *se,
490 			     struct cfs_rq *prev, struct cfs_rq *next);
491 #else /* !CONFIG_SMP */
492 static inline void set_task_rq_fair(struct sched_entity *se,
493 			     struct cfs_rq *prev, struct cfs_rq *next) { }
494 #endif /* CONFIG_SMP */
495 #endif /* CONFIG_FAIR_GROUP_SCHED */
496 
497 #else /* CONFIG_CGROUP_SCHED */
498 
499 struct cfs_bandwidth { };
500 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
501 
502 #endif	/* CONFIG_CGROUP_SCHED */
503 
504 extern void unregister_rt_sched_group(struct task_group *tg);
505 extern void free_rt_sched_group(struct task_group *tg);
506 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
507 
508 /*
509  * u64_u32_load/u64_u32_store
510  *
511  * Use a copy of a u64 value to protect against data race. This is only
512  * applicable for 32-bits architectures.
513  */
514 #ifdef CONFIG_64BIT
515 # define u64_u32_load_copy(var, copy)       var
516 # define u64_u32_store_copy(var, copy, val) (var = val)
517 #else
518 # define u64_u32_load_copy(var, copy)					\
519 ({									\
520 	u64 __val, __val_copy;						\
521 	do {								\
522 		__val_copy = copy;					\
523 		/*							\
524 		 * paired with u64_u32_store_copy(), ordering access	\
525 		 * to var and copy.					\
526 		 */							\
527 		smp_rmb();						\
528 		__val = var;						\
529 	} while (__val != __val_copy);					\
530 	__val;								\
531 })
532 # define u64_u32_store_copy(var, copy, val)				\
533 do {									\
534 	typeof(val) __val = (val);					\
535 	var = __val;							\
536 	/*								\
537 	 * paired with u64_u32_load_copy(), ordering access to var and	\
538 	 * copy.							\
539 	 */								\
540 	smp_wmb();							\
541 	copy = __val;							\
542 } while (0)
543 #endif
544 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
545 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
546 
547 /* CFS-related fields in a runqueue */
548 struct cfs_rq {
549 	struct load_weight	load;
550 	unsigned int		nr_running;
551 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
552 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
553 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
554 
555 	s64			avg_vruntime;
556 	u64			avg_load;
557 
558 	u64			exec_clock;
559 	u64			min_vruntime;
560 #ifdef CONFIG_SCHED_CORE
561 	unsigned int		forceidle_seq;
562 	u64			min_vruntime_fi;
563 #endif
564 
565 #ifndef CONFIG_64BIT
566 	u64			min_vruntime_copy;
567 #endif
568 
569 	struct rb_root_cached	tasks_timeline;
570 
571 	/*
572 	 * 'curr' points to currently running entity on this cfs_rq.
573 	 * It is set to NULL otherwise (i.e when none are currently running).
574 	 */
575 	struct sched_entity	*curr;
576 	struct sched_entity	*next;
577 
578 #ifdef	CONFIG_SCHED_DEBUG
579 	unsigned int		nr_spread_over;
580 #endif
581 
582 #ifdef CONFIG_SMP
583 	/*
584 	 * CFS load tracking
585 	 */
586 	struct sched_avg	avg;
587 #ifndef CONFIG_64BIT
588 	u64			last_update_time_copy;
589 #endif
590 	struct {
591 		raw_spinlock_t	lock ____cacheline_aligned;
592 		int		nr;
593 		unsigned long	load_avg;
594 		unsigned long	util_avg;
595 		unsigned long	runnable_avg;
596 	} removed;
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	unsigned long		tg_load_avg_contrib;
600 	long			propagate;
601 	long			prop_runnable_sum;
602 
603 	/*
604 	 *   h_load = weight * f(tg)
605 	 *
606 	 * Where f(tg) is the recursive weight fraction assigned to
607 	 * this group.
608 	 */
609 	unsigned long		h_load;
610 	u64			last_h_load_update;
611 	struct sched_entity	*h_load_next;
612 #endif /* CONFIG_FAIR_GROUP_SCHED */
613 #endif /* CONFIG_SMP */
614 
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
617 
618 	/*
619 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
620 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
621 	 * (like users, containers etc.)
622 	 *
623 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
624 	 * This list is used during load balance.
625 	 */
626 	int			on_list;
627 	struct list_head	leaf_cfs_rq_list;
628 	struct task_group	*tg;	/* group that "owns" this runqueue */
629 
630 	/* Locally cached copy of our task_group's idle value */
631 	int			idle;
632 
633 #ifdef CONFIG_CFS_BANDWIDTH
634 	int			runtime_enabled;
635 	s64			runtime_remaining;
636 
637 	u64			throttled_pelt_idle;
638 #ifndef CONFIG_64BIT
639 	u64                     throttled_pelt_idle_copy;
640 #endif
641 	u64			throttled_clock;
642 	u64			throttled_clock_pelt;
643 	u64			throttled_clock_pelt_time;
644 	u64			throttled_clock_self;
645 	u64			throttled_clock_self_time;
646 	int			throttled;
647 	int			throttle_count;
648 	struct list_head	throttled_list;
649 #ifdef CONFIG_SMP
650 	struct list_head	throttled_csd_list;
651 #endif
652 #endif /* CONFIG_CFS_BANDWIDTH */
653 #endif /* CONFIG_FAIR_GROUP_SCHED */
654 };
655 
656 static inline int rt_bandwidth_enabled(void)
657 {
658 	return sysctl_sched_rt_runtime >= 0;
659 }
660 
661 /* RT IPI pull logic requires IRQ_WORK */
662 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
663 # define HAVE_RT_PUSH_IPI
664 #endif
665 
666 /* Real-Time classes' related field in a runqueue: */
667 struct rt_rq {
668 	struct rt_prio_array	active;
669 	unsigned int		rt_nr_running;
670 	unsigned int		rr_nr_running;
671 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
672 	struct {
673 		int		curr; /* highest queued rt task prio */
674 #ifdef CONFIG_SMP
675 		int		next; /* next highest */
676 #endif
677 	} highest_prio;
678 #endif
679 #ifdef CONFIG_SMP
680 	unsigned int		rt_nr_migratory;
681 	unsigned int		rt_nr_total;
682 	int			overloaded;
683 	struct plist_head	pushable_tasks;
684 
685 #endif /* CONFIG_SMP */
686 	int			rt_queued;
687 
688 	int			rt_throttled;
689 	u64			rt_time;
690 	u64			rt_runtime;
691 	/* Nests inside the rq lock: */
692 	raw_spinlock_t		rt_runtime_lock;
693 
694 #ifdef CONFIG_RT_GROUP_SCHED
695 	unsigned int		rt_nr_boosted;
696 
697 	struct rq		*rq;
698 	struct task_group	*tg;
699 #endif
700 };
701 
702 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
703 {
704 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
705 }
706 
707 /* Deadline class' related fields in a runqueue */
708 struct dl_rq {
709 	/* runqueue is an rbtree, ordered by deadline */
710 	struct rb_root_cached	root;
711 
712 	unsigned int		dl_nr_running;
713 
714 #ifdef CONFIG_SMP
715 	/*
716 	 * Deadline values of the currently executing and the
717 	 * earliest ready task on this rq. Caching these facilitates
718 	 * the decision whether or not a ready but not running task
719 	 * should migrate somewhere else.
720 	 */
721 	struct {
722 		u64		curr;
723 		u64		next;
724 	} earliest_dl;
725 
726 	unsigned int		dl_nr_migratory;
727 	int			overloaded;
728 
729 	/*
730 	 * Tasks on this rq that can be pushed away. They are kept in
731 	 * an rb-tree, ordered by tasks' deadlines, with caching
732 	 * of the leftmost (earliest deadline) element.
733 	 */
734 	struct rb_root_cached	pushable_dl_tasks_root;
735 #else
736 	struct dl_bw		dl_bw;
737 #endif
738 	/*
739 	 * "Active utilization" for this runqueue: increased when a
740 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
741 	 * task blocks
742 	 */
743 	u64			running_bw;
744 
745 	/*
746 	 * Utilization of the tasks "assigned" to this runqueue (including
747 	 * the tasks that are in runqueue and the tasks that executed on this
748 	 * CPU and blocked). Increased when a task moves to this runqueue, and
749 	 * decreased when the task moves away (migrates, changes scheduling
750 	 * policy, or terminates).
751 	 * This is needed to compute the "inactive utilization" for the
752 	 * runqueue (inactive utilization = this_bw - running_bw).
753 	 */
754 	u64			this_bw;
755 	u64			extra_bw;
756 
757 	/*
758 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
759 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
760 	 */
761 	u64			max_bw;
762 
763 	/*
764 	 * Inverse of the fraction of CPU utilization that can be reclaimed
765 	 * by the GRUB algorithm.
766 	 */
767 	u64			bw_ratio;
768 };
769 
770 #ifdef CONFIG_FAIR_GROUP_SCHED
771 /* An entity is a task if it doesn't "own" a runqueue */
772 #define entity_is_task(se)	(!se->my_q)
773 
774 static inline void se_update_runnable(struct sched_entity *se)
775 {
776 	if (!entity_is_task(se))
777 		se->runnable_weight = se->my_q->h_nr_running;
778 }
779 
780 static inline long se_runnable(struct sched_entity *se)
781 {
782 	if (entity_is_task(se))
783 		return !!se->on_rq;
784 	else
785 		return se->runnable_weight;
786 }
787 
788 #else
789 #define entity_is_task(se)	1
790 
791 static inline void se_update_runnable(struct sched_entity *se) {}
792 
793 static inline long se_runnable(struct sched_entity *se)
794 {
795 	return !!se->on_rq;
796 }
797 #endif
798 
799 #ifdef CONFIG_SMP
800 /*
801  * XXX we want to get rid of these helpers and use the full load resolution.
802  */
803 static inline long se_weight(struct sched_entity *se)
804 {
805 	return scale_load_down(se->load.weight);
806 }
807 
808 
809 static inline bool sched_asym_prefer(int a, int b)
810 {
811 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
812 }
813 
814 struct perf_domain {
815 	struct em_perf_domain *em_pd;
816 	struct perf_domain *next;
817 	struct rcu_head rcu;
818 };
819 
820 /* Scheduling group status flags */
821 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
822 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
823 
824 /*
825  * We add the notion of a root-domain which will be used to define per-domain
826  * variables. Each exclusive cpuset essentially defines an island domain by
827  * fully partitioning the member CPUs from any other cpuset. Whenever a new
828  * exclusive cpuset is created, we also create and attach a new root-domain
829  * object.
830  *
831  */
832 struct root_domain {
833 	atomic_t		refcount;
834 	atomic_t		rto_count;
835 	struct rcu_head		rcu;
836 	cpumask_var_t		span;
837 	cpumask_var_t		online;
838 
839 	/*
840 	 * Indicate pullable load on at least one CPU, e.g:
841 	 * - More than one runnable task
842 	 * - Running task is misfit
843 	 */
844 	int			overload;
845 
846 	/* Indicate one or more cpus over-utilized (tipping point) */
847 	int			overutilized;
848 
849 	/*
850 	 * The bit corresponding to a CPU gets set here if such CPU has more
851 	 * than one runnable -deadline task (as it is below for RT tasks).
