xref: /openbmc/linux/kernel/sched/sched.h (revision d07f09a1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 struct rq;
101 struct cpuidle_state;
102 
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED	1
105 #define TASK_ON_RQ_MIGRATING	2
106 
107 extern __read_mostly int scheduler_running;
108 
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111 
112 extern unsigned int sysctl_sched_child_runs_first;
113 
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116 
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118 
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122 
123 /*
124  * Helpers for converting nanosecond timing to jiffy resolution
125  */
126 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127 
128 /*
129  * Increase resolution of nice-level calculations for 64-bit architectures.
130  * The extra resolution improves shares distribution and load balancing of
131  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132  * hierarchies, especially on larger systems. This is not a user-visible change
133  * and does not change the user-interface for setting shares/weights.
134  *
135  * We increase resolution only if we have enough bits to allow this increased
136  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137  * are pretty high and the returns do not justify the increased costs.
138  *
139  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140  * increase coverage and consistency always enable it on 64-bit platforms.
141  */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 	unsigned long __w = (w); \
148 	if (__w) \
149 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 	__w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w)		(w)
155 # define scale_load_down(w)	(w)
156 #endif
157 
158 /*
159  * Task weight (visible to users) and its load (invisible to users) have
160  * independent resolution, but they should be well calibrated. We use
161  * scale_load() and scale_load_down(w) to convert between them. The
162  * following must be true:
163  *
164  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165  *
166  */
167 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
168 
169 /*
170  * Single value that decides SCHED_DEADLINE internal math precision.
171  * 10 -> just above 1us
172  * 9  -> just above 0.5us
173  */
174 #define DL_SCALE		10
175 
176 /*
177  * Single value that denotes runtime == period, ie unlimited time.
178  */
179 #define RUNTIME_INF		((u64)~0ULL)
180 
181 static inline int idle_policy(int policy)
182 {
183 	return policy == SCHED_IDLE;
184 }
185 static inline int fair_policy(int policy)
186 {
187 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189 
190 static inline int rt_policy(int policy)
191 {
192 	return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194 
195 static inline int dl_policy(int policy)
196 {
197 	return policy == SCHED_DEADLINE;
198 }
199 static inline bool valid_policy(int policy)
200 {
201 	return idle_policy(policy) || fair_policy(policy) ||
202 		rt_policy(policy) || dl_policy(policy);
203 }
204 
205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 	return idle_policy(p->policy);
208 }
209 
210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 	return rt_policy(p->policy);
213 }
214 
215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 	return dl_policy(p->policy);
218 }
219 
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221 
222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 	s64 diff = sample - *avg;
225 	*avg += diff / 8;
226 }
227 
228 /*
229  * Shifting a value by an exponent greater *or equal* to the size of said value
230  * is UB; cap at size-1.
231  */
232 #define shr_bound(val, shift)							\
233 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234 
235 /*
236  * !! For sched_setattr_nocheck() (kernel) only !!
237  *
238  * This is actually gross. :(
239  *
240  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241  * tasks, but still be able to sleep. We need this on platforms that cannot
242  * atomically change clock frequency. Remove once fast switching will be
243  * available on such platforms.
244  *
245  * SUGOV stands for SchedUtil GOVernor.
246  */
247 #define SCHED_FLAG_SUGOV	0x10000000
248 
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250 
251 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 	return false;
257 #endif
258 }
259 
260 /*
261  * Tells if entity @a should preempt entity @b.
262  */
263 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
264 				     const struct sched_dl_entity *b)
265 {
266 	return dl_entity_is_special(a) ||
267 	       dl_time_before(a->deadline, b->deadline);
268 }
269 
270 /*
271  * This is the priority-queue data structure of the RT scheduling class:
272  */
273 struct rt_prio_array {
274 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 	struct list_head queue[MAX_RT_PRIO];
276 };
277 
278 struct rt_bandwidth {
279 	/* nests inside the rq lock: */
280 	raw_spinlock_t		rt_runtime_lock;
281 	ktime_t			rt_period;
282 	u64			rt_runtime;
283 	struct hrtimer		rt_period_timer;
284 	unsigned int		rt_period_active;
285 };
286 
287 void __dl_clear_params(struct task_struct *p);
288 
289 static inline int dl_bandwidth_enabled(void)
290 {
291 	return sysctl_sched_rt_runtime >= 0;
292 }
293 
294 /*
295  * To keep the bandwidth of -deadline tasks under control
296  * we need some place where:
297  *  - store the maximum -deadline bandwidth of each cpu;
298  *  - cache the fraction of bandwidth that is currently allocated in
299  *    each root domain;
300  *
301  * This is all done in the data structure below. It is similar to the
302  * one used for RT-throttling (rt_bandwidth), with the main difference
303  * that, since here we are only interested in admission control, we
304  * do not decrease any runtime while the group "executes", neither we
305  * need a timer to replenish it.
306  *
307  * With respect to SMP, bandwidth is given on a per root domain basis,
308  * meaning that:
309  *  - bw (< 100%) is the deadline bandwidth of each CPU;
310  *  - total_bw is the currently allocated bandwidth in each root domain;
311  */
312 struct dl_bw {
313 	raw_spinlock_t		lock;
314 	u64			bw;
315 	u64			total_bw;
316 };
317 
318 extern void init_dl_bw(struct dl_bw *dl_b);
319 extern int  sched_dl_global_validate(void);
320 extern void sched_dl_do_global(void);
321 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
322 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
323 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
324 extern bool __checkparam_dl(const struct sched_attr *attr);
325 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
326 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
327 extern int  dl_bw_check_overflow(int cpu);
328 
329 #ifdef CONFIG_CGROUP_SCHED
330 
331 struct cfs_rq;
332 struct rt_rq;
333 
334 extern struct list_head task_groups;
335 
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 	raw_spinlock_t		lock;
339 	ktime_t			period;
340 	u64			quota;
341 	u64			runtime;
342 	u64			burst;
343 	u64			runtime_snap;
344 	s64			hierarchical_quota;
345 
346 	u8			idle;
347 	u8			period_active;
348 	u8			slack_started;
349 	struct hrtimer		period_timer;
350 	struct hrtimer		slack_timer;
351 	struct list_head	throttled_cfs_rq;
352 
353 	/* Statistics: */
354 	int			nr_periods;
355 	int			nr_throttled;
356 	int			nr_burst;
357 	u64			throttled_time;
358 	u64			burst_time;
359 #endif
360 };
361 
362 /* Task group related information */
363 struct task_group {
364 	struct cgroup_subsys_state css;
365 
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 	/* schedulable entities of this group on each CPU */
368 	struct sched_entity	**se;
369 	/* runqueue "owned" by this group on each CPU */
370 	struct cfs_rq		**cfs_rq;
371 	unsigned long		shares;
372 
373 	/* A positive value indicates that this is a SCHED_IDLE group. */
374 	int			idle;
375 
376 #ifdef	CONFIG_SMP
377 	/*
378 	 * load_avg can be heavily contended at clock tick time, so put
379 	 * it in its own cacheline separated from the fields above which
380 	 * will also be accessed at each tick.
381 	 */
382 	atomic_long_t		load_avg ____cacheline_aligned;
383 #endif
384 #endif
385 
386 #ifdef CONFIG_RT_GROUP_SCHED
387 	struct sched_rt_entity	**rt_se;
388 	struct rt_rq		**rt_rq;
389 
390 	struct rt_bandwidth	rt_bandwidth;
391 #endif
392 
393 	struct rcu_head		rcu;
394 	struct list_head	list;
395 
396 	struct task_group	*parent;
397 	struct list_head	siblings;
398 	struct list_head	children;
399 
400 #ifdef CONFIG_SCHED_AUTOGROUP
401 	struct autogroup	*autogroup;
402 #endif
403 
404 	struct cfs_bandwidth	cfs_bandwidth;
405 
406 #ifdef CONFIG_UCLAMP_TASK_GROUP
407 	/* The two decimal precision [%] value requested from user-space */
408 	unsigned int		uclamp_pct[UCLAMP_CNT];
409 	/* Clamp values requested for a task group */
410 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
411 	/* Effective clamp values used for a task group */
412 	struct uclamp_se	uclamp[UCLAMP_CNT];
413 #endif
414 
415 };
416 
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
419 
420 /*
421  * A weight of 0 or 1 can cause arithmetics problems.
422  * A weight of a cfs_rq is the sum of weights of which entities
423  * are queued on this cfs_rq, so a weight of a entity should not be
424  * too large, so as the shares value of a task group.
425  * (The default weight is 1024 - so there's no practical
426  *  limitation from this.)
427  */
428 #define MIN_SHARES		(1UL <<  1)
429 #define MAX_SHARES		(1UL << 18)
430 #endif
431 
432 typedef int (*tg_visitor)(struct task_group *, void *);
433 
434 extern int walk_tg_tree_from(struct task_group *from,
435 			     tg_visitor down, tg_visitor up, void *data);
436 
437 /*
438  * Iterate the full tree, calling @down when first entering a node and @up when
439  * leaving it for the final time.
440  *
441  * Caller must hold rcu_lock or sufficient equivalent.
442  */
443 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444 {
445 	return walk_tg_tree_from(&root_task_group, down, up, data);
446 }
447 
448 extern int tg_nop(struct task_group *tg, void *data);
449 
450 extern void free_fair_sched_group(struct task_group *tg);
451 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
452 extern void online_fair_sched_group(struct task_group *tg);
453 extern void unregister_fair_sched_group(struct task_group *tg);
454 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455 			struct sched_entity *se, int cpu,
456 			struct sched_entity *parent);
457 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
458 
459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
460 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
461 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462 
463 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
464 		struct sched_rt_entity *rt_se, int cpu,
465 		struct sched_rt_entity *parent);
466 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
467 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
468 extern long sched_group_rt_runtime(struct task_group *tg);
469 extern long sched_group_rt_period(struct task_group *tg);
470 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
471 
472 extern struct task_group *sched_create_group(struct task_group *parent);
473 extern void sched_online_group(struct task_group *tg,
474 			       struct task_group *parent);
475 extern void sched_destroy_group(struct task_group *tg);
476 extern void sched_release_group(struct task_group *tg);
477 
478 extern void sched_move_task(struct task_struct *tsk);
479 
480 #ifdef CONFIG_FAIR_GROUP_SCHED
481 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
482 
483 extern int sched_group_set_idle(struct task_group *tg, long idle);
484 
485 #ifdef CONFIG_SMP
486 extern void set_task_rq_fair(struct sched_entity *se,
487 			     struct cfs_rq *prev, struct cfs_rq *next);
488 #else /* !CONFIG_SMP */
489 static inline void set_task_rq_fair(struct sched_entity *se,
490 			     struct cfs_rq *prev, struct cfs_rq *next) { }
491 #endif /* CONFIG_SMP */
492 #endif /* CONFIG_FAIR_GROUP_SCHED */
493 
494 #else /* CONFIG_CGROUP_SCHED */
495 
496 struct cfs_bandwidth { };
497 
498 #endif	/* CONFIG_CGROUP_SCHED */
499 
500 extern void unregister_rt_sched_group(struct task_group *tg);
501 extern void free_rt_sched_group(struct task_group *tg);
502 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
503 
504 /*
505  * u64_u32_load/u64_u32_store
506  *
507  * Use a copy of a u64 value to protect against data race. This is only
508  * applicable for 32-bits architectures.
509  */
510 #ifdef CONFIG_64BIT
511 # define u64_u32_load_copy(var, copy)       var
512 # define u64_u32_store_copy(var, copy, val) (var = val)
513 #else
514 # define u64_u32_load_copy(var, copy)					\
515 ({									\
516 	u64 __val, __val_copy;						\
517 	do {								\
518 		__val_copy = copy;					\
519 		/*							\
520 		 * paired with u64_u32_store_copy(), ordering access	\
521 		 * to var and copy.					\
522 		 */							\
523 		smp_rmb();						\
524 		__val = var;						\
525 	} while (__val != __val_copy);					\
526 	__val;								\
527 })
528 # define u64_u32_store_copy(var, copy, val)				\
529 do {									\
530 	typeof(val) __val = (val);					\
531 	var = __val;							\
532 	/*								\
533 	 * paired with u64_u32_load_copy(), ordering access to var and	\
534 	 * copy.							\
535 	 */								\
536 	smp_wmb();							\
537 	copy = __val;							\
538 } while (0)
539 #endif
540 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
541 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
542 
543 /* CFS-related fields in a runqueue */
544 struct cfs_rq {
545 	struct load_weight	load;
546 	unsigned int		nr_running;
547 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
548 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
549 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
550 
551 	s64			avg_vruntime;
552 	u64			avg_load;
553 
554 	u64			exec_clock;
555 	u64			min_vruntime;
556 #ifdef CONFIG_SCHED_CORE
557 	unsigned int		forceidle_seq;
558 	u64			min_vruntime_fi;
559 #endif
560 
561 #ifndef CONFIG_64BIT
562 	u64			min_vruntime_copy;
563 #endif
564 
565 	struct rb_root_cached	tasks_timeline;
566 
567 	/*
568 	 * 'curr' points to currently running entity on this cfs_rq.
