xref: /openbmc/linux/kernel/sched/sched.h (revision d4295e12)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34 
35 #include <uapi/linux/sched/types.h>
36 
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/psi.h>
58 #include <linux/rcupdate_wait.h>
59 #include <linux/security.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66 
67 #include <asm/tlb.h>
68 
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72 
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75 
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 #endif
81 
82 struct rq;
83 struct cpuidle_state;
84 
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED	1
87 #define TASK_ON_RQ_MIGRATING	2
88 
89 extern __read_mostly int scheduler_running;
90 
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93 
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102 
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w)		(w)
129 # define scale_load_down(w)	(w)
130 #endif
131 
132 /*
133  * Task weight (visible to users) and its load (invisible to users) have
134  * independent resolution, but they should be well calibrated. We use
135  * scale_load() and scale_load_down(w) to convert between them. The
136  * following must be true:
137  *
138  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139  *
140  */
141 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142 
143 /*
144  * Single value that decides SCHED_DEADLINE internal math precision.
145  * 10 -> just above 1us
146  * 9  -> just above 0.5us
147  */
148 #define DL_SCALE		10
149 
150 /*
151  * Single value that denotes runtime == period, ie unlimited time.
152  */
153 #define RUNTIME_INF		((u64)~0ULL)
154 
155 static inline int idle_policy(int policy)
156 {
157 	return policy == SCHED_IDLE;
158 }
159 static inline int fair_policy(int policy)
160 {
161 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163 
164 static inline int rt_policy(int policy)
165 {
166 	return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168 
169 static inline int dl_policy(int policy)
170 {
171 	return policy == SCHED_DEADLINE;
172 }
173 static inline bool valid_policy(int policy)
174 {
175 	return idle_policy(policy) || fair_policy(policy) ||
176 		rt_policy(policy) || dl_policy(policy);
177 }
178 
179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 	return rt_policy(p->policy);
182 }
183 
184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 	return dl_policy(p->policy);
187 }
188 
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190 
191 /*
192  * !! For sched_setattr_nocheck() (kernel) only !!
193  *
194  * This is actually gross. :(
195  *
196  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197  * tasks, but still be able to sleep. We need this on platforms that cannot
198  * atomically change clock frequency. Remove once fast switching will be
199  * available on such platforms.
200  *
201  * SUGOV stands for SchedUtil GOVernor.
202  */
203 #define SCHED_FLAG_SUGOV	0x10000000
204 
205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 	return false;
211 #endif
212 }
213 
214 /*
215  * Tells if entity @a should preempt entity @b.
216  */
217 static inline bool
218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 	return dl_entity_is_special(a) ||
221 	       dl_time_before(a->deadline, b->deadline);
222 }
223 
224 /*
225  * This is the priority-queue data structure of the RT scheduling class:
226  */
227 struct rt_prio_array {
228 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 	struct list_head queue[MAX_RT_PRIO];
230 };
231 
232 struct rt_bandwidth {
233 	/* nests inside the rq lock: */
234 	raw_spinlock_t		rt_runtime_lock;
235 	ktime_t			rt_period;
236 	u64			rt_runtime;
237 	struct hrtimer		rt_period_timer;
238 	unsigned int		rt_period_active;
239 };
240 
241 void __dl_clear_params(struct task_struct *p);
242 
243 /*
244  * To keep the bandwidth of -deadline tasks and groups under control
245  * we need some place where:
246  *  - store the maximum -deadline bandwidth of the system (the group);
247  *  - cache the fraction of that bandwidth that is currently allocated.
248  *
249  * This is all done in the data structure below. It is similar to the
250  * one used for RT-throttling (rt_bandwidth), with the main difference
251  * that, since here we are only interested in admission control, we
252  * do not decrease any runtime while the group "executes", neither we
253  * need a timer to replenish it.
254  *
255  * With respect to SMP, the bandwidth is given on a per-CPU basis,
256  * meaning that:
257  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258  *  - dl_total_bw array contains, in the i-eth element, the currently
259  *    allocated bandwidth on the i-eth CPU.
260  * Moreover, groups consume bandwidth on each CPU, while tasks only
261  * consume bandwidth on the CPU they're running on.
262  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263  * that will be shown the next time the proc or cgroup controls will
264  * be red. It on its turn can be changed by writing on its own
265  * control.
266  */
267 struct dl_bandwidth {
268 	raw_spinlock_t		dl_runtime_lock;
269 	u64			dl_runtime;
270 	u64			dl_period;
271 };
272 
273 static inline int dl_bandwidth_enabled(void)
274 {
275 	return sysctl_sched_rt_runtime >= 0;
276 }
277 
278 struct dl_bw {
279 	raw_spinlock_t		lock;
280 	u64			bw;
281 	u64			total_bw;
282 };
283 
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285 
286 static inline
287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 	dl_b->total_bw -= tsk_bw;
290 	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292 
293 static inline
294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw += tsk_bw;
297 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299 
300 static inline
301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 	return dl_b->bw != -1 &&
304 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306 
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int  sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319 
320 #ifdef CONFIG_CGROUP_SCHED
321 
322 #include <linux/cgroup.h>
323 #include <linux/psi.h>
324 
325 struct cfs_rq;
326 struct rt_rq;
327 
328 extern struct list_head task_groups;
329 
330 struct cfs_bandwidth {
331 #ifdef CONFIG_CFS_BANDWIDTH
332 	raw_spinlock_t		lock;
333 	ktime_t			period;
334 	u64			quota;
335 	u64			runtime;
336 	s64			hierarchical_quota;
337 	u64			runtime_expires;
338 	int			expires_seq;
339 
340 	short			idle;
341 	short			period_active;
342 	struct hrtimer		period_timer;
343 	struct hrtimer		slack_timer;
344 	struct list_head	throttled_cfs_rq;
345 
346 	/* Statistics: */
347 	int			nr_periods;
348 	int			nr_throttled;
349 	u64			throttled_time;
350 
351 	bool                    distribute_running;
352 #endif
353 };
354 
355 /* Task group related information */
356 struct task_group {
357 	struct cgroup_subsys_state css;
358 
359 #ifdef CONFIG_FAIR_GROUP_SCHED
360 	/* schedulable entities of this group on each CPU */
361 	struct sched_entity	**se;
362 	/* runqueue "owned" by this group on each CPU */
363 	struct cfs_rq		**cfs_rq;
364 	unsigned long		shares;
365 
366 #ifdef	CONFIG_SMP
367 	/*
368 	 * load_avg can be heavily contended at clock tick time, so put
369 	 * it in its own cacheline separated from the fields above which
370 	 * will also be accessed at each tick.
371 	 */
372 	atomic_long_t		load_avg ____cacheline_aligned;
373 #endif
374 #endif
375 
376 #ifdef CONFIG_RT_GROUP_SCHED
377 	struct sched_rt_entity	**rt_se;
378 	struct rt_rq		**rt_rq;
379 
380 	struct rt_bandwidth	rt_bandwidth;
381 #endif
382 
383 	struct rcu_head		rcu;
384 	struct list_head	list;
385 
386 	struct task_group	*parent;
387 	struct list_head	siblings;
388 	struct list_head	children;
389 
390 #ifdef CONFIG_SCHED_AUTOGROUP
391 	struct autogroup	*autogroup;
392 #endif
393 
394 	struct cfs_bandwidth	cfs_bandwidth;
395 };
396 
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
399 
400 /*
401  * A weight of 0 or 1 can cause arithmetics problems.
402  * A weight of a cfs_rq is the sum of weights of which entities
403  * are queued on this cfs_rq, so a weight of a entity should not be
404  * too large, so as the shares value of a task group.
405  * (The default weight is 1024 - so there's no practical
406  *  limitation from this.)
407  */
408 #define MIN_SHARES		(1UL <<  1)
409 #define MAX_SHARES		(1UL << 18)
410 #endif
411 
412 typedef int (*tg_visitor)(struct task_group *, void *);
413 
414 extern int walk_tg_tree_from(struct task_group *from,
415 			     tg_visitor down, tg_visitor up, void *data);
416 
417 /*
418  * Iterate the full tree, calling @down when first entering a node and @up when
419  * leaving it for the final time.
