1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/tick.h> 10 #include <linux/slab.h> 11 12 #include "cpupri.h" 13 #include "cpudeadline.h" 14 #include "cpuacct.h" 15 16 struct rq; 17 18 extern __read_mostly int scheduler_running; 19 20 extern unsigned long calc_load_update; 21 extern atomic_long_t calc_load_tasks; 22 23 extern long calc_load_fold_active(struct rq *this_rq); 24 extern void update_cpu_load_active(struct rq *this_rq); 25 26 /* 27 * Helpers for converting nanosecond timing to jiffy resolution 28 */ 29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 30 31 /* 32 * Increase resolution of nice-level calculations for 64-bit architectures. 33 * The extra resolution improves shares distribution and load balancing of 34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 35 * hierarchies, especially on larger systems. This is not a user-visible change 36 * and does not change the user-interface for setting shares/weights. 37 * 38 * We increase resolution only if we have enough bits to allow this increased 39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 41 * increased costs. 42 */ 43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 44 # define SCHED_LOAD_RESOLUTION 10 45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 47 #else 48 # define SCHED_LOAD_RESOLUTION 0 49 # define scale_load(w) (w) 50 # define scale_load_down(w) (w) 51 #endif 52 53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 55 56 #define NICE_0_LOAD SCHED_LOAD_SCALE 57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 58 59 /* 60 * Single value that decides SCHED_DEADLINE internal math precision. 61 * 10 -> just above 1us 62 * 9 -> just above 0.5us 63 */ 64 #define DL_SCALE (10) 65 66 /* 67 * These are the 'tuning knobs' of the scheduler: 68 */ 69 70 /* 71 * single value that denotes runtime == period, ie unlimited time. 72 */ 73 #define RUNTIME_INF ((u64)~0ULL) 74 75 static inline int fair_policy(int policy) 76 { 77 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 78 } 79 80 static inline int rt_policy(int policy) 81 { 82 return policy == SCHED_FIFO || policy == SCHED_RR; 83 } 84 85 static inline int dl_policy(int policy) 86 { 87 return policy == SCHED_DEADLINE; 88 } 89 90 static inline int task_has_rt_policy(struct task_struct *p) 91 { 92 return rt_policy(p->policy); 93 } 94 95 static inline int task_has_dl_policy(struct task_struct *p) 96 { 97 return dl_policy(p->policy); 98 } 99 100 static inline bool dl_time_before(u64 a, u64 b) 101 { 102 return (s64)(a - b) < 0; 103 } 104 105 /* 106 * Tells if entity @a should preempt entity @b. 107 */ 108 static inline bool 109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 110 { 111 return dl_time_before(a->deadline, b->deadline); 112 } 113 114 /* 115 * This is the priority-queue data structure of the RT scheduling class: 116 */ 117 struct rt_prio_array { 118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 119 struct list_head queue[MAX_RT_PRIO]; 120 }; 121 122 struct rt_bandwidth { 123 /* nests inside the rq lock: */ 124 raw_spinlock_t rt_runtime_lock; 125 ktime_t rt_period; 126 u64 rt_runtime; 127 struct hrtimer rt_period_timer; 128 }; 129 /* 130 * To keep the bandwidth of -deadline tasks and groups under control 131 * we need some place where: 132 * - store the maximum -deadline bandwidth of the system (the group); 133 * - cache the fraction of that bandwidth that is currently allocated. 134 * 135 * This is all done in the data structure below. It is similar to the 136 * one used for RT-throttling (rt_bandwidth), with the main difference 137 * that, since here we are only interested in admission control, we 138 * do not decrease any runtime while the group "executes", neither we 139 * need a timer to replenish it. 140 * 141 * With respect to SMP, the bandwidth is given on a per-CPU basis, 142 * meaning that: 143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 144 * - dl_total_bw array contains, in the i-eth element, the currently 145 * allocated bandwidth on the i-eth CPU. 146 * Moreover, groups consume bandwidth on each CPU, while tasks only 147 * consume bandwidth on the CPU they're running on. 148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 149 * that will be shown the next time the proc or cgroup controls will 150 * be red. It on its turn can be changed by writing on its own 151 * control. 152 */ 153 struct dl_bandwidth { 154 raw_spinlock_t dl_runtime_lock; 155 u64 dl_runtime; 156 u64 dl_period; 157 }; 158 159 static inline int dl_bandwidth_enabled(void) 160 { 161 return sysctl_sched_rt_runtime >= 0; 162 } 163 164 extern struct dl_bw *dl_bw_of(int i); 165 166 struct dl_bw { 167 raw_spinlock_t lock; 168 u64 bw, total_bw; 169 }; 170 171 extern struct mutex sched_domains_mutex; 172 173 #ifdef CONFIG_CGROUP_SCHED 174 175 #include <linux/cgroup.h> 176 177 struct cfs_rq; 178 struct rt_rq; 179 180 extern struct list_head task_groups; 181 182 struct cfs_bandwidth { 183 #ifdef CONFIG_CFS_BANDWIDTH 184 raw_spinlock_t lock; 185 ktime_t period; 186 u64 quota, runtime; 187 s64 hierarchal_quota; 188 u64 runtime_expires; 189 190 int idle, timer_active; 191 struct hrtimer period_timer, slack_timer; 192 struct list_head throttled_cfs_rq; 193 194 /* statistics */ 195 int nr_periods, nr_throttled; 196 u64 throttled_time; 197 #endif 198 }; 199 200 /* task group related information */ 201 struct task_group { 202 struct cgroup_subsys_state css; 203 204 #ifdef CONFIG_FAIR_GROUP_SCHED 