569 	 * It is set to NULL otherwise (i.e when none are currently running).
570 	 */
571 	struct sched_entity	*curr;
572 	struct sched_entity	*next;
573 
574 #ifdef	CONFIG_SCHED_DEBUG
575 	unsigned int		nr_spread_over;
576 #endif
577 
578 #ifdef CONFIG_SMP
579 	/*
580 	 * CFS load tracking
581 	 */
582 	struct sched_avg	avg;
583 #ifndef CONFIG_64BIT
584 	u64			last_update_time_copy;
585 #endif
586 	struct {
587 		raw_spinlock_t	lock ____cacheline_aligned;
588 		int		nr;
589 		unsigned long	load_avg;
590 		unsigned long	util_avg;
591 		unsigned long	runnable_avg;
592 	} removed;
593 
594 #ifdef CONFIG_FAIR_GROUP_SCHED
595 	unsigned long		tg_load_avg_contrib;
596 	long			propagate;
597 	long			prop_runnable_sum;
598 
599 	/*
600 	 *   h_load = weight * f(tg)
601 	 *
602 	 * Where f(tg) is the recursive weight fraction assigned to
603 	 * this group.
604 	 */
605 	unsigned long		h_load;
606 	u64			last_h_load_update;
607 	struct sched_entity	*h_load_next;
608 #endif /* CONFIG_FAIR_GROUP_SCHED */
609 #endif /* CONFIG_SMP */
610 
611 #ifdef CONFIG_FAIR_GROUP_SCHED
612 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
613 
614 	/*
615 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
616 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
617 	 * (like users, containers etc.)
618 	 *
619 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
620 	 * This list is used during load balance.
621 	 */
622 	int			on_list;
623 	struct list_head	leaf_cfs_rq_list;
624 	struct task_group	*tg;	/* group that "owns" this runqueue */
625 
626 	/* Locally cached copy of our task_group's idle value */
627 	int			idle;
628 
629 #ifdef CONFIG_CFS_BANDWIDTH
630 	int			runtime_enabled;
631 	s64			runtime_remaining;
632 
633 	u64			throttled_pelt_idle;
634 #ifndef CONFIG_64BIT
635 	u64                     throttled_pelt_idle_copy;
636 #endif
637 	u64			throttled_clock;
638 	u64			throttled_clock_pelt;
639 	u64			throttled_clock_pelt_time;
640 	u64			throttled_clock_self;
641 	u64			throttled_clock_self_time;
642 	int			throttled;
643 	int			throttle_count;
644 	struct list_head	throttled_list;
645 #ifdef CONFIG_SMP
646 	struct list_head	throttled_csd_list;
647 #endif
648 #endif /* CONFIG_CFS_BANDWIDTH */
649 #endif /* CONFIG_FAIR_GROUP_SCHED */
650 };
651 
652 static inline int rt_bandwidth_enabled(void)
653 {
654 	return sysctl_sched_rt_runtime >= 0;
655 }
656 
657 /* RT IPI pull logic requires IRQ_WORK */
658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
659 # define HAVE_RT_PUSH_IPI
660 #endif
661 
662 /* Real-Time classes' related field in a runqueue: */
663 struct rt_rq {
664 	struct rt_prio_array	active;
665 	unsigned int		rt_nr_running;
666 	unsigned int		rr_nr_running;
667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
668 	struct {
669 		int		curr; /* highest queued rt task prio */
670 #ifdef CONFIG_SMP
671 		int		next; /* next highest */
672 #endif
673 	} highest_prio;
674 #endif
675 #ifdef CONFIG_SMP
676 	unsigned int		rt_nr_migratory;
677 	unsigned int		rt_nr_total;
678 	int			overloaded;
679 	struct plist_head	pushable_tasks;
680 
681 #endif /* CONFIG_SMP */
682 	int			rt_queued;
683 
684 	int			rt_throttled;
685 	u64			rt_time;
686 	u64			rt_runtime;
687 	/* Nests inside the rq lock: */
688 	raw_spinlock_t		rt_runtime_lock;
689 
690 #ifdef CONFIG_RT_GROUP_SCHED
691 	unsigned int		rt_nr_boosted;
692 
693 	struct rq		*rq;
694 	struct task_group	*tg;
695 #endif
696 };
697 
698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
699 {
700 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
701 }
702 
703 /* Deadline class' related fields in a runqueue */
704 struct dl_rq {
705 	/* runqueue is an rbtree, ordered by deadline */
706 	struct rb_root_cached	root;
707 
708 	unsigned int		dl_nr_running;
709 
710 #ifdef CONFIG_SMP
711 	/*
712 	 * Deadline values of the currently executing and the
713 	 * earliest ready task on this rq. Caching these facilitates
714 	 * the decision whether or not a ready but not running task
715 	 * should migrate somewhere else.
716 	 */
717 	struct {
718 		u64		curr;
719 		u64		next;
720 	} earliest_dl;
721 
722 	unsigned int		dl_nr_migratory;
723 	int			overloaded;
724 
725 	/*
726 	 * Tasks on this rq that can be pushed away. They are kept in
727 	 * an rb-tree, ordered by tasks' deadlines, with caching
728 	 * of the leftmost (earliest deadline) element.
729 	 */
730 	struct rb_root_cached	pushable_dl_tasks_root;
731 #else
732 	struct dl_bw		dl_bw;
733 #endif
734 	/*
735 	 * "Active utilization" for this runqueue: increased when a
736 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
737 	 * task blocks
738 	 */
739 	u64			running_bw;
740 
741 	/*
742 	 * Utilization of the tasks "assigned" to this runqueue (including
743 	 * the tasks that are in runqueue and the tasks that executed on this
744 	 * CPU and blocked). Increased when a task moves to this runqueue, and
745 	 * decreased when the task moves away (migrates, changes scheduling
746 	 * policy, or terminates).
747 	 * This is needed to compute the "inactive utilization" for the
748 	 * runqueue (inactive utilization = this_bw - running_bw).
749 	 */
750 	u64			this_bw;
751 	u64			extra_bw;
752 
753 	/*
754 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
755 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
756 	 */
757 	u64			max_bw;
758 
759 	/*
760 	 * Inverse of the fraction of CPU utilization that can be reclaimed
761 	 * by the GRUB algorithm.
762 	 */
763 	u64			bw_ratio;
764 };
765 
766 #ifdef CONFIG_FAIR_GROUP_SCHED
767 /* An entity is a task if it doesn't "own" a runqueue */
768 #define entity_is_task(se)	(!se->my_q)
769 
770 static inline void se_update_runnable(struct sched_entity *se)
771 {
772 	if (!entity_is_task(se))
773 		se->runnable_weight = se->my_q->h_nr_running;
774 }
775 
776 static inline long se_runnable(struct sched_entity *se)
777 {
778 	if (entity_is_task(se))
779 		return !!se->on_rq;
780 	else
781 		return se->runnable_weight;
782 }
783 
784 #else
785 #define entity_is_task(se)	1
786 
787 static inline void se_update_runnable(struct sched_entity *se) {}
788 
789 static inline long se_runnable(struct sched_entity *se)
790 {
791 	return !!se->on_rq;
792 }
793 #endif
794 
795 #ifdef CONFIG_SMP
796 /*
797  * XXX we want to get rid of these helpers and use the full load resolution.
798  */
799 static inline long se_weight(struct sched_entity *se)
800 {
801 	return scale_load_down(se->load.weight);
802 }
803 
804 
805 static inline bool sched_asym_prefer(int a, int b)
806 {
807 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
808 }
809 
810 struct perf_domain {
811 	struct em_perf_domain *em_pd;
812 	struct perf_domain *next;
813 	struct rcu_head rcu;
814 };
815 
816 /* Scheduling group status flags */
817 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
818 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
819 
820 /*
821  * We add the notion of a root-domain which will be used to define per-domain
822  * variables. Each exclusive cpuset essentially defines an island domain by
823  * fully partitioning the member CPUs from any other cpuset. Whenever a new
824  * exclusive cpuset is created, we also create and attach a new root-domain
825  * object.
826  *
827  */
828 struct root_domain {
829 	atomic_t		refcount;
830 	atomic_t		rto_count;
831 	struct rcu_head		rcu;
832 	cpumask_var_t		span;
833 	cpumask_var_t		online;
834 
835 	/*
836 	 * Indicate pullable load on at least one CPU, e.g:
837 	 * - More than one runnable task
838 	 * - Running task is misfit
839 	 */
840 	int			overload;
841 
842 	/* Indicate one or more cpus over-utilized (tipping point) */
843 	int			overutilized;
844 
845 	/*
846 	 * The bit corresponding to a CPU gets set here if such CPU has more
847 	 * than one runnable -deadline task (as it is below for RT tasks).
848 	 */
849 	cpumask_var_t		dlo_mask;
850 	atomic_t		dlo_count;
851 	struct dl_bw		dl_bw;
852 	struct cpudl		cpudl;
853 
854 	/*
855 	 * Indicate whether a root_domain's dl_bw has been checked or
856 	 * updated. It's monotonously increasing value.
857 	 *
858 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
859 	 * that u64 is 'big enough'. So that shouldn't be a concern.
860 	 */
861 	u64 visit_gen;
862 
863 #ifdef HAVE_RT_PUSH_IPI
864 	/*
865 	 * For IPI pull requests, loop across the rto_mask.
866 	 */
867 	struct irq_work		rto_push_work;
868 	raw_spinlock_t		rto_lock;
869 	/* These are only updated and read within rto_lock */
870 	int			rto_loop;
871 	int			rto_cpu;
872 	/* These atomics are updated outside of a lock */
873 	atomic_t		rto_loop_next;
874 	atomic_t		rto_loop_start;
875 #endif
876 	/*
877 	 * The "RT overload" flag: it gets set if a CPU has more than
878 	 * one runnable RT task.
879 	 */
880 	cpumask_var_t		rto_mask;
881 	struct cpupri		cpupri;
882 
883 	unsigned long		max_cpu_capacity;
884 
885 	/*
886 	 * NULL-terminated list of performance domains intersecting with the
887 	 * CPUs of the rd. Protected by RCU.
888 	 */
889 	struct perf_domain __rcu *pd;
890 };
891 
892 extern void init_defrootdomain(void);
893 extern int sched_init_domains(const struct cpumask *cpu_map);
894 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
895 extern void sched_get_rd(struct root_domain *rd);
896 extern void sched_put_rd(struct root_domain *rd);
897 
898 #ifdef HAVE_RT_PUSH_IPI
899 extern void rto_push_irq_work_func(struct irq_work *work);
900 #endif
901 #endif /* CONFIG_SMP */
902 
903 #ifdef CONFIG_UCLAMP_TASK
904 /*
905  * struct uclamp_bucket - Utilization clamp bucket
906  * @value: utilization clamp value for tasks on this clamp bucket
907  * @tasks: number of RUNNABLE tasks on this clamp bucket
908  *
909  * Keep track of how many tasks are RUNNABLE for a given utilization
910  * clamp value.
911  */
912 struct uclamp_bucket {
913 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
914 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
915 };
916 
917 /*
918  * struct uclamp_rq - rq's utilization clamp
919  * @value: currently active clamp values for a rq
920  * @bucket: utilization clamp buckets affecting a rq
921  *
922  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
923  * A clamp value is affecting a rq when there is at least one task RUNNABLE
924  * (or actually running) with that value.
925  *
926  * There are up to UCLAMP_CNT possible different clamp values, currently there
927  * are only two: minimum utilization and maximum utilization.
928  *
929  * All utilization clamping values are MAX aggregated, since:
930  * - for util_min: we want to run the CPU at least at the max of the minimum
931  *   utilization required by its currently RUNNABLE tasks.