420  *
421  * Caller must hold rcu_lock or sufficient equivalent.
422  */
423 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
424 {
425 	return walk_tg_tree_from(&root_task_group, down, up, data);
426 }
427 
428 extern int tg_nop(struct task_group *tg, void *data);
429 
430 extern void free_fair_sched_group(struct task_group *tg);
431 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
432 extern void online_fair_sched_group(struct task_group *tg);
433 extern void unregister_fair_sched_group(struct task_group *tg);
434 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
435 			struct sched_entity *se, int cpu,
436 			struct sched_entity *parent);
437 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438 
439 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
440 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
441 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
442 
443 extern void free_rt_sched_group(struct task_group *tg);
444 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
445 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
446 		struct sched_rt_entity *rt_se, int cpu,
447 		struct sched_rt_entity *parent);
448 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
449 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
450 extern long sched_group_rt_runtime(struct task_group *tg);
451 extern long sched_group_rt_period(struct task_group *tg);
452 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
453 
454 extern struct task_group *sched_create_group(struct task_group *parent);
455 extern void sched_online_group(struct task_group *tg,
456 			       struct task_group *parent);
457 extern void sched_destroy_group(struct task_group *tg);
458 extern void sched_offline_group(struct task_group *tg);
459 
460 extern void sched_move_task(struct task_struct *tsk);
461 
462 #ifdef CONFIG_FAIR_GROUP_SCHED
463 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
464 
465 #ifdef CONFIG_SMP
466 extern void set_task_rq_fair(struct sched_entity *se,
467 			     struct cfs_rq *prev, struct cfs_rq *next);
468 #else /* !CONFIG_SMP */
469 static inline void set_task_rq_fair(struct sched_entity *se,
470 			     struct cfs_rq *prev, struct cfs_rq *next) { }
471 #endif /* CONFIG_SMP */
472 #endif /* CONFIG_FAIR_GROUP_SCHED */
473 
474 #else /* CONFIG_CGROUP_SCHED */
475 
476 struct cfs_bandwidth { };
477 
478 #endif	/* CONFIG_CGROUP_SCHED */
479 
480 /* CFS-related fields in a runqueue */
481 struct cfs_rq {
482 	struct load_weight	load;
483 	unsigned long		runnable_weight;
484 	unsigned int		nr_running;
485 	unsigned int		h_nr_running;
486 
487 	u64			exec_clock;
488 	u64			min_vruntime;
489 #ifndef CONFIG_64BIT
490 	u64			min_vruntime_copy;
491 #endif
492 
493 	struct rb_root_cached	tasks_timeline;
494 
495 	/*
496 	 * 'curr' points to currently running entity on this cfs_rq.
497 	 * It is set to NULL otherwise (i.e when none are currently running).
498 	 */
499 	struct sched_entity	*curr;
500 	struct sched_entity	*next;
501 	struct sched_entity	*last;
502 	struct sched_entity	*skip;
503 
504 #ifdef	CONFIG_SCHED_DEBUG
505 	unsigned int		nr_spread_over;
506 #endif
507 
508 #ifdef CONFIG_SMP
509 	/*
510 	 * CFS load tracking
511 	 */
512 	struct sched_avg	avg;
513 #ifndef CONFIG_64BIT
514 	u64			load_last_update_time_copy;
515 #endif
516 	struct {
517 		raw_spinlock_t	lock ____cacheline_aligned;
518 		int		nr;
519 		unsigned long	load_avg;
520 		unsigned long	util_avg;
521 		unsigned long	runnable_sum;
522 	} removed;
523 
524 #ifdef CONFIG_FAIR_GROUP_SCHED
525 	unsigned long		tg_load_avg_contrib;
526 	long			propagate;
527 	long			prop_runnable_sum;
528 
529 	/*
530 	 *   h_load = weight * f(tg)
531 	 *
532 	 * Where f(tg) is the recursive weight fraction assigned to
533 	 * this group.
534 	 */
535 	unsigned long		h_load;
536 	u64			last_h_load_update;
537 	struct sched_entity	*h_load_next;
538 #endif /* CONFIG_FAIR_GROUP_SCHED */
539 #endif /* CONFIG_SMP */
540 
541 #ifdef CONFIG_FAIR_GROUP_SCHED
542 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
543 
544 	/*
545 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
546 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
547 	 * (like users, containers etc.)
548 	 *
549 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
550 	 * This list is used during load balance.
551 	 */
552 	int			on_list;
553 	struct list_head	leaf_cfs_rq_list;
554 	struct task_group	*tg;	/* group that "owns" this runqueue */
555 
556 #ifdef CONFIG_CFS_BANDWIDTH
557 	int			runtime_enabled;
558 	int			expires_seq;
559 	u64			runtime_expires;
560 	s64			runtime_remaining;
561 
562 	u64			throttled_clock;
563 	u64			throttled_clock_task;
564 	u64			throttled_clock_task_time;
565 	int			throttled;
566 	int			throttle_count;
567 	struct list_head	throttled_list;
568 #endif /* CONFIG_CFS_BANDWIDTH */
569 #endif /* CONFIG_FAIR_GROUP_SCHED */
570 };
571 
572 static inline int rt_bandwidth_enabled(void)
573 {
574 	return sysctl_sched_rt_runtime >= 0;
575 }
576 
577 /* RT IPI pull logic requires IRQ_WORK */
578 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
579 # define HAVE_RT_PUSH_IPI
580 #endif
581 
582 /* Real-Time classes' related field in a runqueue: */
583 struct rt_rq {
584 	struct rt_prio_array	active;
585 	unsigned int		rt_nr_running;
586 	unsigned int		rr_nr_running;
587 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
588 	struct {
589 		int		curr; /* highest queued rt task prio */
590 #ifdef CONFIG_SMP
591 		int		next; /* next highest */
592 #endif
593 	} highest_prio;
594 #endif
595 #ifdef CONFIG_SMP
596 	unsigned long		rt_nr_migratory;
597 	unsigned long		rt_nr_total;
598 	int			overloaded;
599 	struct plist_head	pushable_tasks;
600 
601 #endif /* CONFIG_SMP */
602 	int			rt_queued;
603 
604 	int			rt_throttled;
605 	u64			rt_time;
606 	u64			rt_runtime;
607 	/* Nests inside the rq lock: */
608 	raw_spinlock_t		rt_runtime_lock;
609 
610 #ifdef CONFIG_RT_GROUP_SCHED
611 	unsigned long		rt_nr_boosted;
612 
613 	struct rq		*rq;
614 	struct task_group	*tg;
615 #endif
616 };
617 
618 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
619 {
620 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
621 }
622 
623 /* Deadline class' related fields in a runqueue */
624 struct dl_rq {
625 	/* runqueue is an rbtree, ordered by deadline */
626 	struct rb_root_cached	root;
627 
628 	unsigned long		dl_nr_running;
629 
630 #ifdef CONFIG_SMP
631 	/*
632 	 * Deadline values of the currently executing and the
633 	 * earliest ready task on this rq. Caching these facilitates
634 	 * the decision wether or not a ready but not running task
635 	 * should migrate somewhere else.
636 	 */
637 	struct {
638 		u64		curr;
639 		u64		next;
640 	} earliest_dl;
641 
642 	unsigned long		dl_nr_migratory;
643 	int			overloaded;
644 
645 	/*
646 	 * Tasks on this rq that can be pushed away. They are kept in
647 	 * an rb-tree, ordered by tasks' deadlines, with caching
648 	 * of the leftmost (earliest deadline) element.