205 /* schedulable entities of this group on each cpu */ 206 struct sched_entity **se; 207 /* runqueue "owned" by this group on each cpu */ 208 struct cfs_rq **cfs_rq; 209 unsigned long shares; 210 211 #ifdef CONFIG_SMP 212 atomic_long_t load_avg; 213 atomic_t runnable_avg; 214 #endif 215 #endif 216 217 #ifdef CONFIG_RT_GROUP_SCHED 218 struct sched_rt_entity **rt_se; 219 struct rt_rq **rt_rq; 220 221 struct rt_bandwidth rt_bandwidth; 222 #endif 223 224 struct rcu_head rcu; 225 struct list_head list; 226 227 struct task_group *parent; 228 struct list_head siblings; 229 struct list_head children; 230 231 #ifdef CONFIG_SCHED_AUTOGROUP 232 struct autogroup *autogroup; 233 #endif 234 235 struct cfs_bandwidth cfs_bandwidth; 236 }; 237 238 #ifdef CONFIG_FAIR_GROUP_SCHED 239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 240 241 /* 242 * A weight of 0 or 1 can cause arithmetics problems. 243 * A weight of a cfs_rq is the sum of weights of which entities 244 * are queued on this cfs_rq, so a weight of a entity should not be 245 * too large, so as the shares value of a task group. 246 * (The default weight is 1024 - so there's no practical 247 * limitation from this.) 248 */ 249 #define MIN_SHARES (1UL << 1) 250 #define MAX_SHARES (1UL << 18) 251 #endif 252 253 typedef int (*tg_visitor)(struct task_group *, void *); 254 255 extern int walk_tg_tree_from(struct task_group *from, 256 tg_visitor down, tg_visitor up, void *data); 257 258 /* 259 * Iterate the full tree, calling @down when first entering a node and @up when 260 * leaving it for the final time. 261 * 262 * Caller must hold rcu_lock or sufficient equivalent. 263 */ 264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 265 { 266 return walk_tg_tree_from(&root_task_group, down, up, data); 267 } 268 269 extern int tg_nop(struct task_group *tg, void *data); 270 271 extern void free_fair_sched_group(struct task_group *tg); 272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 275 struct sched_entity *se, int cpu, 276 struct sched_entity *parent); 277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 279 280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); 282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 283 284 extern void free_rt_sched_group(struct task_group *tg); 285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 287 struct sched_rt_entity *rt_se, int cpu, 288 struct sched_rt_entity *parent); 289 290 extern struct task_group *sched_create_group(struct task_group *parent); 291 extern void sched_online_group(struct task_group *tg, 292 struct task_group *parent); 293 extern void sched_destroy_group(struct task_group *tg); 294 extern void sched_offline_group(struct task_group *tg); 295 296 extern void sched_move_task(struct task_struct *tsk); 297 298 #ifdef CONFIG_FAIR_GROUP_SCHED 299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 300 #endif 301 302 #else /* CONFIG_CGROUP_SCHED */ 303 304 struct cfs_bandwidth { }; 305 306 #endif /* CONFIG_CGROUP_SCHED */ 307 308 /* CFS-related fields in a runqueue */ 309 struct cfs_rq { 310 struct load_weight load; 311 unsigned int nr_running, h_nr_running; 312 313 u64 exec_clock; 314 u64 min_vruntime; 315 #ifndef CONFIG_64BIT 316 u64 min_vruntime_copy; 317 #endif 318 319 struct rb_root tasks_timeline; 320 struct rb_node *rb_leftmost; 321 322 /* 323 * 'curr' points to currently running entity on this cfs_rq. 324 * It is set to NULL otherwise (i.e when none are currently running). 325 */ 326 struct sched_entity *curr, *next, *last, *skip; 327 328 #ifdef CONFIG_SCHED_DEBUG 329 unsigned int nr_spread_over; 330 #endif 331 332 #ifdef CONFIG_SMP 333 /* 334 * CFS Load tracking 335 * Under CFS, load is tracked on a per-entity basis and aggregated up. 336 * This allows for the description of both thread and group usage (in 337 * the FAIR_GROUP_SCHED case). 338 */ 339 unsigned long runnable_load_avg, blocked_load_avg; 340 atomic64_t decay_counter; 341 u64 last_decay; 342 atomic_long_t removed_load; 343 344 #ifdef CONFIG_FAIR_GROUP_SCHED 345 /* Required to track per-cpu representation of a task_group */ 346 u32 tg_runnable_contrib; 347 unsigned long tg_load_contrib; 348 349 /* 350 * h_load = weight * f(tg) 351 * 352 * Where f(tg) is the recursive weight fraction assigned to 353 * this group. 354 */ 355 unsigned long h_load; 356 u64 last_h_load_update; 357 struct sched_entity *h_load_next; 358 #endif /* CONFIG_FAIR_GROUP_SCHED */ 359 #endif /* CONFIG_SMP */ 360 361 #ifdef CONFIG_FAIR_GROUP_SCHED 362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 363 364 /* 365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 367 * (like users, containers etc.) 368 * 369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 370 * list is used during load balance. 