932  * - for util_max: we want to allow the CPU to run up to the max of the
933  *   maximum utilization allowed by its currently RUNNABLE tasks.
934  *
935  * Since on each system we expect only a limited number of different
936  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
937  * the metrics required to compute all the per-rq utilization clamp values.
938  */
939 struct uclamp_rq {
940 	unsigned int value;
941 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
942 };
943 
944 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
945 #endif /* CONFIG_UCLAMP_TASK */
946 
947 struct rq;
948 struct balance_callback {
949 	struct balance_callback *next;
950 	void (*func)(struct rq *rq);
951 };
952 
953 /*
954  * This is the main, per-CPU runqueue data structure.
955  *
956  * Locking rule: those places that want to lock multiple runqueues
957  * (such as the load balancing or the thread migration code), lock
958  * acquire operations must be ordered by ascending &runqueue.
959  */
960 struct rq {
961 	/* runqueue lock: */
962 	raw_spinlock_t		__lock;
963 
964 	/*
965 	 * nr_running and cpu_load should be in the same cacheline because
966 	 * remote CPUs use both these fields when doing load calculation.
967 	 */
968 	unsigned int		nr_running;
969 #ifdef CONFIG_NUMA_BALANCING
970 	unsigned int		nr_numa_running;
971 	unsigned int		nr_preferred_running;
972 	unsigned int		numa_migrate_on;
973 #endif
974 #ifdef CONFIG_NO_HZ_COMMON
975 #ifdef CONFIG_SMP
976 	unsigned long		last_blocked_load_update_tick;
977 	unsigned int		has_blocked_load;
978 	call_single_data_t	nohz_csd;
979 #endif /* CONFIG_SMP */
980 	unsigned int		nohz_tick_stopped;
981 	atomic_t		nohz_flags;
982 #endif /* CONFIG_NO_HZ_COMMON */
983 
984 #ifdef CONFIG_SMP
985 	unsigned int		ttwu_pending;
986 #endif
987 	u64			nr_switches;
988 
989 #ifdef CONFIG_UCLAMP_TASK
990 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
991 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
992 	unsigned int		uclamp_flags;
993 #define UCLAMP_FLAG_IDLE 0x01
994 #endif
995 
996 	struct cfs_rq		cfs;
997 	struct rt_rq		rt;
998 	struct dl_rq		dl;
999 
1000 #ifdef CONFIG_FAIR_GROUP_SCHED
1001 	/* list of leaf cfs_rq on this CPU: */
1002 	struct list_head	leaf_cfs_rq_list;
1003 	struct list_head	*tmp_alone_branch;
1004 #endif /* CONFIG_FAIR_GROUP_SCHED */
1005 
1006 	/*
1007 	 * This is part of a global counter where only the total sum
1008 	 * over all CPUs matters. A task can increase this counter on
1009 	 * one CPU and if it got migrated afterwards it may decrease
1010 	 * it on another CPU. Always updated under the runqueue lock:
1011 	 */
1012 	unsigned int		nr_uninterruptible;
1013 
1014 	struct task_struct __rcu	*curr;
1015 	struct task_struct	*idle;
1016 	struct task_struct	*stop;
1017 	unsigned long		next_balance;
1018 	struct mm_struct	*prev_mm;
1019 
1020 	unsigned int		clock_update_flags;
1021 	u64			clock;
1022 	/* Ensure that all clocks are in the same cache line */
1023 	u64			clock_task ____cacheline_aligned;
1024 	u64			clock_pelt;
1025 	unsigned long		lost_idle_time;
1026 	u64			clock_pelt_idle;
1027 	u64			clock_idle;
1028 #ifndef CONFIG_64BIT
1029 	u64			clock_pelt_idle_copy;
1030 	u64			clock_idle_copy;
1031 #endif
1032 
1033 	atomic_t		nr_iowait;
1034 
1035 #ifdef CONFIG_SCHED_DEBUG
1036 	u64 last_seen_need_resched_ns;
1037 	int ticks_without_resched;
1038 #endif
1039 
1040 #ifdef CONFIG_MEMBARRIER
1041 	int membarrier_state;
1042 #endif
1043 
1044 #ifdef CONFIG_SMP
1045 	struct root_domain		*rd;
1046 	struct sched_domain __rcu	*sd;
1047 
1048 	unsigned long		cpu_capacity;
1049 	unsigned long		cpu_capacity_orig;
1050 
1051 	struct balance_callback *balance_callback;
1052 
1053 	unsigned char		nohz_idle_balance;
1054 	unsigned char		idle_balance;
1055 
1056 	unsigned long		misfit_task_load;
1057 
1058 	/* For active balancing */
1059 	int			active_balance;
1060 	int			push_cpu;
1061 	struct cpu_stop_work	active_balance_work;
1062 
1063 	/* CPU of this runqueue: */
1064 	int			cpu;
1065 	int			online;
1066 
1067 	struct list_head cfs_tasks;
1068 
1069 	struct sched_avg	avg_rt;
1070 	struct sched_avg	avg_dl;
1071 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1072 	struct sched_avg	avg_irq;
1073 #endif
1074 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1075 	struct sched_avg	avg_thermal;
1076 #endif
1077 	u64			idle_stamp;
1078 	u64			avg_idle;
1079 
1080 	unsigned long		wake_stamp;
1081 	u64			wake_avg_idle;
1082 
1083 	/* This is used to determine avg_idle's max value */
1084 	u64			max_idle_balance_cost;
1085 
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 	struct rcuwait		hotplug_wait;
1088 #endif
1089 #endif /* CONFIG_SMP */
1090 
1091 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1092 	u64			prev_irq_time;
1093 #endif
1094 #ifdef CONFIG_PARAVIRT
1095 	u64			prev_steal_time;
1096 #endif
1097 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1098 	u64			prev_steal_time_rq;
1099 #endif
1100 
1101 	/* calc_load related fields */
1102 	unsigned long		calc_load_update;
1103 	long			calc_load_active;
1104 
1105 #ifdef CONFIG_SCHED_HRTICK
1106 #ifdef CONFIG_SMP
1107 	call_single_data_t	hrtick_csd;
1108 #endif
1109 	struct hrtimer		hrtick_timer;
1110 	ktime_t 		hrtick_time;
1111 #endif
1112 
1113 #ifdef CONFIG_SCHEDSTATS
1114 	/* latency stats */
1115 	struct sched_info	rq_sched_info;
1116 	unsigned long long	rq_cpu_time;
1117 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1118 
1119 	/* sys_sched_yield() stats */
1120 	unsigned int		yld_count;
1121 
1122 	/* schedule() stats */
1123 	unsigned int		sched_count;
1124 	unsigned int		sched_goidle;
1125 
1126 	/* try_to_wake_up() stats */
1127 	unsigned int		ttwu_count;
1128 	unsigned int		ttwu_local;
1129 #endif
1130 
1131 #ifdef CONFIG_CPU_IDLE
1132 	/* Must be inspected within a rcu lock section */
1133 	struct cpuidle_state	*idle_state;
1134 #endif
1135 
1136 #ifdef CONFIG_SMP
1137 	unsigned int		nr_pinned;
1138 #endif
1139 	unsigned int		push_busy;
1140 	struct cpu_stop_work	push_work;
1141 
1142 #ifdef CONFIG_SCHED_CORE
1143 	/* per rq */
1144 	struct rq		*core;
1145 	struct task_struct	*core_pick;
1146 	unsigned int		core_enabled;
1147 	unsigned int		core_sched_seq;
1148 	struct rb_root		core_tree;
1149 
1150 	/* shared state -- careful with sched_core_cpu_deactivate() */
1151 	unsigned int		core_task_seq;
1152 	unsigned int		core_pick_seq;
1153 	unsigned long		core_cookie;
1154 	unsigned int		core_forceidle_count;
1155 	unsigned int		core_forceidle_seq;
1156 	unsigned int		core_forceidle_occupation;
1157 	u64			core_forceidle_start;
1158 #endif
1159 
1160 	/* Scratch cpumask to be temporarily used under rq_lock */
1161 	cpumask_var_t		scratch_mask;
1162 
1163 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1164 	call_single_data_t	cfsb_csd;
1165 	struct list_head	cfsb_csd_list;
1166 #endif
1167 };
1168 
1169 #ifdef CONFIG_FAIR_GROUP_SCHED
1170 
1171 /* CPU runqueue to which this cfs_rq is attached */
1172 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1173 {
1174 	return cfs_rq->rq;
1175 }
1176 
1177 #else
1178 
1179 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1180 {
1181 	return container_of(cfs_rq, struct rq, cfs);
1182 }
1183 #endif
1184 
1185 static inline int cpu_of(struct rq *rq)
1186 {
1187 #ifdef CONFIG_SMP
1188 	return rq->cpu;
1189 #else
1190 	return 0;
1191 #endif
1192 }
1193 
1194 #define MDF_PUSH	0x01
1195 
1196 static inline bool is_migration_disabled(struct task_struct *p)
1197 {
1198 #ifdef CONFIG_SMP
1199 	return p->migration_disabled;
1200 #else
1201 	return false;
1202 #endif
1203 }
1204 
1205 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1206 
1207 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1208 #define this_rq()		this_cpu_ptr(&runqueues)
1209 #define task_rq(p)		cpu_rq(task_cpu(p))
1210 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1211 #define raw_rq()		raw_cpu_ptr(&runqueues)
1212 
1213 struct sched_group;
1214 #ifdef CONFIG_SCHED_CORE
1215 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1216 
1217 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1218 
1219 static inline bool sched_core_enabled(struct rq *rq)
1220 {
1221 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1222 }
1223 
1224 static inline bool sched_core_disabled(void)
1225 {
1226 	return !static_branch_unlikely(&__sched_core_enabled);
1227 }
1228 
1229 /*
1230  * Be careful with this function; not for general use. The return value isn't
1231  * stable unless you actually hold a relevant rq->__lock.
1232  */
1233 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1234 {
1235 	if (sched_core_enabled(rq))
1236 		return &rq->core->__lock;
1237 
1238 	return &rq->__lock;
1239 }
1240 
1241 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1242 {
1243 	if (rq->core_enabled)
1244 		return &rq->core->__lock;
1245 
1246 	return &rq->__lock;
1247 }
1248 
1249 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1250 			bool fi);
1251 
1252 /*
1253  * Helpers to check if the CPU's core cookie matches with the task's cookie
1254  * when core scheduling is enabled.
1255  * A special case is that the task's cookie always matches with CPU's core
1256  * cookie if the CPU is in an idle core.
1257  */
1258 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1259 {
1260 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1261 	if (!sched_core_enabled(rq))
1262 		return true;
1263 
1264 	return rq->core->core_cookie == p->core_cookie;
1265 }
1266 
1267 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1268 {
1269 	bool idle_core = true;
1270 	int cpu;
1271 
1272 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1273 	if (!sched_core_enabled(rq))
1274 		return true;
1275 
1276 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1277 		if (!available_idle_cpu(cpu)) {
1278 			idle_core = false;
1279 			break;
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * A CPU in an idle core is always the best choice for tasks with
1285 	 * cookies.
