xref: /openbmc/linux/kernel/sched/sched.h (revision d003c346bf75f01d240c80000baf2fbf28e53782)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/init_task.h>
49 #include <linux/kprobes.h>
50 #include <linux/kthread.h>
51 #include <linux/membarrier.h>
52 #include <linux/migrate.h>
53 #include <linux/mmu_context.h>
54 #include <linux/nmi.h>
55 #include <linux/proc_fs.h>
56 #include <linux/prefetch.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcupdate_wait.h>
60 #include <linux/security.h>
61 #include <linux/stop_machine.h>
62 #include <linux/suspend.h>
63 #include <linux/swait.h>
64 #include <linux/syscalls.h>
65 #include <linux/task_work.h>
66 #include <linux/tsacct_kern.h>
67 
68 #include <asm/tlb.h>
69 
70 #ifdef CONFIG_PARAVIRT
71 # include <asm/paravirt.h>
72 #endif
73 
74 #include "cpupri.h"
75 #include "cpudeadline.h"
76 
77 #ifdef CONFIG_SCHED_DEBUG
78 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
79 #else
80 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
81 #endif
82 
83 struct rq;
84 struct cpuidle_state;
85 
86 /* task_struct::on_rq states: */
87 #define TASK_ON_RQ_QUEUED	1
88 #define TASK_ON_RQ_MIGRATING	2
89 
90 extern __read_mostly int scheduler_running;
91 
92 extern unsigned long calc_load_update;
93 extern atomic_long_t calc_load_tasks;
94 
95 extern void calc_global_load_tick(struct rq *this_rq);
96 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97 
98 #ifdef CONFIG_SMP
99 extern void cpu_load_update_active(struct rq *this_rq);
100 #else
101 static inline void cpu_load_update_active(struct rq *this_rq) { }
102 #endif
103 
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 
109 /*
110  * Increase resolution of nice-level calculations for 64-bit architectures.
111  * The extra resolution improves shares distribution and load balancing of
112  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113  * hierarchies, especially on larger systems. This is not a user-visible change
114  * and does not change the user-interface for setting shares/weights.
115  *
116  * We increase resolution only if we have enough bits to allow this increased
117  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118  * are pretty high and the returns do not justify the increased costs.
119  *
120  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121  * increase coverage and consistency always enable it on 64-bit platforms.
122  */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
127 #else
128 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
129 # define scale_load(w)		(w)
130 # define scale_load_down(w)	(w)
131 #endif
132 
133 /*
134  * Task weight (visible to users) and its load (invisible to users) have
135  * independent resolution, but they should be well calibrated. We use
136  * scale_load() and scale_load_down(w) to convert between them. The
137  * following must be true:
138  *
139  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
140  *
141  */
142 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
143 
144 /*
145  * Single value that decides SCHED_DEADLINE internal math precision.
146  * 10 -> just above 1us
147  * 9  -> just above 0.5us
148  */
149 #define DL_SCALE		10
150 
151 /*
152  * Single value that denotes runtime == period, ie unlimited time.
153  */
154 #define RUNTIME_INF		((u64)~0ULL)
155 
156 static inline int idle_policy(int policy)
157 {
158 	return policy == SCHED_IDLE;
159 }
160 static inline int fair_policy(int policy)
161 {
162 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
163 }
164 
165 static inline int rt_policy(int policy)
166 {
167 	return policy == SCHED_FIFO || policy == SCHED_RR;
168 }
169 
170 static inline int dl_policy(int policy)
171 {
172 	return policy == SCHED_DEADLINE;
173 }
174 static inline bool valid_policy(int policy)
175 {
176 	return idle_policy(policy) || fair_policy(policy) ||
177 		rt_policy(policy) || dl_policy(policy);
178 }
179 
180 static inline int task_has_rt_policy(struct task_struct *p)
181 {
182 	return rt_policy(p->policy);
183 }
184 
185 static inline int task_has_dl_policy(struct task_struct *p)
186 {
187 	return dl_policy(p->policy);
188 }
189 
190 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191 
192 /*
193  * !! For sched_setattr_nocheck() (kernel) only !!
194  *
195  * This is actually gross. :(
196  *
197  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198  * tasks, but still be able to sleep. We need this on platforms that cannot
199  * atomically change clock frequency. Remove once fast switching will be
200  * available on such platforms.
201  *
202  * SUGOV stands for SchedUtil GOVernor.
203  */
204 #define SCHED_FLAG_SUGOV	0x10000000
205 
206 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207 {
208 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210 #else
211 	return false;
212 #endif
213 }
214 
215 /*
216  * Tells if entity @a should preempt entity @b.
217  */
218 static inline bool
219 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220 {
221 	return dl_entity_is_special(a) ||
222 	       dl_time_before(a->deadline, b->deadline);
223 }
224 
225 /*
226  * This is the priority-queue data structure of the RT scheduling class:
227  */
228 struct rt_prio_array {
229 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 	struct list_head queue[MAX_RT_PRIO];
231 };
232 
233 struct rt_bandwidth {
234 	/* nests inside the rq lock: */
235 	raw_spinlock_t		rt_runtime_lock;
236 	ktime_t			rt_period;
237 	u64			rt_runtime;
238 	struct hrtimer		rt_period_timer;
239 	unsigned int		rt_period_active;
240 };
241 
242 void __dl_clear_params(struct task_struct *p);
243 
244 /*
245  * To keep the bandwidth of -deadline tasks and groups under control
246  * we need some place where:
247  *  - store the maximum -deadline bandwidth of the system (the group);
248  *  - cache the fraction of that bandwidth that is currently allocated.
249  *
250  * This is all done in the data structure below. It is similar to the
251  * one used for RT-throttling (rt_bandwidth), with the main difference
252  * that, since here we are only interested in admission control, we
253  * do not decrease any runtime while the group "executes", neither we
254  * need a timer to replenish it.
255  *
256  * With respect to SMP, the bandwidth is given on a per-CPU basis,
257  * meaning that:
258  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259  *  - dl_total_bw array contains, in the i-eth element, the currently
260  *    allocated bandwidth on the i-eth CPU.
261  * Moreover, groups consume bandwidth on each CPU, while tasks only
262  * consume bandwidth on the CPU they're running on.
263  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264  * that will be shown the next time the proc or cgroup controls will
265  * be red. It on its turn can be changed by writing on its own
266  * control.
267  */
268 struct dl_bandwidth {
269 	raw_spinlock_t		dl_runtime_lock;
270 	u64			dl_runtime;
271 	u64			dl_period;
272 };
273 
274 static inline int dl_bandwidth_enabled(void)
275 {
276 	return sysctl_sched_rt_runtime >= 0;
277 }
278 
279 struct dl_bw {
280 	raw_spinlock_t		lock;
281 	u64			bw;
282 	u64			total_bw;
283 };
284 
285 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286 
287 static inline
288 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289 {
290 	dl_b->total_bw -= tsk_bw;
291 	__dl_update(dl_b, (s32)tsk_bw / cpus);
292 }
293 
294 static inline
295 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296 {
297 	dl_b->total_bw += tsk_bw;
298 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
299 }
300 
301 static inline
302 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303 {
304 	return dl_b->bw != -1 &&
305 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306 }
307 
308 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309 extern void init_dl_bw(struct dl_bw *dl_b);
310 extern int  sched_dl_global_validate(void);
311 extern void sched_dl_do_global(void);
312 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315 extern bool __checkparam_dl(const struct sched_attr *attr);
316 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319 extern bool dl_cpu_busy(unsigned int cpu);
320 
321 #ifdef CONFIG_CGROUP_SCHED
322 
323 #include <linux/cgroup.h>
324 #include <linux/psi.h>
325 
326 struct cfs_rq;
327 struct rt_rq;
328 
329 extern struct list_head task_groups;
330 
331 struct cfs_bandwidth {
332 #ifdef CONFIG_CFS_BANDWIDTH
333 	raw_spinlock_t		lock;
334 	ktime_t			period;
335 	u64			quota;
336 	u64			runtime;
337 	s64			hierarchical_quota;
338 	u64			runtime_expires;
339 	int			expires_seq;
340 
341 	short			idle;
342 	short			period_active;
343 	struct hrtimer		period_timer;
344 	struct hrtimer		slack_timer;
345 	struct list_head	throttled_cfs_rq;
346 
347 	/* Statistics: */
348 	int			nr_periods;
349 	int			nr_throttled;
350 	u64			throttled_time;
351 
352 	bool                    distribute_running;
353 #endif
354 };
355 
356 /* Task group related information */
357 struct task_group {
358 	struct cgroup_subsys_state css;
359 
360 #ifdef CONFIG_FAIR_GROUP_SCHED
361 	/* schedulable entities of this group on each CPU */
362 	struct sched_entity	**se;
363 	/* runqueue "owned" by this group on each CPU */
364 	struct cfs_rq		**cfs_rq;
365 	unsigned long		shares;
366 
367 #ifdef	CONFIG_SMP
368 	/*
369 	 * load_avg can be heavily contended at clock tick time, so put
370 	 * it in its own cacheline separated from the fields above which
371 	 * will also be accessed at each tick.