371 */ 372 int on_list; 373 struct list_head leaf_cfs_rq_list; 374 struct task_group *tg; /* group that "owns" this runqueue */ 375 376 #ifdef CONFIG_CFS_BANDWIDTH 377 int runtime_enabled; 378 u64 runtime_expires; 379 s64 runtime_remaining; 380 381 u64 throttled_clock, throttled_clock_task; 382 u64 throttled_clock_task_time; 383 int throttled, throttle_count; 384 struct list_head throttled_list; 385 #endif /* CONFIG_CFS_BANDWIDTH */ 386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 387 }; 388 389 static inline int rt_bandwidth_enabled(void) 390 { 391 return sysctl_sched_rt_runtime >= 0; 392 } 393 394 /* Real-Time classes' related field in a runqueue: */ 395 struct rt_rq { 396 struct rt_prio_array active; 397 unsigned int rt_nr_running; 398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 399 struct { 400 int curr; /* highest queued rt task prio */ 401 #ifdef CONFIG_SMP 402 int next; /* next highest */ 403 #endif 404 } highest_prio; 405 #endif 406 #ifdef CONFIG_SMP 407 unsigned long rt_nr_migratory; 408 unsigned long rt_nr_total; 409 int overloaded; 410 struct plist_head pushable_tasks; 411 #endif 412 int rt_queued; 413 414 int rt_throttled; 415 u64 rt_time; 416 u64 rt_runtime; 417 /* Nests inside the rq lock: */ 418 raw_spinlock_t rt_runtime_lock; 419 420 #ifdef CONFIG_RT_GROUP_SCHED 421 unsigned long rt_nr_boosted; 422 423 struct rq *rq; 424 struct task_group *tg; 425 #endif 426 }; 427 428 /* Deadline class' related fields in a runqueue */ 429 struct dl_rq { 430 /* runqueue is an rbtree, ordered by deadline */ 431 struct rb_root rb_root; 432 struct rb_node *rb_leftmost; 433 434 unsigned long dl_nr_running; 435 436 #ifdef CONFIG_SMP 437 /* 438 * Deadline values of the currently executing and the 439 * earliest ready task on this rq. Caching these facilitates 440 * the decision wether or not a ready but not running task 441 * should migrate somewhere else. 442 */ 443 struct { 444 u64 curr; 445 u64 next; 446 } earliest_dl; 447 448 unsigned long dl_nr_migratory; 449 int overloaded; 450 451 /* 452 * Tasks on this rq that can be pushed away. They are kept in 453 * an rb-tree, ordered by tasks' deadlines, with caching 454 * of the leftmost (earliest deadline) element. 455 */ 456 struct rb_root pushable_dl_tasks_root; 457 struct rb_node *pushable_dl_tasks_leftmost; 458 #else 459 struct dl_bw dl_bw; 460 #endif 461 }; 462 463 #ifdef CONFIG_SMP 464 465 /* 466 * We add the notion of a root-domain which will be used to define per-domain 467 * variables. Each exclusive cpuset essentially defines an island domain by 468 * fully partitioning the member cpus from any other cpuset. Whenever a new 469 * exclusive cpuset is created, we also create and attach a new root-domain 470 * object. 471 * 472 */ 473 struct root_domain { 474 atomic_t refcount; 475 atomic_t rto_count; 476 struct rcu_head rcu; 477 cpumask_var_t span; 478 cpumask_var_t online; 479 480 /* 481 * The bit corresponding to a CPU gets set here if such CPU has more 482 * than one runnable -deadline task (as it is below for RT tasks). 483 */ 484 cpumask_var_t dlo_mask; 485 atomic_t dlo_count; 486 struct dl_bw dl_bw; 487 struct cpudl cpudl; 488 489 /* 490 * The "RT overload" flag: it gets set if a CPU has more than 491 * one runnable RT task. 492 */ 493 cpumask_var_t rto_mask; 494 struct cpupri cpupri; 495 }; 496 497 extern struct root_domain def_root_domain; 498 499 #endif /* CONFIG_SMP */ 500 501 /* 502 * This is the main, per-CPU runqueue data structure. 503 * 504 * Locking rule: those places that want to lock multiple runqueues 505 * (such as the load balancing or the thread migration code), lock 506 * acquire operations must be ordered by ascending &runqueue. 507 */ 508 struct rq { 509 /* runqueue lock: */ 510 raw_spinlock_t lock; 511 512 /* 513 * nr_running and cpu_load should be in the same cacheline because 514 * remote CPUs use both these fields when doing load calculation. 515 */ 516 unsigned int nr_running; 517 #ifdef CONFIG_NUMA_BALANCING 518 unsigned int nr_numa_running; 519 unsigned int nr_preferred_running; 520 #endif 521 #define CPU_LOAD_IDX_MAX 5 522 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 523 unsigned long last_load_update_tick; 524 #ifdef CONFIG_NO_HZ_COMMON 525 u64 nohz_stamp; 526 unsigned long nohz_flags; 527 #endif 528 #ifdef CONFIG_NO_HZ_FULL 529 unsigned long last_sched_tick; 530 #endif 531 int skip_clock_update; 532 533 /* capture load from *all* tasks on this cpu: */ 534 struct load_weight load; 535 unsigned long nr_load_updates; 536 u64 nr_switches; 537 538 struct cfs_rq cfs; 539 struct rt_rq rt; 540 struct dl_rq dl; 541 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 /* list of leaf cfs_rq on this cpu: */ 544 struct list_head leaf_cfs_rq_list; 545 546 struct sched_avg avg; 547 #endif /* CONFIG_FAIR_GROUP_SCHED */ 548 549 /* 550 * This is part of a global counter where only the total sum 551 * over all CPUs matters. A task can increase this counter on 552 * one CPU and if it got migrated afterwards it may decrease 553 * it on another CPU. Always updated under the runqueue lock: 554 */ 555 unsigned long nr_uninterruptible; 556 557 struct task_struct *curr, *idle, *stop; 558 unsigned long next_balance; 559 struct mm_struct *prev_mm; 560 561 u64 clock; 562 u64 clock_task; 563 564 atomic_t nr_iowait; 565 566 #ifdef CONFIG_SMP 567 struct root_domain *rd; 568 struct sched_domain *sd; 569 570 unsigned long cpu_capacity; 571 572 unsigned char idle_balance; 573 /* For active balancing */ 574 int post_schedule; 575 int active_balance; 576 int push_cpu; 577 struct cpu_stop_work active_balance_work; 578 /* cpu of this runqueue: */ 579 int cpu; 580 int online; 581 582 struct list_head cfs_tasks; 583 584 u64 rt_avg; 585 u64 age_stamp; 586 u64 idle_stamp; 587 u64 avg_idle; 588 589 /* This is used to determine avg_idle's max value */ 590 u64 max_idle_balance_cost; 591 #endif 592 593 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 594 u64 prev_irq_time; 595 #endif 596 #ifdef CONFIG_PARAVIRT 597 u64 prev_steal_time; 598 #endif 599 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 600 u64 prev_steal_time_rq; 601 #endif 602 603 /* calc_load related fields */ 604 unsigned long calc_load_update; 605 long calc_load_active; 606 607 #ifdef CONFIG_SCHED_HRTICK 608 #ifdef CONFIG_SMP 609 int hrtick_csd_pending; 610 struct call_single_data hrtick_csd; 611 #endif 612 struct hrtimer hrtick_timer; 613 #endif 614 615 #ifdef CONFIG_SCHEDSTATS 616 /* latency stats */ 617 struct sched_info rq_sched_info; 618 unsigned long long rq_cpu_time; 619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 620 621 /* sys_sched_yield() stats */ 622 unsigned int yld_count; 623 624 /* schedule() stats */ 625 unsigned int sched_count; 626 unsigned int sched_goidle; 627 628 /* try_to_wake_up() stats */ 629 unsigned int ttwu_count; 630 unsigned int ttwu_local; 631 #endif 632 633 #ifdef CONFIG_SMP 634 struct llist_head wake_list; 635 #endif 636 }; 637 638 static inline int cpu_of(struct rq *rq) 639 { 640 #ifdef CONFIG_SMP 641 return rq->cpu; 642 #else 643 return 0; 644 #endif 645 } 646 647 DECLARE_PER_CPU(struct rq, runqueues); 648 649 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 650 #define this_rq() (&__get_cpu_var(runqueues)) 651 #define task_rq(p) cpu_rq(task_cpu(p)) 652 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 653 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 654 655 static inline u64 rq_clock(struct rq *rq) 656 { 657 return rq->clock; 658 } 659 660 static inline u64 rq_clock_task(struct rq *rq) 661 { 662 return rq->clock_task; 663 } 664 665 #ifdef CONFIG_NUMA_BALANCING 666 extern void sched_setnuma(struct task_struct *p, int node); 667 extern int migrate_task_to(struct task_struct *p, int cpu); 668 extern int migrate_swap(struct task_struct *, struct task_struct *); 669 #endif /* CONFIG_NUMA_BALANCING */ 670 671 #ifdef CONFIG_SMP 672 673 extern void sched_ttwu_pending(void); 674 675 #define rcu_dereference_check_sched_domain(p) \ 676 rcu_dereference_check((p), \ 677 lockdep_is_held(&sched_domains_mutex)) 678 679 /* 680 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 681 * See detach_destroy_domains: synchronize_sched for details. 682 * 683 * The domain tree of any CPU may only be accessed from within 684 * preempt-disabled sections. 685 */ 686 #define for_each_domain(cpu, __sd) \ 687 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 688 __sd; __sd = __sd->parent) 689 690 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 691 692 /** 693 * highest_flag_domain - Return highest sched_domain containing flag. 694 * @cpu: The cpu whose highest level of sched domain is to 695 * be returned. 696 * @flag: The flag to check for the highest sched_domain 697 * for the given cpu. 698 * 699 * Returns the highest sched_domain of a cpu which contains the given flag. 700 */ 701 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 702 { 703 struct sched_domain *sd, *hsd = NULL; 704 705 for_each_domain(cpu, sd) { 706 if (!(sd->flags & flag)) 707 break; 708 hsd = sd; 709 } 710 711 return hsd; 712 } 713 714 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 715 { 716 struct sched_domain *sd; 717 718 for_each_domain(cpu, sd) { 719 if (sd->flags & flag) 720 break; 721 } 722 723 return sd; 724 } 725 726 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 727 DECLARE_PER_CPU(int, sd_llc_size); 728 DECLARE_PER_CPU(int, sd_llc_id); 729 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 730 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 731 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 732 733 struct sched_group_capacity { 734 atomic_t ref; 735 /* 736 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 737 * for a single CPU. 738 */ 739 unsigned int capacity, capacity_orig; 740 unsigned long next_update; 741 int imbalance; /* XXX unrelated to capacity but shared group state */ 742 /* 743 * Number of busy cpus in this group. 744 */ 745 atomic_t nr_busy_cpus; 746 747 unsigned long cpumask[0]; /* iteration mask */ 748 }; 749 750 struct sched_group { 751 struct sched_group *next; /* Must be a circular list */ 752 atomic_t ref; 753 754 unsigned int group_weight; 755 struct sched_group_capacity *sgc; 756 757 /* 758 * The CPUs this group covers. 759 * 760 * NOTE: this field is variable length. (Allocated dynamically 761 * by attaching extra space to the end of the structure, 762 * depending on how many CPUs the kernel has booted up with) 763 */ 764 unsigned long cpumask[0]; 765 }; 766 767 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 768 { 769 return to_cpumask(sg->cpumask); 770 } 771 772 /* 773 * cpumask masking which cpus in the group are allowed to iterate up the domain 774 * tree. 775 */ 776 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 777 { 778 return to_cpumask(sg->sgc->cpumask); 779 } 780 781 /** 782 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 783 * @group: The group whose first cpu is to be returned. 784 */ 785 static inline unsigned int group_first_cpu(struct sched_group *group) 786 { 787 return cpumask_first(sched_group_cpus(group)); 788 } 789 790 extern int group_balance_cpu(struct sched_group *sg); 791 792 #else 793 794 static inline void sched_ttwu_pending(void) { } 795 796 #endif /* CONFIG_SMP */ 797 798 #include "stats.h" 799 #include "auto_group.h" 800 801 #ifdef CONFIG_CGROUP_SCHED 802 803 /* 804 * Return the group to which this tasks belongs. 805 * 806 * We cannot use task_css() and friends because the cgroup subsystem 807 * changes that value before the cgroup_subsys::attach() method is called, 808 * therefore we cannot pin it and might observe the wrong value. 