1286 	 */
1287 	return idle_core || rq->core->core_cookie == p->core_cookie;
1288 }
1289 
1290 static inline bool sched_group_cookie_match(struct rq *rq,
1291 					    struct task_struct *p,
1292 					    struct sched_group *group)
1293 {
1294 	int cpu;
1295 
1296 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1297 	if (!sched_core_enabled(rq))
1298 		return true;
1299 
1300 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1301 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1302 			return true;
1303 	}
1304 	return false;
1305 }
1306 
1307 static inline bool sched_core_enqueued(struct task_struct *p)
1308 {
1309 	return !RB_EMPTY_NODE(&p->core_node);
1310 }
1311 
1312 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1313 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1314 
1315 extern void sched_core_get(void);
1316 extern void sched_core_put(void);
1317 
1318 #else /* !CONFIG_SCHED_CORE */
1319 
1320 static inline bool sched_core_enabled(struct rq *rq)
1321 {
1322 	return false;
1323 }
1324 
1325 static inline bool sched_core_disabled(void)
1326 {
1327 	return true;
1328 }
1329 
1330 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1331 {
1332 	return &rq->__lock;
1333 }
1334 
1335 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1336 {
1337 	return &rq->__lock;
1338 }
1339 
1340 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1341 {
1342 	return true;
1343 }
1344 
1345 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1346 {
1347 	return true;
1348 }
1349 
1350 static inline bool sched_group_cookie_match(struct rq *rq,
1351 					    struct task_struct *p,
1352 					    struct sched_group *group)
1353 {
1354 	return true;
1355 }
1356 #endif /* CONFIG_SCHED_CORE */
1357 
1358 static inline void lockdep_assert_rq_held(struct rq *rq)
1359 {
1360 	lockdep_assert_held(__rq_lockp(rq));
1361 }
1362 
1363 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1364 extern bool raw_spin_rq_trylock(struct rq *rq);
1365 extern void raw_spin_rq_unlock(struct rq *rq);
1366 
1367 static inline void raw_spin_rq_lock(struct rq *rq)
1368 {
1369 	raw_spin_rq_lock_nested(rq, 0);
1370 }
1371 
1372 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1373 {
1374 	local_irq_disable();
1375 	raw_spin_rq_lock(rq);
1376 }
1377 
1378 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1379 {
1380 	raw_spin_rq_unlock(rq);
1381 	local_irq_enable();
1382 }
1383 
1384 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1385 {
1386 	unsigned long flags;
1387 	local_irq_save(flags);
1388 	raw_spin_rq_lock(rq);
1389 	return flags;
1390 }
1391 
1392 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1393 {
1394 	raw_spin_rq_unlock(rq);
1395 	local_irq_restore(flags);
1396 }
1397 
1398 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1399 do {						\
1400 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1401 } while (0)
1402 
1403 #ifdef CONFIG_SCHED_SMT
1404 extern void __update_idle_core(struct rq *rq);
1405 
1406 static inline void update_idle_core(struct rq *rq)
1407 {
1408 	if (static_branch_unlikely(&sched_smt_present))
1409 		__update_idle_core(rq);
1410 }
1411 
1412 #else
1413 static inline void update_idle_core(struct rq *rq) { }
1414 #endif
1415 
1416 #ifdef CONFIG_FAIR_GROUP_SCHED
1417 static inline struct task_struct *task_of(struct sched_entity *se)
1418 {
1419 	SCHED_WARN_ON(!entity_is_task(se));
1420 	return container_of(se, struct task_struct, se);
1421 }
1422 
1423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1424 {
1425 	return p->se.cfs_rq;
1426 }
1427 
1428 /* runqueue on which this entity is (to be) queued */
1429 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1430 {
1431 	return se->cfs_rq;
1432 }
1433 
1434 /* runqueue "owned" by this group */
1435 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1436 {
1437 	return grp->my_q;
1438 }
1439 
1440 #else
1441 
1442 #define task_of(_se)	container_of(_se, struct task_struct, se)
1443 
1444 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1445 {
1446 	return &task_rq(p)->cfs;
1447 }
1448 
1449 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1450 {
1451 	const struct task_struct *p = task_of(se);
1452 	struct rq *rq = task_rq(p);
1453 
1454 	return &rq->cfs;
1455 }
1456 
1457 /* runqueue "owned" by this group */
1458 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1459 {
1460 	return NULL;
1461 }
1462 #endif
1463 
1464 extern void update_rq_clock(struct rq *rq);
1465 
1466 /*
1467  * rq::clock_update_flags bits
1468  *
1469  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1470  *  call to __schedule(). This is an optimisation to avoid
1471  *  neighbouring rq clock updates.
1472  *
1473  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1474  *  in effect and calls to update_rq_clock() are being ignored.
1475  *
1476  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1477  *  made to update_rq_clock() since the last time rq::lock was pinned.
1478  *
1479  * If inside of __schedule(), clock_update_flags will have been
1480  * shifted left (a left shift is a cheap operation for the fast path
1481  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1482  *
1483  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1484  *
1485  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1486  * one position though, because the next rq_unpin_lock() will shift it
1487  * back.
1488  */
1489 #define RQCF_REQ_SKIP		0x01
1490 #define RQCF_ACT_SKIP		0x02
1491 #define RQCF_UPDATED		0x04
1492 
1493 static inline void assert_clock_updated(struct rq *rq)
1494 {
1495 	/*
1496 	 * The only reason for not seeing a clock update since the
1497 	 * last rq_pin_lock() is if we're currently skipping updates.
1498 	 */
1499 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1500 }
1501 
1502 static inline u64 rq_clock(struct rq *rq)
1503 {
1504 	lockdep_assert_rq_held(rq);
1505 	assert_clock_updated(rq);
1506 
1507 	return rq->clock;
1508 }
1509 
1510 static inline u64 rq_clock_task(struct rq *rq)
1511 {
1512 	lockdep_assert_rq_held(rq);
1513 	assert_clock_updated(rq);
1514 
1515 	return rq->clock_task;
1516 }
1517 
1518 /**
1519  * By default the decay is the default pelt decay period.
1520  * The decay shift can change the decay period in
1521  * multiples of 32.
1522  *  Decay shift		Decay period(ms)
1523  *	0			32
1524  *	1			64
1525  *	2			128
1526  *	3			256
1527  *	4			512
1528  */
1529 extern int sched_thermal_decay_shift;
1530 
1531 static inline u64 rq_clock_thermal(struct rq *rq)
1532 {
1533 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1534 }
1535 
1536 static inline void rq_clock_skip_update(struct rq *rq)
1537 {
1538 	lockdep_assert_rq_held(rq);
1539 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1540 }
1541 
1542 /*
1543  * See rt task throttling, which is the only time a skip
1544  * request is canceled.
1545  */
1546 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1547 {
1548 	lockdep_assert_rq_held(rq);
1549 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1550 }
1551 
1552 /*
1553  * During cpu offlining and rq wide unthrottling, we can trigger
1554  * an update_rq_clock() for several cfs and rt runqueues (Typically
1555  * when using list_for_each_entry_*)
1556  * rq_clock_start_loop_update() can be called after updating the clock
1557  * once and before iterating over the list to prevent multiple update.
1558  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1559  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1560  */
1561 static inline void rq_clock_start_loop_update(struct rq *rq)
1562 {
1563 	lockdep_assert_rq_held(rq);
1564 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1565 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1566 }
1567 
1568 static inline void rq_clock_stop_loop_update(struct rq *rq)
1569 {
1570 	lockdep_assert_rq_held(rq);
1571 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1572 }
1573 
1574 struct rq_flags {
1575 	unsigned long flags;
1576 	struct pin_cookie cookie;
1577 #ifdef CONFIG_SCHED_DEBUG
1578 	/*
1579 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1580 	 * current pin context is stashed here in case it needs to be
1581 	 * restored in rq_repin_lock().
1582 	 */
1583 	unsigned int clock_update_flags;
1584 #endif
1585 };
1586 
1587 extern struct balance_callback balance_push_callback;
1588 
1589 /*
1590  * Lockdep annotation that avoids accidental unlocks; it's like a
1591  * sticky/continuous lockdep_assert_held().
1592  *
1593  * This avoids code that has access to 'struct rq *rq' (basically everything in
1594  * the scheduler) from accidentally unlocking the rq if they do not also have a
1595  * copy of the (on-stack) 'struct rq_flags rf'.
1596  *
1597  * Also see Documentation/locking/lockdep-design.rst.
1598  */
1599 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1600 {
1601 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1602 
1603 #ifdef CONFIG_SCHED_DEBUG
1604 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1605 	rf->clock_update_flags = 0;
1606 #ifdef CONFIG_SMP
1607 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1608 #endif
1609 #endif
1610 }
1611 
1612 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1613 {
1614 #ifdef CONFIG_SCHED_DEBUG
1615 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1616 		rf->clock_update_flags = RQCF_UPDATED;
1617 #endif
1618 
1619 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1620 }
1621 
1622 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1623 {
1624 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1625 
1626 #ifdef CONFIG_SCHED_DEBUG
1627 	/*
1628 	 * Restore the value we stashed in @rf for this pin context.
1629 	 */
1630 	rq->clock_update_flags |= rf->clock_update_flags;
1631 #endif
1632 }
1633 
1634 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1635 	__acquires(rq->lock);
1636 
1637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1638 	__acquires(p->pi_lock)
1639 	__acquires(rq->lock);
1640 
1641 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1642 	__releases(rq->lock)
1643 {
1644 	rq_unpin_lock(rq, rf);
1645 	raw_spin_rq_unlock(rq);
1646 }
1647 
1648 static inline void
1649 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1650 	__releases(rq->lock)
1651 	__releases(p->pi_lock)
1652 {
1653 	rq_unpin_lock(rq, rf);
1654 	raw_spin_rq_unlock(rq);
1655 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1656 }
1657 
1658 static inline void
1659 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1660 	__acquires(rq->lock)
1661 {
1662 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1663 	rq_pin_lock(rq, rf);
1664 }
1665 
1666 static inline void
1667 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1668 	__acquires(rq->lock)
1669 {
1670 	raw_spin_rq_lock_irq(rq);
1671 	rq_pin_lock(rq, rf);
1672 }
1673 
1674 static inline void
1675 rq_lock(struct rq *rq, struct rq_flags *rf)
1676 	__acquires(rq->lock)
1677 {
1678 	raw_spin_rq_lock(rq);
1679 	rq_pin_lock(rq, rf);
1680 }
1681 
1682 static inline void
1683 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1684 	__releases(rq->lock)
1685 {
1686 	rq_unpin_lock(rq, rf);
1687 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1688 }
1689 
1690 static inline void
1691 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1692 	__releases(rq->lock)
1693 {
1694 	rq_unpin_lock(rq, rf);
1695 	raw_spin_rq_unlock_irq(rq);
1696 }
1697 
1698 static inline void
1699 rq_unlock(struct rq *rq, struct rq_flags *rf)
1700 	__releases(rq->lock)
1701 {
1702 	rq_unpin_lock(rq, rf);
1703 	raw_spin_rq_unlock(rq);
1704 }
1705 
1706 static inline struct rq *
1707 this_rq_lock_irq(struct rq_flags *rf)
1708 	__acquires(rq->lock)
1709 {
1710 	struct rq *rq;
1711 
1712 	local_irq_disable();
1713 	rq = this_rq();
1714 	rq_lock(rq, rf);
1715 	return rq;
1716 }
1717 
1718 #ifdef CONFIG_NUMA
1719 enum numa_topology_type {
1720 	NUMA_DIRECT,
1721 	NUMA_GLUELESS_MESH,
1722 	NUMA_BACKPLANE,
1723 };
1724 extern enum numa_topology_type sched_numa_topology_type;
1725 extern int sched_max_numa_distance;
1726 extern bool find_numa_distance(int distance);
1727 extern void sched_init_numa(int offline_node);
1728 extern void sched_update_numa(int cpu, bool online);
1729 extern void sched_domains_numa_masks_set(unsigned int cpu);
1730 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1731 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1732 #else
1733 static inline void sched_init_numa(int offline_node) { }
1734 static inline void sched_update_numa(int cpu, bool online) { }
1735 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1736 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1737 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1738 {
1739 	return nr_cpu_ids;
1740 }
1741 #endif
1742 
1743 #ifdef CONFIG_NUMA_BALANCING
1744 /* The regions in numa_faults array from task_struct */
1745 enum numa_faults_stats {
1746 	NUMA_MEM = 0,
1747 	NUMA_CPU,
1748 	NUMA_MEMBUF,
1749 	NUMA_CPUBUF
1750 };
1751 extern void sched_setnuma(struct task_struct *p, int node);
1752 extern int migrate_task_to(struct task_struct *p, int cpu);
1753 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1754 			int cpu, int scpu);
1755 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1756 #else
1757 static inline void
1758 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1759 {
1760 }
1761 #endif /* CONFIG_NUMA_BALANCING */
1762 
1763 #ifdef CONFIG_SMP
1764 
1765 static inline void
1766 queue_balance_callback(struct rq *rq,
1767 		       struct balance_callback *head,
1768 		       void (*func)(struct rq *rq))
1769 {
1770 	lockdep_assert_rq_held(rq);
1771 
1772 	/*
1773 	 * Don't (re)queue an already queued item; nor queue anything when
1774 	 * balance_push() is active, see the comment with
1775 	 * balance_push_callback.
1776 	 */
1777 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1778 		return;
1779 
1780 	head->func = func;
1781 	head->next = rq->balance_callback;
1782 	rq->balance_callback = head;
1783 }
1784 
1785 #define rcu_dereference_check_sched_domain(p) \
1786 	rcu_dereference_check((p), \
1787 			      lockdep_is_held(&sched_domains_mutex))
1788 
1789 /*
1790  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1791  * See destroy_sched_domains: call_rcu for details.