852 	 */
853 	cpumask_var_t		dlo_mask;
854 	atomic_t		dlo_count;
855 	struct dl_bw		dl_bw;
856 	struct cpudl		cpudl;
857 
858 	/*
859 	 * Indicate whether a root_domain's dl_bw has been checked or
860 	 * updated. It's monotonously increasing value.
861 	 *
862 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
863 	 * that u64 is 'big enough'. So that shouldn't be a concern.
864 	 */
865 	u64 visit_gen;
866 
867 #ifdef HAVE_RT_PUSH_IPI
868 	/*
869 	 * For IPI pull requests, loop across the rto_mask.
870 	 */
871 	struct irq_work		rto_push_work;
872 	raw_spinlock_t		rto_lock;
873 	/* These are only updated and read within rto_lock */
874 	int			rto_loop;
875 	int			rto_cpu;
876 	/* These atomics are updated outside of a lock */
877 	atomic_t		rto_loop_next;
878 	atomic_t		rto_loop_start;
879 #endif
880 	/*
881 	 * The "RT overload" flag: it gets set if a CPU has more than
882 	 * one runnable RT task.
883 	 */
884 	cpumask_var_t		rto_mask;
885 	struct cpupri		cpupri;
886 
887 	unsigned long		max_cpu_capacity;
888 
889 	/*
890 	 * NULL-terminated list of performance domains intersecting with the
891 	 * CPUs of the rd. Protected by RCU.
892 	 */
893 	struct perf_domain __rcu *pd;
894 };
895 
896 extern void init_defrootdomain(void);
897 extern int sched_init_domains(const struct cpumask *cpu_map);
898 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
899 extern void sched_get_rd(struct root_domain *rd);
900 extern void sched_put_rd(struct root_domain *rd);
901 
902 #ifdef HAVE_RT_PUSH_IPI
903 extern void rto_push_irq_work_func(struct irq_work *work);
904 #endif
905 #endif /* CONFIG_SMP */
906 
907 #ifdef CONFIG_UCLAMP_TASK
908 /*
909  * struct uclamp_bucket - Utilization clamp bucket
910  * @value: utilization clamp value for tasks on this clamp bucket
911  * @tasks: number of RUNNABLE tasks on this clamp bucket
912  *
913  * Keep track of how many tasks are RUNNABLE for a given utilization
914  * clamp value.
915  */
916 struct uclamp_bucket {
917 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
918 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
919 };
920 
921 /*
922  * struct uclamp_rq - rq's utilization clamp
923  * @value: currently active clamp values for a rq
924  * @bucket: utilization clamp buckets affecting a rq
925  *
926  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
927  * A clamp value is affecting a rq when there is at least one task RUNNABLE
928  * (or actually running) with that value.
929  *
930  * There are up to UCLAMP_CNT possible different clamp values, currently there
931  * are only two: minimum utilization and maximum utilization.
932  *
933  * All utilization clamping values are MAX aggregated, since:
934  * - for util_min: we want to run the CPU at least at the max of the minimum
935  *   utilization required by its currently RUNNABLE tasks.
936  * - for util_max: we want to allow the CPU to run up to the max of the
937  *   maximum utilization allowed by its currently RUNNABLE tasks.
938  *
939  * Since on each system we expect only a limited number of different
940  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
941  * the metrics required to compute all the per-rq utilization clamp values.
942  */
943 struct uclamp_rq {
944 	unsigned int value;
945 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
946 };
947 
948 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
949 #endif /* CONFIG_UCLAMP_TASK */
950 
951 struct rq;
952 struct balance_callback {
953 	struct balance_callback *next;
954 	void (*func)(struct rq *rq);
955 };
956 
957 /*
958  * This is the main, per-CPU runqueue data structure.
959  *
960  * Locking rule: those places that want to lock multiple runqueues
961  * (such as the load balancing or the thread migration code), lock
962  * acquire operations must be ordered by ascending &runqueue.
963  */
964 struct rq {
965 	/* runqueue lock: */
966 	raw_spinlock_t		__lock;
967 
968 	/*
969 	 * nr_running and cpu_load should be in the same cacheline because
970 	 * remote CPUs use both these fields when doing load calculation.
971 	 */
972 	unsigned int		nr_running;
973 #ifdef CONFIG_NUMA_BALANCING
974 	unsigned int		nr_numa_running;
975 	unsigned int		nr_preferred_running;
976 	unsigned int		numa_migrate_on;
977 #endif
978 #ifdef CONFIG_NO_HZ_COMMON
979 #ifdef CONFIG_SMP
980 	unsigned long		last_blocked_load_update_tick;
981 	unsigned int		has_blocked_load;
982 	call_single_data_t	nohz_csd;
983 #endif /* CONFIG_SMP */
984 	unsigned int		nohz_tick_stopped;
985 	atomic_t		nohz_flags;
986 #endif /* CONFIG_NO_HZ_COMMON */
987 
988 #ifdef CONFIG_SMP
989 	unsigned int		ttwu_pending;
990 #endif
991 	u64			nr_switches;
992 
993 #ifdef CONFIG_UCLAMP_TASK
994 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
995 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
996 	unsigned int		uclamp_flags;
997 #define UCLAMP_FLAG_IDLE 0x01
998 #endif
999 
1000 	struct cfs_rq		cfs;
1001 	struct rt_rq		rt;
1002 	struct dl_rq		dl;
1003 
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 	/* list of leaf cfs_rq on this CPU: */
1006 	struct list_head	leaf_cfs_rq_list;
1007 	struct list_head	*tmp_alone_branch;
1008 #endif /* CONFIG_FAIR_GROUP_SCHED */
1009 
1010 	/*
1011 	 * This is part of a global counter where only the total sum
1012 	 * over all CPUs matters. A task can increase this counter on
1013 	 * one CPU and if it got migrated afterwards it may decrease
1014 	 * it on another CPU. Always updated under the runqueue lock:
1015 	 */
1016 	unsigned int		nr_uninterruptible;
1017 
1018 	struct task_struct __rcu	*curr;
1019 	struct task_struct	*idle;
1020 	struct task_struct	*stop;
1021 	unsigned long		next_balance;
1022 	struct mm_struct	*prev_mm;
1023 
1024 	unsigned int		clock_update_flags;
1025 	u64			clock;
1026 	/* Ensure that all clocks are in the same cache line */
1027 	u64			clock_task ____cacheline_aligned;
1028 	u64			clock_pelt;
1029 	unsigned long		lost_idle_time;
1030 	u64			clock_pelt_idle;
1031 	u64			clock_idle;
1032 #ifndef CONFIG_64BIT
1033 	u64			clock_pelt_idle_copy;
1034 	u64			clock_idle_copy;
1035 #endif
1036 
1037 	atomic_t		nr_iowait;
1038 
1039 #ifdef CONFIG_SCHED_DEBUG
1040 	u64 last_seen_need_resched_ns;
1041 	int ticks_without_resched;
1042 #endif
1043 
1044 #ifdef CONFIG_MEMBARRIER
1045 	int membarrier_state;
1046 #endif
1047 
1048 #ifdef CONFIG_SMP
1049 	struct root_domain		*rd;
1050 	struct sched_domain __rcu	*sd;
1051 
1052 	unsigned long		cpu_capacity;
1053 	unsigned long		cpu_capacity_orig;
1054 
1055 	struct balance_callback *balance_callback;
1056 
1057 	unsigned char		nohz_idle_balance;
1058 	unsigned char		idle_balance;
1059 
1060 	unsigned long		misfit_task_load;
1061 
1062 	/* For active balancing */
1063 	int			active_balance;
1064 	int			push_cpu;
1065 	struct cpu_stop_work	active_balance_work;
1066 
1067 	/* CPU of this runqueue: */
1068 	int			cpu;
1069 	int			online;
1070 
1071 	struct list_head cfs_tasks;
1072 
1073 	struct sched_avg	avg_rt;
1074 	struct sched_avg	avg_dl;
1075 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1076 	struct sched_avg	avg_irq;
1077 #endif
1078 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1079 	struct sched_avg	avg_thermal;
1080 #endif
1081 	u64			idle_stamp;
1082 	u64			avg_idle;
1083 
1084 	unsigned long		wake_stamp;
1085 	u64			wake_avg_idle;
1086 
1087 	/* This is used to determine avg_idle's max value */
1088 	u64			max_idle_balance_cost;
1089 
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 	struct rcuwait		hotplug_wait;
1092 #endif
1093 #endif /* CONFIG_SMP */
1094 
1095 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1096 	u64			prev_irq_time;
1097 #endif
1098 #ifdef CONFIG_PARAVIRT
1099 	u64			prev_steal_time;
1100 #endif
1101 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1102 	u64			prev_steal_time_rq;
1103 #endif
1104 
1105 	/* calc_load related fields */
1106 	unsigned long		calc_load_update;
1107 	long			calc_load_active;
1108 
1109 #ifdef CONFIG_SCHED_HRTICK
1110 #ifdef CONFIG_SMP
1111 	call_single_data_t	hrtick_csd;
1112 #endif
1113 	struct hrtimer		hrtick_timer;
1114 	ktime_t 		hrtick_time;
1115 #endif
1116 
1117 #ifdef CONFIG_SCHEDSTATS
1118 	/* latency stats */
1119 	struct sched_info	rq_sched_info;
1120 	unsigned long long	rq_cpu_time;
1121 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1122 
1123 	/* sys_sched_yield() stats */
1124 	unsigned int		yld_count;
1125 
1126 	/* schedule() stats */
1127 	unsigned int		sched_count;
1128 	unsigned int		sched_goidle;
1129 
1130 	/* try_to_wake_up() stats */
1131 	unsigned int		ttwu_count;
1132 	unsigned int		ttwu_local;
1133 #endif
1134 
1135 #ifdef CONFIG_CPU_IDLE
1136 	/* Must be inspected within a rcu lock section */
1137 	struct cpuidle_state	*idle_state;
1138 #endif
1139 
1140 #ifdef CONFIG_SMP
1141 	unsigned int		nr_pinned;
1142 #endif
1143 	unsigned int		push_busy;
1144 	struct cpu_stop_work	push_work;
1145 
1146 #ifdef CONFIG_SCHED_CORE
1147 	/* per rq */
1148 	struct rq		*core;
1149 	struct task_struct	*core_pick;
1150 	unsigned int		core_enabled;
1151 	unsigned int		core_sched_seq;
1152 	struct rb_root		core_tree;
1153 
1154 	/* shared state -- careful with sched_core_cpu_deactivate() */
1155 	unsigned int		core_task_seq;
1156 	unsigned int		core_pick_seq;
1157 	unsigned long		core_cookie;
1158 	unsigned int		core_forceidle_count;
1159 	unsigned int		core_forceidle_seq;
1160 	unsigned int		core_forceidle_occupation;
1161 	u64			core_forceidle_start;
1162 #endif
1163 
1164 	/* Scratch cpumask to be temporarily used under rq_lock */
1165 	cpumask_var_t		scratch_mask;
1166 
1167 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1168 	call_single_data_t	cfsb_csd;
1169 	struct list_head	cfsb_csd_list;
1170 #endif
1171 };
1172 
1173 #ifdef CONFIG_FAIR_GROUP_SCHED
1174 
1175 /* CPU runqueue to which this cfs_rq is attached */
1176 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1177 {
1178 	return cfs_rq->rq;
1179 }
1180 
1181 #else
1182 
1183 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1184 {
1185 	return container_of(cfs_rq, struct rq, cfs);
1186 }
1187 #endif
1188 
1189 static inline int cpu_of(struct rq *rq)
1190 {
1191 #ifdef CONFIG_SMP
1192 	return rq->cpu;
1193 #else
1194 	return 0;
1195 #endif
1196 }
1197 
1198 #define MDF_PUSH	0x01
1199 
1200 static inline bool is_migration_disabled(struct task_struct *p)
1201 {
1202 #ifdef CONFIG_SMP
1203 	return p->migration_disabled;
1204 #else
1205 	return false;
1206 #endif
1207 }
1208 
1209 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1210 
1211 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1212 #define this_rq()		this_cpu_ptr(&runqueues)
1213 #define task_rq(p)		cpu_rq(task_cpu(p))
1214 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1215 #define raw_rq()		raw_cpu_ptr(&runqueues)
1216 
1217 struct sched_group;
1218 #ifdef CONFIG_SCHED_CORE
1219 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1220 
1221 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1222 
1223 static inline bool sched_core_enabled(struct rq *rq)
1224 {
1225 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1226 }
1227 
1228 static inline bool sched_core_disabled(void)
1229 {
1230 	return !static_branch_unlikely(&__sched_core_enabled);
1231 }
1232 
1233 /*
1234  * Be careful with this function; not for general use. The return value isn't
1235  * stable unless you actually hold a relevant rq->__lock.