372 	 */
373 	atomic_long_t		load_avg ____cacheline_aligned;
374 #endif
375 #endif
376 
377 #ifdef CONFIG_RT_GROUP_SCHED
378 	struct sched_rt_entity	**rt_se;
379 	struct rt_rq		**rt_rq;
380 
381 	struct rt_bandwidth	rt_bandwidth;
382 #endif
383 
384 	struct rcu_head		rcu;
385 	struct list_head	list;
386 
387 	struct task_group	*parent;
388 	struct list_head	siblings;
389 	struct list_head	children;
390 
391 #ifdef CONFIG_SCHED_AUTOGROUP
392 	struct autogroup	*autogroup;
393 #endif
394 
395 	struct cfs_bandwidth	cfs_bandwidth;
396 };
397 
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
400 
401 /*
402  * A weight of 0 or 1 can cause arithmetics problems.
403  * A weight of a cfs_rq is the sum of weights of which entities
404  * are queued on this cfs_rq, so a weight of a entity should not be
405  * too large, so as the shares value of a task group.
406  * (The default weight is 1024 - so there's no practical
407  *  limitation from this.)
408  */
409 #define MIN_SHARES		(1UL <<  1)
410 #define MAX_SHARES		(1UL << 18)
411 #endif
412 
413 typedef int (*tg_visitor)(struct task_group *, void *);
414 
415 extern int walk_tg_tree_from(struct task_group *from,
416 			     tg_visitor down, tg_visitor up, void *data);
417 
418 /*
419  * Iterate the full tree, calling @down when first entering a node and @up when
420  * leaving it for the final time.
421  *
422  * Caller must hold rcu_lock or sufficient equivalent.
423  */
424 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
425 {
426 	return walk_tg_tree_from(&root_task_group, down, up, data);
427 }
428 
429 extern int tg_nop(struct task_group *tg, void *data);
430 
431 extern void free_fair_sched_group(struct task_group *tg);
432 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
433 extern void online_fair_sched_group(struct task_group *tg);
434 extern void unregister_fair_sched_group(struct task_group *tg);
435 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
436 			struct sched_entity *se, int cpu,
437 			struct sched_entity *parent);
438 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
439 
440 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
441 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
442 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
443 
444 extern void free_rt_sched_group(struct task_group *tg);
445 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
446 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
447 		struct sched_rt_entity *rt_se, int cpu,
448 		struct sched_rt_entity *parent);
449 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
450 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
451 extern long sched_group_rt_runtime(struct task_group *tg);
452 extern long sched_group_rt_period(struct task_group *tg);
453 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
454 
455 extern struct task_group *sched_create_group(struct task_group *parent);
456 extern void sched_online_group(struct task_group *tg,
457 			       struct task_group *parent);
458 extern void sched_destroy_group(struct task_group *tg);
459 extern void sched_offline_group(struct task_group *tg);
460 
461 extern void sched_move_task(struct task_struct *tsk);
462 
463 #ifdef CONFIG_FAIR_GROUP_SCHED
464 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
465 
466 #ifdef CONFIG_SMP
467 extern void set_task_rq_fair(struct sched_entity *se,
468 			     struct cfs_rq *prev, struct cfs_rq *next);
469 #else /* !CONFIG_SMP */
470 static inline void set_task_rq_fair(struct sched_entity *se,
471 			     struct cfs_rq *prev, struct cfs_rq *next) { }
472 #endif /* CONFIG_SMP */
473 #endif /* CONFIG_FAIR_GROUP_SCHED */
474 
475 #else /* CONFIG_CGROUP_SCHED */
476 
477 struct cfs_bandwidth { };
478 
479 #endif	/* CONFIG_CGROUP_SCHED */
480 
481 /* CFS-related fields in a runqueue */
482 struct cfs_rq {
483 	struct load_weight	load;
484 	unsigned long		runnable_weight;
485 	unsigned int		nr_running;
486 	unsigned int		h_nr_running;
487 
488 	u64			exec_clock;
489 	u64			min_vruntime;
490 #ifndef CONFIG_64BIT
491 	u64			min_vruntime_copy;
492 #endif
493 
494 	struct rb_root_cached	tasks_timeline;
495 
496 	/*
497 	 * 'curr' points to currently running entity on this cfs_rq.
498 	 * It is set to NULL otherwise (i.e when none are currently running).
499 	 */
500 	struct sched_entity	*curr;
501 	struct sched_entity	*next;
502 	struct sched_entity	*last;
503 	struct sched_entity	*skip;
504 
505 #ifdef	CONFIG_SCHED_DEBUG
506 	unsigned int		nr_spread_over;
507 #endif
508 
509 #ifdef CONFIG_SMP
510 	/*
511 	 * CFS load tracking
512 	 */
513 	struct sched_avg	avg;
514 #ifndef CONFIG_64BIT
515 	u64			load_last_update_time_copy;
516 #endif
517 	struct {
518 		raw_spinlock_t	lock ____cacheline_aligned;
519 		int		nr;
520 		unsigned long	load_avg;
521 		unsigned long	util_avg;
522 		unsigned long	runnable_sum;
523 	} removed;
524 
525 #ifdef CONFIG_FAIR_GROUP_SCHED
526 	unsigned long		tg_load_avg_contrib;
527 	long			propagate;
528 	long			prop_runnable_sum;
529 
530 	/*
531 	 *   h_load = weight * f(tg)
532 	 *
533 	 * Where f(tg) is the recursive weight fraction assigned to
534 	 * this group.
535 	 */
536 	unsigned long		h_load;
537 	u64			last_h_load_update;
538 	struct sched_entity	*h_load_next;
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540 #endif /* CONFIG_SMP */
541 
542 #ifdef CONFIG_FAIR_GROUP_SCHED
543 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
544 
545 	/*
546 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
547 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
548 	 * (like users, containers etc.)
549 	 *
550 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
551 	 * This list is used during load balance.
552 	 */
553 	int			on_list;
554 	struct list_head	leaf_cfs_rq_list;
555 	struct task_group	*tg;	/* group that "owns" this runqueue */
556 
557 #ifdef CONFIG_CFS_BANDWIDTH
558 	int			runtime_enabled;
559 	int			expires_seq;
560 	u64			runtime_expires;
561 	s64			runtime_remaining;
562 
563 	u64			throttled_clock;
564 	u64			throttled_clock_task;
565 	u64			throttled_clock_task_time;
566 	int			throttled;
567 	int			throttle_count;
568 	struct list_head	throttled_list;
569 #endif /* CONFIG_CFS_BANDWIDTH */
570 #endif /* CONFIG_FAIR_GROUP_SCHED */
571 };
572 
573 static inline int rt_bandwidth_enabled(void)
574 {
575 	return sysctl_sched_rt_runtime >= 0;
576 }
577 
578 /* RT IPI pull logic requires IRQ_WORK */
579 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
580 # define HAVE_RT_PUSH_IPI
581 #endif
582 
583 /* Real-Time classes' related field in a runqueue: */
584 struct rt_rq {
585 	struct rt_prio_array	active;
586 	unsigned int		rt_nr_running;
587 	unsigned int		rr_nr_running;
588 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
589 	struct {
590 		int		curr; /* highest queued rt task prio */
591 #ifdef CONFIG_SMP
592 		int		next; /* next highest */
593 #endif
594 	} highest_prio;
595 #endif
596 #ifdef CONFIG_SMP
597 	unsigned long		rt_nr_migratory;
598 	unsigned long		rt_nr_total;
599 	int			overloaded;
600 	struct plist_head	pushable_tasks;
601 
602 #endif /* CONFIG_SMP */
603 	int			rt_queued;
604 
605 	int			rt_throttled;
606 	u64			rt_time;
607 	u64			rt_runtime;
608 	/* Nests inside the rq lock: */
609 	raw_spinlock_t		rt_runtime_lock;
610 
611 #ifdef CONFIG_RT_GROUP_SCHED
612 	unsigned long		rt_nr_boosted;
613 
614 	struct rq		*rq;
615 	struct task_group	*tg;
616 #endif
617 };
618 
619 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
620 {
621 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
622 }
623 
624 /* Deadline class' related fields in a runqueue */
625 struct dl_rq {
626 	/* runqueue is an rbtree, ordered by deadline */
627 	struct rb_root_cached	root;
628 
629 	unsigned long		dl_nr_running;
630 
631 #ifdef CONFIG_SMP
632 	/*
633 	 * Deadline values of the currently executing and the
634 	 * earliest ready task on this rq. Caching these facilitates
635 	 * the decision wether or not a ready but not running task
636 	 * should migrate somewhere else.
