1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/bitops.h> 40 #include <linux/compat.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpufreq.h> 43 #include <linux/cpuidle.h> 44 #include <linux/cpuset.h> 45 #include <linux/ctype.h> 46 #include <linux/debugfs.h> 47 #include <linux/delayacct.h> 48 #include <linux/energy_model.h> 49 #include <linux/init_task.h> 50 #include <linux/kprobes.h> 51 #include <linux/kthread.h> 52 #include <linux/membarrier.h> 53 #include <linux/migrate.h> 54 #include <linux/mmu_context.h> 55 #include <linux/nmi.h> 56 #include <linux/proc_fs.h> 57 #include <linux/prefetch.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/ratelimit.h> 61 #include <linux/rcupdate_wait.h> 62 #include <linux/security.h> 63 #include <linux/stop_machine.h> 64 #include <linux/suspend.h> 65 #include <linux/swait.h> 66 #include <linux/syscalls.h> 67 #include <linux/task_work.h> 68 #include <linux/tsacct_kern.h> 69 70 #include <asm/tlb.h> 71 72 #ifdef CONFIG_PARAVIRT 73 # include <asm/paravirt.h> 74 #endif 75 76 #include "cpupri.h" 77 #include "cpudeadline.h" 78 79 #include <trace/events/sched.h> 80 81 #ifdef CONFIG_SCHED_DEBUG 82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 83 #else 84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 85 #endif 86 87 struct rq; 88 struct cpuidle_state; 89 90 /* task_struct::on_rq states: */ 91 #define TASK_ON_RQ_QUEUED 1 92 #define TASK_ON_RQ_MIGRATING 2 93 94 extern __read_mostly int scheduler_running; 95 96 extern unsigned long calc_load_update; 97 extern atomic_long_t calc_load_tasks; 98 99 extern void calc_global_load_tick(struct rq *this_rq); 100 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 101 102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 103 /* 104 * Helpers for converting nanosecond timing to jiffy resolution 105 */ 106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 107 108 /* 109 * Increase resolution of nice-level calculations for 64-bit architectures. 110 * The extra resolution improves shares distribution and load balancing of 111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 112 * hierarchies, especially on larger systems. This is not a user-visible change 113 * and does not change the user-interface for setting shares/weights. 114 * 115 * We increase resolution only if we have enough bits to allow this increased 116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 117 * are pretty high and the returns do not justify the increased costs. 118 * 119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 120 * increase coverage and consistency always enable it on 64-bit platforms. 121 */ 122 #ifdef CONFIG_64BIT 123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 125 # define scale_load_down(w) \ 126 ({ \ 127 unsigned long __w = (w); \ 128 if (__w) \ 129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 130 __w; \ 131 }) 132 #else 133 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 134 # define scale_load(w) (w) 135 # define scale_load_down(w) (w) 136 #endif 137 138 /* 139 * Task weight (visible to users) and its load (invisible to users) have 140 * independent resolution, but they should be well calibrated. We use 141 * scale_load() and scale_load_down(w) to convert between them. The 142 * following must be true: 143 * 144 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 145 * 146 */ 147 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 148 149 /* 150 * Single value that decides SCHED_DEADLINE internal math precision. 