1792  *
1793  * The domain tree of any CPU may only be accessed from within
1794  * preempt-disabled sections.
1795  */
1796 #define for_each_domain(cpu, __sd) \
1797 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1798 			__sd; __sd = __sd->parent)
1799 
1800 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1801 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1802 static const unsigned int SD_SHARED_CHILD_MASK =
1803 #include <linux/sched/sd_flags.h>
1804 0;
1805 #undef SD_FLAG
1806 
1807 /**
1808  * highest_flag_domain - Return highest sched_domain containing flag.
1809  * @cpu:	The CPU whose highest level of sched domain is to
1810  *		be returned.
1811  * @flag:	The flag to check for the highest sched_domain
1812  *		for the given CPU.
1813  *
1814  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1815  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1816  */
1817 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1818 {
1819 	struct sched_domain *sd, *hsd = NULL;
1820 
1821 	for_each_domain(cpu, sd) {
1822 		if (sd->flags & flag) {
1823 			hsd = sd;
1824 			continue;
1825 		}
1826 
1827 		/*
1828 		 * Stop the search if @flag is known to be shared at lower
1829 		 * levels. It will not be found further up.
1830 		 */
1831 		if (flag & SD_SHARED_CHILD_MASK)
1832 			break;
1833 	}
1834 
1835 	return hsd;
1836 }
1837 
1838 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1839 {
1840 	struct sched_domain *sd;
1841 
1842 	for_each_domain(cpu, sd) {
1843 		if (sd->flags & flag)
1844 			break;
1845 	}
1846 
1847 	return sd;
1848 }
1849 
1850 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1851 DECLARE_PER_CPU(int, sd_llc_size);
1852 DECLARE_PER_CPU(int, sd_llc_id);
1853 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1854 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1855 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1856 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1857 extern struct static_key_false sched_asym_cpucapacity;
1858 
1859 static __always_inline bool sched_asym_cpucap_active(void)
1860 {
1861 	return static_branch_unlikely(&sched_asym_cpucapacity);
1862 }
1863 
1864 struct sched_group_capacity {
1865 	atomic_t		ref;
1866 	/*
1867 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1868 	 * for a single CPU.
1869 	 */
1870 	unsigned long		capacity;
1871 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1872 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1873 	unsigned long		next_update;
1874 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1875 
1876 #ifdef CONFIG_SCHED_DEBUG
1877 	int			id;
1878 #endif
1879 
1880 	unsigned long		cpumask[];		/* Balance mask */
1881 };
1882 
1883 struct sched_group {
1884 	struct sched_group	*next;			/* Must be a circular list */
1885 	atomic_t		ref;
1886 
1887 	unsigned int		group_weight;
1888 	unsigned int		cores;
1889 	struct sched_group_capacity *sgc;
1890 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1891 	int			flags;
1892 
1893 	/*
1894 	 * The CPUs this group covers.
1895 	 *
1896 	 * NOTE: this field is variable length. (Allocated dynamically
1897 	 * by attaching extra space to the end of the structure,
1898 	 * depending on how many CPUs the kernel has booted up with)
1899 	 */
1900 	unsigned long		cpumask[];
1901 };
1902 
1903 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1904 {
1905 	return to_cpumask(sg->cpumask);
1906 }
1907 
1908 /*
1909  * See build_balance_mask().
1910  */
1911 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1912 {
1913 	return to_cpumask(sg->sgc->cpumask);
1914 }
1915 
1916 extern int group_balance_cpu(struct sched_group *sg);
1917 
1918 #ifdef CONFIG_SCHED_DEBUG
1919 void update_sched_domain_debugfs(void);
1920 void dirty_sched_domain_sysctl(int cpu);
1921 #else
1922 static inline void update_sched_domain_debugfs(void)
1923 {
1924 }
1925 static inline void dirty_sched_domain_sysctl(int cpu)
1926 {
1927 }
1928 #endif
1929 
1930 extern int sched_update_scaling(void);
1931 
1932 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1933 {
1934 	if (!p->user_cpus_ptr)
1935 		return cpu_possible_mask; /* &init_task.cpus_mask */
1936 	return p->user_cpus_ptr;
1937 }
1938 #endif /* CONFIG_SMP */
1939 
1940 #include "stats.h"
1941 
1942 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1943 
1944 extern void __sched_core_account_forceidle(struct rq *rq);
1945 
1946 static inline void sched_core_account_forceidle(struct rq *rq)
1947 {
1948 	if (schedstat_enabled())
1949 		__sched_core_account_forceidle(rq);
1950 }
1951 
1952 extern void __sched_core_tick(struct rq *rq);
1953 
1954 static inline void sched_core_tick(struct rq *rq)
1955 {
1956 	if (sched_core_enabled(rq) && schedstat_enabled())
1957 		__sched_core_tick(rq);
1958 }
1959 
1960 #else
1961 
1962 static inline void sched_core_account_forceidle(struct rq *rq) {}
1963 
1964 static inline void sched_core_tick(struct rq *rq) {}
1965 
1966 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1967 
1968 #ifdef CONFIG_CGROUP_SCHED
1969 
1970 /*
1971  * Return the group to which this tasks belongs.
1972  *
1973  * We cannot use task_css() and friends because the cgroup subsystem
1974  * changes that value before the cgroup_subsys::attach() method is called,
1975  * therefore we cannot pin it and might observe the wrong value.
1976  *
1977  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1978  * core changes this before calling sched_move_task().
1979  *
1980  * Instead we use a 'copy' which is updated from sched_move_task() while
1981  * holding both task_struct::pi_lock and rq::lock.
1982  */
1983 static inline struct task_group *task_group(struct task_struct *p)
1984 {
1985 	return p->sched_task_group;
1986 }
1987 
1988 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1989 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1990 {
1991 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1992 	struct task_group *tg = task_group(p);
1993 #endif
1994 
1995 #ifdef CONFIG_FAIR_GROUP_SCHED
1996 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1997 	p->se.cfs_rq = tg->cfs_rq[cpu];
1998 	p->se.parent = tg->se[cpu];
1999 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2000 #endif
2001 
2002 #ifdef CONFIG_RT_GROUP_SCHED
2003 	p->rt.rt_rq  = tg->rt_rq[cpu];
2004 	p->rt.parent = tg->rt_se[cpu];
2005 #endif
2006 }
2007 
2008 #else /* CONFIG_CGROUP_SCHED */
2009 
2010 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2011 static inline struct task_group *task_group(struct task_struct *p)
2012 {
2013 	return NULL;
2014 }
2015 
2016 #endif /* CONFIG_CGROUP_SCHED */
2017 
2018 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2019 {
2020 	set_task_rq(p, cpu);
2021 #ifdef CONFIG_SMP
2022 	/*
2023 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2024 	 * successfully executed on another CPU. We must ensure that updates of
2025 	 * per-task data have been completed by this moment.
2026 	 */
2027 	smp_wmb();
2028 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2029 	p->wake_cpu = cpu;
2030 #endif
2031 }
2032 
2033 /*
2034  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2035  */
2036 #ifdef CONFIG_SCHED_DEBUG
2037 # define const_debug __read_mostly
2038 #else
2039 # define const_debug const
2040 #endif
2041 
2042 #define SCHED_FEAT(name, enabled)	\
2043 	__SCHED_FEAT_##name ,
2044 
2045 enum {
2046 #include "features.h"
2047 	__SCHED_FEAT_NR,
2048 };
2049 
2050 #undef SCHED_FEAT
2051 
2052 #ifdef CONFIG_SCHED_DEBUG
2053 
2054 /*
2055  * To support run-time toggling of sched features, all the translation units
2056  * (but core.c) reference the sysctl_sched_features defined in core.c.
2057  */
2058 extern const_debug unsigned int sysctl_sched_features;
2059 
2060 #ifdef CONFIG_JUMP_LABEL
2061 #define SCHED_FEAT(name, enabled)					\
2062 static __always_inline bool static_branch_##name(struct static_key *key) \
2063 {									\
2064 	return static_key_##enabled(key);				\
2065 }
2066 
2067 #include "features.h"
2068 #undef SCHED_FEAT
2069 
2070 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2071 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2072 
2073 #else /* !CONFIG_JUMP_LABEL */
2074 
2075 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2076 
2077 #endif /* CONFIG_JUMP_LABEL */
2078 
2079 #else /* !SCHED_DEBUG */
2080 
2081 /*
2082  * Each translation unit has its own copy of sysctl_sched_features to allow
2083  * constants propagation at compile time and compiler optimization based on
2084  * features default.
2085  */
2086 #define SCHED_FEAT(name, enabled)	\
2087 	(1UL << __SCHED_FEAT_##name) * enabled |
2088 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2089 #include "features.h"
2090 	0;
2091 #undef SCHED_FEAT
2092 
2093 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2094 
2095 #endif /* SCHED_DEBUG */
2096 
2097 extern struct static_key_false sched_numa_balancing;
2098 extern struct static_key_false sched_schedstats;
2099 
2100 static inline u64 global_rt_period(void)
2101 {
2102 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2103 }
2104 
2105 static inline u64 global_rt_runtime(void)
2106 {
2107 	if (sysctl_sched_rt_runtime < 0)
2108 		return RUNTIME_INF;
2109 
2110 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2111 }
2112 
2113 static inline int task_current(struct rq *rq, struct task_struct *p)
2114 {
2115 	return rq->curr == p;
2116 }
2117 
2118 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2119 {
2120 #ifdef CONFIG_SMP
2121 	return p->on_cpu;
2122 #else
2123 	return task_current(rq, p);
2124 #endif
2125 }
2126 
2127 static inline int task_on_rq_queued(struct task_struct *p)
2128 {
2129 	return p->on_rq == TASK_ON_RQ_QUEUED;
2130 }
2131 
2132 static inline int task_on_rq_migrating(struct task_struct *p)
2133 {
2134 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2135 }
2136 
2137 /* Wake flags. The first three directly map to some SD flag value */
2138 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2139 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2140 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2141 
2142 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2143 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2144 
2145 #ifdef CONFIG_SMP
2146 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2147 static_assert(WF_FORK == SD_BALANCE_FORK);
2148 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2149 #endif
2150 
2151 /*
2152  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2153  * of tasks with abnormal "nice" values across CPUs the contribution that
2154  * each task makes to its run queue's load is weighted according to its
2155  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2156  * scaled version of the new time slice allocation that they receive on time
2157  * slice expiry etc.
2158  */
2159 
2160 #define WEIGHT_IDLEPRIO		3
2161 #define WMULT_IDLEPRIO		1431655765
2162 
2163 extern const int		sched_prio_to_weight[40];
2164 extern const u32		sched_prio_to_wmult[40];
2165 
2166 /*
2167  * {de,en}queue flags:
2168  *
2169  * DEQUEUE_SLEEP  - task is no longer runnable
2170  * ENQUEUE_WAKEUP - task just became runnable
2171  *
2172  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2173  *                are in a known state which allows modification. Such pairs
2174  *                should preserve as much state as possible.
2175  *
2176  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2177  *        in the runqueue.
2178  *
2179  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2180  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2181  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2182  *
2183  */
2184 
2185 #define DEQUEUE_SLEEP		0x01
2186 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2187 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2188 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2189 
2190 #define ENQUEUE_WAKEUP		0x01
2191 #define ENQUEUE_RESTORE		0x02
2192 #define ENQUEUE_MOVE		0x04
2193 #define ENQUEUE_NOCLOCK		0x08
2194 
2195 #define ENQUEUE_HEAD		0x10
2196 #define ENQUEUE_REPLENISH	0x20
2197 #ifdef CONFIG_SMP
2198 #define ENQUEUE_MIGRATED	0x40
2199 #else
2200 #define ENQUEUE_MIGRATED	0x00
2201 #endif
2202 #define ENQUEUE_INITIAL		0x80
2203 
2204 #define RETRY_TASK		((void *)-1UL)
2205 
2206 struct affinity_context {
2207 	const struct cpumask *new_mask;
2208 	struct cpumask *user_mask;
2209 	unsigned int flags;
2210 };
2211 
2212 struct sched_class {
2213 
2214 #ifdef CONFIG_UCLAMP_TASK
2215 	int uclamp_enabled;
2216 #endif
2217 
2218 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2219 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2220 	void (*yield_task)   (struct rq *rq);
2221 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2222 
2223 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2224 
2225 	struct task_struct *(*pick_next_task)(struct rq *rq);
2226 
2227 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2228 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2229 
2230 #ifdef CONFIG_SMP
2231 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2232 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2233 
2234 	struct task_struct * (*pick_task)(struct rq *rq);
2235 
2236 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2237 
2238 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2239 
2240 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2241 
2242 	void (*rq_online)(struct rq *rq);
2243 	void (*rq_offline)(struct rq *rq);
2244 
2245 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2246 #endif
2247 
2248 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2249 	void (*task_fork)(struct task_struct *p);
2250 	void (*task_dead)(struct task_struct *p);
2251 
2252 	/*
2253 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2254 	 * cannot assume the switched_from/switched_to pair is serialized by
2255 	 * rq->lock. They are however serialized by p->pi_lock.