637 	 */
638 	struct {
639 		u64		curr;
640 		u64		next;
641 	} earliest_dl;
642 
643 	unsigned long		dl_nr_migratory;
644 	int			overloaded;
645 
646 	/*
647 	 * Tasks on this rq that can be pushed away. They are kept in
648 	 * an rb-tree, ordered by tasks' deadlines, with caching
649 	 * of the leftmost (earliest deadline) element.
650 	 */
651 	struct rb_root_cached	pushable_dl_tasks_root;
652 #else
653 	struct dl_bw		dl_bw;
654 #endif
655 	/*
656 	 * "Active utilization" for this runqueue: increased when a
657 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
658 	 * task blocks
659 	 */
660 	u64			running_bw;
661 
662 	/*
663 	 * Utilization of the tasks "assigned" to this runqueue (including
664 	 * the tasks that are in runqueue and the tasks that executed on this
665 	 * CPU and blocked). Increased when a task moves to this runqueue, and
666 	 * decreased when the task moves away (migrates, changes scheduling
667 	 * policy, or terminates).
668 	 * This is needed to compute the "inactive utilization" for the
669 	 * runqueue (inactive utilization = this_bw - running_bw).
670 	 */
671 	u64			this_bw;
672 	u64			extra_bw;
673 
674 	/*
675 	 * Inverse of the fraction of CPU utilization that can be reclaimed
676 	 * by the GRUB algorithm.
677 	 */
678 	u64			bw_ratio;
679 };
680 
681 #ifdef CONFIG_FAIR_GROUP_SCHED
682 /* An entity is a task if it doesn't "own" a runqueue */
683 #define entity_is_task(se)	(!se->my_q)
684 #else
685 #define entity_is_task(se)	1
686 #endif
687 
688 #ifdef CONFIG_SMP
689 /*
690  * XXX we want to get rid of these helpers and use the full load resolution.
691  */
692 static inline long se_weight(struct sched_entity *se)
693 {
694 	return scale_load_down(se->load.weight);
695 }
696 
697 static inline long se_runnable(struct sched_entity *se)
698 {
699 	return scale_load_down(se->runnable_weight);
700 }
701 
702 static inline bool sched_asym_prefer(int a, int b)
703 {
704 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
705 }
706 
707 /*
708  * We add the notion of a root-domain which will be used to define per-domain
709  * variables. Each exclusive cpuset essentially defines an island domain by
710  * fully partitioning the member CPUs from any other cpuset. Whenever a new
711  * exclusive cpuset is created, we also create and attach a new root-domain
712  * object.
713  *
714  */
715 struct root_domain {
716 	atomic_t		refcount;
717 	atomic_t		rto_count;
718 	struct rcu_head		rcu;
719 	cpumask_var_t		span;
720 	cpumask_var_t		online;
721 
722 	/*
723 	 * Indicate pullable load on at least one CPU, e.g:
724 	 * - More than one runnable task
725 	 * - Running task is misfit
726 	 */
727 	int			overload;
728 
729 	/*
730 	 * The bit corresponding to a CPU gets set here if such CPU has more
731 	 * than one runnable -deadline task (as it is below for RT tasks).
732 	 */
733 	cpumask_var_t		dlo_mask;
734 	atomic_t		dlo_count;
735 	struct dl_bw		dl_bw;
736 	struct cpudl		cpudl;
737 
738 #ifdef HAVE_RT_PUSH_IPI
739 	/*
740 	 * For IPI pull requests, loop across the rto_mask.
741 	 */
742 	struct irq_work		rto_push_work;
743 	raw_spinlock_t		rto_lock;
744 	/* These are only updated and read within rto_lock */
745 	int			rto_loop;
746 	int			rto_cpu;
747 	/* These atomics are updated outside of a lock */
748 	atomic_t		rto_loop_next;
749 	atomic_t		rto_loop_start;
750 #endif
751 	/*
752 	 * The "RT overload" flag: it gets set if a CPU has more than
753 	 * one runnable RT task.
754 	 */
755 	cpumask_var_t		rto_mask;
756 	struct cpupri		cpupri;
757 
758 	unsigned long		max_cpu_capacity;
759 };
760 
761 extern struct root_domain def_root_domain;
762 extern struct mutex sched_domains_mutex;
763 
764 extern void init_defrootdomain(void);
765 extern int sched_init_domains(const struct cpumask *cpu_map);
766 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
767 extern void sched_get_rd(struct root_domain *rd);
768 extern void sched_put_rd(struct root_domain *rd);
769 
770 #ifdef HAVE_RT_PUSH_IPI
771 extern void rto_push_irq_work_func(struct irq_work *work);
772 #endif
773 #endif /* CONFIG_SMP */
774 
775 /*
776  * This is the main, per-CPU runqueue data structure.
777  *
778  * Locking rule: those places that want to lock multiple runqueues
779  * (such as the load balancing or the thread migration code), lock
780  * acquire operations must be ordered by ascending &runqueue.
781  */
782 struct rq {
783 	/* runqueue lock: */
784 	raw_spinlock_t		lock;
785 
786 	/*
787 	 * nr_running and cpu_load should be in the same cacheline because
788 	 * remote CPUs use both these fields when doing load calculation.
