1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/irq_work.h> 10 #include <linux/tick.h> 11 #include <linux/slab.h> 12 13 #include "cpupri.h" 14 #include "cpudeadline.h" 15 #include "cpuacct.h" 16 17 struct rq; 18 struct cpuidle_state; 19 20 /* task_struct::on_rq states: */ 21 #define TASK_ON_RQ_QUEUED 1 22 #define TASK_ON_RQ_MIGRATING 2 23 24 extern __read_mostly int scheduler_running; 25 26 extern unsigned long calc_load_update; 27 extern atomic_long_t calc_load_tasks; 28 29 extern void calc_global_load_tick(struct rq *this_rq); 30 extern long calc_load_fold_active(struct rq *this_rq); 31 32 #ifdef CONFIG_SMP 33 extern void update_cpu_load_active(struct rq *this_rq); 34 #else 35 static inline void update_cpu_load_active(struct rq *this_rq) { } 36 #endif 37 38 /* 39 * Helpers for converting nanosecond timing to jiffy resolution 40 */ 41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 42 43 /* 44 * Increase resolution of nice-level calculations for 64-bit architectures. 45 * The extra resolution improves shares distribution and load balancing of 46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 47 * hierarchies, especially on larger systems. This is not a user-visible change 48 * and does not change the user-interface for setting shares/weights. 49 * 50 * We increase resolution only if we have enough bits to allow this increased 51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 53 * increased costs. 54 */ 55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 56 # define SCHED_LOAD_RESOLUTION 10 57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 59 #else 60 # define SCHED_LOAD_RESOLUTION 0 61 # define scale_load(w) (w) 62 # define scale_load_down(w) (w) 63 #endif 64 65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 67 68 #define NICE_0_LOAD SCHED_LOAD_SCALE 69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 70 71 /* 72 * Single value that decides SCHED_DEADLINE internal math precision. 73 * 10 -> just above 1us 74 * 9 -> just above 0.5us 75 */ 76 #define DL_SCALE (10) 77 78 /* 79 * These are the 'tuning knobs' of the scheduler: 80 */ 81 82 /* 83 * single value that denotes runtime == period, ie unlimited time. 84 */ 85 #define RUNTIME_INF ((u64)~0ULL) 86 87 static inline int fair_policy(int policy) 88 { 89 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 90 } 91 92 static inline int rt_policy(int policy) 93 { 94 return policy == SCHED_FIFO || policy == SCHED_RR; 95 } 96 97 static inline int dl_policy(int policy) 98 { 99 return policy == SCHED_DEADLINE; 100 } 101 102 static inline int task_has_rt_policy(struct task_struct *p) 103 { 104 return rt_policy(p->policy); 105 } 106 107 static inline int task_has_dl_policy(struct task_struct *p) 108 { 109 return dl_policy(p->policy); 110 } 111 112 static inline bool dl_time_before(u64 a, u64 b) 113 { 114 return (s64)(a - b) < 0; 115 } 116 117 /* 118 * Tells if entity @a should preempt entity @b. 119 */ 120 static inline bool 121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 122 { 123 return dl_time_before(a->deadline, b->deadline); 124 } 125 126 /* 127 * This is the priority-queue data structure of the RT scheduling class: 128 */ 129 struct rt_prio_array { 130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 131 struct list_head queue[MAX_RT_PRIO]; 132 }; 133 134 struct rt_bandwidth { 135 /* nests inside the rq lock: */ 136 raw_spinlock_t rt_runtime_lock; 137 ktime_t rt_period; 138 u64 rt_runtime; 139 struct hrtimer rt_period_timer; 140 unsigned int rt_period_active; 141 }; 142 143 void __dl_clear_params(struct task_struct *p); 144 145 /* 146 * To keep the bandwidth of -deadline tasks and groups under control 147 * we need some place where: 148 * - store the maximum -deadline bandwidth of the system (the group); 149 * - cache the fraction of that bandwidth that is currently allocated. 150 * 151 * This is all done in the data structure below. It is similar to the 152 * one used for RT-throttling (rt_bandwidth), with the main difference 153 * that, since here we are only interested in admission control, we 154 * do not decrease any runtime while the group "executes", neither we 155 * need a timer to replenish it. 156 * 157 * With respect to SMP, the bandwidth is given on a per-CPU basis, 158 * meaning that: 159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 160 * - dl_total_bw array contains, in the i-eth element, the currently 161 * allocated bandwidth on the i-eth CPU. 162 * Moreover, groups consume bandwidth on each CPU, while tasks only 163 * consume bandwidth on the CPU they're running on. 164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 165 * that will be shown the next time the proc or cgroup controls will 166 * be red. It on its turn can be changed by writing on its own 167 * control. 168 */ 169 struct dl_bandwidth { 170 raw_spinlock_t dl_runtime_lock; 171 u64 dl_runtime; 172 u64 dl_period; 173 }; 174 175 static inline int dl_bandwidth_enabled(void) 176 { 177 return sysctl_sched_rt_runtime >= 0; 178 } 179 180 extern struct dl_bw *dl_bw_of(int i); 181 182 struct dl_bw { 183 raw_spinlock_t lock; 184 u64 bw, total_bw; 185 }; 186 187 static inline 188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 189 { 190 dl_b->total_bw -= tsk_bw; 191 } 192 193 static inline 194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 195 { 196 dl_b->total_bw += tsk_bw; 197 } 198 199 static inline 200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 201 { 202 return dl_b->bw != -1 && 203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 204 } 205 206 extern struct mutex sched_domains_mutex; 207 208 #ifdef CONFIG_CGROUP_SCHED 209 210 #include <linux/cgroup.h> 211 212 struct cfs_rq; 213 struct rt_rq; 214 215 extern struct list_head task_groups; 216 217 struct cfs_bandwidth { 218 #ifdef CONFIG_CFS_BANDWIDTH 219 raw_spinlock_t lock; 220 ktime_t period; 221 u64 quota, runtime; 222 s64 hierarchical_quota; 223 u64 runtime_expires; 224 225 int idle, period_active; 226 struct hrtimer period_timer, slack_timer; 227 struct list_head throttled_cfs_rq; 228 229 /* statistics */ 230 int nr_periods, nr_throttled; 231 u64 throttled_time; 232 #endif 233 }; 234 235 /* task group related information */ 236 struct task_group { 237 