2256 	 */
2257 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2258 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2259 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2260 			      int oldprio);
2261 
2262 	unsigned int (*get_rr_interval)(struct rq *rq,
2263 					struct task_struct *task);
2264 
2265 	void (*update_curr)(struct rq *rq);
2266 
2267 #ifdef CONFIG_FAIR_GROUP_SCHED
2268 	void (*task_change_group)(struct task_struct *p);
2269 #endif
2270 
2271 #ifdef CONFIG_SCHED_CORE
2272 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2273 #endif
2274 };
2275 
2276 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2277 {
2278 	WARN_ON_ONCE(rq->curr != prev);
2279 	prev->sched_class->put_prev_task(rq, prev);
2280 }
2281 
2282 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2283 {
2284 	next->sched_class->set_next_task(rq, next, false);
2285 }
2286 
2287 
2288 /*
2289  * Helper to define a sched_class instance; each one is placed in a separate
2290  * section which is ordered by the linker script:
2291  *
2292  *   include/asm-generic/vmlinux.lds.h
2293  *
2294  * *CAREFUL* they are laid out in *REVERSE* order!!!
2295  *
2296  * Also enforce alignment on the instance, not the type, to guarantee layout.
2297  */
2298 #define DEFINE_SCHED_CLASS(name) \
2299 const struct sched_class name##_sched_class \
2300 	__aligned(__alignof__(struct sched_class)) \
2301 	__section("__" #name "_sched_class")
2302 
2303 /* Defined in include/asm-generic/vmlinux.lds.h */
2304 extern struct sched_class __sched_class_highest[];
2305 extern struct sched_class __sched_class_lowest[];
2306 
2307 #define for_class_range(class, _from, _to) \
2308 	for (class = (_from); class < (_to); class++)
2309 
2310 #define for_each_class(class) \
2311 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2312 
2313 #define sched_class_above(_a, _b)	((_a) < (_b))
2314 
2315 extern const struct sched_class stop_sched_class;
2316 extern const struct sched_class dl_sched_class;
2317 extern const struct sched_class rt_sched_class;
2318 extern const struct sched_class fair_sched_class;
2319 extern const struct sched_class idle_sched_class;
2320 
2321 static inline bool sched_stop_runnable(struct rq *rq)
2322 {
2323 	return rq->stop && task_on_rq_queued(rq->stop);
2324 }
2325 
2326 static inline bool sched_dl_runnable(struct rq *rq)
2327 {
2328 	return rq->dl.dl_nr_running > 0;
2329 }
2330 
2331 static inline bool sched_rt_runnable(struct rq *rq)
2332 {
2333 	return rq->rt.rt_queued > 0;
2334 }
2335 
2336 static inline bool sched_fair_runnable(struct rq *rq)
2337 {
2338 	return rq->cfs.nr_running > 0;
2339 }
2340 
2341 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2342 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2343 
2344 #define SCA_CHECK		0x01
2345 #define SCA_MIGRATE_DISABLE	0x02
2346 #define SCA_MIGRATE_ENABLE	0x04
2347 #define SCA_USER		0x08
2348 
2349 #ifdef CONFIG_SMP
2350 
2351 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2352 
2353 extern void trigger_load_balance(struct rq *rq);
2354 
2355 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2356 
2357 static inline struct task_struct *get_push_task(struct rq *rq)
2358 {
2359 	struct task_struct *p = rq->curr;
2360 
2361 	lockdep_assert_rq_held(rq);
2362 
2363 	if (rq->push_busy)
2364 		return NULL;
2365 
2366 	if (p->nr_cpus_allowed == 1)
2367 		return NULL;
2368 
2369 	if (p->migration_disabled)
2370 		return NULL;
2371 
2372 	rq->push_busy = true;
2373 	return get_task_struct(p);
2374 }
2375 
2376 extern int push_cpu_stop(void *arg);
2377 
2378 #endif
2379 
2380 #ifdef CONFIG_CPU_IDLE
2381 static inline void idle_set_state(struct rq *rq,
2382 				  struct cpuidle_state *idle_state)
2383 {
2384 	rq->idle_state = idle_state;
2385 }
2386 
2387 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2388 {
2389 	SCHED_WARN_ON(!rcu_read_lock_held());
2390 
2391 	return rq->idle_state;
2392 }
2393 #else
2394 static inline void idle_set_state(struct rq *rq,
2395 				  struct cpuidle_state *idle_state)
2396 {
2397 }
2398 
2399 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2400 {
2401 	return NULL;
2402 }
2403 #endif
2404 
2405 extern void schedule_idle(void);
2406 
2407 extern void sysrq_sched_debug_show(void);
2408 extern void sched_init_granularity(void);
2409 extern void update_max_interval(void);
2410 
2411 extern void init_sched_dl_class(void);
2412 extern void init_sched_rt_class(void);
2413 extern void init_sched_fair_class(void);
2414 
2415 extern void reweight_task(struct task_struct *p, int prio);
2416 
2417 extern void resched_curr(struct rq *rq);
2418 extern void resched_cpu(int cpu);
2419 
2420 extern struct rt_bandwidth def_rt_bandwidth;
2421 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2422 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2423 
2424 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2425 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2426 
2427 #define BW_SHIFT		20
2428 #define BW_UNIT			(1 << BW_SHIFT)
2429 #define RATIO_SHIFT		8
2430 #define MAX_BW_BITS		(64 - BW_SHIFT)
2431 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2432 unsigned long to_ratio(u64 period, u64 runtime);
2433 
2434 extern void init_entity_runnable_average(struct sched_entity *se);
2435 extern void post_init_entity_util_avg(struct task_struct *p);
2436 
2437 #ifdef CONFIG_NO_HZ_FULL
2438 extern bool sched_can_stop_tick(struct rq *rq);
2439 extern int __init sched_tick_offload_init(void);
2440 
2441 /*
2442  * Tick may be needed by tasks in the runqueue depending on their policy and
2443  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2444  * nohz mode if necessary.
2445  */
2446 static inline void sched_update_tick_dependency(struct rq *rq)
2447 {
2448 	int cpu = cpu_of(rq);
2449 
2450 	if (!tick_nohz_full_cpu(cpu))
2451 		return;
2452 
2453 	if (sched_can_stop_tick(rq))
2454 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2455 	else
2456 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2457 }
2458 #else
2459 static inline int sched_tick_offload_init(void) { return 0; }
2460 static inline void sched_update_tick_dependency(struct rq *rq) { }
2461 #endif
2462 
2463 static inline void add_nr_running(struct rq *rq, unsigned count)
2464 {
2465 	unsigned prev_nr = rq->nr_running;
2466 
2467 	rq->nr_running = prev_nr + count;
2468 	if (trace_sched_update_nr_running_tp_enabled()) {
2469 		call_trace_sched_update_nr_running(rq, count);
2470 	}
2471 
2472 #ifdef CONFIG_SMP
2473 	if (prev_nr < 2 && rq->nr_running >= 2) {
2474 		if (!READ_ONCE(rq->rd->overload))
2475 			WRITE_ONCE(rq->rd->overload, 1);
2476 	}
2477 #endif
2478 
2479 	sched_update_tick_dependency(rq);
2480 }
2481 
2482 static inline void sub_nr_running(struct rq *rq, unsigned count)
2483 {
2484 	rq->nr_running -= count;
2485 	if (trace_sched_update_nr_running_tp_enabled()) {
2486 		call_trace_sched_update_nr_running(rq, -count);
2487 	}
2488 
2489 	/* Check if we still need preemption */
2490 	sched_update_tick_dependency(rq);
2491 }
2492 
2493 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2494 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2495 
2496 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2497 
2498 #ifdef CONFIG_PREEMPT_RT
2499 #define SCHED_NR_MIGRATE_BREAK 8
2500 #else
2501 #define SCHED_NR_MIGRATE_BREAK 32
2502 #endif
2503 
2504 extern const_debug unsigned int sysctl_sched_nr_migrate;
2505 extern const_debug unsigned int sysctl_sched_migration_cost;
2506 
2507 extern unsigned int sysctl_sched_base_slice;
2508 
2509 #ifdef CONFIG_SCHED_DEBUG
2510 extern int sysctl_resched_latency_warn_ms;
2511 extern int sysctl_resched_latency_warn_once;
2512 
2513 extern unsigned int sysctl_sched_tunable_scaling;
2514 
2515 extern unsigned int sysctl_numa_balancing_scan_delay;
2516 extern unsigned int sysctl_numa_balancing_scan_period_min;
2517 extern unsigned int sysctl_numa_balancing_scan_period_max;
2518 extern unsigned int sysctl_numa_balancing_scan_size;
2519 extern unsigned int sysctl_numa_balancing_hot_threshold;
2520 #endif
2521 
2522 #ifdef CONFIG_SCHED_HRTICK
2523 
2524 /*
2525  * Use hrtick when:
2526  *  - enabled by features
2527  *  - hrtimer is actually high res
2528  */
2529 static inline int hrtick_enabled(struct rq *rq)
2530 {
2531 	if (!cpu_active(cpu_of(rq)))
2532 		return 0;
2533 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2534 }
2535 
2536 static inline int hrtick_enabled_fair(struct rq *rq)
2537 {
2538 	if (!sched_feat(HRTICK))
2539 		return 0;
2540 	return hrtick_enabled(rq);
2541 }
2542 
2543 static inline int hrtick_enabled_dl(struct rq *rq)
2544 {
2545 	if (!sched_feat(HRTICK_DL))
2546 		return 0;
2547 	return hrtick_enabled(rq);
2548 }
2549 
2550 void hrtick_start(struct rq *rq, u64 delay);
2551 
2552 #else
2553 
2554 static inline int hrtick_enabled_fair(struct rq *rq)
2555 {
2556 	return 0;
2557 }
2558 
2559 static inline int hrtick_enabled_dl(struct rq *rq)
2560 {
2561 	return 0;
2562 }
2563 
2564 static inline int hrtick_enabled(struct rq *rq)
2565 {
2566 	return 0;
2567 }
2568 
2569 #endif /* CONFIG_SCHED_HRTICK */
2570 
2571 #ifndef arch_scale_freq_tick
2572 static __always_inline
2573 void arch_scale_freq_tick(void)
2574 {
2575 }
2576 #endif
2577 
2578 #ifndef arch_scale_freq_capacity
2579 /**
2580  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2581  * @cpu: the CPU in question.
2582  *
2583  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2584  *
2585  *     f_curr
2586  *     ------ * SCHED_CAPACITY_SCALE
2587  *     f_max
2588  */
2589 static __always_inline
2590 unsigned long arch_scale_freq_capacity(int cpu)
2591 {
2592 	return SCHED_CAPACITY_SCALE;
2593 }
2594 #endif
2595 
2596 #ifdef CONFIG_SCHED_DEBUG
2597 /*
2598  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2599  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2600  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2601  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2602  */
2603 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2604 {
2605 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2606 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2607 #ifdef CONFIG_SMP
2608 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2609 #endif
2610 }
2611 #else
2612 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2613 #endif
2614 
2615 #ifdef CONFIG_SMP
2616 
2617 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2618 {
2619 #ifdef CONFIG_SCHED_CORE
2620 	/*
2621 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2622 	 * order by core-id first and cpu-id second.
2623 	 *
2624 	 * Notably:
2625 	 *
2626 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2627 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2628 	 *
2629 	 * when only cpu-id is considered.