809 * 810 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 811 * core changes this before calling sched_move_task(). 812 * 813 * Instead we use a 'copy' which is updated from sched_move_task() while 814 * holding both task_struct::pi_lock and rq::lock. 815 */ 816 static inline struct task_group *task_group(struct task_struct *p) 817 { 818 return p->sched_task_group; 819 } 820 821 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 822 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 823 { 824 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 825 struct task_group *tg = task_group(p); 826 #endif 827 828 #ifdef CONFIG_FAIR_GROUP_SCHED 829 p->se.cfs_rq = tg->cfs_rq[cpu]; 830 p->se.parent = tg->se[cpu]; 831 #endif 832 833 #ifdef CONFIG_RT_GROUP_SCHED 834 p->rt.rt_rq = tg->rt_rq[cpu]; 835 p->rt.parent = tg->rt_se[cpu]; 836 #endif 837 } 838 839 #else /* CONFIG_CGROUP_SCHED */ 840 841 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 842 static inline struct task_group *task_group(struct task_struct *p) 843 { 844 return NULL; 845 } 846 847 #endif /* CONFIG_CGROUP_SCHED */ 848 849 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 850 { 851 set_task_rq(p, cpu); 852 #ifdef CONFIG_SMP 853 /* 854 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 855 * successfuly executed on another CPU. We must ensure that updates of 856 * per-task data have been completed by this moment. 857 */ 858 smp_wmb(); 859 task_thread_info(p)->cpu = cpu; 860 p->wake_cpu = cpu; 861 #endif 862 } 863 864 /* 865 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 866 */ 867 #ifdef CONFIG_SCHED_DEBUG 868 # include <linux/static_key.h> 869 # define const_debug __read_mostly 870 #else 871 # define const_debug const 872 #endif 873 874 extern const_debug unsigned int sysctl_sched_features; 875 876 #define SCHED_FEAT(name, enabled) \ 877 __SCHED_FEAT_##name , 878 879 enum { 880 #include "features.h" 881 __SCHED_FEAT_NR, 882 }; 883 884 #undef SCHED_FEAT 885 886 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 887 static __always_inline bool static_branch__true(struct static_key *key) 888 { 889 return static_key_true(key); /* Not out of line branch. */ 890 } 891 892 static __always_inline bool static_branch__false(struct static_key *key) 893 { 894 return static_key_false(key); /* Out of line branch. */ 895 } 896 897 #define SCHED_FEAT(name, enabled) \ 898 static __always_inline bool static_branch_##name(struct static_key *key) \ 899 { \ 900 return static_branch__##enabled(key); \ 901 } 902 903 #include "features.h" 904 905 #undef SCHED_FEAT 906 907 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 908 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 909 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 910 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 911 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 912 913 #ifdef CONFIG_NUMA_BALANCING 914 #define sched_feat_numa(x) sched_feat(x) 915 #ifdef CONFIG_SCHED_DEBUG 916 #define numabalancing_enabled sched_feat_numa(NUMA) 917 #else 918 extern bool numabalancing_enabled; 919 #endif /* CONFIG_SCHED_DEBUG */ 920 #else 921 #define sched_feat_numa(x) (0) 922 #define numabalancing_enabled (0) 923 #endif /* CONFIG_NUMA_BALANCING */ 924 925 static inline u64 global_rt_period(void) 926 { 927 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 928 } 929 930 static inline u64 global_rt_runtime(void) 931 { 932 if (sysctl_sched_rt_runtime < 0) 933 return RUNTIME_INF; 934 935 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 936 } 937 938 static inline int task_current(struct rq *rq, struct task_struct *p) 939 { 940 return rq->curr == p; 941 } 942 943 static inline int task_running(struct rq *rq, struct task_struct *p) 944 { 945 #ifdef CONFIG_SMP 946 return p->on_cpu; 947 #else 948 return task_current(rq, p); 949 #endif 950 } 951 952 953 #ifndef prepare_arch_switch 954 # define prepare_arch_switch(next) do { } while (0) 955 #endif 956 #ifndef finish_arch_switch 957 # define finish_arch_switch(prev) do { } while (0) 958 #endif 959 #ifndef finish_arch_post_lock_switch 960 # define finish_arch_post_lock_switch() do { } while (0) 961 #endif 962 963 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 964 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 965 { 966 #ifdef CONFIG_SMP 967 /* 968 * We can optimise this out completely for !SMP, because the 969 * SMP rebalancing from interrupt is the only thing that cares 970 * here. 971 */ 972 next->on_cpu = 1; 973 #endif 974 } 975 976 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 977 { 978 #ifdef CONFIG_SMP 979 /* 980 * After ->on_cpu is cleared, the task can be moved to a different CPU. 981 * We must ensure this doesn't happen until the switch is completely 982 * finished. 983 */ 984 smp_wmb(); 985 prev->on_cpu = 0; 986 #endif 987 #ifdef CONFIG_DEBUG_SPINLOCK 988 /* this is a valid case when another task releases the spinlock */ 989 rq->lock.owner = current; 990 #endif 991 /* 992 * If we are tracking spinlock dependencies then we have to 993 * fix up the runqueue lock - which gets 'carried over' from 994 * prev into current: 995 */ 996 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 997 998 raw_spin_unlock_irq(&rq->lock); 999 } 1000 1001 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1003 { 1004 #ifdef CONFIG_SMP 1005 /* 1006 * We can optimise this out completely for !SMP, because the 1007 * SMP rebalancing from interrupt is the only thing that cares 1008 * here. 1009 */ 1010 next->on_cpu = 1; 1011 #endif 1012 raw_spin_unlock(&rq->lock); 1013 } 1014 1015 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1016 { 1017 #ifdef CONFIG_SMP 1018 /* 1019 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1020 * We must ensure this doesn't happen until the switch is completely 1021 * finished. 