789 	 */
790 	unsigned int		nr_running;
791 #ifdef CONFIG_NUMA_BALANCING
792 	unsigned int		nr_numa_running;
793 	unsigned int		nr_preferred_running;
794 	unsigned int		numa_migrate_on;
795 #endif
796 	#define CPU_LOAD_IDX_MAX 5
797 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
798 #ifdef CONFIG_NO_HZ_COMMON
799 #ifdef CONFIG_SMP
800 	unsigned long		last_load_update_tick;
801 	unsigned long		last_blocked_load_update_tick;
802 	unsigned int		has_blocked_load;
803 #endif /* CONFIG_SMP */
804 	unsigned int		nohz_tick_stopped;
805 	atomic_t nohz_flags;
806 #endif /* CONFIG_NO_HZ_COMMON */
807 
808 	/* capture load from *all* tasks on this CPU: */
809 	struct load_weight	load;
810 	unsigned long		nr_load_updates;
811 	u64			nr_switches;
812 
813 	struct cfs_rq		cfs;
814 	struct rt_rq		rt;
815 	struct dl_rq		dl;
816 
817 #ifdef CONFIG_FAIR_GROUP_SCHED
818 	/* list of leaf cfs_rq on this CPU: */
819 	struct list_head	leaf_cfs_rq_list;
820 	struct list_head	*tmp_alone_branch;
821 #endif /* CONFIG_FAIR_GROUP_SCHED */
822 
823 	/*
824 	 * This is part of a global counter where only the total sum
825 	 * over all CPUs matters. A task can increase this counter on
826 	 * one CPU and if it got migrated afterwards it may decrease
827 	 * it on another CPU. Always updated under the runqueue lock:
828 	 */
829 	unsigned long		nr_uninterruptible;
830 
831 	struct task_struct	*curr;
832 	struct task_struct	*idle;
833 	struct task_struct	*stop;
834 	unsigned long		next_balance;
835 	struct mm_struct	*prev_mm;
836 
837 	unsigned int		clock_update_flags;
838 	u64			clock;
839 	u64			clock_task;
840 
841 	atomic_t		nr_iowait;
842 
843 #ifdef CONFIG_SMP
844 	struct root_domain	*rd;
845 	struct sched_domain	*sd;
846 
847 	unsigned long		cpu_capacity;
848 	unsigned long		cpu_capacity_orig;
849 
850 	struct callback_head	*balance_callback;
851 
852 	unsigned char		idle_balance;
853 
854 	unsigned long		misfit_task_load;
855 
856 	/* For active balancing */
857 	int			active_balance;
858 	int			push_cpu;
859 	struct cpu_stop_work	active_balance_work;
860 
861 	/* CPU of this runqueue: */
862 	int			cpu;
863 	int			online;
864 
865 	struct list_head cfs_tasks;
866 
867 	struct sched_avg	avg_rt;
868 	struct sched_avg	avg_dl;
869 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
870 	struct sched_avg	avg_irq;
871 #endif
872 	u64			idle_stamp;
873 	u64			avg_idle;
874 
875 	/* This is used to determine avg_idle's max value */
876 	u64			max_idle_balance_cost;
877 #endif
878 
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 	u64			prev_irq_time;
881 #endif
882 #ifdef CONFIG_PARAVIRT
883 	u64			prev_steal_time;
884 #endif
885 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
886 	u64			prev_steal_time_rq;
887 #endif
888 
889 	/* calc_load related fields */
890 	unsigned long		calc_load_update;
891 	long			calc_load_active;
892 
893 #ifdef CONFIG_SCHED_HRTICK
894 #ifdef CONFIG_SMP
895 	int			hrtick_csd_pending;
896 	call_single_data_t	hrtick_csd;
897 #endif
898 	struct hrtimer		hrtick_timer;
899 #endif
900 
901 #ifdef CONFIG_SCHEDSTATS
902 	/* latency stats */
903 	struct sched_info	rq_sched_info;
904 	unsigned long long	rq_cpu_time;
905 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
906 
907 	/* sys_sched_yield() stats */
908 	unsigned int		yld_count;
909 
910 	/* schedule() stats */
911 	unsigned int		sched_count;
912 	unsigned int		sched_goidle;
913 
914 	/* try_to_wake_up() stats */
915 	unsigned int		ttwu_count;
916 	unsigned int		ttwu_local;
917 #endif
918 
919 #ifdef CONFIG_SMP
920 	struct llist_head	wake_list;
921 #endif
922 
923 #ifdef CONFIG_CPU_IDLE
924 	/* Must be inspected within a rcu lock section */
925 	struct cpuidle_state	*idle_state;
926 #endif
927 };
928 
929 static inline int cpu_of(struct rq *rq)
930 {
931 #ifdef CONFIG_SMP
932 	return rq->cpu;
933 #else
934 	return 0;
935 #endif
936 }
937 
938 
939 #ifdef CONFIG_SCHED_SMT
940 extern void __update_idle_core(struct rq *rq);
941 
942 static inline void update_idle_core(struct rq *rq)
943 {
944 	if (static_branch_unlikely(&sched_smt_present))
945 		__update_idle_core(rq);
946 }
947 
948 #else
949 static inline void update_idle_core(struct rq *rq) { }
950 #endif
951 
952 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
953 
954 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
955 #define this_rq()		this_cpu_ptr(&runqueues)
956 #define task_rq(p)		cpu_rq(task_cpu(p))
957 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
958 #define raw_rq()		raw_cpu_ptr(&runqueues)
959 
960 extern void update_rq_clock(struct rq *rq);
961 
962 static inline u64 __rq_clock_broken(struct rq *rq)
963 {
964 	return READ_ONCE(rq->clock);
965 }
966 
967 /*
968  * rq::clock_update_flags bits
969  *
970  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
971  *  call to __schedule(). This is an optimisation to avoid
972  *  neighbouring rq clock updates.
973  *
974  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
975  *  in effect and calls to update_rq_clock() are being ignored.
976  *
977  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
978  *  made to update_rq_clock() since the last time rq::lock was pinned.
979  *
980  * If inside of __schedule(), clock_update_flags will have been
981  * shifted left (a left shift is a cheap operation for the fast path
982  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
983  *
984  *	if (rq-clock_update_flags >= RQCF_UPDATED)
985  *
986  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
987  * one position though, because the next rq_unpin_lock() will shift it
988  * back.
989  */
990 #define RQCF_REQ_SKIP		0x01
991 #define RQCF_ACT_SKIP		0x02
992 #define RQCF_UPDATED		0x04
993 
994 static inline void assert_clock_updated(struct rq *rq)
995 {
996 	/*
997 	 * The only reason for not seeing a clock update since the
998 	 * last rq_pin_lock() is if we're currently skipping updates.
999 	 */
1000 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1001 }
1002 
1003 static inline u64 rq_clock(struct rq *rq)
1004 {
1005 	lockdep_assert_held(&rq->lock);
1006 	assert_clock_updated(rq);
1007 
1008 	return rq->clock;
1009 }
1010 
1011 static inline u64 rq_clock_task(struct rq *rq)
1012 {
1013 	lockdep_assert_held(&rq->lock);
1014 	assert_clock_updated(rq);
1015 
1016 	return rq->clock_task;
1017 }
1018 
1019 static inline void rq_clock_skip_update(struct rq *rq)
1020 {
1021 	lockdep_assert_held(&rq->lock);
1022 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1023 }
1024 
1025 /*
1026  * See rt task throttling, which is the only time a skip
1027  * request is cancelled.
1028  */
1029 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1030 {
1031 	lockdep_assert_held(&rq->lock);
1032 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1033 }
1034 
1035 struct rq_flags {
1036 	unsigned long flags;
1037 	struct pin_cookie cookie;
1038 #ifdef CONFIG_SCHED_DEBUG
1039 	/*
1040 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1041 	 * current pin context is stashed here in case it needs to be
1042 	 * restored in rq_repin_lock().
1043 	 */
1044 	unsigned int clock_update_flags;
1045 #endif
1046 };
1047 
1048 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1049 {
1050 	rf->cookie = lockdep_pin_lock(&rq->lock);
1051 
1052 #ifdef CONFIG_SCHED_DEBUG
1053 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1054 	rf->clock_update_flags = 0;
1055 #endif
1056 }
1057 
1058 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1059 {
1060 #ifdef CONFIG_SCHED_DEBUG
1061 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1062 		rf->clock_update_flags = RQCF_UPDATED;
1063 #endif
1064 
1065 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1066 }
1067 
1068 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1069 {
1070 	lockdep_repin_lock(&rq->lock, rf->cookie);
1071 
1072 #ifdef CONFIG_SCHED_DEBUG
1073 	/*
1074 	 * Restore the value we stashed in @rf for this pin context.