1236  */
1237 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1238 {
1239 	if (sched_core_enabled(rq))
1240 		return &rq->core->__lock;
1241 
1242 	return &rq->__lock;
1243 }
1244 
1245 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1246 {
1247 	if (rq->core_enabled)
1248 		return &rq->core->__lock;
1249 
1250 	return &rq->__lock;
1251 }
1252 
1253 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1254 			bool fi);
1255 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1256 
1257 /*
1258  * Helpers to check if the CPU's core cookie matches with the task's cookie
1259  * when core scheduling is enabled.
1260  * A special case is that the task's cookie always matches with CPU's core
1261  * cookie if the CPU is in an idle core.
1262  */
1263 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1264 {
1265 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1266 	if (!sched_core_enabled(rq))
1267 		return true;
1268 
1269 	return rq->core->core_cookie == p->core_cookie;
1270 }
1271 
1272 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1273 {
1274 	bool idle_core = true;
1275 	int cpu;
1276 
1277 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1278 	if (!sched_core_enabled(rq))
1279 		return true;
1280 
1281 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1282 		if (!available_idle_cpu(cpu)) {
1283 			idle_core = false;
1284 			break;
1285 		}
1286 	}
1287 
1288 	/*
1289 	 * A CPU in an idle core is always the best choice for tasks with
1290 	 * cookies.
1291 	 */
1292 	return idle_core || rq->core->core_cookie == p->core_cookie;
1293 }
1294 
1295 static inline bool sched_group_cookie_match(struct rq *rq,
1296 					    struct task_struct *p,
1297 					    struct sched_group *group)
1298 {
1299 	int cpu;
1300 
1301 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1302 	if (!sched_core_enabled(rq))
1303 		return true;
1304 
1305 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1306 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1307 			return true;
1308 	}
1309 	return false;
1310 }
1311 
1312 static inline bool sched_core_enqueued(struct task_struct *p)
1313 {
1314 	return !RB_EMPTY_NODE(&p->core_node);
1315 }
1316 
1317 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1318 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1319 
1320 extern void sched_core_get(void);
1321 extern void sched_core_put(void);
1322 
1323 #else /* !CONFIG_SCHED_CORE */
1324 
1325 static inline bool sched_core_enabled(struct rq *rq)
1326 {
1327 	return false;
1328 }
1329 
1330 static inline bool sched_core_disabled(void)
1331 {
1332 	return true;
1333 }
1334 
1335 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1336 {
1337 	return &rq->__lock;
1338 }
1339 
1340 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1341 {
1342 	return &rq->__lock;
1343 }
1344 
1345 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1346 {
1347 	return true;
1348 }
1349 
1350 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1351 {
1352 	return true;
1353 }
1354 
1355 static inline bool sched_group_cookie_match(struct rq *rq,
1356 					    struct task_struct *p,
1357 					    struct sched_group *group)
1358 {
1359 	return true;
1360 }
1361 #endif /* CONFIG_SCHED_CORE */
1362 
1363 static inline void lockdep_assert_rq_held(struct rq *rq)
1364 {
1365 	lockdep_assert_held(__rq_lockp(rq));
1366 }
1367 
1368 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1369 extern bool raw_spin_rq_trylock(struct rq *rq);
1370 extern void raw_spin_rq_unlock(struct rq *rq);
1371 
1372 static inline void raw_spin_rq_lock(struct rq *rq)
1373 {
1374 	raw_spin_rq_lock_nested(rq, 0);
1375 }
1376 
1377 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1378 {
1379 	local_irq_disable();
1380 	raw_spin_rq_lock(rq);
1381 }
1382 
1383 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1384 {
1385 	raw_spin_rq_unlock(rq);
1386 	local_irq_enable();
1387 }
1388 
1389 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1390 {
1391 	unsigned long flags;
1392 	local_irq_save(flags);
1393 	raw_spin_rq_lock(rq);
1394 	return flags;
1395 }
1396 
1397 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1398 {
1399 	raw_spin_rq_unlock(rq);
1400 	local_irq_restore(flags);
1401 }
1402 
1403 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1404 do {						\
1405 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1406 } while (0)
1407 
1408 #ifdef CONFIG_SCHED_SMT
1409 extern void __update_idle_core(struct rq *rq);
1410 
1411 static inline void update_idle_core(struct rq *rq)
1412 {
1413 	if (static_branch_unlikely(&sched_smt_present))
1414 		__update_idle_core(rq);
1415 }
1416 
1417 #else
1418 static inline void update_idle_core(struct rq *rq) { }
1419 #endif
1420 
1421 #ifdef CONFIG_FAIR_GROUP_SCHED
1422 static inline struct task_struct *task_of(struct sched_entity *se)
1423 {
1424 	SCHED_WARN_ON(!entity_is_task(se));
1425 	return container_of(se, struct task_struct, se);
1426 }
1427 
1428 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1429 {
1430 	return p->se.cfs_rq;
1431 }
1432 
1433 /* runqueue on which this entity is (to be) queued */
1434 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1435 {
1436 	return se->cfs_rq;
1437 }
1438 
1439 /* runqueue "owned" by this group */
1440 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1441 {
1442 	return grp->my_q;
1443 }
1444 
1445 #else
1446 
1447 #define task_of(_se)	container_of(_se, struct task_struct, se)
1448 
1449 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1450 {
1451 	return &task_rq(p)->cfs;
1452 }
1453 
1454 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1455 {
1456 	const struct task_struct *p = task_of(se);
1457 	struct rq *rq = task_rq(p);
1458 
1459 	return &rq->cfs;
1460 }
1461 
1462 /* runqueue "owned" by this group */
1463 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1464 {
1465 	return NULL;
1466 }
1467 #endif
1468 
1469 extern void update_rq_clock(struct rq *rq);
1470 
1471 /*
1472  * rq::clock_update_flags bits
1473  *
1474  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1475  *  call to __schedule(). This is an optimisation to avoid
1476  *  neighbouring rq clock updates.
1477  *
1478  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1479  *  in effect and calls to update_rq_clock() are being ignored.
1480  *
1481  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1482  *  made to update_rq_clock() since the last time rq::lock was pinned.
1483  *
1484  * If inside of __schedule(), clock_update_flags will have been
1485  * shifted left (a left shift is a cheap operation for the fast path
1486  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1487  *
1488  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1489  *
1490  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1491  * one position though, because the next rq_unpin_lock() will shift it
1492  * back.
1493  */
1494 #define RQCF_REQ_SKIP		0x01
1495 #define RQCF_ACT_SKIP		0x02
1496 #define RQCF_UPDATED		0x04
1497 
1498 static inline void assert_clock_updated(struct rq *rq)
1499 {
1500 	/*
1501 	 * The only reason for not seeing a clock update since the
1502 	 * last rq_pin_lock() is if we're currently skipping updates.
1503 	 */
1504 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1505 }
1506 
1507 static inline u64 rq_clock(struct rq *rq)
1508 {
1509 	lockdep_assert_rq_held(rq);
1510 	assert_clock_updated(rq);
1511 
1512 	return rq->clock;
1513 }
1514 
1515 static inline u64 rq_clock_task(struct rq *rq)
1516 {
1517 	lockdep_assert_rq_held(rq);
1518 	assert_clock_updated(rq);
1519 
1520 	return rq->clock_task;
1521 }
1522 
1523 /**
1524  * By default the decay is the default pelt decay period.
1525  * The decay shift can change the decay period in
1526  * multiples of 32.
1527  *  Decay shift		Decay period(ms)
1528  *	0			32
1529  *	1			64
1530  *	2			128
1531  *	3			256
1532  *	4			512
1533  */
1534 extern int sched_thermal_decay_shift;
1535 
1536 static inline u64 rq_clock_thermal(struct rq *rq)
1537 {
1538 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1539 }
1540 
1541 static inline void rq_clock_skip_update(struct rq *rq)
1542 {
1543 	lockdep_assert_rq_held(rq);
1544 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1545 }
1546 
1547 /*
1548  * See rt task throttling, which is the only time a skip
1549  * request is canceled.
1550  */
1551 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1552 {
1553 	lockdep_assert_rq_held(rq);
1554 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1555 }
1556 
1557 /*
1558  * During cpu offlining and rq wide unthrottling, we can trigger
1559  * an update_rq_clock() for several cfs and rt runqueues (Typically
1560  * when using list_for_each_entry_*)
1561  * rq_clock_start_loop_update() can be called after updating the clock
1562  * once and before iterating over the list to prevent multiple update.
1563  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1564  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1565  */
1566 static inline void rq_clock_start_loop_update(struct rq *rq)
1567 {
1568 	lockdep_assert_rq_held(rq);
1569 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1570 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1571 }
1572 
1573 static inline void rq_clock_stop_loop_update(struct rq *rq)
1574 {
1575 	lockdep_assert_rq_held(rq);
1576 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1577 }
1578 
1579 struct rq_flags {
1580 	unsigned long flags;
1581 	struct pin_cookie cookie;
1582 #ifdef CONFIG_SCHED_DEBUG
1583 	/*
1584 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1585 	 * current pin context is stashed here in case it needs to be
1586 	 * restored in rq_repin_lock().
1587 	 */
1588 	unsigned int clock_update_flags;
1589 #endif
1590 };
1591 
1592 extern struct balance_callback balance_push_callback;
1593 
1594 /*
1595  * Lockdep annotation that avoids accidental unlocks; it's like a
1596  * sticky/continuous lockdep_assert_held().
1597  *
1598  * This avoids code that has access to 'struct rq *rq' (basically everything in
1599  * the scheduler) from accidentally unlocking the rq if they do not also have a
1600  * copy of the (on-stack) 'struct rq_flags rf'.
1601  *
1602  * Also see Documentation/locking/lockdep-design.rst.