1022 */ 1023 smp_wmb(); 1024 prev->on_cpu = 0; 1025 #endif 1026 local_irq_enable(); 1027 } 1028 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 1029 1030 /* 1031 * wake flags 1032 */ 1033 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1034 #define WF_FORK 0x02 /* child wakeup after fork */ 1035 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1036 1037 /* 1038 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1039 * of tasks with abnormal "nice" values across CPUs the contribution that 1040 * each task makes to its run queue's load is weighted according to its 1041 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1042 * scaled version of the new time slice allocation that they receive on time 1043 * slice expiry etc. 1044 */ 1045 1046 #define WEIGHT_IDLEPRIO 3 1047 #define WMULT_IDLEPRIO 1431655765 1048 1049 /* 1050 * Nice levels are multiplicative, with a gentle 10% change for every 1051 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1052 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1053 * that remained on nice 0. 1054 * 1055 * The "10% effect" is relative and cumulative: from _any_ nice level, 1056 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1057 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1058 * If a task goes up by ~10% and another task goes down by ~10% then 1059 * the relative distance between them is ~25%.) 1060 */ 1061 static const int prio_to_weight[40] = { 1062 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1063 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1064 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1065 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1066 /* 0 */ 1024, 820, 655, 526, 423, 1067 /* 5 */ 335, 272, 215, 172, 137, 1068 /* 10 */ 110, 87, 70, 56, 45, 1069 /* 15 */ 36, 29, 23, 18, 15, 1070 }; 1071 1072 /* 1073 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1074 * 1075 * In cases where the weight does not change often, we can use the 1076 * precalculated inverse to speed up arithmetics by turning divisions 1077 * into multiplications: 1078 */ 1079 static const u32 prio_to_wmult[40] = { 1080 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1081 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1082 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1083 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1084 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1085 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1086 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1087 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1088 }; 1089 1090 #define ENQUEUE_WAKEUP 1 1091 #define ENQUEUE_HEAD 2 1092 #ifdef CONFIG_SMP 1093 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1094 #else 1095 #define ENQUEUE_WAKING 0 1096 #endif 1097 #define ENQUEUE_REPLENISH 8 1098 1099 #define DEQUEUE_SLEEP 1 1100 1101 #define RETRY_TASK ((void *)-1UL) 1102 1103 struct sched_class { 1104 const struct sched_class *next; 1105 1106 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1107 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1108 void (*yield_task) (struct rq *rq); 1109 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1110 1111 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1112 1113 /* 1114 * It is the responsibility of the pick_next_task() method that will 1115 * return the next task to call put_prev_task() on the @prev task or 1116 * something equivalent. 1117 * 1118 * May return RETRY_TASK when it finds a higher prio class has runnable 1119 * tasks. 1120 */ 1121 struct task_struct * (*pick_next_task) (struct rq *rq, 1122 struct task_struct *prev); 1123 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1124 1125 #ifdef CONFIG_SMP 1126 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1127 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1128 1129 void (*post_schedule) (struct rq *this_rq); 1130 void (*task_waking) (struct task_struct *task); 1131 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1132 1133 void (*set_cpus_allowed)(struct task_struct *p, 1134 const struct cpumask *newmask); 1135 1136 void (*rq_online)(struct rq *rq); 1137 void (*rq_offline)(struct rq *rq); 1138 #endif 1139 1140 void (*set_curr_task) (struct rq *rq); 1141 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1142 void (*task_fork) (struct task_struct *p); 1143 void (*task_dead) (struct task_struct *p); 1144 1145 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1146 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1147 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1148 int oldprio); 1149 1150 unsigned int (*get_rr_interval) (struct rq *rq, 1151 struct task_struct *task); 1152 1153 #ifdef CONFIG_FAIR_GROUP_SCHED 1154 void (*task_move_group) (struct task_struct *p, int on_rq); 1155 #endif 1156 }; 1157 1158 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1159 { 1160 prev->sched_class->put_prev_task(rq, prev); 1161 } 1162 1163 #define sched_class_highest (&stop_sched_class) 1164 #define