1075 	 */
1076 	rq->clock_update_flags |= rf->clock_update_flags;
1077 #endif
1078 }
1079 
1080 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1081 	__acquires(rq->lock);
1082 
1083 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1084 	__acquires(p->pi_lock)
1085 	__acquires(rq->lock);
1086 
1087 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1088 	__releases(rq->lock)
1089 {
1090 	rq_unpin_lock(rq, rf);
1091 	raw_spin_unlock(&rq->lock);
1092 }
1093 
1094 static inline void
1095 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1096 	__releases(rq->lock)
1097 	__releases(p->pi_lock)
1098 {
1099 	rq_unpin_lock(rq, rf);
1100 	raw_spin_unlock(&rq->lock);
1101 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1102 }
1103 
1104 static inline void
1105 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1106 	__acquires(rq->lock)
1107 {
1108 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1109 	rq_pin_lock(rq, rf);
1110 }
1111 
1112 static inline void
1113 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1114 	__acquires(rq->lock)
1115 {
1116 	raw_spin_lock_irq(&rq->lock);
1117 	rq_pin_lock(rq, rf);
1118 }
1119 
1120 static inline void
1121 rq_lock(struct rq *rq, struct rq_flags *rf)
1122 	__acquires(rq->lock)
1123 {
1124 	raw_spin_lock(&rq->lock);
1125 	rq_pin_lock(rq, rf);
1126 }
1127 
1128 static inline void
1129 rq_relock(struct rq *rq, struct rq_flags *rf)
1130 	__acquires(rq->lock)
1131 {
1132 	raw_spin_lock(&rq->lock);
1133 	rq_repin_lock(rq, rf);
1134 }
1135 
1136 static inline void
1137 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1138 	__releases(rq->lock)
1139 {
1140 	rq_unpin_lock(rq, rf);
1141 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1142 }
1143 
1144 static inline void
1145 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1146 	__releases(rq->lock)
1147 {
1148 	rq_unpin_lock(rq, rf);
1149 	raw_spin_unlock_irq(&rq->lock);
1150 }
1151 
1152 static inline void
1153 rq_unlock(struct rq *rq, struct rq_flags *rf)
1154 	__releases(rq->lock)
1155 {
1156 	rq_unpin_lock(rq, rf);
1157 	raw_spin_unlock(&rq->lock);
1158 }
1159 
1160 static inline struct rq *
1161 this_rq_lock_irq(struct rq_flags *rf)
1162 	__acquires(rq->lock)
1163 {
1164 	struct rq *rq;
1165 
1166 	local_irq_disable();
1167 	rq = this_rq();
1168 	rq_lock(rq, rf);
1169 	return rq;
1170 }
1171 
1172 #ifdef CONFIG_NUMA
1173 enum numa_topology_type {
1174 	NUMA_DIRECT,
1175 	NUMA_GLUELESS_MESH,
1176 	NUMA_BACKPLANE,
1177 };
1178 extern enum numa_topology_type sched_numa_topology_type;
1179 extern int sched_max_numa_distance;
1180 extern bool find_numa_distance(int distance);
1181 #endif
1182 
1183 #ifdef CONFIG_NUMA
1184 extern void sched_init_numa(void);
1185 extern void sched_domains_numa_masks_set(unsigned int cpu);
1186 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1187 #else
1188 static inline void sched_init_numa(void) { }
1189 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1190 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1191 #endif
1192 
1193 #ifdef CONFIG_NUMA_BALANCING
1194 /* The regions in numa_faults array from task_struct */
1195 enum numa_faults_stats {
1196 	NUMA_MEM = 0,
1197 	NUMA_CPU,
1198 	NUMA_MEMBUF,
1199 	NUMA_CPUBUF
1200 };
1201 extern void sched_setnuma(struct task_struct *p, int node);
1202 extern int migrate_task_to(struct task_struct *p, int cpu);
1203 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1204 			int cpu, int scpu);
1205 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1206 #else
1207 static inline void
1208 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1209 {
1210 }
1211 #endif /* CONFIG_NUMA_BALANCING */
1212 
1213 #ifdef CONFIG_SMP
1214 
1215 static inline void
1216 queue_balance_callback(struct rq *rq,
1217 		       struct callback_head *head,
1218 		       void (*func)(struct rq *rq))
1219 {
1220 	lockdep_assert_held(&rq->lock);
1221 
1222 	if (unlikely(head->next))
1223 		return;
1224 
1225 	head->func = (void (*)(struct callback_head *))func;
1226 	head->next = rq->balance_callback;
1227 	rq->balance_callback = head;
1228 }
1229 
1230 extern void sched_ttwu_pending(void);
1231 
1232 #define rcu_dereference_check_sched_domain(p) \
1233 	rcu_dereference_check((p), \
1234 			      lockdep_is_held(&sched_domains_mutex))
1235 
1236 /*
1237  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1238  * See detach_destroy_domains: synchronize_sched for details.
1239  *
1240  * The domain tree of any CPU may only be accessed from within
1241  * preempt-disabled sections.
1242  */
1243 #define for_each_domain(cpu, __sd) \
1244 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1245 			__sd; __sd = __sd->parent)
1246 
1247 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1248 
1249 /**
1250  * highest_flag_domain - Return highest sched_domain containing flag.
1251  * @cpu:	The CPU whose highest level of sched domain is to
1252  *		be returned.
1253  * @flag:	The flag to check for the highest sched_domain
1254  *		for the given CPU.
1255  *
1256  * Returns the highest sched_domain of a CPU which contains the given flag.
1257  */
1258 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1259 {
1260 	struct sched_domain *sd, *hsd = NULL;
1261 
1262 	for_each_domain(cpu, sd) {
1263 		if (!(sd->flags & flag))
1264 			break;
1265 		hsd = sd;
1266 	}
1267 
1268 	return hsd;
1269 }
1270 
1271 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1272 {
1273 	struct sched_domain *sd;
1274 
1275 	for_each_domain(cpu, sd) {
1276 		if (sd->flags & flag)
1277 			break;
1278 	}
1279 
1280 	return sd;
1281 }
1282 
1283 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1284 DECLARE_PER_CPU(int, sd_llc_size);
1285 DECLARE_PER_CPU(int, sd_llc_id);
1286 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1287 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1288 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1289 extern struct static_key_false sched_asym_cpucapacity;
1290 
1291 struct sched_group_capacity {
1292 	atomic_t		ref;
1293 	/*
1294 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1295 	 * for a single CPU.
1296 	 */
1297 	unsigned long		capacity;
1298 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1299 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1300 	unsigned long		next_update;
1301 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1302 
1303 #ifdef CONFIG_SCHED_DEBUG
1304 	int			id;
1305 #endif
1306 
1307 	unsigned long		cpumask[0];		/* Balance mask */
1308 };
1309 
1310 struct sched_group {
1311 	struct sched_group	*next;			/* Must be a circular list */
1312 	atomic_t		ref;
1313 
1314 	unsigned int		group_weight;
1315 	struct sched_group_capacity *sgc;
1316 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1317 
1318 	/*
1319 	 * The CPUs this group covers.
1320 	 *
1321 	 * NOTE: this field is variable length. (Allocated dynamically
1322 	 * by attaching extra space to the end of the structure,
1323 	 * depending on how many CPUs the kernel has booted up with)
1324 	 */
1325 	unsigned long		cpumask[0];
1326 };
1327 
1328 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1329 {
1330 	return to_cpumask(sg->cpumask);
1331 }
1332 
1333 /*
1334  * See build_balance_mask().
1335  */
1336 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1337 {
1338 	return to_cpumask(sg->sgc->cpumask);
1339 }
1340 
1341 /**
1342  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1343  * @group: The group whose first CPU is to be returned.
1344  */
1345 static inline unsigned int group_first_cpu(struct sched_group *group)
1346 {
1347 	return cpumask_first(sched_group_span(group));
1348 }
1349 
1350 extern int group_balance_cpu(struct sched_group *sg);
1351 
1352 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1353 void register_sched_domain_sysctl(void);
1354 void dirty_sched_domain_sysctl(int cpu);
1355 void unregister_sched_domain_sysctl(void);
1356 #else
1357 static inline void register_sched_domain_sysctl(void)
1358 {
1359 }
1360 static inline void dirty_sched_domain_sysctl(int cpu)
1361 {
1362 }
1363 static inline void unregister_sched_domain_sysctl(void)
1364 {
1365 }
1366 #endif
1367 
1368 #else
1369 
1370 static inline void sched_ttwu_pending(void) { }
1371 
1372 #endif /* CONFIG_SMP */
1373 
1374 #include "stats.h"
1375 #include "autogroup.h"
1376 
1377 #ifdef CONFIG_CGROUP_SCHED
1378 
1379 /*
1380  * Return the group to which this tasks belongs.
1381  *
1382  * We cannot use task_css() and friends because the cgroup subsystem
1383  * changes that value before the cgroup_subsys::attach() method is called,
1384  * therefore we cannot pin it and might observe the wrong value.
1385  *
1386  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1387  * core changes this before calling sched_move_task().
1388  *
1389  * Instead we use a 'copy' which is updated from sched_move_task() while
1390  * holding both task_struct::pi_lock and rq::lock.