1603  */
1604 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1605 {
1606 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1607 
1608 #ifdef CONFIG_SCHED_DEBUG
1609 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1610 	rf->clock_update_flags = 0;
1611 #ifdef CONFIG_SMP
1612 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1613 #endif
1614 #endif
1615 }
1616 
1617 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1618 {
1619 #ifdef CONFIG_SCHED_DEBUG
1620 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1621 		rf->clock_update_flags = RQCF_UPDATED;
1622 #endif
1623 
1624 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1625 }
1626 
1627 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1628 {
1629 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1630 
1631 #ifdef CONFIG_SCHED_DEBUG
1632 	/*
1633 	 * Restore the value we stashed in @rf for this pin context.
1634 	 */
1635 	rq->clock_update_flags |= rf->clock_update_flags;
1636 #endif
1637 }
1638 
1639 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1640 	__acquires(rq->lock);
1641 
1642 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1643 	__acquires(p->pi_lock)
1644 	__acquires(rq->lock);
1645 
1646 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1647 	__releases(rq->lock)
1648 {
1649 	rq_unpin_lock(rq, rf);
1650 	raw_spin_rq_unlock(rq);
1651 }
1652 
1653 static inline void
1654 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1655 	__releases(rq->lock)
1656 	__releases(p->pi_lock)
1657 {
1658 	rq_unpin_lock(rq, rf);
1659 	raw_spin_rq_unlock(rq);
1660 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1661 }
1662 
1663 static inline void
1664 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1665 	__acquires(rq->lock)
1666 {
1667 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1668 	rq_pin_lock(rq, rf);
1669 }
1670 
1671 static inline void
1672 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1673 	__acquires(rq->lock)
1674 {
1675 	raw_spin_rq_lock_irq(rq);
1676 	rq_pin_lock(rq, rf);
1677 }
1678 
1679 static inline void
1680 rq_lock(struct rq *rq, struct rq_flags *rf)
1681 	__acquires(rq->lock)
1682 {
1683 	raw_spin_rq_lock(rq);
1684 	rq_pin_lock(rq, rf);
1685 }
1686 
1687 static inline void
1688 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1689 	__releases(rq->lock)
1690 {
1691 	rq_unpin_lock(rq, rf);
1692 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1693 }
1694 
1695 static inline void
1696 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1697 	__releases(rq->lock)
1698 {
1699 	rq_unpin_lock(rq, rf);
1700 	raw_spin_rq_unlock_irq(rq);
1701 }
1702 
1703 static inline void
1704 rq_unlock(struct rq *rq, struct rq_flags *rf)
1705 	__releases(rq->lock)
1706 {
1707 	rq_unpin_lock(rq, rf);
1708 	raw_spin_rq_unlock(rq);
1709 }
1710 
1711 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1712 		    rq_lock(_T->lock, &_T->rf),
1713 		    rq_unlock(_T->lock, &_T->rf),
1714 		    struct rq_flags rf)
1715 
1716 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1717 		    rq_lock_irq(_T->lock, &_T->rf),
1718 		    rq_unlock_irq(_T->lock, &_T->rf),
1719 		    struct rq_flags rf)
1720 
1721 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1722 		    rq_lock_irqsave(_T->lock, &_T->rf),
1723 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1724 		    struct rq_flags rf)
1725 
1726 static inline struct rq *
1727 this_rq_lock_irq(struct rq_flags *rf)
1728 	__acquires(rq->lock)
1729 {
1730 	struct rq *rq;
1731 
1732 	local_irq_disable();
1733 	rq = this_rq();
1734 	rq_lock(rq, rf);
1735 	return rq;
1736 }
1737 
1738 #ifdef CONFIG_NUMA
1739 enum numa_topology_type {
1740 	NUMA_DIRECT,
1741 	NUMA_GLUELESS_MESH,
1742 	NUMA_BACKPLANE,
1743 };
1744 extern enum numa_topology_type sched_numa_topology_type;
1745 extern int sched_max_numa_distance;
1746 extern bool find_numa_distance(int distance);
1747 extern void sched_init_numa(int offline_node);
1748 extern void sched_update_numa(int cpu, bool online);
1749 extern void sched_domains_numa_masks_set(unsigned int cpu);
1750 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1751 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1752 #else
1753 static inline void sched_init_numa(int offline_node) { }
1754 static inline void sched_update_numa(int cpu, bool online) { }
1755 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1756 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1757 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1758 {
1759 	return nr_cpu_ids;
1760 }
1761 #endif
1762 
1763 #ifdef CONFIG_NUMA_BALANCING
1764 /* The regions in numa_faults array from task_struct */
1765 enum numa_faults_stats {
1766 	NUMA_MEM = 0,
1767 	NUMA_CPU,
1768 	NUMA_MEMBUF,
1769 	NUMA_CPUBUF
1770 };
1771 extern void sched_setnuma(struct task_struct *p, int node);
1772 extern int migrate_task_to(struct task_struct *p, int cpu);
1773 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1774 			int cpu, int scpu);
1775 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1776 #else
1777 static inline void
1778 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1779 {
1780 }
1781 #endif /* CONFIG_NUMA_BALANCING */
1782 
1783 #ifdef CONFIG_SMP
1784 
1785 static inline void
1786 queue_balance_callback(struct rq *rq,
1787 		       struct balance_callback *head,
1788 		       void (*func)(struct rq *rq))
1789 {
1790 	lockdep_assert_rq_held(rq);
1791 
1792 	/*
1793 	 * Don't (re)queue an already queued item; nor queue anything when
1794 	 * balance_push() is active, see the comment with
1795 	 * balance_push_callback.
1796 	 */
1797 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1798 		return;
1799 
1800 	head->func = func;
1801 	head->next = rq->balance_callback;
1802 	rq->balance_callback = head;
1803 }
1804 
1805 #define rcu_dereference_check_sched_domain(p) \
1806 	rcu_dereference_check((p), \
1807 			      lockdep_is_held(&sched_domains_mutex))
1808 
1809 /*
1810  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1811  * See destroy_sched_domains: call_rcu for details.
1812  *
1813  * The domain tree of any CPU may only be accessed from within
1814  * preempt-disabled sections.
1815  */
1816 #define for_each_domain(cpu, __sd) \
1817 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1818 			__sd; __sd = __sd->parent)
1819 
1820 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1821 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1822 static const unsigned int SD_SHARED_CHILD_MASK =
1823 #include <linux/sched/sd_flags.h>
1824 0;
1825 #undef SD_FLAG
1826 
1827 /**
1828  * highest_flag_domain - Return highest sched_domain containing flag.
1829  * @cpu:	The CPU whose highest level of sched domain is to
1830  *		be returned.
1831  * @flag:	The flag to check for the highest sched_domain
1832  *		for the given CPU.
1833  *
1834  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1835  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1836  */
1837 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1838 {
1839 	struct sched_domain *sd, *hsd = NULL;
1840 
1841 	for_each_domain(cpu, sd) {
1842 		if (sd->flags & flag) {
1843 			hsd = sd;
1844 			continue;
1845 		}
1846 
1847 		/*
1848 		 * Stop the search if @flag is known to be shared at lower
1849 		 * levels. It will not be found further up.
1850 		 */
1851 		if (flag & SD_SHARED_CHILD_MASK)
1852 			break;
1853 	}
1854 
1855 	return hsd;
1856 }
1857 
1858 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1859 {
1860 	struct sched_domain *sd;
1861 
1862 	for_each_domain(cpu, sd) {
1863 		if (sd->flags & flag)
1864 			break;
1865 	}
1866 
1867 	return sd;
1868 }
1869 
1870 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1871 DECLARE_PER_CPU(int, sd_llc_size);
1872 DECLARE_PER_CPU(int, sd_llc_id);
1873 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1874 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1875 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1876 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1877 extern struct static_key_false sched_asym_cpucapacity;
1878 
1879 static __always_inline bool sched_asym_cpucap_active(void)
1880 {
1881 	return static_branch_unlikely(&sched_asym_cpucapacity);
1882 }
1883 
1884 struct sched_group_capacity {
1885 	atomic_t		ref;
1886 	/*
1887 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1888 	 * for a single CPU.
1889 	 */
1890 	unsigned long		capacity;
1891 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1892 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1893 	unsigned long		next_update;
1894 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1895 
1896 #ifdef CONFIG_SCHED_DEBUG
1897 	int			id;
1898 #endif
1899 
1900 	unsigned long		cpumask[];		/* Balance mask */
1901 };
1902 
1903 struct sched_group {
1904 	struct sched_group	*next;			/* Must be a circular list */
1905 	atomic_t		ref;
1906 
1907 	unsigned int		group_weight;
1908 	unsigned int		cores;
1909 	struct sched_group_capacity *sgc;
1910 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1911 	int			flags;
1912 
1913 	/*
1914 	 * The CPUs this group covers.
1915 	 *
1916 	 * NOTE: this field is variable length. (Allocated dynamically
1917 	 * by attaching extra space to the end of the structure,
1918 	 * depending on how many CPUs the kernel has booted up with)
1919 	 */
1920 	unsigned long		cpumask[];
1921 };
1922 
1923 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1924 {
1925 	return to_cpumask(sg->cpumask);
1926 }
1927 
1928 /*
1929  * See build_balance_mask().
1930  */
1931 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1932 {
1933 	return to_cpumask(sg->sgc->cpumask);
1934 }
1935 
1936 extern int group_balance_cpu(struct sched_group *sg);
1937 
1938 #ifdef CONFIG_SCHED_DEBUG
1939 void update_sched_domain_debugfs(void);
1940 void dirty_sched_domain_sysctl(int cpu);
1941 #else
1942 static inline void update_sched_domain_debugfs(void)
1943 {
1944 }
1945 static inline void dirty_sched_domain_sysctl(int cpu)
1946 {
1947 }
1948 #endif
1949 
1950 extern int sched_update_scaling(void);
1951 
1952 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1953 {
1954 	if (!p->user_cpus_ptr)
1955 		return cpu_possible_mask; /* &init_task.cpus_mask */
1956 	return p->user_cpus_ptr;
1957 }
1958 #endif /* CONFIG_SMP */
1959 
1960 #include "stats.h"
1961 
1962 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1963 
1964 extern void __sched_core_account_forceidle(struct rq *rq);
1965 
1966 static inline void sched_core_account_forceidle(struct rq *rq)
1967 {
1968 	if (schedstat_enabled())
1969 		__sched_core_account_forceidle(rq);
1970 }
1971 
1972 extern void __sched_core_tick(struct rq *rq);
1973 
1974 static inline void sched_core_tick(struct rq *rq)
1975 {
1976 	if (sched_core_enabled(rq) && schedstat_enabled())
1977 		__sched_core_tick(rq);
1978 }
1979 
1980 #else
1981 
1982 static inline void sched_core_account_forceidle(struct rq *rq) {}
1983 
1984 static inline void sched_core_tick(struct rq *rq) {}
1985 
1986 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1987 
1988 #ifdef CONFIG_CGROUP_SCHED
1989 
1990 /*
1991  * Return the group to which this tasks belongs.
1992  *
1993  * We cannot use task_css() and friends because the cgroup subsystem
1994  * changes that value before the cgroup_subsys::attach() method is called,
1995  * therefore we cannot pin it and might observe the wrong value.