struct cgroup_subsys_state css; 238 239 #ifdef CONFIG_FAIR_GROUP_SCHED 240 /* schedulable entities of this group on each cpu */ 241 struct sched_entity **se; 242 /* runqueue "owned" by this group on each cpu */ 243 struct cfs_rq **cfs_rq; 244 unsigned long shares; 245 246 #ifdef CONFIG_SMP 247 atomic_long_t load_avg; 248 atomic_t runnable_avg; 249 #endif 250 #endif 251 252 #ifdef CONFIG_RT_GROUP_SCHED 253 struct sched_rt_entity **rt_se; 254 struct rt_rq **rt_rq; 255 256 struct rt_bandwidth rt_bandwidth; 257 #endif 258 259 struct rcu_head rcu; 260 struct list_head list; 261 262 struct task_group *parent; 263 struct list_head siblings; 264 struct list_head children; 265 266 #ifdef CONFIG_SCHED_AUTOGROUP 267 struct autogroup *autogroup; 268 #endif 269 270 struct cfs_bandwidth cfs_bandwidth; 271 }; 272 273 #ifdef CONFIG_FAIR_GROUP_SCHED 274 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 275 276 /* 277 * A weight of 0 or 1 can cause arithmetics problems. 278 * A weight of a cfs_rq is the sum of weights of which entities 279 * are queued on this cfs_rq, so a weight of a entity should not be 280 * too large, so as the shares value of a task group. 281 * (The default weight is 1024 - so there's no practical 282 * limitation from this.) 283 */ 284 #define MIN_SHARES (1UL << 1) 285 #define MAX_SHARES (1UL << 18) 286 #endif 287 288 typedef int (*tg_visitor)(struct task_group *, void *); 289 290 extern int walk_tg_tree_from(struct task_group *from, 291 tg_visitor down, tg_visitor up, void *data); 292 293 /* 294 * Iterate the full tree, calling @down when first entering a node and @up when 295 * leaving it for the final time. 296 * 297 * Caller must hold rcu_lock or sufficient equivalent. 298 */ 299 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 300 { 301 return walk_tg_tree_from(&root_task_group, down, up, data); 302 } 303 304 extern int tg_nop(struct task_group *tg, void *data); 305 306 extern void free_fair_sched_group(struct task_group *tg); 307 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 308 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 309 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 310 struct sched_entity *se, int cpu, 311 struct sched_entity *parent); 312 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 313 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 314 315 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 316 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 317 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 318 319 extern void free_rt_sched_group(struct task_group *tg); 320 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 321 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 322 struct sched_rt_entity *rt_se, int cpu, 323 struct sched_rt_entity *parent); 324 325 extern struct task_group *sched_create_group(struct task_group *parent); 326 extern void sched_online_group(struct task_group *tg, 327 struct task_group *parent); 328 extern void sched_destroy_group(struct task_group *tg); 329 extern void sched_offline_group(struct task_group *tg); 330 331 extern void sched_move_task(struct task_struct *tsk); 332 333 #ifdef CONFIG_FAIR_GROUP_SCHED 334 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 335 #endif 336 337 #else /* CONFIG_CGROUP_SCHED */ 338 339 struct cfs_bandwidth { }; 340 341 #endif /* CONFIG_CGROUP_SCHED */ 342 343 /* CFS-related fields in a runqueue */ 344 struct cfs_rq { 345 struct load_weight load; 346 unsigned int nr_running, h_nr_running; 347 348 u64 exec_clock; 349 u64 min_vruntime; 350 #ifndef CONFIG_64BIT 351 u64 min_vruntime_copy; 352 #endif 353 354 struct rb_root tasks_timeline; 355 struct rb_node *rb_leftmost; 356 357 /* 358 * 'curr' points to currently running entity on this cfs_rq. 359 * It is set to NULL otherwise (i.e when none are currently running). 360 */ 361 struct sched_entity *curr, *next, *last, *skip; 362 363 #ifdef CONFIG_SCHED_DEBUG 364 unsigned int nr_spread_over; 365 #endif 366 367 #ifdef CONFIG_SMP 368 /* 369 * CFS Load tracking 370 * Under CFS, load is tracked on a per-entity basis and aggregated up. 371 * This allows for the description of both thread and group usage (in 372 * the FAIR_GROUP_SCHED case). 373 * runnable_load_avg is the sum of the load_avg_contrib of the 374 * sched_entities on the rq. 375 * blocked_load_avg is similar to runnable_load_avg except that its 376 * the blocked sched_entities on the rq. 377 * utilization_load_avg is the sum of the average running time of the 378 * sched_entities on the rq. 379 */ 380 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg; 381 atomic64_t decay_counter; 382 u64 last_decay; 383 atomic_long_t removed_load; 384 385 #ifdef CONFIG_FAIR_GROUP_SCHED 386 /* Required to track per-cpu representation of a task_group */ 387 u32 tg_runnable_contrib; 388 unsigned long tg_load_contrib; 389 390 /* 391 * h_load = weight * f(tg) 392 * 393 * Where f(tg) is the recursive weight fraction assigned to 394 * this group. 395 */ 396 unsigned long h_load; 397 u64 last_h_load_update; 398 struct sched_entity *h_load_next; 399 #endif /* CONFIG_FAIR_GROUP_SCHED */ 400 #endif /* CONFIG_SMP */ 401 402 #ifdef CONFIG_FAIR_GROUP_SCHED 403 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 404 405 /* 406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 408 * (like users, containers etc.) 409 * 410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 411 * list is used during load balance. 