1391  */
1392 static inline struct task_group *task_group(struct task_struct *p)
1393 {
1394 	return p->sched_task_group;
1395 }
1396 
1397 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1398 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1399 {
1400 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1401 	struct task_group *tg = task_group(p);
1402 #endif
1403 
1404 #ifdef CONFIG_FAIR_GROUP_SCHED
1405 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1406 	p->se.cfs_rq = tg->cfs_rq[cpu];
1407 	p->se.parent = tg->se[cpu];
1408 #endif
1409 
1410 #ifdef CONFIG_RT_GROUP_SCHED
1411 	p->rt.rt_rq  = tg->rt_rq[cpu];
1412 	p->rt.parent = tg->rt_se[cpu];
1413 #endif
1414 }
1415 
1416 #else /* CONFIG_CGROUP_SCHED */
1417 
1418 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1419 static inline struct task_group *task_group(struct task_struct *p)
1420 {
1421 	return NULL;
1422 }
1423 
1424 #endif /* CONFIG_CGROUP_SCHED */
1425 
1426 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1427 {
1428 	set_task_rq(p, cpu);
1429 #ifdef CONFIG_SMP
1430 	/*
1431 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1432 	 * successfuly executed on another CPU. We must ensure that updates of
1433 	 * per-task data have been completed by this moment.
1434 	 */
1435 	smp_wmb();
1436 #ifdef CONFIG_THREAD_INFO_IN_TASK
1437 	p->cpu = cpu;
1438 #else
1439 	task_thread_info(p)->cpu = cpu;
1440 #endif
1441 	p->wake_cpu = cpu;
1442 #endif
1443 }
1444 
1445 /*
1446  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1447  */
1448 #ifdef CONFIG_SCHED_DEBUG
1449 # include <linux/static_key.h>
1450 # define const_debug __read_mostly
1451 #else
1452 # define const_debug const
1453 #endif
1454 
1455 #define SCHED_FEAT(name, enabled)	\
1456 	__SCHED_FEAT_##name ,
1457 
1458 enum {
1459 #include "features.h"
1460 	__SCHED_FEAT_NR,
1461 };
1462 
1463 #undef SCHED_FEAT
1464 
1465 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1466 
1467 /*
1468  * To support run-time toggling of sched features, all the translation units
1469  * (but core.c) reference the sysctl_sched_features defined in core.c.
1470  */
1471 extern const_debug unsigned int sysctl_sched_features;
1472 
1473 #define SCHED_FEAT(name, enabled)					\
1474 static __always_inline bool static_branch_##name(struct static_key *key) \
1475 {									\
1476 	return static_key_##enabled(key);				\
1477 }
1478 
1479 #include "features.h"
1480 #undef SCHED_FEAT
1481 
1482 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1483 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1484 
1485 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1486 
1487 /*
1488  * Each translation unit has its own copy of sysctl_sched_features to allow
1489  * constants propagation at compile time and compiler optimization based on
1490  * features default.
1491  */
1492 #define SCHED_FEAT(name, enabled)	\
1493 	(1UL << __SCHED_FEAT_##name) * enabled |
1494 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1495 #include "features.h"
1496 	0;
1497 #undef SCHED_FEAT
1498 
1499 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1500 
1501 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1502 
1503 extern struct static_key_false sched_numa_balancing;
1504 extern struct static_key_false sched_schedstats;
1505 
1506 static inline u64 global_rt_period(void)
1507 {
1508 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1509 }
1510 
1511 static inline u64 global_rt_runtime(void)
1512 {
1513 	if (sysctl_sched_rt_runtime < 0)
1514 		return RUNTIME_INF;
1515 
1516 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1517 }
1518 
1519 static inline int task_current(struct rq *rq, struct task_struct *p)
1520 {
1521 	return rq->curr == p;
1522 }
1523 
1524 static inline int task_running(struct rq *rq, struct task_struct *p)
1525 {
1526 #ifdef CONFIG_SMP
1527 	return p->on_cpu;
1528 #else
1529 	return task_current(rq, p);
1530 #endif
1531 }
1532 
1533 static inline int task_on_rq_queued(struct task_struct *p)
1534 {
1535 	return p->on_rq == TASK_ON_RQ_QUEUED;
1536 }
1537 
1538 static inline int task_on_rq_migrating(struct task_struct *p)
1539 {
1540 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1541 }
1542 
1543 /*
1544  * wake flags
1545  */
1546 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1547 #define WF_FORK			0x02		/* Child wakeup after fork */
1548 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1549 
1550 /*
1551  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1552  * of tasks with abnormal "nice" values across CPUs the contribution that
1553  * each task makes to its run queue's load is weighted according to its
1554  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1555  * scaled version of the new time slice allocation that they receive on time
1556  * slice expiry etc.
1557  */
1558 
1559 #define WEIGHT_IDLEPRIO		3
1560 #define WMULT_IDLEPRIO		1431655765
1561 
1562 extern const int		sched_prio_to_weight[40];
1563 extern const u32		sched_prio_to_wmult[40];
1564 
1565 /*
1566  * {de,en}queue flags:
1567  *
1568  * DEQUEUE_SLEEP  - task is no longer runnable
1569  * ENQUEUE_WAKEUP - task just became runnable
1570  *
1571  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1572  *                are in a known state which allows modification. Such pairs
1573  *                should preserve as much state as possible.
1574  *
1575  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1576  *        in the runqueue.
1577  *
1578  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1579  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1580  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1581  *
1582  */
1583 
1584 #define DEQUEUE_SLEEP		0x01
1585 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1586 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1587 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1588 
1589 #define ENQUEUE_WAKEUP		0x01
1590 #define ENQUEUE_RESTORE		0x02
1591 #define ENQUEUE_MOVE		0x04
1592 #define ENQUEUE_NOCLOCK		0x08
1593 
1594 #define ENQUEUE_HEAD		0x10
1595 #define ENQUEUE_REPLENISH	0x20
1596 #ifdef CONFIG_SMP
1597 #define ENQUEUE_MIGRATED	0x40
1598 #else
1599 #define ENQUEUE_MIGRATED	0x00
1600 #endif
1601 
1602 #define RETRY_TASK		((void *)-1UL)
1603 
1604 struct sched_class {
1605 	const struct sched_class *next;
1606 
1607 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1608 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1609 	void (*yield_task)   (struct rq *rq);
1610 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1611 
1612 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1613 
1614 	/*
1615 	 * It is the responsibility of the pick_next_task() method that will
1616 	 * return the next task to call put_prev_task() on the @prev task or
1617 	 * something equivalent.
1618 	 *
1619 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1620 	 * tasks.
1621 	 */
1622 	struct task_struct * (*pick_next_task)(struct rq *rq,
1623 					       struct task_struct *prev,
1624 					       struct rq_flags *rf);
1625 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1626 
1627 #ifdef CONFIG_SMP
1628 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1629 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1630 
1631 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1632 
1633 	void (*set_cpus_allowed)(struct task_struct *p,
1634 				 const struct cpumask *newmask);
1635 
1636 	void (*rq_online)(struct rq *rq);
1637 	void (*rq_offline)(struct rq *rq);
1638 #endif
1639 
1640 	void (*set_curr_task)(struct rq *rq);
1641 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1642 	void (*task_fork)(struct task_struct *p);
1643 	void (*task_dead)(struct task_struct *p);
1644 
1645 	/*
1646 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1647 	 * cannot assume the switched_from/switched_to pair is serliazed by
1648 	 * rq->lock. They are however serialized by p->pi_lock.