for_each_class(class) \ 1165 for (class = sched_class_highest; class; class = class->next) 1166 1167 extern const struct sched_class stop_sched_class; 1168 extern const struct sched_class dl_sched_class; 1169 extern const struct sched_class rt_sched_class; 1170 extern const struct sched_class fair_sched_class; 1171 extern const struct sched_class idle_sched_class; 1172 1173 1174 #ifdef CONFIG_SMP 1175 1176 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1177 1178 extern void trigger_load_balance(struct rq *rq); 1179 1180 extern void idle_enter_fair(struct rq *this_rq); 1181 extern void idle_exit_fair(struct rq *this_rq); 1182 1183 #else 1184 1185 static inline void idle_enter_fair(struct rq *rq) { } 1186 static inline void idle_exit_fair(struct rq *rq) { } 1187 1188 #endif 1189 1190 extern void sysrq_sched_debug_show(void); 1191 extern void sched_init_granularity(void); 1192 extern void update_max_interval(void); 1193 1194 extern void init_sched_dl_class(void); 1195 extern void init_sched_rt_class(void); 1196 extern void init_sched_fair_class(void); 1197 extern void init_sched_dl_class(void); 1198 1199 extern void resched_task(struct task_struct *p); 1200 extern void resched_cpu(int cpu); 1201 1202 extern struct rt_bandwidth def_rt_bandwidth; 1203 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1204 1205 extern struct dl_bandwidth def_dl_bandwidth; 1206 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1207 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1208 1209 unsigned long to_ratio(u64 period, u64 runtime); 1210 1211 extern void update_idle_cpu_load(struct rq *this_rq); 1212 1213 extern void init_task_runnable_average(struct task_struct *p); 1214 1215 static inline void add_nr_running(struct rq *rq, unsigned count) 1216 { 1217 unsigned prev_nr = rq->nr_running; 1218 1219 rq->nr_running = prev_nr + count; 1220 1221 #ifdef CONFIG_NO_HZ_FULL 1222 if (prev_nr < 2 && rq->nr_running >= 2) { 1223 if (tick_nohz_full_cpu(rq->cpu)) { 1224 /* Order rq->nr_running write against the IPI */ 1225 smp_wmb(); 1226 smp_send_reschedule(rq->cpu); 1227 } 1228 } 1229 #endif 1230 } 1231 1232 static inline void sub_nr_running(struct rq *rq, unsigned count) 1233 { 1234 rq->nr_running -= count; 1235 } 1236 1237 static inline void rq_last_tick_reset(struct rq *rq) 1238 { 1239 #ifdef CONFIG_NO_HZ_FULL 1240 rq->last_sched_tick = jiffies; 1241 #endif 1242 } 1243 1244 extern void update_rq_clock(struct rq *rq); 1245 1246 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1247 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1248 1249 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1250 1251 extern const_debug unsigned int sysctl_sched_time_avg; 1252 extern const_debug unsigned int sysctl_sched_nr_migrate; 1253 extern const_debug unsigned int sysctl_sched_migration_cost; 1254 1255 static inline u64 sched_avg_period(void) 1256 { 1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1258 } 1259 1260 #ifdef CONFIG_SCHED_HRTICK 1261 1262 /* 1263 * Use hrtick when: 1264 * - enabled by features 1265 * - hrtimer is actually high res 1266 */ 1267 static inline int hrtick_enabled(struct rq *rq) 1268 { 1269 if (!sched_feat(HRTICK)) 1270 return 0; 1271 if (!cpu_active(cpu_of(rq))) 1272 return 0; 1273 return hrtimer_is_hres_active(&rq->hrtick_timer); 1274 } 1275 1276 void hrtick_start(struct rq *rq, u64 delay); 1277 1278 #else 1279 1280 static inline int hrtick_enabled(struct rq *rq) 1281 { 1282 return 0; 1283 } 1284 1285 #endif /* CONFIG_SCHED_HRTICK */ 1286 1287 #ifdef CONFIG_SMP 1288 extern void sched_avg_update(struct rq *rq); 1289 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1290 { 1291 rq->rt_avg += rt_delta; 1292 sched_avg_update(rq); 1293 } 1294 #else 1295 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1296 static inline void sched_avg_update(struct rq *rq) { } 1297 #endif 1298 1299 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1300 1301 #ifdef CONFIG_SMP 1302 #ifdef CONFIG_PREEMPT 1303 1304 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1305 1306 /* 1307 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1308 * way at the expense of forcing extra atomic operations in all 1309 * invocations. This assures that the double_lock is acquired using the 1310 * same underlying policy as the spinlock_t on this architecture, which 1311 * reduces latency compared to the unfair variant below. However, it 1312 * also adds more overhead and therefore may reduce throughput. 1313 */ 1314 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1315 __releases(this_rq->lock) 1316 __acquires(busiest->lock) 1317 __acquires(this_rq->lock) 1318 { 1319 raw_spin_unlock(&this_rq->lock); 1320 double_rq_lock(this_rq, busiest); 1321 1322 return 1; 1323 } 1324 1325 #else 1326 /* 1327 * Unfair double_lock_balance: Optimizes throughput at the expense of 1328 * latency by eliminating extra atomic operations when the locks are 1329 * already in proper order on entry. This favors lower cpu-ids and will 1330 * grant the double lock to lower cpus over higher ids under contention, 1331 * regardless of entry order into the function. 