412 */ 413 int on_list; 414 struct list_head leaf_cfs_rq_list; 415 struct task_group *tg; /* group that "owns" this runqueue */ 416 417 #ifdef CONFIG_CFS_BANDWIDTH 418 int runtime_enabled; 419 u64 runtime_expires; 420 s64 runtime_remaining; 421 422 u64 throttled_clock, throttled_clock_task; 423 u64 throttled_clock_task_time; 424 int throttled, throttle_count; 425 struct list_head throttled_list; 426 #endif /* CONFIG_CFS_BANDWIDTH */ 427 #endif /* CONFIG_FAIR_GROUP_SCHED */ 428 }; 429 430 static inline int rt_bandwidth_enabled(void) 431 { 432 return sysctl_sched_rt_runtime >= 0; 433 } 434 435 /* RT IPI pull logic requires IRQ_WORK */ 436 #ifdef CONFIG_IRQ_WORK 437 # define HAVE_RT_PUSH_IPI 438 #endif 439 440 /* Real-Time classes' related field in a runqueue: */ 441 struct rt_rq { 442 struct rt_prio_array active; 443 unsigned int rt_nr_running; 444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 445 struct { 446 int curr; /* highest queued rt task prio */ 447 #ifdef CONFIG_SMP 448 int next; /* next highest */ 449 #endif 450 } highest_prio; 451 #endif 452 #ifdef CONFIG_SMP 453 unsigned long rt_nr_migratory; 454 unsigned long rt_nr_total; 455 int overloaded; 456 struct plist_head pushable_tasks; 457 #ifdef HAVE_RT_PUSH_IPI 458 int push_flags; 459 int push_cpu; 460 struct irq_work push_work; 461 raw_spinlock_t push_lock; 462 #endif 463 #endif /* CONFIG_SMP */ 464 int rt_queued; 465 466 int rt_throttled; 467 u64 rt_time; 468 u64 rt_runtime; 469 /* Nests inside the rq lock: */ 470 raw_spinlock_t rt_runtime_lock; 471 472 #ifdef CONFIG_RT_GROUP_SCHED 473 unsigned long rt_nr_boosted; 474 475 struct rq *rq; 476 struct task_group *tg; 477 #endif 478 }; 479 480 /* Deadline class' related fields in a runqueue */ 481 struct dl_rq { 482 /* runqueue is an rbtree, ordered by deadline */ 483 struct rb_root rb_root; 484 struct rb_node *rb_leftmost; 485 486 unsigned long dl_nr_running; 487 488 #ifdef CONFIG_SMP 489 /* 490 * Deadline values of the currently executing and the 491 * earliest ready task on this rq. Caching these facilitates 492 * the decision wether or not a ready but not running task 493 * should migrate somewhere else. 494 */ 495 struct { 496 u64 curr; 497 u64 next; 498 } earliest_dl; 499 500 unsigned long dl_nr_migratory; 501 int overloaded; 502 503 /* 504 * Tasks on this rq that can be pushed away. They are kept in 505 * an rb-tree, ordered by tasks' deadlines, with caching 506 * of the leftmost (earliest deadline) element. 507 */ 508 struct rb_root pushable_dl_tasks_root; 509 struct rb_node *pushable_dl_tasks_leftmost; 510 #else 511 struct dl_bw dl_bw; 512 #endif 513 }; 514 515 #ifdef CONFIG_SMP 516 517 /* 518 * We add the notion of a root-domain which will be used to define per-domain 519 * variables. Each exclusive cpuset essentially defines an island domain by 520 * fully partitioning the member cpus from any other cpuset. Whenever a new 521 * exclusive cpuset is created, we also create and attach a new root-domain 522 * object. 523 * 524 */ 525 struct root_domain { 526 atomic_t refcount; 527 atomic_t rto_count; 528 struct rcu_head rcu; 529 cpumask_var_t span; 530 cpumask_var_t online; 531 532 /* Indicate more than one runnable task for any CPU */ 533 bool overload; 534 535 /* 536 * The bit corresponding to a CPU gets set here if such CPU has more 537 * than one runnable -deadline task (as it is below for RT tasks). 538 */ 539 cpumask_var_t dlo_mask; 540 atomic_t dlo_count; 541 struct dl_bw dl_bw; 542 struct cpudl cpudl; 543 544 /* 545 * The "RT overload" flag: it gets set if a CPU has more than 546 * one runnable RT task. 547 */ 548 cpumask_var_t rto_mask; 549 struct cpupri cpupri; 550 }; 551 552 extern struct root_domain def_root_domain; 553 554 #endif /* CONFIG_SMP */ 555 556 /* 557 * This is the main, per-CPU runqueue data structure. 558 * 559 * Locking rule: those places that want to lock multiple runqueues 560 * (such as the load balancing or the thread migration code), lock 561 * acquire operations must be ordered by ascending &runqueue. 562 */ 563 struct rq { 564 /* runqueue lock: */ 565 raw_spinlock_t lock; 566 567 /* 568 * nr_running and cpu_load should be in the same cacheline because 569 * remote CPUs use both these fields when doing load calculation. 570 */ 571 unsigned int nr_running; 572 #ifdef CONFIG_NUMA_BALANCING 573 unsigned int nr_numa_running; 574 unsigned int nr_preferred_running; 575 #endif 576 #define CPU_LOAD_IDX_MAX 5 577 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 578 unsigned long last_load_update_tick; 579 #ifdef CONFIG_NO_HZ_COMMON 580 u64 nohz_stamp; 581 unsigned long nohz_flags; 582 #endif 583 #ifdef CONFIG_NO_HZ_FULL 584 unsigned long last_sched_tick; 585 #endif 586 /* capture load from *all* tasks on this cpu: */ 587 struct load_weight load; 588 unsigned long nr_load_updates; 589 u64 nr_switches; 590 591 struct cfs_rq cfs; 592 struct rt_rq rt; 593 struct dl_rq dl; 594 595 #ifdef CONFIG_FAIR_GROUP_SCHED 596 /* list of leaf cfs_rq on this cpu: */ 597 struct list_head leaf_cfs_rq_list; 598 599 struct sched_avg avg; 600 #endif /* CONFIG_FAIR_GROUP_SCHED */ 601 602 /* 603 * This is part of a global counter where only the total sum 604 * over all CPUs matters. A task can increase this counter on 605 * one CPU and if it got migrated afterwards it may decrease 606 * it on another CPU. Always updated under the runqueue lock: 607 */ 608 unsigned long nr_uninterruptible; 609 610 struct task_struct *curr, *idle, *stop; 611 unsigned long next_balance; 612 struct mm_struct *prev_mm; 613 614 unsigned int clock_skip_update; 615 u64 clock; 616 u64 clock_task; 617 618 atomic_t nr_iowait; 619 620 #ifdef CONFIG_SMP 621 struct root_domain *rd; 622 struct sched_domain *sd; 623 624 unsigned long cpu_capacity; 625 unsigned long cpu_capacity_orig; 626 627 struct callback_head *balance_callback; 628 629 unsigned char idle_balance; 630 /* For active balancing */ 631 int active_balance; 632 int push_cpu; 633 struct cpu_stop_work active_balance_work; 634 /* cpu of this runqueue: */ 635 int cpu; 636 int online; 637 638 struct list_head cfs_tasks; 639 640 u64 rt_avg; 641 u64 age_stamp; 642 u64 idle_stamp; 643 u64 avg_idle; 644 645 /* This is used to determine avg_idle's max value */ 646 u64 max_idle_balance_cost; 647 #endif 648 649 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 650 u64 prev_irq_time; 651 #endif 652 #ifdef CONFIG_PARAVIRT 653 u64 prev_steal_time; 654 #endif 655 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 656 u64 prev_steal_time_rq; 657 #endif 658 659 /* calc_load related fields */ 660 unsigned long calc_load_update; 661 long calc_load_active; 662 663 #ifdef CONFIG_SCHED_HRTICK 664 #ifdef CONFIG_SMP 665 int hrtick_csd_pending; 666 struct call_single_data hrtick_csd; 667 #endif 668 struct hrtimer hrtick_timer; 669 #endif 670 671 #ifdef CONFIG_SCHEDSTATS 672 /* latency stats */ 673 struct sched_info rq_sched_info; 674 unsigned long long rq_cpu_time; 675 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 676 677 /* sys_sched_yield() stats */ 678 unsigned