649 	 */
650 	struct rb_root_cached	pushable_dl_tasks_root;
651 #else
652 	struct dl_bw		dl_bw;
653 #endif
654 	/*
655 	 * "Active utilization" for this runqueue: increased when a
656 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
657 	 * task blocks
658 	 */
659 	u64			running_bw;
660 
661 	/*
662 	 * Utilization of the tasks "assigned" to this runqueue (including
663 	 * the tasks that are in runqueue and the tasks that executed on this
664 	 * CPU and blocked). Increased when a task moves to this runqueue, and
665 	 * decreased when the task moves away (migrates, changes scheduling
666 	 * policy, or terminates).
667 	 * This is needed to compute the "inactive utilization" for the
668 	 * runqueue (inactive utilization = this_bw - running_bw).
669 	 */
670 	u64			this_bw;
671 	u64			extra_bw;
672 
673 	/*
674 	 * Inverse of the fraction of CPU utilization that can be reclaimed
675 	 * by the GRUB algorithm.
676 	 */
677 	u64			bw_ratio;
678 };
679 
680 #ifdef CONFIG_FAIR_GROUP_SCHED
681 /* An entity is a task if it doesn't "own" a runqueue */
682 #define entity_is_task(se)	(!se->my_q)
683 #else
684 #define entity_is_task(se)	1
685 #endif
686 
687 #ifdef CONFIG_SMP
688 /*
689  * XXX we want to get rid of these helpers and use the full load resolution.
690  */
691 static inline long se_weight(struct sched_entity *se)
692 {
693 	return scale_load_down(se->load.weight);
694 }
695 
696 static inline long se_runnable(struct sched_entity *se)
697 {
698 	return scale_load_down(se->runnable_weight);
699 }
700 
701 static inline bool sched_asym_prefer(int a, int b)
702 {
703 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
704 }
705 
706 /*
707  * We add the notion of a root-domain which will be used to define per-domain
708  * variables. Each exclusive cpuset essentially defines an island domain by
709  * fully partitioning the member CPUs from any other cpuset. Whenever a new
710  * exclusive cpuset is created, we also create and attach a new root-domain
711  * object.
712  *
713  */
714 struct root_domain {
715 	atomic_t		refcount;
716 	atomic_t		rto_count;
717 	struct rcu_head		rcu;
718 	cpumask_var_t		span;
719 	cpumask_var_t		online;
720 
721 	/*
722 	 * Indicate pullable load on at least one CPU, e.g:
723 	 * - More than one runnable task
724 	 * - Running task is misfit
725 	 */
726 	int			overload;
727 
728 	/*
729 	 * The bit corresponding to a CPU gets set here if such CPU has more
730 	 * than one runnable -deadline task (as it is below for RT tasks).
731 	 */
732 	cpumask_var_t		dlo_mask;
733 	atomic_t		dlo_count;
734 	struct dl_bw		dl_bw;
735 	struct cpudl		cpudl;
736 
737 #ifdef HAVE_RT_PUSH_IPI
738 	/*
739 	 * For IPI pull requests, loop across the rto_mask.
740 	 */
741 	struct irq_work		rto_push_work;
742 	raw_spinlock_t		rto_lock;
743 	/* These are only updated and read within rto_lock */
744 	int			rto_loop;
745 	int			rto_cpu;
746 	/* These atomics are updated outside of a lock */
747 	atomic_t		rto_loop_next;
748 	atomic_t		rto_loop_start;
749 #endif
750 	/*
751 	 * The "RT overload" flag: it gets set if a CPU has more than
752 	 * one runnable RT task.
753 	 */
754 	cpumask_var_t		rto_mask;
755 	struct cpupri		cpupri;
756 
757 	unsigned long		max_cpu_capacity;
758 };
759 
760 extern struct root_domain def_root_domain;
761 extern struct mutex sched_domains_mutex;
762 
763 extern void init_defrootdomain(void);
764 extern int sched_init_domains(const struct cpumask *cpu_map);
765 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
766 extern void sched_get_rd(struct root_domain *rd);
767 extern void sched_put_rd(struct root_domain *rd);
768 
769 #ifdef HAVE_RT_PUSH_IPI
770 extern void rto_push_irq_work_func(struct irq_work *work);
771 #endif
772 #endif /* CONFIG_SMP */
773 
774 /*
775  * This is the main, per-CPU runqueue data structure.
776  *
777  * Locking rule: those places that want to lock multiple runqueues
778  * (such as the load balancing or the thread migration code), lock
779  * acquire operations must be ordered by ascending &runqueue.
780  */
781 struct rq {
782 	/* runqueue lock: */
783 	raw_spinlock_t		lock;
784 
785 	/*
786 	 * nr_running and cpu_load should be in the same cacheline because
787 	 * remote CPUs use both these fields when doing load calculation.
788 	 */
789 	unsigned int		nr_running;
790 #ifdef CONFIG_NUMA_BALANCING
791 	unsigned int		nr_numa_running;
792 	unsigned int		nr_preferred_running;
793 	unsigned int		numa_migrate_on;
794 #endif
795 	#define CPU_LOAD_IDX_MAX 5
796 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
797 #ifdef CONFIG_NO_HZ_COMMON
798 #ifdef CONFIG_SMP
799 	unsigned long		last_load_update_tick;
800 	unsigned long		last_blocked_load_update_tick;
801 	unsigned int		has_blocked_load;
802 #endif /* CONFIG_SMP */
803 	unsigned int		nohz_tick_stopped;
804 	atomic_t nohz_flags;
805 #endif /* CONFIG_NO_HZ_COMMON */
806 
807 	/* capture load from *all* tasks on this CPU: */
808 	struct load_weight	load;
809 	unsigned long		nr_load_updates;
810 	u64			nr_switches;
811 
812 	struct cfs_rq		cfs;
813 	struct rt_rq		rt;
814 	struct dl_rq		dl;
815 
816 #ifdef CONFIG_FAIR_GROUP_SCHED
817 	/* list of leaf cfs_rq on this CPU: */
818 	struct list_head	leaf_cfs_rq_list;
819 	struct list_head	*tmp_alone_branch;
820 #endif /* CONFIG_FAIR_GROUP_SCHED */
821 
822 	/*
823 	 * This is part of a global counter where only the total sum
824 	 * over all CPUs matters. A task can increase this counter on
825 	 * one CPU and if it got migrated afterwards it may decrease
826 	 * it on another CPU. Always updated under the runqueue lock:
827 	 */
828 	unsigned long		nr_uninterruptible;
829 
830 	struct task_struct	*curr;
831 	struct task_struct	*idle;
832 	struct task_struct	*stop;
833 	unsigned long		next_balance;
834 	struct mm_struct	*prev_mm;
835 
836 	unsigned int		clock_update_flags;
837 	u64			clock;
838 	u64			clock_task;
839 
840 	atomic_t		nr_iowait;
841 
842 #ifdef CONFIG_SMP
843 	struct root_domain	*rd;
844 	struct sched_domain	*sd;
845 
846 	unsigned long		cpu_capacity;
847 	unsigned long		cpu_capacity_orig;
848 
849 	struct callback_head	*balance_callback;
850 
851 	unsigned char		idle_balance;
852 
853 	unsigned long		misfit_task_load;
854 
855 	/* For active balancing */
856 	int			active_balance;
857 	int			push_cpu;
858 	struct cpu_stop_work	active_balance_work;
859 
860 	/* CPU of this runqueue: */
861 	int			cpu;
862 	int			online;
863 
864 	struct list_head cfs_tasks;
865 
866 	struct sched_avg	avg_rt;
867 	struct sched_avg	avg_dl;
868 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
869 	struct sched_avg	avg_irq;
870 #endif
871 	u64			idle_stamp;
872 	u64			avg_idle;
873 
874 	/* This is used to determine avg_idle's max value */
875 	u64			max_idle_balance_cost;
876 #endif
877 
878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
879 	u64			prev_irq_time;
880 #endif
881 #ifdef CONFIG_PARAVIRT
882 	u64			prev_steal_time;
883 #endif
884 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
885 	u64			prev_steal_time_rq;
886 #endif
887 
888 	/* calc_load related fields */
889 	unsigned long		calc_load_update;
890 	long			calc_load_active;
891 
892 #ifdef CONFIG_SCHED_HRTICK
893 #ifdef CONFIG_SMP
894 	int			hrtick_csd_pending;
895 	call_single_data_t	hrtick_csd;
896 #endif
897 	struct hrtimer		hrtick_timer;
898 #endif
899 
900 #ifdef CONFIG_SCHEDSTATS
901 	/* latency stats */
902 	struct sched_info	rq_sched_info;
903 	unsigned long long	rq_cpu_time;
904 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
905 
906 	/* sys_sched_yield() stats */
907 	unsigned int		yld_count;
908 
909 	/* schedule() stats */
910 	unsigned int		sched_count;
911 	unsigned int		sched_goidle;
912 
913 	/* try_to_wake_up() stats */
914 	unsigned int		ttwu_count;
915 	unsigned int		ttwu_local;
916 #endif
917 
918 #ifdef CONFIG_SMP
919 	struct llist_head	wake_list;
920 #endif
921 
922 #ifdef CONFIG_CPU_IDLE
923 	/* Must be inspected within a rcu lock section */
924 	struct cpuidle_state	*idle_state;
925 #endif
926 };
927 
928 static inline int cpu_of(struct rq *rq)
929 {
930 #ifdef CONFIG_SMP
931 	return rq->cpu;
932 #else
933 	return 0;
934 #endif
935 }
936 
937 
938 #ifdef CONFIG_SCHED_SMT
939 
940 extern struct static_key_false sched_smt_present;
941 
942 extern void __update_idle_core(struct rq *rq);
943 
944 static inline void update_idle_core(struct rq *rq)
945 {
946 	if (static_branch_unlikely(&sched_smt_present))
947 		__update_idle_core(rq);
948 }
949 
950 #else
951 static inline void update_idle_core(struct rq *rq) { }
952 #endif
953 
954 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
955 
956 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
957 #define this_rq()		this_cpu_ptr(&runqueues)
958 #define task_rq(p)		cpu_rq(task_cpu(p))
959 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
960 #define raw_rq()		raw_cpu_ptr(&runqueues)
961 
962 extern void update_rq_clock(struct rq *rq);
963 
964 static inline u64 __rq_clock_broken(struct rq *rq)
965 {
966 	return READ_ONCE(rq->clock);
967 }
968 
969 /*
970  * rq::clock_update_flags bits
971  *
972  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
973  *  call to __schedule(). This is an optimisation to avoid
974  *  neighbouring rq clock updates.