2630 	 */
2631 	if (rq1->core->cpu < rq2->core->cpu)
2632 		return true;
2633 	if (rq1->core->cpu > rq2->core->cpu)
2634 		return false;
2635 
2636 	/*
2637 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2638 	 */
2639 #endif
2640 	return rq1->cpu < rq2->cpu;
2641 }
2642 
2643 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2644 
2645 #ifdef CONFIG_PREEMPTION
2646 
2647 /*
2648  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2649  * way at the expense of forcing extra atomic operations in all
2650  * invocations.  This assures that the double_lock is acquired using the
2651  * same underlying policy as the spinlock_t on this architecture, which
2652  * reduces latency compared to the unfair variant below.  However, it
2653  * also adds more overhead and therefore may reduce throughput.
2654  */
2655 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2656 	__releases(this_rq->lock)
2657 	__acquires(busiest->lock)
2658 	__acquires(this_rq->lock)
2659 {
2660 	raw_spin_rq_unlock(this_rq);
2661 	double_rq_lock(this_rq, busiest);
2662 
2663 	return 1;
2664 }
2665 
2666 #else
2667 /*
2668  * Unfair double_lock_balance: Optimizes throughput at the expense of
2669  * latency by eliminating extra atomic operations when the locks are
2670  * already in proper order on entry.  This favors lower CPU-ids and will
2671  * grant the double lock to lower CPUs over higher ids under contention,
2672  * regardless of entry order into the function.
2673  */
2674 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2675 	__releases(this_rq->lock)
2676 	__acquires(busiest->lock)
2677 	__acquires(this_rq->lock)
2678 {
2679 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2680 	    likely(raw_spin_rq_trylock(busiest))) {
2681 		double_rq_clock_clear_update(this_rq, busiest);
2682 		return 0;
2683 	}
2684 
2685 	if (rq_order_less(this_rq, busiest)) {
2686 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2687 		double_rq_clock_clear_update(this_rq, busiest);
2688 		return 0;
2689 	}
2690 
2691 	raw_spin_rq_unlock(this_rq);
2692 	double_rq_lock(this_rq, busiest);
2693 
2694 	return 1;
2695 }
2696 
2697 #endif /* CONFIG_PREEMPTION */
2698 
2699 /*
2700  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2701  */
2702 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2703 {
2704 	lockdep_assert_irqs_disabled();
2705 
2706 	return _double_lock_balance(this_rq, busiest);
2707 }
2708 
2709 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2710 	__releases(busiest->lock)
2711 {
2712 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2713 		raw_spin_rq_unlock(busiest);
2714 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2715 }
2716 
2717 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2718 {
2719 	if (l1 > l2)
2720 		swap(l1, l2);
2721 
2722 	spin_lock(l1);
2723 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2724 }
2725 
2726 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2727 {
2728 	if (l1 > l2)
2729 		swap(l1, l2);
2730 
2731 	spin_lock_irq(l1);
2732 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2733 }
2734 
2735 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2736 {
2737 	if (l1 > l2)
2738 		swap(l1, l2);
2739 
2740 	raw_spin_lock(l1);
2741 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2742 }
2743 
2744 /*
2745  * double_rq_unlock - safely unlock two runqueues
2746  *
2747  * Note this does not restore interrupts like task_rq_unlock,
2748  * you need to do so manually after calling.
2749  */
2750 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2751 	__releases(rq1->lock)
2752 	__releases(rq2->lock)
2753 {
2754 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2755 		raw_spin_rq_unlock(rq2);
2756 	else
2757 		__release(rq2->lock);
2758 	raw_spin_rq_unlock(rq1);
2759 }
2760 
2761 extern void set_rq_online (struct rq *rq);
2762 extern void set_rq_offline(struct rq *rq);
2763 extern bool sched_smp_initialized;
2764 
2765 #else /* CONFIG_SMP */
2766 
2767 /*
2768  * double_rq_lock - safely lock two runqueues
2769  *
2770  * Note this does not disable interrupts like task_rq_lock,
2771  * you need to do so manually before calling.
2772  */
2773 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2774 	__acquires(rq1->lock)
2775 	__acquires(rq2->lock)
2776 {
2777 	WARN_ON_ONCE(!irqs_disabled());
2778 	WARN_ON_ONCE(rq1 != rq2);
2779 	raw_spin_rq_lock(rq1);
2780 	__acquire(rq2->lock);	/* Fake it out ;) */
2781 	double_rq_clock_clear_update(rq1, rq2);
2782 }
2783 
2784 /*
2785  * double_rq_unlock - safely unlock two runqueues
2786  *
2787  * Note this does not restore interrupts like task_rq_unlock,
2788  * you need to do so manually after calling.
2789  */
2790 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2791 	__releases(rq1->lock)
2792 	__releases(rq2->lock)
2793 {
2794 	WARN_ON_ONCE(rq1 != rq2);
2795 	raw_spin_rq_unlock(rq1);
2796 	__release(rq2->lock);
2797 }
2798 
2799 #endif
2800 
2801 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2802 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2803 
2804 #ifdef	CONFIG_SCHED_DEBUG
2805 extern bool sched_debug_verbose;
2806 
2807 extern void print_cfs_stats(struct seq_file *m, int cpu);
2808 extern void print_rt_stats(struct seq_file *m, int cpu);
2809 extern void print_dl_stats(struct seq_file *m, int cpu);
2810 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2811 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2812 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2813 
2814 extern void resched_latency_warn(int cpu, u64 latency);
2815 #ifdef CONFIG_NUMA_BALANCING
2816 extern void
2817 show_numa_stats(struct task_struct *p, struct seq_file *m);
2818 extern void
2819 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2820 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2821 #endif /* CONFIG_NUMA_BALANCING */
2822 #else
2823 static inline void resched_latency_warn(int cpu, u64 latency) {}
2824 #endif /* CONFIG_SCHED_DEBUG */
2825 
2826 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2827 extern void init_rt_rq(struct rt_rq *rt_rq);
2828 extern void init_dl_rq(struct dl_rq *dl_rq);
2829 
2830 extern void cfs_bandwidth_usage_inc(void);
2831 extern void cfs_bandwidth_usage_dec(void);
2832 
2833 #ifdef CONFIG_NO_HZ_COMMON
2834 #define NOHZ_BALANCE_KICK_BIT	0
2835 #define NOHZ_STATS_KICK_BIT	1
2836 #define NOHZ_NEWILB_KICK_BIT	2
2837 #define NOHZ_NEXT_KICK_BIT	3
2838 
2839 /* Run rebalance_domains() */
2840 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2841 /* Update blocked load */
2842 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2843 /* Update blocked load when entering idle */
2844 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2845 /* Update nohz.next_balance */
2846 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2847 
2848 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2849 
2850 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2851 
2852 extern void nohz_balance_exit_idle(struct rq *rq);
2853 #else
2854 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2855 #endif
2856 
2857 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2858 extern void nohz_run_idle_balance(int cpu);
2859 #else
2860 static inline void nohz_run_idle_balance(int cpu) { }
2861 #endif
2862 
2863 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2864 struct irqtime {
2865 	u64			total;
2866 	u64			tick_delta;
2867 	u64			irq_start_time;
2868 	struct u64_stats_sync	sync;
2869 };
2870 
2871 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2872 
2873 /*
2874  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2875  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2876  * and never move forward.
2877  */
2878 static inline u64 irq_time_read(int cpu)
2879 {
2880 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2881 	unsigned int seq;
2882 	u64 total;
2883 
2884 	do {
2885 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2886 		total = irqtime->total;
2887 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2888 
2889 	return total;
2890 }
2891 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2892 
2893 #ifdef CONFIG_CPU_FREQ
2894 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2895 
2896 /**
2897  * cpufreq_update_util - Take a note about CPU utilization changes.
2898  * @rq: Runqueue to carry out the update for.
2899  * @flags: Update reason flags.
2900  *
2901  * This function is called by the scheduler on the CPU whose utilization is
2902  * being updated.
2903  *
2904  * It can only be called from RCU-sched read-side critical sections.
2905  *
2906  * The way cpufreq is currently arranged requires it to evaluate the CPU
2907  * performance state (frequency/voltage) on a regular basis to prevent it from
2908  * being stuck in a completely inadequate performance level for too long.
2909  * That is not guaranteed to happen if the updates are only triggered from CFS
2910  * and DL, though, because they may not be coming in if only RT tasks are
2911  * active all the time (or there are RT tasks only).
2912  *
2913  * As a workaround for that issue, this function is called periodically by the
2914  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2915  * but that really is a band-aid.  Going forward it should be replaced with
2916  * solutions targeted more specifically at RT tasks.
2917  */
2918 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2919 {
2920 	struct update_util_data *data;
2921 
2922 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2923 						  cpu_of(rq)));
2924 	if (data)
2925 		data->func(data, rq_clock(rq), flags);
2926 }
2927 #else
2928 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2929 #endif /* CONFIG_CPU_FREQ */
2930 
2931 #ifdef arch_scale_freq_capacity
2932 # ifndef arch_scale_freq_invariant
2933 #  define arch_scale_freq_invariant()	true
2934 # endif
2935 #else
2936 # define arch_scale_freq_invariant()	false
2937 #endif
2938 
2939 #ifdef CONFIG_SMP
2940 static inline unsigned long capacity_orig_of(int cpu)
2941 {
2942 	return cpu_rq(cpu)->cpu_capacity_orig;
2943 }
2944 
2945 /**
2946  * enum cpu_util_type - CPU utilization type
2947  * @FREQUENCY_UTIL:	Utilization used to select frequency
2948  * @ENERGY_UTIL:	Utilization used during energy calculation
2949  *
2950  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2951  * need to be aggregated differently depending on the usage made of them. This
2952  * enum is used within effective_cpu_util() to differentiate the types of
2953  * utilization expected by the callers, and adjust the aggregation accordingly.
2954  */
2955 enum cpu_util_type {
2956 	FREQUENCY_UTIL,
2957 	ENERGY_UTIL,
2958 };
2959 
2960 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2961 				 enum cpu_util_type type,
2962 				 struct task_struct *p);
2963 
2964 /*
2965  * Verify the fitness of task @p to run on @cpu taking into account the
2966  * CPU original capacity and the runtime/deadline ratio of the task.
2967  *
2968  * The function will return true if the original capacity of @cpu is
2969  * greater than or equal to task's deadline density right shifted by
2970  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2971  */
2972 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2973 {
2974 	unsigned long cap = arch_scale_cpu_capacity(cpu);
2975 
2976 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2977 }
2978 
2979 static inline unsigned long cpu_bw_dl(struct rq *rq)
2980 {
2981 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2982 }
2983 
2984 static inline unsigned long cpu_util_dl(struct rq *rq)
2985 {
2986 	return READ_ONCE(rq->avg_dl.util_avg);
2987 }
2988 
2989 
2990 extern unsigned long cpu_util_cfs(int cpu);
2991 extern unsigned long cpu_util_cfs_boost(int cpu);
2992 
2993 static inline unsigned long cpu_util_rt(struct rq *rq)
2994 {
2995 	return READ_ONCE(rq->avg_rt.util_avg);
2996 }
2997 #endif
2998 
2999 #ifdef CONFIG_UCLAMP_TASK
3000 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3001 
3002 static inline unsigned long uclamp_rq_get(struct rq *rq,
3003 					  enum uclamp_id clamp_id)
3004 {
3005 	return READ_ONCE(rq->uclamp[clamp_id].value);
3006 }
3007 
3008 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3009 				 unsigned int value)
3010 {
3011 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3012 }
3013 
3014 static inline bool uclamp_rq_is_idle(struct rq *rq)
3015 {
3016 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3017 }
3018 
3019 /**
3020  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3021  * @rq:		The rq to clamp against. Must not be NULL.
3022  * @util:	The util value to clamp.
3023  * @p:		The task to clamp against. Can be NULL if you want to clamp
3024  *		against @rq only.
3025  *
3026  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3027  *
3028  * If sched_uclamp_used static key is disabled, then just return the util
3029  * without any clamping since uclamp aggregation at the rq level in the fast
3030  * path is disabled, rendering this operation a NOP.
3031  *
3032  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3033  * will return the correct effective uclamp value of the task even if the
3034  * static key is disabled.
3035  */
3036 static __always_inline
3037 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3038 				  struct task_struct *p)
3039 {
3040 	unsigned long min_util = 0;
3041 	unsigned long max_util = 0;
3042 
3043 	if (!static_branch_likely(&sched_uclamp_used))
3044 		return util;
3045 
3046 	if (p) {
3047 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3048 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3049 
3050 		/*
3051 		 * Ignore last runnable task's max clamp, as this task will
3052 		 * reset it. Similarly, no need to read the rq's min clamp.