int yld_count; 679 680 /* schedule() stats */ 681 unsigned int sched_count; 682 unsigned int sched_goidle; 683 684 /* try_to_wake_up() stats */ 685 unsigned int ttwu_count; 686 unsigned int ttwu_local; 687 #endif 688 689 #ifdef CONFIG_SMP 690 struct llist_head wake_list; 691 #endif 692 693 #ifdef CONFIG_CPU_IDLE 694 /* Must be inspected within a rcu lock section */ 695 struct cpuidle_state *idle_state; 696 #endif 697 }; 698 699 static inline int cpu_of(struct rq *rq) 700 { 701 #ifdef CONFIG_SMP 702 return rq->cpu; 703 #else 704 return 0; 705 #endif 706 } 707 708 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 709 710 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 711 #define this_rq() this_cpu_ptr(&runqueues) 712 #define task_rq(p) cpu_rq(task_cpu(p)) 713 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 714 #define raw_rq() raw_cpu_ptr(&runqueues) 715 716 static inline u64 __rq_clock_broken(struct rq *rq) 717 { 718 return READ_ONCE(rq->clock); 719 } 720 721 static inline u64 rq_clock(struct rq *rq) 722 { 723 lockdep_assert_held(&rq->lock); 724 return rq->clock; 725 } 726 727 static inline u64 rq_clock_task(struct rq *rq) 728 { 729 lockdep_assert_held(&rq->lock); 730 return rq->clock_task; 731 } 732 733 #define RQCF_REQ_SKIP 0x01 734 #define RQCF_ACT_SKIP 0x02 735 736 static inline void rq_clock_skip_update(struct rq *rq, bool skip) 737 { 738 lockdep_assert_held(&rq->lock); 739 if (skip) 740 rq->clock_skip_update |= RQCF_REQ_SKIP; 741 else 742 rq->clock_skip_update &= ~RQCF_REQ_SKIP; 743 } 744 745 #ifdef CONFIG_NUMA 746 enum numa_topology_type { 747 NUMA_DIRECT, 748 NUMA_GLUELESS_MESH, 749 NUMA_BACKPLANE, 750 }; 751 extern enum numa_topology_type sched_numa_topology_type; 752 extern int sched_max_numa_distance; 753 extern bool find_numa_distance(int distance); 754 #endif 755 756 #ifdef CONFIG_NUMA_BALANCING 757 /* The regions in numa_faults array from task_struct */ 758 enum numa_faults_stats { 759 NUMA_MEM = 0, 760 NUMA_CPU, 761 NUMA_MEMBUF, 762 NUMA_CPUBUF 763 }; 764 extern void sched_setnuma(struct task_struct *p, int node); 765 extern int migrate_task_to(struct task_struct *p, int cpu); 766 extern int migrate_swap(struct task_struct *, struct task_struct *); 767 #endif /* CONFIG_NUMA_BALANCING */ 768 769 #ifdef CONFIG_SMP 770 771 static inline void 772 queue_balance_callback(struct rq *rq, 773 struct callback_head *head, 774 void (*func)(struct rq *rq)) 775 { 776 lockdep_assert_held(&rq->lock); 777 778 if (unlikely(head->next)) 779 return; 780 781 head->func = (void (*)(struct callback_head *))func; 782 head->next = rq->balance_callback; 783 rq->balance_callback = head; 784 } 785 786 extern void sched_ttwu_pending(void); 787 788 #define rcu_dereference_check_sched_domain(p) \ 789 rcu_dereference_check((p), \ 790 lockdep_is_held(&sched_domains_mutex)) 791 792 /* 793 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 794 * See detach_destroy_domains: synchronize_sched for details. 795 * 796 * The domain tree of any CPU may only be accessed from within 797 * preempt-disabled sections. 798 */ 799 #define for_each_domain(cpu, __sd) \ 800 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 801 __sd; __sd = __sd->parent) 802 803 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 804 805 /** 806 * highest_flag_domain - Return highest sched_domain containing flag. 807 * @cpu: The cpu whose highest level of sched domain is to 808 * be returned. 809 * @flag: The flag to check for the highest sched_domain 810 * for the given cpu. 811 * 812 * Returns the highest sched_domain of a cpu which contains the given flag. 813 */ 814 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 815 { 816 struct sched_domain *sd, *hsd = NULL; 817 818 for_each_domain(cpu, sd) { 819 if (!(sd->flags & flag)) 820 break; 821 hsd = sd; 822 } 823 824 return hsd; 825 } 826 827 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 828 { 829 struct sched_domain *sd; 830 831 for_each_domain(cpu, sd) { 832 if (sd->flags & flag) 833 break; 834 } 835 836 return sd; 837 } 838 839 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 840 DECLARE_PER_CPU(int, sd_llc_size); 841 DECLARE_PER_CPU(int, sd_llc_id); 842 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 843 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 844 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 845 846 struct sched_group_capacity { 847 atomic_t ref; 848 /* 849 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 850 * for a single CPU. 851 */ 852 unsigned int capacity; 853 unsigned long next_update; 854 int imbalance; /* XXX unrelated to capacity but shared group state */ 855 /* 856 * Number of busy cpus in this group. 857 */ 858 atomic_t nr_busy_cpus; 859 860 unsigned long cpumask[0]; /* iteration mask */ 861 }; 862 863 struct sched_group { 864 struct sched_group *next; /* Must be a circular list */ 865 atomic_t ref; 866 867 unsigned int group_weight; 868 struct sched_group_capacity *sgc; 869 870 /* 871 * The CPUs this group covers. 872 * 873 * NOTE: this field is variable length. (Allocated dynamically 874 * by attaching extra space to the end of the structure, 875 * depending on how many CPUs the kernel has booted up with) 876 */ 877 unsigned long cpumask[0]; 878 }; 879 880 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 881 { 882 return to_cpumask(sg->cpumask); 883 } 884 885 /* 886 * cpumask masking which cpus in the group are allowed to iterate up the domain 887 * tree. 888 */ 889 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 890 { 891 return to_cpumask(sg->sgc->cpumask); 892 } 893 894 /** 895 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 896 * @group: The group whose first cpu is to be returned. 897 */ 898 static inline unsigned int group_first_cpu(struct sched_group *group) 899 { 900 return cpumask_first(sched_group_cpus(group)); 901 } 902 903 extern int group_balance_cpu(struct sched_group *sg); 904 905 #else 906 907 static inline void sched_ttwu_pending(void) { } 908 909 #endif /* CONFIG_SMP */ 910 911 #include "stats.h" 912 #include "auto_group.h" 913 914 #ifdef CONFIG_CGROUP_SCHED 915 916 /* 917 * Return the group to which this tasks belongs. 