975  *
976  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
977  *  in effect and calls to update_rq_clock() are being ignored.
978  *
979  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
980  *  made to update_rq_clock() since the last time rq::lock was pinned.
981  *
982  * If inside of __schedule(), clock_update_flags will have been
983  * shifted left (a left shift is a cheap operation for the fast path
984  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
985  *
986  *	if (rq-clock_update_flags >= RQCF_UPDATED)
987  *
988  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
989  * one position though, because the next rq_unpin_lock() will shift it
990  * back.
991  */
992 #define RQCF_REQ_SKIP		0x01
993 #define RQCF_ACT_SKIP		0x02
994 #define RQCF_UPDATED		0x04
995 
996 static inline void assert_clock_updated(struct rq *rq)
997 {
998 	/*
999 	 * The only reason for not seeing a clock update since the
1000 	 * last rq_pin_lock() is if we're currently skipping updates.
1001 	 */
1002 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1003 }
1004 
1005 static inline u64 rq_clock(struct rq *rq)
1006 {
1007 	lockdep_assert_held(&rq->lock);
1008 	assert_clock_updated(rq);
1009 
1010 	return rq->clock;
1011 }
1012 
1013 static inline u64 rq_clock_task(struct rq *rq)
1014 {
1015 	lockdep_assert_held(&rq->lock);
1016 	assert_clock_updated(rq);
1017 
1018 	return rq->clock_task;
1019 }
1020 
1021 static inline void rq_clock_skip_update(struct rq *rq)
1022 {
1023 	lockdep_assert_held(&rq->lock);
1024 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1025 }
1026 
1027 /*
1028  * See rt task throttling, which is the only time a skip
1029  * request is cancelled.
1030  */
1031 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1032 {
1033 	lockdep_assert_held(&rq->lock);
1034 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1035 }
1036 
1037 struct rq_flags {
1038 	unsigned long flags;
1039 	struct pin_cookie cookie;
1040 #ifdef CONFIG_SCHED_DEBUG
1041 	/*
1042 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1043 	 * current pin context is stashed here in case it needs to be
1044 	 * restored in rq_repin_lock().
1045 	 */
1046 	unsigned int clock_update_flags;
1047 #endif
1048 };
1049 
1050 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1051 {
1052 	rf->cookie = lockdep_pin_lock(&rq->lock);
1053 
1054 #ifdef CONFIG_SCHED_DEBUG
1055 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1056 	rf->clock_update_flags = 0;
1057 #endif
1058 }
1059 
1060 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1061 {
1062 #ifdef CONFIG_SCHED_DEBUG
1063 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1064 		rf->clock_update_flags = RQCF_UPDATED;
1065 #endif
1066 
1067 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1068 }
1069 
1070 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1071 {
1072 	lockdep_repin_lock(&rq->lock, rf->cookie);
1073 
1074 #ifdef CONFIG_SCHED_DEBUG
1075 	/*
1076 	 * Restore the value we stashed in @rf for this pin context.
1077 	 */
1078 	rq->clock_update_flags |= rf->clock_update_flags;
1079 #endif
1080 }
1081 
1082 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1083 	__acquires(rq->lock);
1084 
1085 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1086 	__acquires(p->pi_lock)
1087 	__acquires(rq->lock);
1088 
1089 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1090 	__releases(rq->lock)
1091 {
1092 	rq_unpin_lock(rq, rf);
1093 	raw_spin_unlock(&rq->lock);
1094 }
1095 
1096 static inline void
1097 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1098 	__releases(rq->lock)
1099 	__releases(p->pi_lock)
1100 {
1101 	rq_unpin_lock(rq, rf);
1102 	raw_spin_unlock(&rq->lock);
1103 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1104 }
1105 
1106 static inline void
1107 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1108 	__acquires(rq->lock)
1109 {
1110 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1111 	rq_pin_lock(rq, rf);
1112 }
1113 
1114 static inline void
1115 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1116 	__acquires(rq->lock)
1117 {
1118 	raw_spin_lock_irq(&rq->lock);
1119 	rq_pin_lock(rq, rf);
1120 }
1121 
1122 static inline void
1123 rq_lock(struct rq *rq, struct rq_flags *rf)
1124 	__acquires(rq->lock)
1125 {
1126 	raw_spin_lock(&rq->lock);
1127 	rq_pin_lock(rq, rf);
1128 }
1129 
1130 static inline void
1131 rq_relock(struct rq *rq, struct rq_flags *rf)
1132 	__acquires(rq->lock)
1133 {
1134 	raw_spin_lock(&rq->lock);
1135 	rq_repin_lock(rq, rf);
1136 }
1137 
1138 static inline void
1139 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1140 	__releases(rq->lock)
1141 {
1142 	rq_unpin_lock(rq, rf);
1143 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1144 }
1145 
1146 static inline void
1147 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1148 	__releases(rq->lock)
1149 {
1150 	rq_unpin_lock(rq, rf);
1151 	raw_spin_unlock_irq(&rq->lock);
1152 }
1153 
1154 static inline void
1155 rq_unlock(struct rq *rq, struct rq_flags *rf)
1156 	__releases(rq->lock)
1157 {
1158 	rq_unpin_lock(rq, rf);
1159 	raw_spin_unlock(&rq->lock);
1160 }
1161 
1162 static inline struct rq *
1163 this_rq_lock_irq(struct rq_flags *rf)
1164 	__acquires(rq->lock)
1165 {
1166 	struct rq *rq;
1167 
1168 	local_irq_disable();
1169 	rq = this_rq();
1170 	rq_lock(rq, rf);
1171 	return rq;
1172 }
1173 
1174 #ifdef CONFIG_NUMA
1175 enum numa_topology_type {
1176 	NUMA_DIRECT,
1177 	NUMA_GLUELESS_MESH,
1178 	NUMA_BACKPLANE,
1179 };
1180 extern enum numa_topology_type sched_numa_topology_type;
1181 extern int sched_max_numa_distance;
1182 extern bool find_numa_distance(int distance);
1183 #endif
1184 
1185 #ifdef CONFIG_NUMA
1186 extern void sched_init_numa(void);
1187 extern void sched_domains_numa_masks_set(unsigned int cpu);
1188 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1189 #else
1190 static inline void sched_init_numa(void) { }
1191 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1192 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1193 #endif
1194 
1195 #ifdef CONFIG_NUMA_BALANCING
1196 /* The regions in numa_faults array from task_struct */
1197 enum numa_faults_stats {
1198 	NUMA_MEM = 0,
1199 	NUMA_CPU,
1200 	NUMA_MEMBUF,
1201 	NUMA_CPUBUF
1202 };
1203 extern void sched_setnuma(struct task_struct *p, int node);
1204 extern int migrate_task_to(struct task_struct *p, int cpu);
1205 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1206 			int cpu, int scpu);
1207 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1208 #else
1209 static inline void
1210 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1211 {
1212 }
1213 #endif /* CONFIG_NUMA_BALANCING */
1214 
1215 #ifdef CONFIG_SMP
1216 
1217 static inline void
1218 queue_balance_callback(struct rq *rq,
1219 		       struct callback_head *head,
1220 		       void (*func)(struct rq *rq))
1221 {
1222 	lockdep_assert_held(&rq->lock);
1223 
1224 	if (unlikely(head->next))
1225 		return;
1226 
1227 	head->func = (void (*)(struct callback_head *))func;
1228 	head->next = rq->balance_callback;
1229 	rq->balance_callback = head;
1230 }
1231 
1232 extern void sched_ttwu_pending(void);
1233 
1234 #define rcu_dereference_check_sched_domain(p) \
1235 	rcu_dereference_check((p), \
1236 			      lockdep_is_held(&sched_domains_mutex))
1237 
1238 /*
1239  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1240  * See detach_destroy_domains: synchronize_sched for details.