1996  *
1997  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1998  * core changes this before calling sched_move_task().
1999  *
2000  * Instead we use a 'copy' which is updated from sched_move_task() while
2001  * holding both task_struct::pi_lock and rq::lock.
2002  */
2003 static inline struct task_group *task_group(struct task_struct *p)
2004 {
2005 	return p->sched_task_group;
2006 }
2007 
2008 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2009 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2010 {
2011 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2012 	struct task_group *tg = task_group(p);
2013 #endif
2014 
2015 #ifdef CONFIG_FAIR_GROUP_SCHED
2016 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2017 	p->se.cfs_rq = tg->cfs_rq[cpu];
2018 	p->se.parent = tg->se[cpu];
2019 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2020 #endif
2021 
2022 #ifdef CONFIG_RT_GROUP_SCHED
2023 	p->rt.rt_rq  = tg->rt_rq[cpu];
2024 	p->rt.parent = tg->rt_se[cpu];
2025 #endif
2026 }
2027 
2028 #else /* CONFIG_CGROUP_SCHED */
2029 
2030 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2031 static inline struct task_group *task_group(struct task_struct *p)
2032 {
2033 	return NULL;
2034 }
2035 
2036 #endif /* CONFIG_CGROUP_SCHED */
2037 
2038 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2039 {
2040 	set_task_rq(p, cpu);
2041 #ifdef CONFIG_SMP
2042 	/*
2043 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2044 	 * successfully executed on another CPU. We must ensure that updates of
2045 	 * per-task data have been completed by this moment.
2046 	 */
2047 	smp_wmb();
2048 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2049 	p->wake_cpu = cpu;
2050 #endif
2051 }
2052 
2053 /*
2054  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2055  */
2056 #ifdef CONFIG_SCHED_DEBUG
2057 # define const_debug __read_mostly
2058 #else
2059 # define const_debug const
2060 #endif
2061 
2062 #define SCHED_FEAT(name, enabled)	\
2063 	__SCHED_FEAT_##name ,
2064 
2065 enum {
2066 #include "features.h"
2067 	__SCHED_FEAT_NR,
2068 };
2069 
2070 #undef SCHED_FEAT
2071 
2072 #ifdef CONFIG_SCHED_DEBUG
2073 
2074 /*
2075  * To support run-time toggling of sched features, all the translation units
2076  * (but core.c) reference the sysctl_sched_features defined in core.c.
2077  */
2078 extern const_debug unsigned int sysctl_sched_features;
2079 
2080 #ifdef CONFIG_JUMP_LABEL
2081 #define SCHED_FEAT(name, enabled)					\
2082 static __always_inline bool static_branch_##name(struct static_key *key) \
2083 {									\
2084 	return static_key_##enabled(key);				\
2085 }
2086 
2087 #include "features.h"
2088 #undef SCHED_FEAT
2089 
2090 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2091 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2092 
2093 #else /* !CONFIG_JUMP_LABEL */
2094 
2095 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2096 
2097 #endif /* CONFIG_JUMP_LABEL */
2098 
2099 #else /* !SCHED_DEBUG */
2100 
2101 /*
2102  * Each translation unit has its own copy of sysctl_sched_features to allow
2103  * constants propagation at compile time and compiler optimization based on
2104  * features default.
2105  */
2106 #define SCHED_FEAT(name, enabled)	\
2107 	(1UL << __SCHED_FEAT_##name) * enabled |
2108 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2109 #include "features.h"
2110 	0;
2111 #undef SCHED_FEAT
2112 
2113 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2114 
2115 #endif /* SCHED_DEBUG */
2116 
2117 extern struct static_key_false sched_numa_balancing;
2118 extern struct static_key_false sched_schedstats;
2119 
2120 static inline u64 global_rt_period(void)
2121 {
2122 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2123 }
2124 
2125 static inline u64 global_rt_runtime(void)
2126 {
2127 	if (sysctl_sched_rt_runtime < 0)
2128 		return RUNTIME_INF;
2129 
2130 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2131 }
2132 
2133 static inline int task_current(struct rq *rq, struct task_struct *p)
2134 {
2135 	return rq->curr == p;
2136 }
2137 
2138 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2139 {
2140 #ifdef CONFIG_SMP
2141 	return p->on_cpu;
2142 #else
2143 	return task_current(rq, p);
2144 #endif
2145 }
2146 
2147 static inline int task_on_rq_queued(struct task_struct *p)
2148 {
2149 	return p->on_rq == TASK_ON_RQ_QUEUED;
2150 }
2151 
2152 static inline int task_on_rq_migrating(struct task_struct *p)
2153 {
2154 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2155 }
2156 
2157 /* Wake flags. The first three directly map to some SD flag value */
2158 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2159 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2160 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2161 
2162 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2163 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2164 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2165 
2166 #ifdef CONFIG_SMP
2167 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2168 static_assert(WF_FORK == SD_BALANCE_FORK);
2169 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2170 #endif
2171 
2172 /*
2173  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2174  * of tasks with abnormal "nice" values across CPUs the contribution that
2175  * each task makes to its run queue's load is weighted according to its
2176  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2177  * scaled version of the new time slice allocation that they receive on time
2178  * slice expiry etc.
2179  */
2180 
2181 #define WEIGHT_IDLEPRIO		3
2182 #define WMULT_IDLEPRIO		1431655765
2183 
2184 extern const int		sched_prio_to_weight[40];
2185 extern const u32		sched_prio_to_wmult[40];
2186 
2187 /*
2188  * {de,en}queue flags:
2189  *
2190  * DEQUEUE_SLEEP  - task is no longer runnable
2191  * ENQUEUE_WAKEUP - task just became runnable
2192  *
2193  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2194  *                are in a known state which allows modification. Such pairs
2195  *                should preserve as much state as possible.
2196  *
2197  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2198  *        in the runqueue.
2199  *
2200  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2201  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2202  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2203  *
2204  */
2205 
2206 #define DEQUEUE_SLEEP		0x01
2207 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2208 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2209 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2210 
2211 #define ENQUEUE_WAKEUP		0x01
2212 #define ENQUEUE_RESTORE		0x02
2213 #define ENQUEUE_MOVE		0x04
2214 #define ENQUEUE_NOCLOCK		0x08
2215 
2216 #define ENQUEUE_HEAD		0x10
2217 #define ENQUEUE_REPLENISH	0x20
2218 #ifdef CONFIG_SMP
2219 #define ENQUEUE_MIGRATED	0x40
2220 #else
2221 #define ENQUEUE_MIGRATED	0x00
2222 #endif
2223 #define ENQUEUE_INITIAL		0x80
2224 
2225 #define RETRY_TASK		((void *)-1UL)
2226 
2227 struct affinity_context {
2228 	const struct cpumask *new_mask;
2229 	struct cpumask *user_mask;
2230 	unsigned int flags;
2231 };
2232 
2233 struct sched_class {
2234 
2235 #ifdef CONFIG_UCLAMP_TASK
2236 	int uclamp_enabled;
2237 #endif
2238 
2239 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2240 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2241 	void (*yield_task)   (struct rq *rq);
2242 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2243 
2244 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2245 
2246 	struct task_struct *(*pick_next_task)(struct rq *rq);
2247 
2248 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2249 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2250 
2251 #ifdef CONFIG_SMP
2252 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2253 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2254 
2255 	struct task_struct * (*pick_task)(struct rq *rq);
2256 
2257 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2258 
2259 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2260 
2261 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2262 
2263 	void (*rq_online)(struct rq *rq);
2264 	void (*rq_offline)(struct rq *rq);
2265 
2266 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2267 #endif
2268 
2269 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2270 	void (*task_fork)(struct task_struct *p);
2271 	void (*task_dead)(struct task_struct *p);
2272 
2273 	/*
2274 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2275 	 * cannot assume the switched_from/switched_to pair is serialized by
2276 	 * rq->lock. They are however serialized by p->pi_lock.
2277 	 */
2278 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2279 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2280 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2281 			      int oldprio);
2282 
2283 	unsigned int (*get_rr_interval)(struct rq *rq,
2284 					struct task_struct *task);
2285 
2286 	void (*update_curr)(struct rq *rq);
2287 
2288 #ifdef CONFIG_FAIR_GROUP_SCHED
2289 	void (*task_change_group)(struct task_struct *p);
2290 #endif
2291 
2292 #ifdef CONFIG_SCHED_CORE
2293 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2294 #endif
2295 };
2296 
2297 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2298 {
2299 	WARN_ON_ONCE(rq->curr != prev);
2300 	prev->sched_class->put_prev_task(rq, prev);
2301 }
2302 
2303 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2304 {
2305 	next->sched_class->set_next_task(rq, next, false);
2306 }
2307 
2308 
2309 /*
2310  * Helper to define a sched_class instance; each one is placed in a separate
2311  * section which is ordered by the linker script:
2312  *
2313  *   include/asm-generic/vmlinux.lds.h
2314  *
2315  * *CAREFUL* they are laid out in *REVERSE* order!!!
2316  *
2317  * Also enforce alignment on the instance, not the type, to guarantee layout.