918 * 919 * We cannot use task_css() and friends because the cgroup subsystem 920 * changes that value before the cgroup_subsys::attach() method is called, 921 * therefore we cannot pin it and might observe the wrong value. 922 * 923 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 924 * core changes this before calling sched_move_task(). 925 * 926 * Instead we use a 'copy' which is updated from sched_move_task() while 927 * holding both task_struct::pi_lock and rq::lock. 928 */ 929 static inline struct task_group *task_group(struct task_struct *p) 930 { 931 return p->sched_task_group; 932 } 933 934 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 935 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 936 { 937 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 938 struct task_group *tg = task_group(p); 939 #endif 940 941 #ifdef CONFIG_FAIR_GROUP_SCHED 942 p->se.cfs_rq = tg->cfs_rq[cpu]; 943 p->se.parent = tg->se[cpu]; 944 #endif 945 946 #ifdef CONFIG_RT_GROUP_SCHED 947 p->rt.rt_rq = tg->rt_rq[cpu]; 948 p->rt.parent = tg->rt_se[cpu]; 949 #endif 950 } 951 952 #else /* CONFIG_CGROUP_SCHED */ 953 954 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 955 static inline struct task_group *task_group(struct task_struct *p) 956 { 957 return NULL; 958 } 959 960 #endif /* CONFIG_CGROUP_SCHED */ 961 962 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 963 { 964 set_task_rq(p, cpu); 965 #ifdef CONFIG_SMP 966 /* 967 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 968 * successfuly executed on another CPU. We must ensure that updates of 969 * per-task data have been completed by this moment. 970 */ 971 smp_wmb(); 972 task_thread_info(p)->cpu = cpu; 973 p->wake_cpu = cpu; 974 #endif 975 } 976 977 /* 978 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 979 */ 980 #ifdef CONFIG_SCHED_DEBUG 981 # include <linux/static_key.h> 982 # define const_debug __read_mostly 983 #else 984 # define const_debug const 985 #endif 986 987 extern const_debug unsigned int sysctl_sched_features; 988 989 #define SCHED_FEAT(name, enabled) \ 990 __SCHED_FEAT_##name , 991 992 enum { 993 #include "features.h" 994 __SCHED_FEAT_NR, 995 }; 996 997 #undef SCHED_FEAT 998 999 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 1000 #define SCHED_FEAT(name, enabled) \ 1001 static __always_inline bool static_branch_##name(struct static_key *key) \ 1002 { \ 1003 return static_key_##enabled(key); \ 1004 } 1005 1006 #include "features.h" 1007 1008 #undef SCHED_FEAT 1009 1010 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1011 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1012 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 1013 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1014 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 1015 1016 #ifdef CONFIG_NUMA_BALANCING 1017 #define sched_feat_numa(x) sched_feat(x) 1018 #ifdef CONFIG_SCHED_DEBUG 1019 #define numabalancing_enabled sched_feat_numa(NUMA) 1020 #else 1021 extern bool numabalancing_enabled; 1022 #endif /* CONFIG_SCHED_DEBUG */ 1023 #else 1024 #define sched_feat_numa(x) (0) 1025 #define numabalancing_enabled (0) 1026 #endif /* CONFIG_NUMA_BALANCING */ 1027 1028 static inline u64 global_rt_period(void) 1029 { 1030 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1031 } 1032 1033 static inline u64 global_rt_runtime(void) 1034 { 1035 if (sysctl_sched_rt_runtime < 0) 1036 return RUNTIME_INF; 1037 1038 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1039 } 1040 1041 static inline int task_current(struct rq *rq, struct task_struct *p) 1042 { 1043 return rq->curr == p; 1044 } 1045 1046 static inline int task_running(struct rq *rq, struct task_struct *p) 1047 { 1048 #ifdef CONFIG_SMP 1049 return p->on_cpu; 1050 #else 1051 return task_current(rq, p); 1052 #endif 1053 } 1054 1055 static inline int task_on_rq_queued(struct task_struct *p) 1056 { 1057 return p->on_rq == TASK_ON_RQ_QUEUED; 1058 } 1059 1060 static inline int task_on_rq_migrating(struct task_struct *p) 1061 { 1062 return p->on_rq == TASK_ON_RQ_MIGRATING; 1063 } 1064 1065 #ifndef prepare_arch_switch 1066 # define prepare_arch_switch(next) do { } while (0) 1067 #endif 1068 #ifndef finish_arch_switch 1069 # define finish_arch_switch(prev) do { } while (0) 1070 #endif 1071 #ifndef finish_arch_post_lock_switch 1072 # define finish_arch_post_lock_switch() do { } while (0) 1073 #endif 1074 1075 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1076 { 1077 #ifdef CONFIG_SMP 1078 /* 1079 * We can optimise this out completely for !SMP, because the 1080 * SMP rebalancing from interrupt is the only thing that cares 1081 * here. 1082 */ 1083 next->on_cpu = 1; 1084 #endif 1085 } 1086 1087 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1088 { 1089 #ifdef CONFIG_SMP 1090 /* 1091 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1092 * We must ensure this doesn't happen until the switch is completely 1093 * finished. 1094 */ 1095 smp_wmb(); 1096 prev->on_cpu = 0; 1097 #endif 1098 #ifdef CONFIG_DEBUG_SPINLOCK 1099 /* this is a valid case when another task releases the spinlock */ 1100 rq->lock.owner = current; 1101 #endif 1102 /* 1103 * If we are tracking spinlock dependencies then we have to 1104 * fix up the runqueue lock - which gets 'carried over' from 1105 * prev into current: 1106 */ 1107 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1108 1109 raw_spin_unlock_irq(&rq->lock); 1110 } 1111 1112 /* 1113 * wake flags 1114 */ 1115 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1116 #define WF_FORK 0x02 /* child wakeup after fork */ 1117 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1118 1119 /* 1120 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1121 * of tasks with abnormal "nice" values across CPUs the contribution that 1122 * each task makes to its run queue's load is weighted according to its 1123 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1124 * scaled version of the new time slice allocation that they receive on time 1125 * slice expiry etc. 1126 */ 1127 1128 #define WEIGHT_IDLEPRIO 3 1129 #define WMULT_IDLEPRIO 1431655765 1130 1131 /* 1132 * Nice levels are multiplicative, with a gentle 10% change for every 1133 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1134 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1135 * that remained on nice 0. 