3053 		 */
3054 		if (uclamp_rq_is_idle(rq))
3055 			goto out;
3056 	}
3057 
3058 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3059 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3060 out:
3061 	/*
3062 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3063 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3064 	 * inversion. Fix it now when the clamps are applied.
3065 	 */
3066 	if (unlikely(min_util >= max_util))
3067 		return min_util;
3068 
3069 	return clamp(util, min_util, max_util);
3070 }
3071 
3072 /* Is the rq being capped/throttled by uclamp_max? */
3073 static inline bool uclamp_rq_is_capped(struct rq *rq)
3074 {
3075 	unsigned long rq_util;
3076 	unsigned long max_util;
3077 
3078 	if (!static_branch_likely(&sched_uclamp_used))
3079 		return false;
3080 
3081 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3082 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3083 
3084 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3085 }
3086 
3087 /*
3088  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3089  * by default in the fast path and only gets turned on once userspace performs
3090  * an operation that requires it.
3091  *
3092  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3093  * hence is active.
3094  */
3095 static inline bool uclamp_is_used(void)
3096 {
3097 	return static_branch_likely(&sched_uclamp_used);
3098 }
3099 #else /* CONFIG_UCLAMP_TASK */
3100 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3101 					     enum uclamp_id clamp_id)
3102 {
3103 	if (clamp_id == UCLAMP_MIN)
3104 		return 0;
3105 
3106 	return SCHED_CAPACITY_SCALE;
3107 }
3108 
3109 static inline
3110 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3111 				  struct task_struct *p)
3112 {
3113 	return util;
3114 }
3115 
3116 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3117 
3118 static inline bool uclamp_is_used(void)
3119 {
3120 	return false;
3121 }
3122 
3123 static inline unsigned long uclamp_rq_get(struct rq *rq,
3124 					  enum uclamp_id clamp_id)
3125 {
3126 	if (clamp_id == UCLAMP_MIN)
3127 		return 0;
3128 
3129 	return SCHED_CAPACITY_SCALE;
3130 }
3131 
3132 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3133 				 unsigned int value)
3134 {
3135 }
3136 
3137 static inline bool uclamp_rq_is_idle(struct rq *rq)
3138 {
3139 	return false;
3140 }
3141 #endif /* CONFIG_UCLAMP_TASK */
3142 
3143 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3144 static inline unsigned long cpu_util_irq(struct rq *rq)
3145 {
3146 	return rq->avg_irq.util_avg;
3147 }
3148 
3149 static inline
3150 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3151 {
3152 	util *= (max - irq);
3153 	util /= max;
3154 
3155 	return util;
3156 
3157 }
3158 #else
3159 static inline unsigned long cpu_util_irq(struct rq *rq)
3160 {
3161 	return 0;
3162 }
3163 
3164 static inline
3165 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3166 {
3167 	return util;
3168 }
3169 #endif
3170 
3171 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3172 
3173 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3174 
3175 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3176 
3177 static inline bool sched_energy_enabled(void)
3178 {
3179 	return static_branch_unlikely(&sched_energy_present);
3180 }
3181 
3182 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3183 
3184 #define perf_domain_span(pd) NULL
3185 static inline bool sched_energy_enabled(void) { return false; }
3186 
3187 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3188 
3189 #ifdef CONFIG_MEMBARRIER
3190 /*
3191  * The scheduler provides memory barriers required by membarrier between:
3192  * - prior user-space memory accesses and store to rq->membarrier_state,
3193  * - store to rq->membarrier_state and following user-space memory accesses.
3194  * In the same way it provides those guarantees around store to rq->curr.
3195  */
3196 static inline void membarrier_switch_mm(struct rq *rq,
3197 					struct mm_struct *prev_mm,
3198 					struct mm_struct *next_mm)
3199 {
3200 	int membarrier_state;
3201 
3202 	if (prev_mm == next_mm)
3203 		return;
3204 
3205 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3206 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3207 		return;
3208 
3209 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3210 }
3211 #else
3212 static inline void membarrier_switch_mm(struct rq *rq,
3213 					struct mm_struct *prev_mm,
3214 					struct mm_struct *next_mm)
3215 {
3216 }
3217 #endif
3218 
3219 #ifdef CONFIG_SMP
3220 static inline bool is_per_cpu_kthread(struct task_struct *p)
3221 {
3222 	if (!(p->flags & PF_KTHREAD))
3223 		return false;
3224 
3225 	if (p->nr_cpus_allowed != 1)
3226 		return false;
3227 
3228 	return true;
3229 }
3230 #endif
3231 
3232 extern void swake_up_all_locked(struct swait_queue_head *q);
3233 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3234 
3235 #ifdef CONFIG_PREEMPT_DYNAMIC
3236 extern int preempt_dynamic_mode;
3237 extern int sched_dynamic_mode(const char *str);
3238 extern void sched_dynamic_update(int mode);
3239 #endif
3240 
3241 static inline void update_current_exec_runtime(struct task_struct *curr,
3242 						u64 now, u64 delta_exec)
3243 {
3244 	curr->se.sum_exec_runtime += delta_exec;
3245 	account_group_exec_runtime(curr, delta_exec);
3246 
3247 	curr->se.exec_start = now;
3248 	cgroup_account_cputime(curr, delta_exec);
3249 }
3250 
3251 #ifdef CONFIG_SCHED_MM_CID
3252 
3253 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3254 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3255 
3256 extern raw_spinlock_t cid_lock;
3257 extern int use_cid_lock;
3258 
3259 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3260 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3261 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3262 extern void init_sched_mm_cid(struct task_struct *t);
3263 
3264 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3265 {
3266 	if (cid < 0)
3267 		return;
3268 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3269 }
3270 
3271 /*
3272  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3273  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3274  * be held to transition to other states.
3275  *
3276  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3277  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3278  */
3279 static inline void mm_cid_put_lazy(struct task_struct *t)
3280 {
3281 	struct mm_struct *mm = t->mm;
3282 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3283 	int cid;
3284 
3285 	lockdep_assert_irqs_disabled();
3286 	cid = __this_cpu_read(pcpu_cid->cid);
3287 	if (!mm_cid_is_lazy_put(cid) ||
3288 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3289 		return;
3290 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3291 }
3292 
3293 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3294 {
3295 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3296 	int cid, res;
3297 
3298 	lockdep_assert_irqs_disabled();
3299 	cid = __this_cpu_read(pcpu_cid->cid);
3300 	for (;;) {
3301 		if (mm_cid_is_unset(cid))
3302 			return MM_CID_UNSET;
3303 		/*
3304 		 * Attempt transition from valid or lazy-put to unset.
3305 		 */
3306 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3307 		if (res == cid)
3308 			break;
3309 		cid = res;
3310 	}
3311 	return cid;
3312 }
3313 
3314 static inline void mm_cid_put(struct mm_struct *mm)
3315 {
3316 	int cid;
3317 
3318 	lockdep_assert_irqs_disabled();
3319 	cid = mm_cid_pcpu_unset(mm);
3320 	if (cid == MM_CID_UNSET)
3321 		return;
3322 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3323 }
3324 
3325 static inline int __mm_cid_try_get(struct mm_struct *mm)
3326 {
3327 	struct cpumask *cpumask;
3328 	int cid;
3329 
3330 	cpumask = mm_cidmask(mm);
3331 	/*
3332 	 * Retry finding first zero bit if the mask is temporarily
3333 	 * filled. This only happens during concurrent remote-clear
3334 	 * which owns a cid without holding a rq lock.
3335 	 */
3336 	for (;;) {
3337 		cid = cpumask_first_zero(cpumask);
3338 		if (cid < nr_cpu_ids)
3339 			break;
3340 		cpu_relax();
3341 	}
3342 	if (cpumask_test_and_set_cpu(cid, cpumask))
3343 		return -1;
3344 	return cid;
3345 }
3346 
3347 /*
3348  * Save a snapshot of the current runqueue time of this cpu
3349  * with the per-cpu cid value, allowing to estimate how recently it was used.
3350  */
3351 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3352 {
3353 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3354 
3355 	lockdep_assert_rq_held(rq);
3356 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3357 }
3358 
3359 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3360 {
3361 	int cid;
3362 
3363 	/*
3364 	 * All allocations (even those using the cid_lock) are lock-free. If
3365 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3366 	 * guarantee forward progress.
3367 	 */
3368 	if (!READ_ONCE(use_cid_lock)) {
3369 		cid = __mm_cid_try_get(mm);
3370 		if (cid >= 0)
3371 			goto end;
3372 		raw_spin_lock(&cid_lock);
3373 	} else {
3374 		raw_spin_lock(&cid_lock);
3375 		cid = __mm_cid_try_get(mm);
3376 		if (cid >= 0)
3377 			goto unlock;
3378 	}
3379 
3380 	/*
3381 	 * cid concurrently allocated. Retry while forcing following
3382 	 * allocations to use the cid_lock to ensure forward progress.
3383 	 */
3384 	WRITE_ONCE(use_cid_lock, 1);
3385 	/*
3386 	 * Set use_cid_lock before allocation. Only care about program order
3387 	 * because this is only required for forward progress.
3388 	 */
3389 	barrier();
3390 	/*
3391 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3392 	 * all newcoming allocations observe the use_cid_lock flag set.
3393 	 */
3394 	do {
3395 		cid = __mm_cid_try_get(mm);
3396 		cpu_relax();
3397 	} while (cid < 0);
3398 	/*
3399 	 * Allocate before clearing use_cid_lock. Only care about
3400 	 * program order because this is for forward progress.
3401 	 */
3402 	barrier();
3403 	WRITE_ONCE(use_cid_lock, 0);
3404 unlock:
3405 	raw_spin_unlock(&cid_lock);
3406 end:
3407 	mm_cid_snapshot_time(rq, mm);
3408 	return cid;
3409 }
3410 
3411 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3412 {
3413 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3414 	struct cpumask *cpumask;
3415 	int cid;
3416 
3417 	lockdep_assert_rq_held(rq);
3418 	cpumask = mm_cidmask(mm);
3419 	cid = __this_cpu_read(pcpu_cid->cid);
3420 	if (mm_cid_is_valid(cid)) {
3421 		mm_cid_snapshot_time(rq, mm);
3422 		return cid;
3423 	}
3424 	if (mm_cid_is_lazy_put(cid)) {
3425 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3426 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3427 	}
3428 	cid = __mm_cid_get(rq, mm);
3429 	__this_cpu_write(pcpu_cid->cid, cid);
3430 	return cid;
3431 }
3432 
3433 static inline void switch_mm_cid(struct rq *rq,
3434 				 struct task_struct *prev,
3435 				 struct task_struct *next)
3436 {
3437 	/*
3438 	 * Provide a memory barrier between rq->curr store and load of
3439 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3440 	 *
3441 	 * Should be adapted if context_switch() is modified.
3442 	 */
3443 	if (!next->mm) {                                // to kernel
3444 		/*
3445 		 * user -> kernel transition does not guarantee a barrier, but
3446 		 * we can use the fact that it performs an atomic operation in
3447 		 * mmgrab().
3448 		 */
3449 		if (prev->mm)                           // from user
3450 			smp_mb__after_mmgrab();
3451 		/*
3452 		 * kernel -> kernel transition does not change rq->curr->mm
3453 		 * state. It stays NULL.
3454 		 */
3455 	} else {                                        // to user
3456 		/*
3457 		 * kernel -> user transition does not provide a barrier
3458 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3459 		 * Provide it here.
3460 		 */
3461 		if (!prev->mm)                          // from kernel
3462 			smp_mb();
3463 		/*
3464 		 * user -> user transition guarantees a memory barrier through
3465 		 * switch_mm() when current->mm changes. If current->mm is
3466 		 * unchanged, no barrier is needed.
3467 		 */
3468 	}
3469 	if (prev->mm_cid_active) {
3470 		mm_cid_snapshot_time(rq, prev->mm);
3471 		mm_cid_put_lazy(prev);
3472 		prev->mm_cid = -1;
3473 	}
3474 	if (next->mm_cid_active)
3475 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3476 }
3477 
3478 #else
3479 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3480 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3481 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3482 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3483 static inline void init_sched_mm_cid(struct task_struct *t) { }
3484 #endif
3485 
3486 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3487 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3488 
3489 #endif /* _KERNEL_SCHED_SCHED_H */
3490