1649 	 */
1650 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1651 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1652 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1653 			      int oldprio);
1654 
1655 	unsigned int (*get_rr_interval)(struct rq *rq,
1656 					struct task_struct *task);
1657 
1658 	void (*update_curr)(struct rq *rq);
1659 
1660 #define TASK_SET_GROUP		0
1661 #define TASK_MOVE_GROUP		1
1662 
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664 	void (*task_change_group)(struct task_struct *p, int type);
1665 #endif
1666 };
1667 
1668 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1669 {
1670 	prev->sched_class->put_prev_task(rq, prev);
1671 }
1672 
1673 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1674 {
1675 	curr->sched_class->set_curr_task(rq);
1676 }
1677 
1678 #ifdef CONFIG_SMP
1679 #define sched_class_highest (&stop_sched_class)
1680 #else
1681 #define sched_class_highest (&dl_sched_class)
1682 #endif
1683 #define for_each_class(class) \
1684    for (class = sched_class_highest; class; class = class->next)
1685 
1686 extern const struct sched_class stop_sched_class;
1687 extern const struct sched_class dl_sched_class;
1688 extern const struct sched_class rt_sched_class;
1689 extern const struct sched_class fair_sched_class;
1690 extern const struct sched_class idle_sched_class;
1691 
1692 
1693 #ifdef CONFIG_SMP
1694 
1695 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1696 
1697 extern void trigger_load_balance(struct rq *rq);
1698 
1699 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1700 
1701 #endif
1702 
1703 #ifdef CONFIG_CPU_IDLE
1704 static inline void idle_set_state(struct rq *rq,
1705 				  struct cpuidle_state *idle_state)
1706 {
1707 	rq->idle_state = idle_state;
1708 }
1709 
1710 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1711 {
1712 	SCHED_WARN_ON(!rcu_read_lock_held());
1713 
1714 	return rq->idle_state;
1715 }
1716 #else
1717 static inline void idle_set_state(struct rq *rq,
1718 				  struct cpuidle_state *idle_state)
1719 {
1720 }
1721 
1722 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1723 {
1724 	return NULL;
1725 }
1726 #endif
1727 
1728 extern void schedule_idle(void);
1729 
1730 extern void sysrq_sched_debug_show(void);
1731 extern void sched_init_granularity(void);
1732 extern void update_max_interval(void);
1733 
1734 extern void init_sched_dl_class(void);
1735 extern void init_sched_rt_class(void);
1736 extern void init_sched_fair_class(void);
1737 
1738 extern void reweight_task(struct task_struct *p, int prio);
1739 
1740 extern void resched_curr(struct rq *rq);
1741 extern void resched_cpu(int cpu);
1742 
1743 extern struct rt_bandwidth def_rt_bandwidth;
1744 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1745 
1746 extern struct dl_bandwidth def_dl_bandwidth;
1747 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1748 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1749 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1750 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1751 
1752 #define BW_SHIFT		20
1753 #define BW_UNIT			(1 << BW_SHIFT)
1754 #define RATIO_SHIFT		8
1755 unsigned long to_ratio(u64 period, u64 runtime);
1756 
1757 extern void init_entity_runnable_average(struct sched_entity *se);
1758 extern void post_init_entity_util_avg(struct sched_entity *se);
1759 
1760 #ifdef CONFIG_NO_HZ_FULL
1761 extern bool sched_can_stop_tick(struct rq *rq);
1762 extern int __init sched_tick_offload_init(void);
1763 
1764 /*
1765  * Tick may be needed by tasks in the runqueue depending on their policy and
1766  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1767  * nohz mode if necessary.
1768  */
1769 static inline void sched_update_tick_dependency(struct rq *rq)
1770 {
1771 	int cpu;
1772 
1773 	if (!tick_nohz_full_enabled())
1774 		return;
1775 
1776 	cpu = cpu_of(rq);
1777 
1778 	if (!tick_nohz_full_cpu(cpu))
1779 		return;
1780 
1781 	if (sched_can_stop_tick(rq))
1782 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1783 	else
1784 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1785 }
1786 #else
1787 static inline int sched_tick_offload_init(void) { return 0; }
1788 static inline void sched_update_tick_dependency(struct rq *rq) { }
1789 #endif
1790 
1791 static inline void add_nr_running(struct rq *rq, unsigned count)
1792 {
1793 	unsigned prev_nr = rq->nr_running;
1794 
1795 	rq->nr_running = prev_nr + count;
1796 
1797 	if (prev_nr < 2 && rq->nr_running >= 2) {
1798 #ifdef CONFIG_SMP
1799 		if (!READ_ONCE(rq->rd->overload))
1800 			WRITE_ONCE(rq->rd->overload, 1);
1801 #endif
1802 	}
1803 
1804 	sched_update_tick_dependency(rq);
1805 }
1806 
1807 static inline void sub_nr_running(struct rq *rq, unsigned count)
1808 {
1809 	rq->nr_running -= count;
1810 	/* Check if we still need preemption */
1811 	sched_update_tick_dependency(rq);
1812 }
1813 
1814 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1815 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1816 
1817 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1818 
1819 extern const_debug unsigned int sysctl_sched_nr_migrate;
1820 extern const_debug unsigned int sysctl_sched_migration_cost;
1821 
1822 #ifdef CONFIG_SCHED_HRTICK
1823 
1824 /*
1825  * Use hrtick when:
1826  *  - enabled by features
1827  *  - hrtimer is actually high res
1828  */
1829 static inline int hrtick_enabled(struct rq *rq)
1830 {
1831 	if (!sched_feat(HRTICK))
1832 		return 0;
1833 	if (!cpu_active(cpu_of(rq)))
1834 		return 0;
1835 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1836 }
1837 
1838 void hrtick_start(struct rq *rq, u64 delay);
1839 
1840 #else
1841 
1842 static inline int hrtick_enabled(struct rq *rq)
1843 {
1844 	return 0;
1845 }
1846 
1847 #endif /* CONFIG_SCHED_HRTICK */
1848 
1849 #ifndef arch_scale_freq_capacity
1850 static __always_inline
1851 unsigned long arch_scale_freq_capacity(int cpu)
1852 {
1853 	return SCHED_CAPACITY_SCALE;
1854 }
1855 #endif
1856 
1857 #ifdef CONFIG_SMP
1858 #ifndef arch_scale_cpu_capacity
1859 static __always_inline
1860 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1861 {
1862 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1863 		return sd->smt_gain / sd->span_weight;
1864 
1865 	return SCHED_CAPACITY_SCALE;
1866 }
1867 #endif
1868 #else
1869 #ifndef arch_scale_cpu_capacity
1870 static __always_inline
1871 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1872 {
1873 	return SCHED_CAPACITY_SCALE;
1874 }
1875 #endif
1876 #endif
1877 
1878 #ifdef CONFIG_SMP
1879 #ifdef CONFIG_PREEMPT
1880 
1881 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1882 
1883 /*
1884  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1885  * way at the expense of forcing extra atomic operations in all
1886  * invocations.  This assures that the double_lock is acquired using the
1887  * same underlying policy as the spinlock_t on this architecture, which
1888  * reduces latency compared to the unfair variant below.  However, it
1889  * also adds more overhead and therefore may reduce throughput.
1890  */
1891 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1892 	__releases(this_rq->lock)
1893 	__acquires(busiest->lock)
1894 	__acquires(this_rq->lock)
1895 {
1896 	raw_spin_unlock(&this_rq->lock);
1897 	double_rq_lock(this_rq, busiest);
1898 
1899 	return 1;
1900 }
1901 
1902 #else
1903 /*
1904  * Unfair double_lock_balance: Optimizes throughput at the expense of
1905  * latency by eliminating extra atomic operations when the locks are
1906  * already in proper order on entry.  This favors lower CPU-ids and will
1907  * grant the double lock to lower CPUs over higher ids under contention,
1908  * regardless of entry order into the function.
1909  */
1910 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1911 	__releases(this_rq->lock)
1912 	__acquires(busiest->lock)
1913 	__acquires(this_rq->lock)
1914 {
1915 	int ret = 0;
1916 
1917 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1918 		if (busiest < this_rq) {
1919 			raw_spin_unlock(&this_rq->lock);
1920 			raw_spin_lock(&busiest->lock);
1921 			raw_spin_lock_nested(&this_rq->lock,
1922 					      SINGLE_DEPTH_NESTING);
1923 			ret = 1;
1924 		} else
1925 			raw_spin_lock_nested(&busiest->lock,
1926 					      SINGLE_DEPTH_NESTING);
1927 	}
1928 	return ret;
1929 }
1930 
1931 #endif /* CONFIG_PREEMPT */
1932 
1933 /*
1934  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1935  */
1936 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1937 {
1938 	if (unlikely(!irqs_disabled())) {
1939 		/* printk() doesn't work well under rq->lock */
1940 		raw_spin_unlock(&this_rq->lock);
1941 		BUG_ON(1);
1942 	}
1943 
1944 	return _double_lock_balance(this_rq, busiest);
1945 }
1946 
1947 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1948 	__releases(busiest->lock)
1949 {
1950 	raw_spin_unlock(&busiest->lock);
1951 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1952 }
1953 
1954 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1955 {
1956 	if (l1 > l2)
1957 		swap(l1, l2);
1958 
1959 	spin_lock(l1);
1960 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1961 }
1962 
1963 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1964 {
1965 	if (l1 > l2)
1966 		swap(l1, l2);
1967 
1968 	spin_lock_irq(l1);
1969 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1970 }
1971 
1972 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1973 {
1974 	if (l1 > l2)
1975 		swap(l1, l2);
1976 
1977 	raw_spin_lock(l1);
1978 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1979 }
1980 
1981 /*
1982  * double_rq_lock - safely lock two runqueues
1983  *
1984  * Note this does not disable interrupts like task_rq_lock,
1985  * you need to do so manually before calling.