1136 * 1137 * The "10% effect" is relative and cumulative: from _any_ nice level, 1138 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1139 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1140 * If a task goes up by ~10% and another task goes down by ~10% then 1141 * the relative distance between them is ~25%.) 1142 */ 1143 static const int prio_to_weight[40] = { 1144 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1145 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1146 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1147 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1148 /* 0 */ 1024, 820, 655, 526, 423, 1149 /* 5 */ 335, 272, 215, 172, 137, 1150 /* 10 */ 110, 87, 70, 56, 45, 1151 /* 15 */ 36, 29, 23, 18, 15, 1152 }; 1153 1154 /* 1155 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1156 * 1157 * In cases where the weight does not change often, we can use the 1158 * precalculated inverse to speed up arithmetics by turning divisions 1159 * into multiplications: 1160 */ 1161 static const u32 prio_to_wmult[40] = { 1162 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1163 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1164 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1165 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1166 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1167 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1168 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1169 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1170 }; 1171 1172 #define ENQUEUE_WAKEUP 1 1173 #define ENQUEUE_HEAD 2 1174 #ifdef CONFIG_SMP 1175 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1176 #else 1177 #define ENQUEUE_WAKING 0 1178 #endif 1179 #define ENQUEUE_REPLENISH 8 1180 1181 #define DEQUEUE_SLEEP 1 1182 1183 #define RETRY_TASK ((void *)-1UL) 1184 1185 struct sched_class { 1186 const struct sched_class *next; 1187 1188 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1189 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1190 void (*yield_task) (struct rq *rq); 1191 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1192 1193 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1194 1195 /* 1196 * It is the responsibility of the pick_next_task() method that will 1197 * return the next task to call put_prev_task() on the @prev task or 1198 * something equivalent. 1199 * 1200 * May return RETRY_TASK when it finds a higher prio class has runnable 1201 * tasks. 1202 */ 1203 struct task_struct * (*pick_next_task) (struct rq *rq, 1204 struct task_struct *prev); 1205 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1206 1207 #ifdef CONFIG_SMP 1208 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1209 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1210 1211 void (*task_waking) (struct task_struct *task); 1212 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1213 1214 void (*set_cpus_allowed)(struct task_struct *p, 1215 const struct cpumask *newmask); 1216 1217 void (*rq_online)(struct rq *rq); 1218 void (*rq_offline)(struct rq *rq); 1219 #endif 1220 1221 void (*set_curr_task) (struct rq *rq); 1222 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1223 void (*task_fork) (struct task_struct *p); 1224 void (*task_dead) (struct task_struct *p); 1225 1226 /* 1227 * The switched_from() call is allowed to drop rq->lock, therefore we 1228 * cannot assume the switched_from/switched_to pair is serliazed by 1229 * rq->lock. They are however serialized by p->pi_lock. 1230 */ 1231 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1232 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1233 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1234 int oldprio); 1235 1236 unsigned int (*get_rr_interval) (struct rq *rq, 1237 struct task_struct *task); 1238 1239 void (*update_curr) (struct rq *rq); 1240 1241 #ifdef CONFIG_FAIR_GROUP_SCHED 1242 void (*task_move_group) (struct task_struct *p, int on_rq); 1243 #endif 1244 }; 1245 1246 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1247 { 1248 prev->sched_class->put_prev_task(rq, prev); 1249 } 1250 1251 #define sched_class_highest (&stop_sched_class) 1252 #define for_each_class(class) \ 1253 for (class = sched_class_highest; class; class = class->next) 1254 1255 extern const struct sched_class stop_sched_class; 1256 extern const struct sched_class dl_sched_class; 1257 extern const struct sched_class rt_sched_class; 1258 extern const struct sched_class fair_sched_class; 1259 extern const struct sched_class idle_sched_class; 1260 1261 1262 #ifdef CONFIG_SMP 1263 1264 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1265 1266 extern void trigger_load_balance(struct rq *rq); 1267 1268 extern void idle_enter_fair(struct rq *this_rq); 1269 extern void idle_exit_fair(struct rq *this_rq); 1270 1271 #else 1272 1273 static inline void idle_enter_fair(struct rq *rq) { } 1274 static inline void idle_exit_fair(struct rq *rq) { } 1275 1276 #endif 1277 1278 #ifdef CONFIG_CPU_IDLE 1279 static inline void idle_set_state(struct rq *rq, 1280 struct cpuidle_state *idle_state) 1281 { 1282 rq->idle_state = idle_state; 1283 } 1284 1285 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1286 { 1287 WARN_ON(!rcu_read_lock_held()); 1288 return rq->idle_state; 1289 } 1290 #else 1291 static inline void idle_set_state(struct rq *rq, 1292 struct cpuidle_state *idle_state) 1293 { 1294 } 1295 1296 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1297 { 1298 return NULL; 1299 } 1300 #endif 1301 1302 extern void sysrq_sched_debug_show(void); 1303 extern void sched_init_granularity(void); 1304 extern void update_max_interval(void); 1305 1306 extern void init_sched_dl_class(void); 1307 extern void init_sched_rt_class(void); 1308 extern void init_sched_fair_class(void); 1309 1310 extern void resched_curr(struct rq *rq); 1311 extern void resched_cpu(int cpu); 1312 1313 extern struct rt_bandwidth def_rt_bandwidth; 1314 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1315 1316 extern struct dl_bandwidth def_dl_bandwidth; 1317 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1318 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1319 1320 unsigned long to_ratio(u64 period, u64 runtime); 1321 1322 extern void init_task_runnable_average(struct task_struct *p); 1323 1324 static inline void add_nr_running(struct rq *rq, unsigned count) 1325 { 1326 unsigned prev_nr = rq->nr_running; 1327 1328 rq->nr_running = prev_nr + count; 1329 1330 if (prev_nr < 2 && rq->nr_running >= 2) { 1331 #ifdef CONFIG_SMP 1332 if (!rq->rd->overload) 1333 rq->rd->overload = true; 1334 #endif 1335 1336 #ifdef CONFIG_NO_HZ_FULL 1337 if (tick_nohz_full_cpu(rq->cpu)) { 1338 /* 1339 * Tick is needed if more than one task runs on a CPU. 1340 * Send the target an IPI to kick it out of nohz mode. 1341 * 1342 * We assume that IPI implies full memory barrier and the 1343 * new value of rq->nr_running is visible on reception 1344 * from the target. 