1241  *
1242  * The domain tree of any CPU may only be accessed from within
1243  * preempt-disabled sections.
1244  */
1245 #define for_each_domain(cpu, __sd) \
1246 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1247 			__sd; __sd = __sd->parent)
1248 
1249 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1250 
1251 /**
1252  * highest_flag_domain - Return highest sched_domain containing flag.
1253  * @cpu:	The CPU whose highest level of sched domain is to
1254  *		be returned.
1255  * @flag:	The flag to check for the highest sched_domain
1256  *		for the given CPU.
1257  *
1258  * Returns the highest sched_domain of a CPU which contains the given flag.
1259  */
1260 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1261 {
1262 	struct sched_domain *sd, *hsd = NULL;
1263 
1264 	for_each_domain(cpu, sd) {
1265 		if (!(sd->flags & flag))
1266 			break;
1267 		hsd = sd;
1268 	}
1269 
1270 	return hsd;
1271 }
1272 
1273 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1274 {
1275 	struct sched_domain *sd;
1276 
1277 	for_each_domain(cpu, sd) {
1278 		if (sd->flags & flag)
1279 			break;
1280 	}
1281 
1282 	return sd;
1283 }
1284 
1285 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1286 DECLARE_PER_CPU(int, sd_llc_size);
1287 DECLARE_PER_CPU(int, sd_llc_id);
1288 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1289 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1290 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1291 extern struct static_key_false sched_asym_cpucapacity;
1292 
1293 struct sched_group_capacity {
1294 	atomic_t		ref;
1295 	/*
1296 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1297 	 * for a single CPU.
1298 	 */
1299 	unsigned long		capacity;
1300 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1301 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1302 	unsigned long		next_update;
1303 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1304 
1305 #ifdef CONFIG_SCHED_DEBUG
1306 	int			id;
1307 #endif
1308 
1309 	unsigned long		cpumask[0];		/* Balance mask */
1310 };
1311 
1312 struct sched_group {
1313 	struct sched_group	*next;			/* Must be a circular list */
1314 	atomic_t		ref;
1315 
1316 	unsigned int		group_weight;
1317 	struct sched_group_capacity *sgc;
1318 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1319 
1320 	/*
1321 	 * The CPUs this group covers.
1322 	 *
1323 	 * NOTE: this field is variable length. (Allocated dynamically
1324 	 * by attaching extra space to the end of the structure,
1325 	 * depending on how many CPUs the kernel has booted up with)
1326 	 */
1327 	unsigned long		cpumask[0];
1328 };
1329 
1330 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1331 {
1332 	return to_cpumask(sg->cpumask);
1333 }
1334 
1335 /*
1336  * See build_balance_mask().
1337  */
1338 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1339 {
1340 	return to_cpumask(sg->sgc->cpumask);
1341 }
1342 
1343 /**
1344  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1345  * @group: The group whose first CPU is to be returned.
1346  */
1347 static inline unsigned int group_first_cpu(struct sched_group *group)
1348 {
1349 	return cpumask_first(sched_group_span(group));
1350 }
1351 
1352 extern int group_balance_cpu(struct sched_group *sg);
1353 
1354 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1355 void register_sched_domain_sysctl(void);
1356 void dirty_sched_domain_sysctl(int cpu);
1357 void unregister_sched_domain_sysctl(void);
1358 #else
1359 static inline void register_sched_domain_sysctl(void)
1360 {
1361 }
1362 static inline void dirty_sched_domain_sysctl(int cpu)
1363 {
1364 }
1365 static inline void unregister_sched_domain_sysctl(void)
1366 {
1367 }
1368 #endif
1369 
1370 #else
1371 
1372 static inline void sched_ttwu_pending(void) { }
1373 
1374 #endif /* CONFIG_SMP */
1375 
1376 #include "stats.h"
1377 #include "autogroup.h"
1378 
1379 #ifdef CONFIG_CGROUP_SCHED
1380 
1381 /*
1382  * Return the group to which this tasks belongs.
1383  *
1384  * We cannot use task_css() and friends because the cgroup subsystem
1385  * changes that value before the cgroup_subsys::attach() method is called,
1386  * therefore we cannot pin it and might observe the wrong value.
1387  *
1388  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1389  * core changes this before calling sched_move_task().
1390  *
1391  * Instead we use a 'copy' which is updated from sched_move_task() while
1392  * holding both task_struct::pi_lock and rq::lock.
1393  */
1394 static inline struct task_group *task_group(struct task_struct *p)
1395 {
1396 	return p->sched_task_group;
1397 }
1398 
1399 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1400 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1401 {
1402 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1403 	struct task_group *tg = task_group(p);
1404 #endif
1405 
1406 #ifdef CONFIG_FAIR_GROUP_SCHED
1407 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1408 	p->se.cfs_rq = tg->cfs_rq[cpu];
1409 	p->se.parent = tg->se[cpu];
1410 #endif
1411 
1412 #ifdef CONFIG_RT_GROUP_SCHED
1413 	p->rt.rt_rq  = tg->rt_rq[cpu];
1414 	p->rt.parent = tg->rt_se[cpu];
1415 #endif
1416 }
1417 
1418 #else /* CONFIG_CGROUP_SCHED */
1419 
1420 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1421 static inline struct task_group *task_group(struct task_struct *p)
1422 {
1423 	return NULL;
1424 }
1425 
1426 #endif /* CONFIG_CGROUP_SCHED */
1427 
1428 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1429 {
1430 	set_task_rq(p, cpu);
1431 #ifdef CONFIG_SMP
1432 	/*
1433 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1434 	 * successfuly executed on another CPU. We must ensure that updates of
1435 	 * per-task data have been completed by this moment.