1332 */ 1333 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1334 __releases(this_rq->lock) 1335 __acquires(busiest->lock) 1336 __acquires(this_rq->lock) 1337 { 1338 int ret = 0; 1339 1340 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1341 if (busiest < this_rq) { 1342 raw_spin_unlock(&this_rq->lock); 1343 raw_spin_lock(&busiest->lock); 1344 raw_spin_lock_nested(&this_rq->lock, 1345 SINGLE_DEPTH_NESTING); 1346 ret = 1; 1347 } else 1348 raw_spin_lock_nested(&busiest->lock, 1349 SINGLE_DEPTH_NESTING); 1350 } 1351 return ret; 1352 } 1353 1354 #endif /* CONFIG_PREEMPT */ 1355 1356 /* 1357 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1358 */ 1359 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1360 { 1361 if (unlikely(!irqs_disabled())) { 1362 /* printk() doesn't work good under rq->lock */ 1363 raw_spin_unlock(&this_rq->lock); 1364 BUG_ON(1); 1365 } 1366 1367 return _double_lock_balance(this_rq, busiest); 1368 } 1369 1370 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1371 __releases(busiest->lock) 1372 { 1373 raw_spin_unlock(&busiest->lock); 1374 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1375 } 1376 1377 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1378 { 1379 if (l1 > l2) 1380 swap(l1, l2); 1381 1382 spin_lock(l1); 1383 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1384 } 1385 1386 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1387 { 1388 if (l1 > l2) 1389 swap(l1, l2); 1390 1391 spin_lock_irq(l1); 1392 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1393 } 1394 1395 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1396 { 1397 if (l1 > l2) 1398 swap(l1, l2); 1399 1400 raw_spin_lock(l1); 1401 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1402 } 1403 1404 /* 1405 * double_rq_lock - safely lock two runqueues 1406 * 1407 * Note this does not disable interrupts like task_rq_lock, 1408 * you need to do so manually before calling. 1409 */ 1410 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1411 __acquires(rq1->lock) 1412 __acquires(rq2->lock) 1413 { 1414 BUG_ON(!irqs_disabled()); 1415 if (rq1 == rq2) { 1416 raw_spin_lock(&rq1->lock); 1417 __acquire(rq2->lock); /* Fake it out ;) */ 1418 } else { 1419 if (rq1 < rq2) { 1420 raw_spin_lock(&rq1->lock); 1421 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1422 } else { 1423 raw_spin_lock(&rq2->lock); 1424 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1425 } 1426 } 1427 } 1428 1429 /* 1430 * double_rq_unlock - safely unlock two runqueues 1431 * 1432 * Note this does not restore interrupts like task_rq_unlock, 1433 * you need to do so manually after calling. 1434 */ 1435 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1436 __releases(rq1->lock) 1437 __releases(rq2->lock) 1438 { 1439 raw_spin_unlock(&rq1->lock); 1440 if (rq1 != rq2) 1441 raw_spin_unlock(&rq2->lock); 1442 else 1443 __release(rq2->lock); 1444 } 1445 1446 #else /* CONFIG_SMP */ 1447 1448 /* 1449 * double_rq_lock - safely lock two runqueues 1450 * 1451 * Note this does not disable interrupts like task_rq_lock, 1452 * you need to do so manually before calling. 1453 */ 1454 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1455 __acquires(rq1->lock) 1456 __acquires(rq2->lock) 1457 { 1458 BUG_ON(!irqs_disabled()); 1459 BUG_ON(rq1 != rq2); 1460 raw_spin_lock(&rq1->lock); 1461 __acquire(rq2->lock); /* Fake it out ;) */ 1462 } 1463 1464 /* 1465 * double_rq_unlock - safely unlock two runqueues 1466 * 1467 * Note this does not restore interrupts like task_rq_unlock, 1468 * you need to do so manually after calling. 1469 */ 1470 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1471 __releases(rq1->lock) 1472 __releases(rq2->lock) 1473 { 1474 BUG_ON(rq1 != rq2); 1475 raw_spin_unlock(&rq1->lock); 1476 __release(rq2->lock); 1477 } 1478 1479 #endif 1480 1481 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1482 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1483 extern void print_cfs_stats(struct seq_file *m, int cpu); 1484 extern void print_rt_stats(struct seq_file *m, int cpu); 1485 1486 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1487 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1488 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1489 1490 extern void cfs_bandwidth_usage_inc(void); 1491 extern void cfs_bandwidth_usage_dec(void); 1492 1493 #ifdef CONFIG_NO_HZ_COMMON 1494 enum rq_nohz_flag_bits { 1495 NOHZ_TICK_STOPPED, 1496 NOHZ_BALANCE_KICK, 1497 }; 1498 1499 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1500 #endif 1501 1502 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1503 1504 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1505 DECLARE_PER_CPU(u64, cpu_softirq_time); 1506 1507 #ifndef CONFIG_64BIT 1508 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1509 1510 static inline void irq_time_write_begin(void) 1511 { 1512 __this_cpu_inc(irq_time_seq.sequence); 1513 smp_wmb(); 1514 } 1515 1516 static inline void irq_time_write_end(void) 1517 { 1518 smp_wmb(); 1519 __this_cpu_inc(irq_time_seq.sequence); 1520 } 1521 1522 static inline u64 irq_time_read(int cpu) 1523 { 1524 u64 irq_time; 1525 unsigned seq; 1526 1527 do { 1528 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1529 irq_time = per_cpu(cpu_softirq_time, cpu) + 1530 per_cpu(cpu_hardirq_time, cpu); 1531 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1532 1533 return irq_time; 1534 } 1535 #else /* CONFIG_64BIT */ 1536 static inline void irq_time_write_begin(void) 1537 { 1538 } 1539 1540 static inline void irq_time_write_end(void) 1541 { 1542 } 1543 1544 static inline u64 irq_time_read(int cpu) 1545 { 1546 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1547 } 1548 #endif /* CONFIG_64BIT */ 1549 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1550