1345 */ 1346 tick_nohz_full_kick_cpu(rq->cpu); 1347 } 1348 #endif 1349 } 1350 } 1351 1352 static inline void sub_nr_running(struct rq *rq, unsigned count) 1353 { 1354 rq->nr_running -= count; 1355 } 1356 1357 static inline void rq_last_tick_reset(struct rq *rq) 1358 { 1359 #ifdef CONFIG_NO_HZ_FULL 1360 rq->last_sched_tick = jiffies; 1361 #endif 1362 } 1363 1364 extern void update_rq_clock(struct rq *rq); 1365 1366 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1367 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1368 1369 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1370 1371 extern const_debug unsigned int sysctl_sched_time_avg; 1372 extern const_debug unsigned int sysctl_sched_nr_migrate; 1373 extern const_debug unsigned int sysctl_sched_migration_cost; 1374 1375 static inline u64 sched_avg_period(void) 1376 { 1377 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1378 } 1379 1380 #ifdef CONFIG_SCHED_HRTICK 1381 1382 /* 1383 * Use hrtick when: 1384 * - enabled by features 1385 * - hrtimer is actually high res 1386 */ 1387 static inline int hrtick_enabled(struct rq *rq) 1388 { 1389 if (!sched_feat(HRTICK)) 1390 return 0; 1391 if (!cpu_active(cpu_of(rq))) 1392 return 0; 1393 return hrtimer_is_hres_active(&rq->hrtick_timer); 1394 } 1395 1396 void hrtick_start(struct rq *rq, u64 delay); 1397 1398 #else 1399 1400 static inline int hrtick_enabled(struct rq *rq) 1401 { 1402 return 0; 1403 } 1404 1405 #endif /* CONFIG_SCHED_HRTICK */ 1406 1407 #ifdef CONFIG_SMP 1408 extern void sched_avg_update(struct rq *rq); 1409 1410 #ifndef arch_scale_freq_capacity 1411 static __always_inline 1412 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 1413 { 1414 return SCHED_CAPACITY_SCALE; 1415 } 1416 #endif 1417 1418 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1419 { 1420 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); 1421 sched_avg_update(rq); 1422 } 1423 #else 1424 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1425 static inline void sched_avg_update(struct rq *rq) { } 1426 #endif 1427 1428 /* 1429 * __task_rq_lock - lock the rq @p resides on. 1430 */ 1431 static inline struct rq *__task_rq_lock(struct task_struct *p) 1432 __acquires(rq->lock) 1433 { 1434 struct rq *rq; 1435 1436 lockdep_assert_held(&p->pi_lock); 1437 1438 for (;;) { 1439 rq = task_rq(p); 1440 raw_spin_lock(&rq->lock); 1441 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 1442 lockdep_pin_lock(&rq->lock); 1443 return rq; 1444 } 1445 raw_spin_unlock(&rq->lock); 1446 1447 while (unlikely(task_on_rq_migrating(p))) 1448 cpu_relax(); 1449 } 1450 } 1451 1452 /* 1453 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 1454 */ 1455 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 1456 __acquires(p->pi_lock) 1457 __acquires(rq->lock) 1458 { 1459 struct rq *rq; 1460 1461 for (;;) { 1462 raw_spin_lock_irqsave(&p->pi_lock, *flags); 1463 rq = task_rq(p); 1464 raw_spin_lock(&rq->lock); 1465 /* 1466 * move_queued_task() task_rq_lock() 1467 * 1468 * ACQUIRE (rq->lock) 1469 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 1470 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 1471 * [S] ->cpu = new_cpu [L] task_rq() 1472 * [L] ->on_rq 1473 * RELEASE (rq->lock) 1474 * 1475 * If we observe the old cpu in task_rq_lock, the acquire of 1476 * the old rq->lock will fully serialize against the stores. 1477 * 1478 * If we observe the new cpu in task_rq_lock, the acquire will 1479 * pair with the WMB to ensure we must then also see migrating. 1480 */ 1481 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 1482 lockdep_pin_lock(&rq->lock); 1483 return rq; 1484 } 1485 raw_spin_unlock(&rq->lock); 1486 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1487 1488 while (unlikely(task_on_rq_migrating(p))) 1489 cpu_relax(); 1490 } 1491 } 1492 1493 static inline void __task_rq_unlock(struct rq *rq) 1494 __releases(rq->lock) 1495 { 1496 lockdep_unpin_lock(&rq->lock); 1497 raw_spin_unlock(&rq->lock); 1498 } 1499 1500 static inline void 1501 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 1502 __releases(rq->lock) 1503 __releases(p->pi_lock) 1504 { 1505 lockdep_unpin_lock(&rq->lock); 1506 raw_spin_unlock(&rq->lock); 1507 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1508 } 1509 1510 #ifdef CONFIG_SMP 1511 #ifdef CONFIG_PREEMPT 1512 1513 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1514 1515 /* 1516 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1517 * way at the expense of forcing extra atomic operations in all 1518 * invocations. This assures that the double_lock is acquired using the 1519 * same underlying policy as the spinlock_t on this architecture, which 1520 * reduces latency compared to the unfair variant below. However, it 1521 * also adds more overhead and therefore may reduce throughput. 1522 */ 1523 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1524 __releases(this_rq->lock) 1525 __acquires(busiest->lock) 1526 __acquires(this_rq->lock) 1527 { 1528 raw_spin_unlock(&this_rq->lock); 1529 double_rq_lock(this_rq, busiest); 1530 1531 return 1; 1532 } 1533 1534 #else 1535 /* 1536 * Unfair double_lock_balance: Optimizes throughput at the expense of 1537 * latency by eliminating extra atomic operations when the locks are 1538 * already in proper order on entry. This favors lower cpu-ids and will 1539 * grant the double lock to lower cpus over higher ids under contention, 1540 * regardless of entry order into the function. 