1436 	 */
1437 	smp_wmb();
1438 #ifdef CONFIG_THREAD_INFO_IN_TASK
1439 	p->cpu = cpu;
1440 #else
1441 	task_thread_info(p)->cpu = cpu;
1442 #endif
1443 	p->wake_cpu = cpu;
1444 #endif
1445 }
1446 
1447 /*
1448  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1449  */
1450 #ifdef CONFIG_SCHED_DEBUG
1451 # include <linux/static_key.h>
1452 # define const_debug __read_mostly
1453 #else
1454 # define const_debug const
1455 #endif
1456 
1457 #define SCHED_FEAT(name, enabled)	\
1458 	__SCHED_FEAT_##name ,
1459 
1460 enum {
1461 #include "features.h"
1462 	__SCHED_FEAT_NR,
1463 };
1464 
1465 #undef SCHED_FEAT
1466 
1467 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1468 
1469 /*
1470  * To support run-time toggling of sched features, all the translation units
1471  * (but core.c) reference the sysctl_sched_features defined in core.c.
1472  */
1473 extern const_debug unsigned int sysctl_sched_features;
1474 
1475 #define SCHED_FEAT(name, enabled)					\
1476 static __always_inline bool static_branch_##name(struct static_key *key) \
1477 {									\
1478 	return static_key_##enabled(key);				\
1479 }
1480 
1481 #include "features.h"
1482 #undef SCHED_FEAT
1483 
1484 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1485 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1486 
1487 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1488 
1489 /*
1490  * Each translation unit has its own copy of sysctl_sched_features to allow
1491  * constants propagation at compile time and compiler optimization based on
1492  * features default.
1493  */
1494 #define SCHED_FEAT(name, enabled)	\
1495 	(1UL << __SCHED_FEAT_##name) * enabled |
1496 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1497 #include "features.h"
1498 	0;
1499 #undef SCHED_FEAT
1500 
1501 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1502 
1503 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1504 
1505 extern struct static_key_false sched_numa_balancing;
1506 extern struct static_key_false sched_schedstats;
1507 
1508 static inline u64 global_rt_period(void)
1509 {
1510 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1511 }
1512 
1513 static inline u64 global_rt_runtime(void)
1514 {
1515 	if (sysctl_sched_rt_runtime < 0)
1516 		return RUNTIME_INF;
1517 
1518 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1519 }
1520 
1521 static inline int task_current(struct rq *rq, struct task_struct *p)
1522 {
1523 	return rq->curr == p;
1524 }
1525 
1526 static inline int task_running(struct rq *rq, struct task_struct *p)
1527 {
1528 #ifdef CONFIG_SMP
1529 	return p->on_cpu;
1530 #else
1531 	return task_current(rq, p);
1532 #endif
1533 }
1534 
1535 static inline int task_on_rq_queued(struct task_struct *p)
1536 {
1537 	return p->on_rq == TASK_ON_RQ_QUEUED;
1538 }
1539 
1540 static inline int task_on_rq_migrating(struct task_struct *p)
1541 {
1542 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1543 }
1544 
1545 /*
1546  * wake flags
1547  */
1548 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1549 #define WF_FORK			0x02		/* Child wakeup after fork */
1550 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1551 
1552 /*
1553  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1554  * of tasks with abnormal "nice" values across CPUs the contribution that
1555  * each task makes to its run queue's load is weighted according to its
1556  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1557  * scaled version of the new time slice allocation that they receive on time
1558  * slice expiry etc.
1559  */
1560 
1561 #define WEIGHT_IDLEPRIO		3
1562 #define WMULT_IDLEPRIO		1431655765
1563 
1564 extern const int		sched_prio_to_weight[40];
1565 extern const u32		sched_prio_to_wmult[40];
1566 
1567 /*
1568  * {de,en}queue flags:
1569  *
1570  * DEQUEUE_SLEEP  - task is no longer runnable
1571  * ENQUEUE_WAKEUP - task just became runnable
1572  *
1573  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1574  *                are in a known state which allows modification. Such pairs
1575  *                should preserve as much state as possible.
1576  *
1577  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1578  *        in the runqueue.
1579  *
1580  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1581  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1582  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1583  *
1584  */
1585 
1586 #define DEQUEUE_SLEEP		0x01
1587 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1588 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1589 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1590 
1591 #define ENQUEUE_WAKEUP		0x01
1592 #define ENQUEUE_RESTORE		0x02
1593 #define ENQUEUE_MOVE		0x04
1594 #define ENQUEUE_NOCLOCK		0x08
1595 
1596 #define ENQUEUE_HEAD		0x10
1597 #define ENQUEUE_REPLENISH	0x20
1598 #ifdef CONFIG_SMP
1599 #define ENQUEUE_MIGRATED	0x40
1600 #else
1601 #define ENQUEUE_MIGRATED	0x00
1602 #endif
1603 
1604 #define RETRY_TASK		((void *)-1UL)
1605 
1606 struct sched_class {
1607 	const struct sched_class *next;
1608 
1609 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1610 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1611 	void (*yield_task)   (struct rq *rq);
1612 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1613 
1614 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1615 
1616 	/*
1617 	 * It is the responsibility of the pick_next_task() method that will
1618 	 * return the next task to call put_prev_task() on the @prev task or
1619 	 * something equivalent.
1620 	 *
1621 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1622 	 * tasks.
1623 	 */
1624 	struct task_struct * (*pick_next_task)(struct rq *rq,
1625 					       struct task_struct *prev,
1626 					       struct rq_flags *rf);
1627 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1628 
1629 #ifdef CONFIG_SMP
1630 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1631 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1632 
1633 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1634 
1635 	void (*set_cpus_allowed)(struct task_struct *p,
1636 				 const struct cpumask *newmask);
1637 
1638 	void (*rq_online)(struct rq *rq);
1639 	void (*rq_offline)(struct rq *rq);
1640 #endif
1641 
1642 	void (*set_curr_task)(struct rq *rq);
1643 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1644 	void (*task_fork)(struct task_struct *p);
1645 	void (*task_dead)(struct task_struct *p);
1646 
1647 	/*
1648 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1649 	 * cannot assume the switched_from/switched_to pair is serliazed by
1650 	 * rq->lock. They are however serialized by p->pi_lock.
1651 	 */
1652 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1653 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1654 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1655 			      int oldprio);
1656 
1657 	unsigned int (*get_rr_interval)(struct rq *rq,
1658 					struct task_struct *task);
1659 
1660 	void (*update_curr)(struct rq *rq);
1661 
1662 #define TASK_SET_GROUP		0
1663 #define TASK_MOVE_GROUP		1
1664 
1665 #ifdef CONFIG_FAIR_GROUP_SCHED
1666 	void (*task_change_group)(struct task_struct *p, int type);
1667 #endif
1668 };
1669 
1670 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1671 {
1672 	prev->sched_class->put_prev_task(rq, prev);
1673 }
1674 
1675 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1676 {
1677 	curr->sched_class->set_curr_task(rq);
1678 }
1679 
1680 #ifdef CONFIG_SMP
1681 #define sched_class_highest (&stop_sched_class)
1682 #else
1683 #define sched_class_highest (&dl_sched_class)
1684 #endif
1685 #define for_each_class(class) \
1686    for (class = sched_class_highest; class; class = class->next)
1687 
1688 extern const struct sched_class stop_sched_class;
1689 extern const struct sched_class dl_sched_class;
1690 extern const struct sched_class rt_sched_class;
1691 extern const struct sched_class fair_sched_class;
1692 extern const struct sched_class idle_sched_class;
1693 
1694 
1695 #ifdef CONFIG_SMP
1696 
1697 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1698 
1699 extern void trigger_load_balance(struct rq *rq);
1700 
1701 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1702 
1703 #endif
1704 
1705 #ifdef CONFIG_CPU_IDLE
1706 static inline void idle_set_state(struct rq *rq,
1707 				  struct cpuidle_state *idle_state)
1708 {
1709 	rq->idle_state = idle_state;
1710 }
1711 
1712 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1713 {
1714 	SCHED_WARN_ON(!rcu_read_lock_held());
1715 
1716 	return rq->idle_state;
1717 }
1718 #else
1719 static inline void idle_set_state(struct rq *rq,
1720 				  struct cpuidle_state *idle_state)
1721 {
1722 }
1723 
1724 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1725 {
1726 	return NULL;
1727 }
1728 #endif
1729 
1730 extern void schedule_idle(void);
1731 
1732 extern void sysrq_sched_debug_show(void);
1733 extern void sched_init_granularity(void);
1734 extern void update_max_interval(void);
1735 
1736 extern void init_sched_dl_class(void);
1737 extern void init_sched_rt_class(void);
1738 extern void init_sched_fair_class(void);
1739 
1740 extern void reweight_task(struct task_struct *p, int prio);
1741 
1742 extern void resched_curr(struct rq *rq);
1743 extern void resched_cpu(int cpu);
1744 
1745 extern struct rt_bandwidth def_rt_bandwidth;
1746 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1747 
1748 extern struct dl_bandwidth def_dl_bandwidth;
1749 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1750 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1751 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1752 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1753 
1754 #define BW_SHIFT		20
1755 #define BW_UNIT			(1 << BW_SHIFT)
1756 #define RATIO_SHIFT		8
1757 unsigned long to_ratio(u64 period, u64 runtime);
1758 
1759 extern void init_entity_runnable_average(struct sched_entity *se);
1760 extern void post_init_entity_util_avg(struct sched_entity *se);
1761 
1762 #ifdef CONFIG_NO_HZ_FULL
1763 extern bool sched_can_stop_tick(struct rq *rq);
1764 extern int __init sched_tick_offload_init(void);
1765 
1766 /*
1767  * Tick may be needed by tasks in the runqueue depending on their policy and
1768  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1769  * nohz mode if necessary.