1986  */
1987 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1988 	__acquires(rq1->lock)
1989 	__acquires(rq2->lock)
1990 {
1991 	BUG_ON(!irqs_disabled());
1992 	if (rq1 == rq2) {
1993 		raw_spin_lock(&rq1->lock);
1994 		__acquire(rq2->lock);	/* Fake it out ;) */
1995 	} else {
1996 		if (rq1 < rq2) {
1997 			raw_spin_lock(&rq1->lock);
1998 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1999 		} else {
2000 			raw_spin_lock(&rq2->lock);
2001 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2002 		}
2003 	}
2004 }
2005 
2006 /*
2007  * double_rq_unlock - safely unlock two runqueues
2008  *
2009  * Note this does not restore interrupts like task_rq_unlock,
2010  * you need to do so manually after calling.
2011  */
2012 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2013 	__releases(rq1->lock)
2014 	__releases(rq2->lock)
2015 {
2016 	raw_spin_unlock(&rq1->lock);
2017 	if (rq1 != rq2)
2018 		raw_spin_unlock(&rq2->lock);
2019 	else
2020 		__release(rq2->lock);
2021 }
2022 
2023 extern void set_rq_online (struct rq *rq);
2024 extern void set_rq_offline(struct rq *rq);
2025 extern bool sched_smp_initialized;
2026 
2027 #else /* CONFIG_SMP */
2028 
2029 /*
2030  * double_rq_lock - safely lock two runqueues
2031  *
2032  * Note this does not disable interrupts like task_rq_lock,
2033  * you need to do so manually before calling.
2034  */
2035 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2036 	__acquires(rq1->lock)
2037 	__acquires(rq2->lock)
2038 {
2039 	BUG_ON(!irqs_disabled());
2040 	BUG_ON(rq1 != rq2);
2041 	raw_spin_lock(&rq1->lock);
2042 	__acquire(rq2->lock);	/* Fake it out ;) */
2043 }
2044 
2045 /*
2046  * double_rq_unlock - safely unlock two runqueues
2047  *
2048  * Note this does not restore interrupts like task_rq_unlock,
2049  * you need to do so manually after calling.
2050  */
2051 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2052 	__releases(rq1->lock)
2053 	__releases(rq2->lock)
2054 {
2055 	BUG_ON(rq1 != rq2);
2056 	raw_spin_unlock(&rq1->lock);
2057 	__release(rq2->lock);
2058 }
2059 
2060 #endif
2061 
2062 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2063 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2064 
2065 #ifdef	CONFIG_SCHED_DEBUG
2066 extern bool sched_debug_enabled;
2067 
2068 extern void print_cfs_stats(struct seq_file *m, int cpu);
2069 extern void print_rt_stats(struct seq_file *m, int cpu);
2070 extern void print_dl_stats(struct seq_file *m, int cpu);
2071 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2072 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2073 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2074 #ifdef CONFIG_NUMA_BALANCING
2075 extern void
2076 show_numa_stats(struct task_struct *p, struct seq_file *m);
2077 extern void
2078 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2079 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2080 #endif /* CONFIG_NUMA_BALANCING */
2081 #endif /* CONFIG_SCHED_DEBUG */
2082 
2083 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2084 extern void init_rt_rq(struct rt_rq *rt_rq);
2085 extern void init_dl_rq(struct dl_rq *dl_rq);
2086 
2087 extern void cfs_bandwidth_usage_inc(void);
2088 extern void cfs_bandwidth_usage_dec(void);
2089 
2090 #ifdef CONFIG_NO_HZ_COMMON
2091 #define NOHZ_BALANCE_KICK_BIT	0
2092 #define NOHZ_STATS_KICK_BIT	1
2093 
2094 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2095 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2096 
2097 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2098 
2099 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2100 
2101 extern void nohz_balance_exit_idle(struct rq *rq);
2102 #else
2103 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2104 #endif
2105 
2106 
2107 #ifdef CONFIG_SMP
2108 static inline
2109 void __dl_update(struct dl_bw *dl_b, s64 bw)
2110 {
2111 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2112 	int i;
2113 
2114 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2115 			 "sched RCU must be held");
2116 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2117 		struct rq *rq = cpu_rq(i);
2118 
2119 		rq->dl.extra_bw += bw;
2120 	}
2121 }
2122 #else
2123 static inline
2124 void __dl_update(struct dl_bw *dl_b, s64 bw)
2125 {
2126 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2127 
2128 	dl->extra_bw += bw;
2129 }
2130 #endif
2131 
2132 
2133 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2134 struct irqtime {
2135 	u64			total;
2136 	u64			tick_delta;
2137 	u64			irq_start_time;
2138 	struct u64_stats_sync	sync;
2139 };
2140 
2141 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2142 
2143 /*
2144  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2145  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2146  * and never move forward.
2147  */
2148 static inline u64 irq_time_read(int cpu)
2149 {
2150 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2151 	unsigned int seq;
2152 	u64 total;
2153 
2154 	do {
2155 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2156 		total = irqtime->total;
2157 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2158 
2159 	return total;
2160 }
2161 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2162 
2163 #ifdef CONFIG_CPU_FREQ
2164 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2165 
2166 /**
2167  * cpufreq_update_util - Take a note about CPU utilization changes.
2168  * @rq: Runqueue to carry out the update for.
2169  * @flags: Update reason flags.
2170  *
2171  * This function is called by the scheduler on the CPU whose utilization is
2172  * being updated.
2173  *
2174  * It can only be called from RCU-sched read-side critical sections.
2175  *
2176  * The way cpufreq is currently arranged requires it to evaluate the CPU
2177  * performance state (frequency/voltage) on a regular basis to prevent it from
2178  * being stuck in a completely inadequate performance level for too long.
2179  * That is not guaranteed to happen if the updates are only triggered from CFS
2180  * and DL, though, because they may not be coming in if only RT tasks are
2181  * active all the time (or there are RT tasks only).
2182  *
2183  * As a workaround for that issue, this function is called periodically by the
2184  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2185  * but that really is a band-aid.  Going forward it should be replaced with
2186  * solutions targeted more specifically at RT tasks.
2187  */
2188 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2189 {
2190 	struct update_util_data *data;
2191 
2192 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2193 						  cpu_of(rq)));
2194 	if (data)
2195 		data->func(data, rq_clock(rq), flags);
2196 }
2197 #else
2198 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2199 #endif /* CONFIG_CPU_FREQ */
2200 
2201 #ifdef arch_scale_freq_capacity
2202 # ifndef arch_scale_freq_invariant
2203 #  define arch_scale_freq_invariant()	true
2204 # endif
2205 #else
2206 # define arch_scale_freq_invariant()	false
2207 #endif
2208 
2209 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2210 static inline unsigned long cpu_bw_dl(struct rq *rq)
2211 {
2212 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2213 }
2214 
2215 static inline unsigned long cpu_util_dl(struct rq *rq)
2216 {
2217 	return READ_ONCE(rq->avg_dl.util_avg);
2218 }
2219 
2220 static inline unsigned long cpu_util_cfs(struct rq *rq)
2221 {
2222 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2223 
2224 	if (sched_feat(UTIL_EST)) {
2225 		util = max_t(unsigned long, util,
2226 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2227 	}
2228 
2229 	return util;
2230 }
2231 
2232 static inline unsigned long cpu_util_rt(struct rq *rq)
2233 {
2234 	return READ_ONCE(rq->avg_rt.util_avg);
2235 }
2236 #endif
2237 
2238 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2239 static inline unsigned long cpu_util_irq(struct rq *rq)
2240 {
2241 	return rq->avg_irq.util_avg;
2242 }
2243 
2244 static inline
2245 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2246 {
2247 	util *= (max - irq);
2248 	util /= max;
2249 
2250 	return util;
2251 
2252 }
2253 #else
2254 static inline unsigned long cpu_util_irq(struct rq *rq)
2255 {
2256 	return 0;
2257 }
2258 
2259 static inline
2260 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2261 {
2262 	return util;
2263 }
2264 #endif
2265