1541 */ 1542 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1543 __releases(this_rq->lock) 1544 __acquires(busiest->lock) 1545 __acquires(this_rq->lock) 1546 { 1547 int ret = 0; 1548 1549 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1550 if (busiest < this_rq) { 1551 raw_spin_unlock(&this_rq->lock); 1552 raw_spin_lock(&busiest->lock); 1553 raw_spin_lock_nested(&this_rq->lock, 1554 SINGLE_DEPTH_NESTING); 1555 ret = 1; 1556 } else 1557 raw_spin_lock_nested(&busiest->lock, 1558 SINGLE_DEPTH_NESTING); 1559 } 1560 return ret; 1561 } 1562 1563 #endif /* CONFIG_PREEMPT */ 1564 1565 /* 1566 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1567 */ 1568 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1569 { 1570 if (unlikely(!irqs_disabled())) { 1571 /* printk() doesn't work good under rq->lock */ 1572 raw_spin_unlock(&this_rq->lock); 1573 BUG_ON(1); 1574 } 1575 1576 return _double_lock_balance(this_rq, busiest); 1577 } 1578 1579 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1580 __releases(busiest->lock) 1581 { 1582 raw_spin_unlock(&busiest->lock); 1583 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1584 } 1585 1586 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1587 { 1588 if (l1 > l2) 1589 swap(l1, l2); 1590 1591 spin_lock(l1); 1592 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1593 } 1594 1595 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1596 { 1597 if (l1 > l2) 1598 swap(l1, l2); 1599 1600 spin_lock_irq(l1); 1601 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1602 } 1603 1604 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1605 { 1606 if (l1 > l2) 1607 swap(l1, l2); 1608 1609 raw_spin_lock(l1); 1610 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1611 } 1612 1613 /* 1614 * double_rq_lock - safely lock two runqueues 1615 * 1616 * Note this does not disable interrupts like task_rq_lock, 1617 * you need to do so manually before calling. 1618 */ 1619 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1620 __acquires(rq1->lock) 1621 __acquires(rq2->lock) 1622 { 1623 BUG_ON(!irqs_disabled()); 1624 if (rq1 == rq2) { 1625 raw_spin_lock(&rq1->lock); 1626 __acquire(rq2->lock); /* Fake it out ;) */ 1627 } else { 1628 if (rq1 < rq2) { 1629 raw_spin_lock(&rq1->lock); 1630 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1631 } else { 1632 raw_spin_lock(&rq2->lock); 1633 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1634 } 1635 } 1636 } 1637 1638 /* 1639 * double_rq_unlock - safely unlock two runqueues 1640 * 1641 * Note this does not restore interrupts like task_rq_unlock, 1642 * you need to do so manually after calling. 1643 */ 1644 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1645 __releases(rq1->lock) 1646 __releases(rq2->lock) 1647 { 1648 raw_spin_unlock(&rq1->lock); 1649 if (rq1 != rq2) 1650 raw_spin_unlock(&rq2->lock); 1651 else 1652 __release(rq2->lock); 1653 } 1654 1655 #else /* CONFIG_SMP */ 1656 1657 /* 1658 * double_rq_lock - safely lock two runqueues 1659 * 1660 * Note this does not disable interrupts like task_rq_lock, 1661 * you need to do so manually before calling. 1662 */ 1663 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1664 __acquires(rq1->lock) 1665 __acquires(rq2->lock) 1666 { 1667 BUG_ON(!irqs_disabled()); 1668 BUG_ON(rq1 != rq2); 1669 raw_spin_lock(&rq1->lock); 1670 __acquire(rq2->lock); /* Fake it out ;) */ 1671 } 1672 1673 /* 1674 * double_rq_unlock - safely unlock two runqueues 1675 * 1676 * Note this does not restore interrupts like task_rq_unlock, 1677 * you need to do so manually after calling. 1678 */ 1679 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1680 __releases(rq1->lock) 1681 __releases(rq2->lock) 1682 { 1683 BUG_ON(rq1 != rq2); 1684 raw_spin_unlock(&rq1->lock); 1685 __release(rq2->lock); 1686 } 1687 1688 #endif 1689 1690 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1691 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1692 1693 #ifdef CONFIG_SCHED_DEBUG 1694 extern void print_cfs_stats(struct seq_file *m, int cpu); 1695 extern void print_rt_stats(struct seq_file *m, int cpu); 1696 extern void print_dl_stats(struct seq_file *m, int cpu); 1697 extern void 1698 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 1699 1700 #ifdef CONFIG_NUMA_BALANCING 1701 extern void 1702 show_numa_stats(struct task_struct *p, struct seq_file *m); 1703 extern void 1704 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 1705 unsigned long tpf, unsigned long gsf, unsigned long gpf); 1706 #endif /* CONFIG_NUMA_BALANCING */ 1707 #endif /* CONFIG_SCHED_DEBUG */ 1708 1709 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1710 extern void init_rt_rq(struct rt_rq *rt_rq); 1711 extern void init_dl_rq(struct dl_rq *dl_rq); 1712 1713 extern void cfs_bandwidth_usage_inc(void); 1714 extern void cfs_bandwidth_usage_dec(void); 1715 1716 #ifdef CONFIG_NO_HZ_COMMON 1717 enum rq_nohz_flag_bits { 1718 NOHZ_TICK_STOPPED, 1719 NOHZ_BALANCE_KICK, 1720 }; 1721 1722 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1723 #endif 1724 1725 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1726 1727 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1728 DECLARE_PER_CPU(u64, cpu_softirq_time); 1729 1730 #ifndef CONFIG_64BIT 1731 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1732 1733 static inline void irq_time_write_begin(void) 1734 { 1735 __this_cpu_inc(irq_time_seq.sequence); 1736 smp_wmb(); 1737 } 1738 1739 static inline void irq_time_write_end(void) 1740 { 1741 smp_wmb(); 1742 __this_cpu_inc(irq_time_seq.sequence); 1743 } 1744 1745 static inline u64 irq_time_read(int cpu) 1746 { 1747 u64 irq_time; 1748 unsigned seq; 1749 1750 do { 1751 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1752 irq_time = per_cpu(cpu_softirq_time, cpu) + 1753 per_cpu(cpu_hardirq_time, cpu); 1754 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1755 1756 return irq_time; 1757 } 1758 #else /* CONFIG_64BIT */ 1759 static inline void irq_time_write_begin(void) 1760 { 1761 } 1762 1763 static inline void irq_time_write_end(void) 1764 { 1765 } 1766 1767 static inline u64 irq_time_read(int cpu) 1768 { 1769 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1770 } 1771 #endif /* CONFIG_64BIT */ 1772 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1773