1770  */
1771 static inline void sched_update_tick_dependency(struct rq *rq)
1772 {
1773 	int cpu;
1774 
1775 	if (!tick_nohz_full_enabled())
1776 		return;
1777 
1778 	cpu = cpu_of(rq);
1779 
1780 	if (!tick_nohz_full_cpu(cpu))
1781 		return;
1782 
1783 	if (sched_can_stop_tick(rq))
1784 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1785 	else
1786 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1787 }
1788 #else
1789 static inline int sched_tick_offload_init(void) { return 0; }
1790 static inline void sched_update_tick_dependency(struct rq *rq) { }
1791 #endif
1792 
1793 static inline void add_nr_running(struct rq *rq, unsigned count)
1794 {
1795 	unsigned prev_nr = rq->nr_running;
1796 
1797 	rq->nr_running = prev_nr + count;
1798 
1799 	if (prev_nr < 2 && rq->nr_running >= 2) {
1800 #ifdef CONFIG_SMP
1801 		if (!READ_ONCE(rq->rd->overload))
1802 			WRITE_ONCE(rq->rd->overload, 1);
1803 #endif
1804 	}
1805 
1806 	sched_update_tick_dependency(rq);
1807 }
1808 
1809 static inline void sub_nr_running(struct rq *rq, unsigned count)
1810 {
1811 	rq->nr_running -= count;
1812 	/* Check if we still need preemption */
1813 	sched_update_tick_dependency(rq);
1814 }
1815 
1816 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1817 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1818 
1819 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1820 
1821 extern const_debug unsigned int sysctl_sched_nr_migrate;
1822 extern const_debug unsigned int sysctl_sched_migration_cost;
1823 
1824 #ifdef CONFIG_SCHED_HRTICK
1825 
1826 /*
1827  * Use hrtick when:
1828  *  - enabled by features
1829  *  - hrtimer is actually high res
1830  */
1831 static inline int hrtick_enabled(struct rq *rq)
1832 {
1833 	if (!sched_feat(HRTICK))
1834 		return 0;
1835 	if (!cpu_active(cpu_of(rq)))
1836 		return 0;
1837 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1838 }
1839 
1840 void hrtick_start(struct rq *rq, u64 delay);
1841 
1842 #else
1843 
1844 static inline int hrtick_enabled(struct rq *rq)
1845 {
1846 	return 0;
1847 }
1848 
1849 #endif /* CONFIG_SCHED_HRTICK */
1850 
1851 #ifndef arch_scale_freq_capacity
1852 static __always_inline
1853 unsigned long arch_scale_freq_capacity(int cpu)
1854 {
1855 	return SCHED_CAPACITY_SCALE;
1856 }
1857 #endif
1858 
1859 #ifdef CONFIG_SMP
1860 #ifndef arch_scale_cpu_capacity
1861 static __always_inline
1862 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1863 {
1864 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1865 		return sd->smt_gain / sd->span_weight;
1866 
1867 	return SCHED_CAPACITY_SCALE;
1868 }
1869 #endif
1870 #else
1871 #ifndef arch_scale_cpu_capacity
1872 static __always_inline
1873 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1874 {
1875 	return SCHED_CAPACITY_SCALE;
1876 }
1877 #endif
1878 #endif
1879 
1880 #ifdef CONFIG_SMP
1881 #ifdef CONFIG_PREEMPT
1882 
1883 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1884 
1885 /*
1886  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1887  * way at the expense of forcing extra atomic operations in all
1888  * invocations.  This assures that the double_lock is acquired using the
1889  * same underlying policy as the spinlock_t on this architecture, which
1890  * reduces latency compared to the unfair variant below.  However, it
1891  * also adds more overhead and therefore may reduce throughput.
1892  */
1893 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1894 	__releases(this_rq->lock)
1895 	__acquires(busiest->lock)
1896 	__acquires(this_rq->lock)
1897 {
1898 	raw_spin_unlock(&this_rq->lock);
1899 	double_rq_lock(this_rq, busiest);
1900 
1901 	return 1;
1902 }
1903 
1904 #else
1905 /*
1906  * Unfair double_lock_balance: Optimizes throughput at the expense of
1907  * latency by eliminating extra atomic operations when the locks are
1908  * already in proper order on entry.  This favors lower CPU-ids and will
1909  * grant the double lock to lower CPUs over higher ids under contention,
1910  * regardless of entry order into the function.
1911  */
1912 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1913 	__releases(this_rq->lock)
1914 	__acquires(busiest->lock)
1915 	__acquires(this_rq->lock)
1916 {
1917 	int ret = 0;
1918 
1919 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1920 		if (busiest < this_rq) {
1921 			raw_spin_unlock(&this_rq->lock);
1922 			raw_spin_lock(&busiest->lock);
1923 			raw_spin_lock_nested(&this_rq->lock,
1924 					      SINGLE_DEPTH_NESTING);
1925 			ret = 1;
1926 		} else
1927 			raw_spin_lock_nested(&busiest->lock,
1928 					      SINGLE_DEPTH_NESTING);
1929 	}
1930 	return ret;
1931 }
1932 
1933 #endif /* CONFIG_PREEMPT */
1934 
1935 /*
1936  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1937  */
1938 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1939 {
1940 	if (unlikely(!irqs_disabled())) {
1941 		/* printk() doesn't work well under rq->lock */
1942 		raw_spin_unlock(&this_rq->lock);
1943 		BUG_ON(1);
1944 	}
1945 
1946 	return _double_lock_balance(this_rq, busiest);
1947 }
1948 
1949 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1950 	__releases(busiest->lock)
1951 {
1952 	raw_spin_unlock(&busiest->lock);
1953 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1954 }
1955 
1956 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1957 {
1958 	if (l1 > l2)
1959 		swap(l1, l2);
1960 
1961 	spin_lock(l1);
1962 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1963 }
1964 
1965 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1966 {
1967 	if (l1 > l2)
1968 		swap(l1, l2);
1969 
1970 	spin_lock_irq(l1);
1971 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1972 }
1973 
1974 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1975 {
1976 	if (l1 > l2)
1977 		swap(l1, l2);
1978 
1979 	raw_spin_lock(l1);
1980 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1981 }
1982 
1983 /*
1984  * double_rq_lock - safely lock two runqueues
1985  *
1986  * Note this does not disable interrupts like task_rq_lock,
1987  * you need to do so manually before calling.