2318  */
2319 #define DEFINE_SCHED_CLASS(name) \
2320 const struct sched_class name##_sched_class \
2321 	__aligned(__alignof__(struct sched_class)) \
2322 	__section("__" #name "_sched_class")
2323 
2324 /* Defined in include/asm-generic/vmlinux.lds.h */
2325 extern struct sched_class __sched_class_highest[];
2326 extern struct sched_class __sched_class_lowest[];
2327 
2328 #define for_class_range(class, _from, _to) \
2329 	for (class = (_from); class < (_to); class++)
2330 
2331 #define for_each_class(class) \
2332 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2333 
2334 #define sched_class_above(_a, _b)	((_a) < (_b))
2335 
2336 extern const struct sched_class stop_sched_class;
2337 extern const struct sched_class dl_sched_class;
2338 extern const struct sched_class rt_sched_class;
2339 extern const struct sched_class fair_sched_class;
2340 extern const struct sched_class idle_sched_class;
2341 
2342 static inline bool sched_stop_runnable(struct rq *rq)
2343 {
2344 	return rq->stop && task_on_rq_queued(rq->stop);
2345 }
2346 
2347 static inline bool sched_dl_runnable(struct rq *rq)
2348 {
2349 	return rq->dl.dl_nr_running > 0;
2350 }
2351 
2352 static inline bool sched_rt_runnable(struct rq *rq)
2353 {
2354 	return rq->rt.rt_queued > 0;
2355 }
2356 
2357 static inline bool sched_fair_runnable(struct rq *rq)
2358 {
2359 	return rq->cfs.nr_running > 0;
2360 }
2361 
2362 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2363 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2364 
2365 #define SCA_CHECK		0x01
2366 #define SCA_MIGRATE_DISABLE	0x02
2367 #define SCA_MIGRATE_ENABLE	0x04
2368 #define SCA_USER		0x08
2369 
2370 #ifdef CONFIG_SMP
2371 
2372 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2373 
2374 extern void trigger_load_balance(struct rq *rq);
2375 
2376 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2377 
2378 static inline struct task_struct *get_push_task(struct rq *rq)
2379 {
2380 	struct task_struct *p = rq->curr;
2381 
2382 	lockdep_assert_rq_held(rq);
2383 
2384 	if (rq->push_busy)
2385 		return NULL;
2386 
2387 	if (p->nr_cpus_allowed == 1)
2388 		return NULL;
2389 
2390 	if (p->migration_disabled)
2391 		return NULL;
2392 
2393 	rq->push_busy = true;
2394 	return get_task_struct(p);
2395 }
2396 
2397 extern int push_cpu_stop(void *arg);
2398 
2399 #endif
2400 
2401 #ifdef CONFIG_CPU_IDLE
2402 static inline void idle_set_state(struct rq *rq,
2403 				  struct cpuidle_state *idle_state)
2404 {
2405 	rq->idle_state = idle_state;
2406 }
2407 
2408 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2409 {
2410 	SCHED_WARN_ON(!rcu_read_lock_held());
2411 
2412 	return rq->idle_state;
2413 }
2414 #else
2415 static inline void idle_set_state(struct rq *rq,
2416 				  struct cpuidle_state *idle_state)
2417 {
2418 }
2419 
2420 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2421 {
2422 	return NULL;
2423 }
2424 #endif
2425 
2426 extern void schedule_idle(void);
2427 asmlinkage void schedule_user(void);
2428 
2429 extern void sysrq_sched_debug_show(void);
2430 extern void sched_init_granularity(void);
2431 extern void update_max_interval(void);
2432 
2433 extern void init_sched_dl_class(void);
2434 extern void init_sched_rt_class(void);
2435 extern void init_sched_fair_class(void);
2436 
2437 extern void reweight_task(struct task_struct *p, int prio);
2438 
2439 extern void resched_curr(struct rq *rq);
2440 extern void resched_cpu(int cpu);
2441 
2442 extern struct rt_bandwidth def_rt_bandwidth;
2443 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2444 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2445 
2446 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2447 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2448 
2449 #define BW_SHIFT		20
2450 #define BW_UNIT			(1 << BW_SHIFT)
2451 #define RATIO_SHIFT		8
2452 #define MAX_BW_BITS		(64 - BW_SHIFT)
2453 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2454 unsigned long to_ratio(u64 period, u64 runtime);
2455 
2456 extern void init_entity_runnable_average(struct sched_entity *se);
2457 extern void post_init_entity_util_avg(struct task_struct *p);
2458 
2459 #ifdef CONFIG_NO_HZ_FULL
2460 extern bool sched_can_stop_tick(struct rq *rq);
2461 extern int __init sched_tick_offload_init(void);
2462 
2463 /*
2464  * Tick may be needed by tasks in the runqueue depending on their policy and
2465  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2466  * nohz mode if necessary.
2467  */
2468 static inline void sched_update_tick_dependency(struct rq *rq)
2469 {
2470 	int cpu = cpu_of(rq);
2471 
2472 	if (!tick_nohz_full_cpu(cpu))
2473 		return;
2474 
2475 	if (sched_can_stop_tick(rq))
2476 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2477 	else
2478 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2479 }
2480 #else
2481 static inline int sched_tick_offload_init(void) { return 0; }
2482 static inline void sched_update_tick_dependency(struct rq *rq) { }
2483 #endif
2484 
2485 static inline void add_nr_running(struct rq *rq, unsigned count)
2486 {
2487 	unsigned prev_nr = rq->nr_running;
2488 
2489 	rq->nr_running = prev_nr + count;
2490 	if (trace_sched_update_nr_running_tp_enabled()) {
2491 		call_trace_sched_update_nr_running(rq, count);
2492 	}
2493 
2494 #ifdef CONFIG_SMP
2495 	if (prev_nr < 2 && rq->nr_running >= 2) {
2496 		if (!READ_ONCE(rq->rd->overload))
2497 			WRITE_ONCE(rq->rd->overload, 1);
2498 	}
2499 #endif
2500 
2501 	sched_update_tick_dependency(rq);
2502 }
2503 
2504 static inline void sub_nr_running(struct rq *rq, unsigned count)
2505 {
2506 	rq->nr_running -= count;
2507 	if (trace_sched_update_nr_running_tp_enabled()) {
2508 		call_trace_sched_update_nr_running(rq, -count);
2509 	}
2510 
2511 	/* Check if we still need preemption */
2512 	sched_update_tick_dependency(rq);
2513 }
2514 
2515 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2516 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2517 
2518 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2519 
2520 #ifdef CONFIG_PREEMPT_RT
2521 #define SCHED_NR_MIGRATE_BREAK 8
2522 #else
2523 #define SCHED_NR_MIGRATE_BREAK 32
2524 #endif
2525 
2526 extern const_debug unsigned int sysctl_sched_nr_migrate;
2527 extern const_debug unsigned int sysctl_sched_migration_cost;
2528 
2529 extern unsigned int sysctl_sched_base_slice;
2530 
2531 #ifdef CONFIG_SCHED_DEBUG
2532 extern int sysctl_resched_latency_warn_ms;
2533 extern int sysctl_resched_latency_warn_once;
2534 
2535 extern unsigned int sysctl_sched_tunable_scaling;
2536 
2537 extern unsigned int sysctl_numa_balancing_scan_delay;
2538 extern unsigned int sysctl_numa_balancing_scan_period_min;
2539 extern unsigned int sysctl_numa_balancing_scan_period_max;
2540 extern unsigned int sysctl_numa_balancing_scan_size;
2541 extern unsigned int sysctl_numa_balancing_hot_threshold;
2542 #endif
2543 
2544 #ifdef CONFIG_SCHED_HRTICK
2545 
2546 /*
2547  * Use hrtick when:
2548  *  - enabled by features
2549  *  - hrtimer is actually high res
2550  */
2551 static inline int hrtick_enabled(struct rq *rq)
2552 {
2553 	if (!cpu_active(cpu_of(rq)))
2554 		return 0;
2555 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2556 }
2557 
2558 static inline int hrtick_enabled_fair(struct rq *rq)
2559 {
2560 	if (!sched_feat(HRTICK))
2561 		return 0;
2562 	return hrtick_enabled(rq);
2563 }
2564 
2565 static inline int hrtick_enabled_dl(struct rq *rq)
2566 {
2567 	if (!sched_feat(HRTICK_DL))
2568 		return 0;
2569 	return hrtick_enabled(rq);
2570 }
2571 
2572 void hrtick_start(struct rq *rq, u64 delay);
2573 
2574 #else
2575 
2576 static inline int hrtick_enabled_fair(struct rq *rq)
2577 {
2578 	return 0;
2579 }
2580 
2581 static inline int hrtick_enabled_dl(struct rq *rq)
2582 {
2583 	return 0;
2584 }
2585 
2586 static inline int hrtick_enabled(struct rq *rq)
2587 {
2588 	return 0;
2589 }
2590 
2591 #endif /* CONFIG_SCHED_HRTICK */
2592 
2593 #ifndef arch_scale_freq_tick
2594 static __always_inline
2595 void arch_scale_freq_tick(void)
2596 {
2597 }
2598 #endif
2599 
2600 #ifndef arch_scale_freq_capacity
2601 /**
2602  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2603  * @cpu: the CPU in question.
2604  *
2605  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2606  *
2607  *     f_curr
2608  *     ------ * SCHED_CAPACITY_SCALE
2609  *     f_max
2610  */
2611 static __always_inline
2612 unsigned long arch_scale_freq_capacity(int cpu)
2613 {
2614 	return SCHED_CAPACITY_SCALE;
2615 }
2616 #endif
2617 
2618 #ifdef CONFIG_SCHED_DEBUG
2619 /*
2620  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2621  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2622  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2623  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2624  */
2625 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2626 {
2627 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2628 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2629 #ifdef CONFIG_SMP
2630 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2631 #endif
2632 }
2633 #else
2634 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2635 #endif
2636 
2637 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2638 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2639 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2640 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2641   _lock; return _t; }
2642 
2643 #ifdef CONFIG_SMP
2644 
2645 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2646 {
2647 #ifdef CONFIG_SCHED_CORE
2648 	/*
2649 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2650 	 * order by core-id first and cpu-id second.
2651 	 *
2652 	 * Notably:
2653 	 *
2654 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2655 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2656 	 *
2657 	 * when only cpu-id is considered.
2658 	 */
2659 	if (rq1->core->cpu < rq2->core->cpu)
2660 		return true;
2661 	if (rq1->core->cpu > rq2->core->cpu)
2662 		return false;
2663 
2664 	/*
2665 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2666 	 */
2667 #endif
2668 	return rq1->cpu < rq2->cpu;
2669 }
2670 
2671 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2672 
2673 #ifdef CONFIG_PREEMPTION
2674 
2675 /*
2676  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2677  * way at the expense of forcing extra atomic operations in all
2678  * invocations.  This assures that the double_lock is acquired using the
2679  * same underlying policy as the spinlock_t on this architecture, which
2680  * reduces latency compared to the unfair variant below.  However, it
2681  * also adds more overhead and therefore may reduce throughput.
2682  */
2683 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2684 	__releases(this_rq->lock)
2685 	__acquires(busiest->lock)
2686 	__acquires(this_rq->lock)
2687 {
2688 	raw_spin_rq_unlock(this_rq);
2689 	double_rq_lock(this_rq, busiest);
2690 
2691 	return 1;
2692 }
2693 
2694 #else
2695 /*
2696  * Unfair double_lock_balance: Optimizes throughput at the expense of
2697  * latency by eliminating extra atomic operations when the locks are
2698  * already in proper order on entry.  This favors lower CPU-ids and will
2699  * grant the double lock to lower CPUs over higher ids under contention,
2700  * regardless of entry order into the function.
2701  */
2702 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2703 	__releases(this_rq->lock)
2704 	__acquires(busiest->lock)
2705 	__acquires(this_rq->lock)
2706 {
2707 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2708 	    likely(raw_spin_rq_trylock(busiest))) {
2709 		double_rq_clock_clear_update(this_rq, busiest);
2710 		return 0;
2711 	}
2712 
2713 	if (rq_order_less(this_rq, busiest)) {
2714 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2715 		double_rq_clock_clear_update(this_rq, busiest);
2716 		return 0;
2717 	}
2718 
2719 	raw_spin_rq_unlock(this_rq);
2720 	double_rq_lock(this_rq, busiest);
2721 
2722 	return 1;
2723 }
2724 
2725 #endif /* CONFIG_PREEMPTION */
2726 
2727 /*
2728  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2729  */
2730 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2731 {
2732 	lockdep_assert_irqs_disabled();
2733 
2734 	return _double_lock_balance(this_rq, busiest);
2735 }
2736 
2737 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2738 	__releases(busiest->lock)
2739 {
2740 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2741 		raw_spin_rq_unlock(busiest);
2742 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2743 }
2744 
2745 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2746 {
2747 	if (l1 > l2)
2748 		swap(l1, l2);
2749 
2750 	spin_lock(l1);
2751 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2752 }
2753 
2754 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2755 {
2756 	if (l1 > l2)
2757 		swap(l1, l2);
2758 
2759 	spin_lock_irq(l1);
2760 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2761 }
2762 
2763 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2764 {
2765 	if (l1 > l2)
2766 		swap(l1, l2);
2767 
2768 	raw_spin_lock(l1);
2769 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2770 }
2771 
2772 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2773 {
2774 	raw_spin_unlock(l1);
2775 	raw_spin_unlock(l2);
2776 }
2777 
2778 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2779 		    double_raw_lock(_T->lock, _T->lock2),
2780 		    double_raw_unlock(_T->lock, _T->lock2))
2781 
2782 /*
2783  * double_rq_unlock - safely unlock two runqueues
2784  *
2785  * Note this does not restore interrupts like task_rq_unlock,
2786  * you need to do so manually after calling.