1988  */
1989 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1990 	__acquires(rq1->lock)
1991 	__acquires(rq2->lock)
1992 {
1993 	BUG_ON(!irqs_disabled());
1994 	if (rq1 == rq2) {
1995 		raw_spin_lock(&rq1->lock);
1996 		__acquire(rq2->lock);	/* Fake it out ;) */
1997 	} else {
1998 		if (rq1 < rq2) {
1999 			raw_spin_lock(&rq1->lock);
2000 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2001 		} else {
2002 			raw_spin_lock(&rq2->lock);
2003 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2004 		}
2005 	}
2006 }
2007 
2008 /*
2009  * double_rq_unlock - safely unlock two runqueues
2010  *
2011  * Note this does not restore interrupts like task_rq_unlock,
2012  * you need to do so manually after calling.
2013  */
2014 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2015 	__releases(rq1->lock)
2016 	__releases(rq2->lock)
2017 {
2018 	raw_spin_unlock(&rq1->lock);
2019 	if (rq1 != rq2)
2020 		raw_spin_unlock(&rq2->lock);
2021 	else
2022 		__release(rq2->lock);
2023 }
2024 
2025 extern void set_rq_online (struct rq *rq);
2026 extern void set_rq_offline(struct rq *rq);
2027 extern bool sched_smp_initialized;
2028 
2029 #else /* CONFIG_SMP */
2030 
2031 /*
2032  * double_rq_lock - safely lock two runqueues
2033  *
2034  * Note this does not disable interrupts like task_rq_lock,
2035  * you need to do so manually before calling.
2036  */
2037 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2038 	__acquires(rq1->lock)
2039 	__acquires(rq2->lock)
2040 {
2041 	BUG_ON(!irqs_disabled());
2042 	BUG_ON(rq1 != rq2);
2043 	raw_spin_lock(&rq1->lock);
2044 	__acquire(rq2->lock);	/* Fake it out ;) */
2045 }
2046 
2047 /*
2048  * double_rq_unlock - safely unlock two runqueues
2049  *
2050  * Note this does not restore interrupts like task_rq_unlock,
2051  * you need to do so manually after calling.
2052  */
2053 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2054 	__releases(rq1->lock)
2055 	__releases(rq2->lock)
2056 {
2057 	BUG_ON(rq1 != rq2);
2058 	raw_spin_unlock(&rq1->lock);
2059 	__release(rq2->lock);
2060 }
2061 
2062 #endif
2063 
2064 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2065 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2066 
2067 #ifdef	CONFIG_SCHED_DEBUG
2068 extern bool sched_debug_enabled;
2069 
2070 extern void print_cfs_stats(struct seq_file *m, int cpu);
2071 extern void print_rt_stats(struct seq_file *m, int cpu);
2072 extern void print_dl_stats(struct seq_file *m, int cpu);
2073 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2074 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2075 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2076 #ifdef CONFIG_NUMA_BALANCING
2077 extern void
2078 show_numa_stats(struct task_struct *p, struct seq_file *m);
2079 extern void
2080 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2081 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2082 #endif /* CONFIG_NUMA_BALANCING */
2083 #endif /* CONFIG_SCHED_DEBUG */
2084 
2085 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2086 extern void init_rt_rq(struct rt_rq *rt_rq);
2087 extern void init_dl_rq(struct dl_rq *dl_rq);
2088 
2089 extern void cfs_bandwidth_usage_inc(void);
2090 extern void cfs_bandwidth_usage_dec(void);
2091 
2092 #ifdef CONFIG_NO_HZ_COMMON
2093 #define NOHZ_BALANCE_KICK_BIT	0
2094 #define NOHZ_STATS_KICK_BIT	1
2095 
2096 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2097 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2098 
2099 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2100 
2101 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2102 
2103 extern void nohz_balance_exit_idle(struct rq *rq);
2104 #else
2105 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2106 #endif
2107 
2108 
2109 #ifdef CONFIG_SMP
2110 static inline
2111 void __dl_update(struct dl_bw *dl_b, s64 bw)
2112 {
2113 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2114 	int i;
2115 
2116 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2117 			 "sched RCU must be held");
2118 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2119 		struct rq *rq = cpu_rq(i);
2120 
2121 		rq->dl.extra_bw += bw;
2122 	}
2123 }
2124 #else
2125 static inline
2126 void __dl_update(struct dl_bw *dl_b, s64 bw)
2127 {
2128 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2129 
2130 	dl->extra_bw += bw;
2131 }
2132 #endif
2133 
2134 
2135 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2136 struct irqtime {
2137 	u64			total;
2138 	u64			tick_delta;
2139 	u64			irq_start_time;
2140 	struct u64_stats_sync	sync;
2141 };
2142 
2143 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2144 
2145 /*
2146  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2147  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2148  * and never move forward.
2149  */
2150 static inline u64 irq_time_read(int cpu)
2151 {
2152 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2153 	unsigned int seq;
2154 	u64 total;
2155 
2156 	do {
2157 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2158 		total = irqtime->total;
2159 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2160 
2161 	return total;
2162 }
2163 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2164 
2165 #ifdef CONFIG_CPU_FREQ
2166 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2167 
2168 /**
2169  * cpufreq_update_util - Take a note about CPU utilization changes.
2170  * @rq: Runqueue to carry out the update for.
2171  * @flags: Update reason flags.
2172  *
2173  * This function is called by the scheduler on the CPU whose utilization is
2174  * being updated.
2175  *
2176  * It can only be called from RCU-sched read-side critical sections.
2177  *
2178  * The way cpufreq is currently arranged requires it to evaluate the CPU
2179  * performance state (frequency/voltage) on a regular basis to prevent it from
2180  * being stuck in a completely inadequate performance level for too long.
2181  * That is not guaranteed to happen if the updates are only triggered from CFS
2182  * and DL, though, because they may not be coming in if only RT tasks are
2183  * active all the time (or there are RT tasks only).
2184  *
2185  * As a workaround for that issue, this function is called periodically by the
2186  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2187  * but that really is a band-aid.  Going forward it should be replaced with
2188  * solutions targeted more specifically at RT tasks.
2189  */
2190 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2191 {
2192 	struct update_util_data *data;
2193 
2194 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2195 						  cpu_of(rq)));
2196 	if (data)
2197 		data->func(data, rq_clock(rq), flags);
2198 }
2199 #else
2200 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2201 #endif /* CONFIG_CPU_FREQ */
2202 
2203 #ifdef arch_scale_freq_capacity
2204 # ifndef arch_scale_freq_invariant
2205 #  define arch_scale_freq_invariant()	true
2206 # endif
2207 #else
2208 # define arch_scale_freq_invariant()	false
2209 #endif
2210 
2211 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2212 static inline unsigned long cpu_bw_dl(struct rq *rq)
2213 {
2214 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2215 }
2216 
2217 static inline unsigned long cpu_util_dl(struct rq *rq)
2218 {
2219 	return READ_ONCE(rq->avg_dl.util_avg);
2220 }
2221 
2222 static inline unsigned long cpu_util_cfs(struct rq *rq)
2223 {
2224 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2225 
2226 	if (sched_feat(UTIL_EST)) {
2227 		util = max_t(unsigned long, util,
2228 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2229 	}
2230 
2231 	return util;
2232 }
2233 
2234 static inline unsigned long cpu_util_rt(struct rq *rq)
2235 {
2236 	return READ_ONCE(rq->avg_rt.util_avg);
2237 }
2238 #endif
2239 
2240 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2241 static inline unsigned long cpu_util_irq(struct rq *rq)
2242 {
2243 	return rq->avg_irq.util_avg;
2244 }
2245 
2246 static inline
2247 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2248 {
2249 	util *= (max - irq);
2250 	util /= max;
2251 
2252 	return util;
2253 
2254 }
2255 #else
2256 static inline unsigned long cpu_util_irq(struct rq *rq)
2257 {
2258 	return 0;
2259 }
2260 
2261 static inline
2262 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2263 {
2264 	return util;
2265 }
2266 #endif
2267