2787  */
2788 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2789 	__releases(rq1->lock)
2790 	__releases(rq2->lock)
2791 {
2792 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2793 		raw_spin_rq_unlock(rq2);
2794 	else
2795 		__release(rq2->lock);
2796 	raw_spin_rq_unlock(rq1);
2797 }
2798 
2799 extern void set_rq_online (struct rq *rq);
2800 extern void set_rq_offline(struct rq *rq);
2801 extern bool sched_smp_initialized;
2802 
2803 #else /* CONFIG_SMP */
2804 
2805 /*
2806  * double_rq_lock - safely lock two runqueues
2807  *
2808  * Note this does not disable interrupts like task_rq_lock,
2809  * you need to do so manually before calling.
2810  */
2811 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2812 	__acquires(rq1->lock)
2813 	__acquires(rq2->lock)
2814 {
2815 	WARN_ON_ONCE(!irqs_disabled());
2816 	WARN_ON_ONCE(rq1 != rq2);
2817 	raw_spin_rq_lock(rq1);
2818 	__acquire(rq2->lock);	/* Fake it out ;) */
2819 	double_rq_clock_clear_update(rq1, rq2);
2820 }
2821 
2822 /*
2823  * double_rq_unlock - safely unlock two runqueues
2824  *
2825  * Note this does not restore interrupts like task_rq_unlock,
2826  * you need to do so manually after calling.
2827  */
2828 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2829 	__releases(rq1->lock)
2830 	__releases(rq2->lock)
2831 {
2832 	WARN_ON_ONCE(rq1 != rq2);
2833 	raw_spin_rq_unlock(rq1);
2834 	__release(rq2->lock);
2835 }
2836 
2837 #endif
2838 
2839 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2840 		    double_rq_lock(_T->lock, _T->lock2),
2841 		    double_rq_unlock(_T->lock, _T->lock2))
2842 
2843 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2844 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2845 
2846 #ifdef	CONFIG_SCHED_DEBUG
2847 extern bool sched_debug_verbose;
2848 
2849 extern void print_cfs_stats(struct seq_file *m, int cpu);
2850 extern void print_rt_stats(struct seq_file *m, int cpu);
2851 extern void print_dl_stats(struct seq_file *m, int cpu);
2852 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2853 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2854 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2855 
2856 extern void resched_latency_warn(int cpu, u64 latency);
2857 #ifdef CONFIG_NUMA_BALANCING
2858 extern void
2859 show_numa_stats(struct task_struct *p, struct seq_file *m);
2860 extern void
2861 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2862 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2863 #endif /* CONFIG_NUMA_BALANCING */
2864 #else
2865 static inline void resched_latency_warn(int cpu, u64 latency) {}
2866 #endif /* CONFIG_SCHED_DEBUG */
2867 
2868 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2869 extern void init_rt_rq(struct rt_rq *rt_rq);
2870 extern void init_dl_rq(struct dl_rq *dl_rq);
2871 
2872 extern void cfs_bandwidth_usage_inc(void);
2873 extern void cfs_bandwidth_usage_dec(void);
2874 
2875 #ifdef CONFIG_NO_HZ_COMMON
2876 #define NOHZ_BALANCE_KICK_BIT	0
2877 #define NOHZ_STATS_KICK_BIT	1
2878 #define NOHZ_NEWILB_KICK_BIT	2
2879 #define NOHZ_NEXT_KICK_BIT	3
2880 
2881 /* Run rebalance_domains() */
2882 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2883 /* Update blocked load */
2884 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2885 /* Update blocked load when entering idle */
2886 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2887 /* Update nohz.next_balance */
2888 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2889 
2890 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2891 
2892 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2893 
2894 extern void nohz_balance_exit_idle(struct rq *rq);
2895 #else
2896 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2897 #endif
2898 
2899 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2900 extern void nohz_run_idle_balance(int cpu);
2901 #else
2902 static inline void nohz_run_idle_balance(int cpu) { }
2903 #endif
2904 
2905 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2906 struct irqtime {
2907 	u64			total;
2908 	u64			tick_delta;
2909 	u64			irq_start_time;
2910 	struct u64_stats_sync	sync;
2911 };
2912 
2913 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2914 
2915 /*
2916  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2917  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2918  * and never move forward.
2919  */
2920 static inline u64 irq_time_read(int cpu)
2921 {
2922 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2923 	unsigned int seq;
2924 	u64 total;
2925 
2926 	do {
2927 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2928 		total = irqtime->total;
2929 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2930 
2931 	return total;
2932 }
2933 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2934 
2935 #ifdef CONFIG_CPU_FREQ
2936 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2937 
2938 /**
2939  * cpufreq_update_util - Take a note about CPU utilization changes.
2940  * @rq: Runqueue to carry out the update for.
2941  * @flags: Update reason flags.
2942  *
2943  * This function is called by the scheduler on the CPU whose utilization is
2944  * being updated.
2945  *
2946  * It can only be called from RCU-sched read-side critical sections.
2947  *
2948  * The way cpufreq is currently arranged requires it to evaluate the CPU
2949  * performance state (frequency/voltage) on a regular basis to prevent it from
2950  * being stuck in a completely inadequate performance level for too long.
2951  * That is not guaranteed to happen if the updates are only triggered from CFS
2952  * and DL, though, because they may not be coming in if only RT tasks are
2953  * active all the time (or there are RT tasks only).
2954  *
2955  * As a workaround for that issue, this function is called periodically by the
2956  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2957  * but that really is a band-aid.  Going forward it should be replaced with
2958  * solutions targeted more specifically at RT tasks.
2959  */
2960 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2961 {
2962 	struct update_util_data *data;
2963 
2964 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2965 						  cpu_of(rq)));
2966 	if (data)
2967 		data->func(data, rq_clock(rq), flags);
2968 }
2969 #else
2970 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2971 #endif /* CONFIG_CPU_FREQ */
2972 
2973 #ifdef arch_scale_freq_capacity
2974 # ifndef arch_scale_freq_invariant
2975 #  define arch_scale_freq_invariant()	true
2976 # endif
2977 #else
2978 # define arch_scale_freq_invariant()	false
2979 #endif
2980 
2981 #ifdef CONFIG_SMP
2982 static inline unsigned long capacity_orig_of(int cpu)
2983 {
2984 	return cpu_rq(cpu)->cpu_capacity_orig;
2985 }
2986 
2987 /**
2988  * enum cpu_util_type - CPU utilization type
2989  * @FREQUENCY_UTIL:	Utilization used to select frequency
2990  * @ENERGY_UTIL:	Utilization used during energy calculation
2991  *
2992  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2993  * need to be aggregated differently depending on the usage made of them. This
2994  * enum is used within effective_cpu_util() to differentiate the types of
2995  * utilization expected by the callers, and adjust the aggregation accordingly.
2996  */
2997 enum cpu_util_type {
2998 	FREQUENCY_UTIL,
2999 	ENERGY_UTIL,
3000 };
3001 
3002 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3003 				 enum cpu_util_type type,
3004 				 struct task_struct *p);
3005 
3006 /*
3007  * Verify the fitness of task @p to run on @cpu taking into account the
3008  * CPU original capacity and the runtime/deadline ratio of the task.
3009  *
3010  * The function will return true if the original capacity of @cpu is
3011  * greater than or equal to task's deadline density right shifted by
3012  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3013  */
3014 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3015 {
3016 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3017 
3018 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3019 }
3020 
3021 static inline unsigned long cpu_bw_dl(struct rq *rq)
3022 {
3023 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3024 }
3025 
3026 static inline unsigned long cpu_util_dl(struct rq *rq)
3027 {
3028 	return READ_ONCE(rq->avg_dl.util_avg);
3029 }
3030 
3031 
3032 extern unsigned long cpu_util_cfs(int cpu);
3033 extern unsigned long cpu_util_cfs_boost(int cpu);
3034 
3035 static inline unsigned long cpu_util_rt(struct rq *rq)
3036 {
3037 	return READ_ONCE(rq->avg_rt.util_avg);
3038 }
3039 #endif
3040 
3041 #ifdef CONFIG_UCLAMP_TASK
3042 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3043 
3044 static inline unsigned long uclamp_rq_get(struct rq *rq,
3045 					  enum uclamp_id clamp_id)
3046 {
3047 	return READ_ONCE(rq->uclamp[clamp_id].value);
3048 }
3049 
3050 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3051 				 unsigned int value)
3052 {
3053 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3054 }
3055 
3056 static inline bool uclamp_rq_is_idle(struct rq *rq)
3057 {
3058 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3059 }
3060 
3061 /**
3062  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3063  * @rq:		The rq to clamp against. Must not be NULL.
3064  * @util:	The util value to clamp.
3065  * @p:		The task to clamp against. Can be NULL if you want to clamp
3066  *		against @rq only.
3067  *
3068  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3069  *
3070  * If sched_uclamp_used static key is disabled, then just return the util
3071  * without any clamping since uclamp aggregation at the rq level in the fast
3072  * path is disabled, rendering this operation a NOP.
3073  *
3074  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3075  * will return the correct effective uclamp value of the task even if the
3076  * static key is disabled.
3077  */
3078 static __always_inline
3079 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3080 				  struct task_struct *p)
3081 {
3082 	unsigned long min_util = 0;
3083 	unsigned long max_util = 0;
3084 
3085 	if (!static_branch_likely(&sched_uclamp_used))
3086 		return util;
3087 
3088 	if (p) {
3089 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3090 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3091 
3092 		/*
3093 		 * Ignore last runnable task's max clamp, as this task will
3094 		 * reset it. Similarly, no need to read the rq's min clamp.
3095 		 */
3096 		if (uclamp_rq_is_idle(rq))
3097 			goto out;
3098 	}
3099 
3100 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3101 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3102 out:
3103 	/*
3104 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3105 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3106 	 * inversion. Fix it now when the clamps are applied.
3107 	 */
3108 	if (unlikely(min_util >= max_util))
3109 		return min_util;
3110 
3111 	return clamp(util, min_util, max_util);
3112 }
3113 
3114 /* Is the rq being capped/throttled by uclamp_max? */
3115 static inline bool uclamp_rq_is_capped(struct rq *rq)
3116 {
3117 	unsigned long rq_util;
3118 	unsigned long max_util;
3119 
3120 	if (!static_branch_likely(&sched_uclamp_used))
3121 		return false;
3122 
3123 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3124 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3125 
3126 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3127 }
3128 
3129 /*
3130  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3131  * by default in the fast path and only gets turned on once userspace performs
3132  * an operation that requires it.
3133  *
3134  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3135  * hence is active.
3136  */
3137 static inline bool uclamp_is_used(void)
3138 {
3139 	return static_branch_likely(&sched_uclamp_used);
3140 }
3141 #else /* CONFIG_UCLAMP_TASK */
3142 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3143 					     enum uclamp_id clamp_id)
3144 {
3145 	if (clamp_id == UCLAMP_MIN)
3146 		return 0;
3147 
3148 	return SCHED_CAPACITY_SCALE;
3149 }
3150 
3151 static inline
3152 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3153 				  struct task_struct *p)
3154 {
3155 	return util;
3156 }
3157 
3158 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3159 
3160 static inline bool uclamp_is_used(void)
3161 {
3162 	return false;
3163 }
3164 
3165 static inline unsigned long uclamp_rq_get(struct rq *rq,
3166 					  enum uclamp_id clamp_id)
3167 {
3168 	if (clamp_id == UCLAMP_MIN)
3169 		return 0;
3170 
3171 	return SCHED_CAPACITY_SCALE;
3172 }
3173 
3174 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3175 				 unsigned int value)
3176 {
3177 }
3178 
3179 static inline bool uclamp_rq_is_idle(struct rq *rq)
3180 {
3181 	return false;
3182 }
3183 #endif /* CONFIG_UCLAMP_TASK */
3184 
3185 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3186 static inline unsigned long cpu_util_irq(struct rq *rq)
3187 {
3188 	return rq->avg_irq.util_avg;
3189 }
3190 
3191 static inline
3192 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3193 {
3194 	util *= (max - irq);
3195 	util /= max;
3196 
3197 	return util;
3198 
3199 }
3200 #else
3201 static inline unsigned long cpu_util_irq(struct rq *rq)
3202 {
3203 	return 0;
3204 }
3205 
3206 static inline
3207 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3208 {
3209 	return util;
3210 }
3211 #endif
3212 
3213 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3214 
3215 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3216 
3217 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3218 
3219 static inline bool sched_energy_enabled(void)
3220 {
3221 	return static_branch_unlikely(&sched_energy_present);
3222 }
3223 
3224 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3225 
3226 #define perf_domain_span(pd) NULL
3227 static inline bool sched_energy_enabled(void) { return false; }
3228 
3229 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3230 
3231 #ifdef CONFIG_MEMBARRIER
3232 /*
3233  * The scheduler provides memory barriers required by membarrier between:
3234  * - prior user-space memory accesses and store to rq->membarrier_state,
3235  * - store to rq->membarrier_state and following user-space memory accesses.
3236  * In the same way it provides those guarantees around store to rq->curr.
3237  */
3238 static inline void membarrier_switch_mm(struct rq *rq,
3239 					struct mm_struct *prev_mm,
3240 					struct mm_struct *next_mm)
3241 {
3242 	int membarrier_state;
3243 
3244 	if (prev_mm == next_mm)
3245 		return;
3246 
3247 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3248 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3249 		return;
3250 
3251 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3252 }
3253 #else
3254 static inline void membarrier_switch_mm(struct rq *rq,
3255 					struct mm_struct *prev_mm,
3256 					struct mm_struct *next_mm)
3257 {
3258 }
3259 #endif
3260 
3261 #ifdef CONFIG_SMP
3262 static inline bool is_per_cpu_kthread(struct task_struct *p)
3263 {
3264 	if (!(p->flags & PF_KTHREAD))
3265 		return false;
3266 
3267 	if (p->nr_cpus_allowed != 1)
3268 		return false;
3269 
3270 	return true;
3271 }
3272 #endif
3273 
3274 extern void swake_up_all_locked(struct swait_queue_head *q);
3275 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3276 
3277 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3278 
3279 #ifdef CONFIG_PREEMPT_DYNAMIC
3280 extern int preempt_dynamic_mode;
3281 extern int sched_dynamic_mode(const char *str);
3282 extern void sched_dynamic_update(int mode);
3283 #endif
3284 
3285 static inline void update_current_exec_runtime(struct task_struct *curr,
3286 						u64 now, u64 delta_exec)
3287 {
3288 	curr->se.sum_exec_runtime += delta_exec;
3289 	account_group_exec_runtime(curr, delta_exec);
3290 
3291 	curr->se.exec_start = now;
3292 	cgroup_account_cputime(curr, delta_exec);
3293 }
3294 
3295 #ifdef CONFIG_SCHED_MM_CID
3296 
3297 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3298 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3299 
3300 extern raw_spinlock_t cid_lock;
3301 extern int use_cid_lock;
3302 
3303 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3304 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3305 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3306 extern void init_sched_mm_cid(struct task_struct *t);
3307 
3308 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3309 {
3310 	if (cid < 0)
3311 		return;
3312 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3313 }
3314 
3315 /*
3316  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3317  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3318  * be held to transition to other states.
3319  *
3320  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3321  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3322  */
3323 static inline void mm_cid_put_lazy(struct task_struct *t)
3324 {
3325 	struct mm_struct *mm = t->mm;
3326 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3327 	int cid;
3328 
3329 	lockdep_assert_irqs_disabled();
3330 	cid = __this_cpu_read(pcpu_cid->cid);
3331 	if (!mm_cid_is_lazy_put(cid) ||
3332 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3333 		return;
3334 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3335 }
3336 
3337 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3338 {
3339 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3340 	int cid, res;
3341 
3342 	lockdep_assert_irqs_disabled();
3343 	cid = __this_cpu_read(pcpu_cid->cid);
3344 	for (;;) {
3345 		if (mm_cid_is_unset(cid))
3346 			return MM_CID_UNSET;
3347 		/*
3348 		 * Attempt transition from valid or lazy-put to unset.
3349 		 */
3350 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3351 		if (res == cid)
3352 			break;
3353 		cid = res;
3354 	}
3355 	return cid;
3356 }
3357 
3358 static inline void mm_cid_put(struct mm_struct *mm)
3359 {
3360 	int cid;
3361 
3362 	lockdep_assert_irqs_disabled();
3363 	cid = mm_cid_pcpu_unset(mm);
3364 	if (cid == MM_CID_UNSET)
3365 		return;
3366 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3367 }
3368 
3369 static inline int __mm_cid_try_get(struct mm_struct *mm)
3370 {
3371 	struct cpumask *cpumask;
3372 	int cid;
3373 
3374 	cpumask = mm_cidmask(mm);
3375 	/*
3376 	 * Retry finding first zero bit if the mask is temporarily
3377 	 * filled. This only happens during concurrent remote-clear
3378 	 * which owns a cid without holding a rq lock.
3379 	 */
3380 	for (;;) {
3381 		cid = cpumask_first_zero(cpumask);
3382 		if (cid < nr_cpu_ids)
3383 			break;
3384 		cpu_relax();
3385 	}
3386 	if (cpumask_test_and_set_cpu(cid, cpumask))
3387 		return -1;
3388 	return cid;
3389 }
3390 
3391 /*
3392  * Save a snapshot of the current runqueue time of this cpu
3393  * with the per-cpu cid value, allowing to estimate how recently it was used.
3394  */
3395 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3396 {
3397 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3398 
3399 	lockdep_assert_rq_held(rq);
3400 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3401 }
3402 
3403 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3404 {
3405 	int cid;
3406 
3407 	/*
3408 	 * All allocations (even those using the cid_lock) are lock-free. If
3409 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3410 	 * guarantee forward progress.
3411 	 */
3412 	if (!READ_ONCE(use_cid_lock)) {
3413 		cid = __mm_cid_try_get(mm);
3414 		if (cid >= 0)
3415 			goto end;
3416 		raw_spin_lock(&cid_lock);
3417 	} else {
3418 		raw_spin_lock(&cid_lock);
3419 		cid = __mm_cid_try_get(mm);
3420 		if (cid >= 0)
3421 			goto unlock;
3422 	}
3423 
3424 	/*
3425 	 * cid concurrently allocated. Retry while forcing following
3426 	 * allocations to use the cid_lock to ensure forward progress.
3427 	 */
3428 	WRITE_ONCE(use_cid_lock, 1);
3429 	/*
3430 	 * Set use_cid_lock before allocation. Only care about program order
3431 	 * because this is only required for forward progress.
3432 	 */
3433 	barrier();
3434 	/*
3435 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3436 	 * all newcoming allocations observe the use_cid_lock flag set.
3437 	 */
3438 	do {
3439 		cid = __mm_cid_try_get(mm);
3440 		cpu_relax();
3441 	} while (cid < 0);
3442 	/*
3443 	 * Allocate before clearing use_cid_lock. Only care about
3444 	 * program order because this is for forward progress.
3445 	 */
3446 	barrier();
3447 	WRITE_ONCE(use_cid_lock, 0);
3448 unlock:
3449 	raw_spin_unlock(&cid_lock);
3450 end:
3451 	mm_cid_snapshot_time(rq, mm);
3452 	return cid;
3453 }
3454 
3455 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3456 {
3457 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3458 	struct cpumask *cpumask;
3459 	int cid;
3460 
3461 	lockdep_assert_rq_held(rq);
3462 	cpumask = mm_cidmask(mm);
3463 	cid = __this_cpu_read(pcpu_cid->cid);
3464 	if (mm_cid_is_valid(cid)) {
3465 		mm_cid_snapshot_time(rq, mm);
3466 		return cid;
3467 	}
3468 	if (mm_cid_is_lazy_put(cid)) {
3469 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3470 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3471 	}
3472 	cid = __mm_cid_get(rq, mm);
3473 	__this_cpu_write(pcpu_cid->cid, cid);
3474 	return cid;
3475 }
3476 
3477 static inline void switch_mm_cid(struct rq *rq,
3478 				 struct task_struct *prev,
3479 				 struct task_struct *next)
3480 {
3481 	/*
3482 	 * Provide a memory barrier between rq->curr store and load of
3483 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3484 	 *
3485 	 * Should be adapted if context_switch() is modified.
3486 	 */
3487 	if (!next->mm) {                                // to kernel
3488 		/*
3489 		 * user -> kernel transition does not guarantee a barrier, but
3490 		 * we can use the fact that it performs an atomic operation in
3491 		 * mmgrab().
3492 		 */
3493 		if (prev->mm)                           // from user
3494 			smp_mb__after_mmgrab();
3495 		/*
3496 		 * kernel -> kernel transition does not change rq->curr->mm
3497 		 * state. It stays NULL.
3498 		 */
3499 	} else {                                        // to user
3500 		/*
3501 		 * kernel -> user transition does not provide a barrier
3502 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3503 		 * Provide it here.
3504 		 */
3505 		if (!prev->mm) {                        // from kernel
3506 			smp_mb();
3507 		} else {				// from user
3508 			/*
3509 			 * user->user transition relies on an implicit
3510 			 * memory barrier in switch_mm() when
3511 			 * current->mm changes. If the architecture
3512 			 * switch_mm() does not have an implicit memory
3513 			 * barrier, it is emitted here.  If current->mm
3514 			 * is unchanged, no barrier is needed.
3515 			 */
3516 			smp_mb__after_switch_mm();
3517 		}
3518 	}
3519 	if (prev->mm_cid_active) {
3520 		mm_cid_snapshot_time(rq, prev->mm);
3521 		mm_cid_put_lazy(prev);
3522 		prev->mm_cid = -1;
3523 	}
3524 	if (next->mm_cid_active)
3525 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3526 }
3527 
3528 #else
3529 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3530 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3531 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3532 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3533 static inline void init_sched_mm_cid(struct task_struct *t) { }
3534 #endif
3535 
3536 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3537 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3538 
3539 #endif /* _KERNEL_SCHED_SCHED_H */
3540