151 * 10 -> just above 1us 152 * 9 -> just above 0.5us 153 */ 154 #define DL_SCALE 10 155 156 /* 157 * Single value that denotes runtime == period, ie unlimited time. 158 */ 159 #define RUNTIME_INF ((u64)~0ULL) 160 161 static inline int idle_policy(int policy) 162 { 163 return policy == SCHED_IDLE; 164 } 165 static inline int fair_policy(int policy) 166 { 167 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 168 } 169 170 static inline int rt_policy(int policy) 171 { 172 return policy == SCHED_FIFO || policy == SCHED_RR; 173 } 174 175 static inline int dl_policy(int policy) 176 { 177 return policy == SCHED_DEADLINE; 178 } 179 static inline bool valid_policy(int policy) 180 { 181 return idle_policy(policy) || fair_policy(policy) || 182 rt_policy(policy) || dl_policy(policy); 183 } 184 185 static inline int task_has_idle_policy(struct task_struct *p) 186 { 187 return idle_policy(p->policy); 188 } 189 190 static inline int task_has_rt_policy(struct task_struct *p) 191 { 192 return rt_policy(p->policy); 193 } 194 195 static inline int task_has_dl_policy(struct task_struct *p) 196 { 197 return dl_policy(p->policy); 198 } 199 200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 201 202 static inline void update_avg(u64 *avg, u64 sample) 203 { 204 s64 diff = sample - *avg; 205 *avg += diff / 8; 206 } 207 208 /* 209 * Shifting a value by an exponent greater *or equal* to the size of said value 210 * is UB; cap at size-1. 211 */ 212 #define shr_bound(val, shift) \ 213 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 214 215 /* 216 * !! For sched_setattr_nocheck() (kernel) only !! 217 * 218 * This is actually gross. :( 219 * 220 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 221 * tasks, but still be able to sleep. We need this on platforms that cannot 222 * atomically change clock frequency. Remove once fast switching will be 223 * available on such platforms. 224 * 225 * SUGOV stands for SchedUtil GOVernor. 226 */ 227 #define SCHED_FLAG_SUGOV 0x10000000 228 229 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 230 231 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 232 { 233 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 234 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Tells if entity @a should preempt entity @b. 242 */ 243 static inline bool 244 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 245 { 246 return dl_entity_is_special(a) || 247 dl_time_before(a->deadline, b->deadline); 248 } 249 250 /* 251 * This is the priority-queue data structure of the RT scheduling class: 252 */ 253 struct rt_prio_array { 254 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 255 struct list_head queue[MAX_RT_PRIO]; 256 }; 257 258 struct rt_bandwidth { 259 /* nests inside the rq lock: */ 260 raw_spinlock_t rt_runtime_lock; 261 ktime_t rt_period; 262 u64 rt_runtime; 263 struct hrtimer rt_period_timer; 264 unsigned int rt_period_active; 265 }; 266 267 void __dl_clear_params(struct task_struct *p); 268 269 struct dl_bandwidth { 270 raw_spinlock_t dl_runtime_lock; 271 u64 dl_runtime; 272 u64 dl_period; 273 }; 274 275 static inline int dl_bandwidth_enabled(void) 276 { 277 return sysctl_sched_rt_runtime >= 0; 278 } 279 280 /* 281 * To keep the bandwidth of -deadline tasks under control 282 * we need some place where: 283 * - store the maximum -deadline bandwidth of each cpu; 284 * - cache the fraction of bandwidth that is currently allocated in 285 * each root domain; 286 * 287 * This is all done in the data structure below. It is similar to the 288 * one used for RT-throttling (rt_bandwidth), with the main difference 289 * that, since here we are only interested in admission control, we 290 * do not decrease any runtime while the group "executes", neither we 291 * need a timer to replenish it. 292 * 293 * With respect to SMP, bandwidth is given on a per root domain basis, 294 * meaning that: 295 * - bw (< 100%) is the deadline bandwidth of each CPU; 296 * - total_bw is the currently allocated bandwidth in each root domain; 297 */ 298 struct dl_bw { 299 raw_spinlock_t lock; 300 u64 bw; 301 u64 total_bw; 302 }; 303 304 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 305 306 static inline 307 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 308 { 309 dl_b->total_bw -= tsk_bw; 310 __dl_update(dl_b, (s32)tsk_bw / cpus); 311 } 312 313 static inline 314 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 315 { 316 dl_b->total_bw += tsk_bw; 317 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 318 } 319 320 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, 321 u64 old_bw, u64 new_bw) 322 { 323 return dl_b->bw != -1 && 324 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 325 } 326 327 /* 328 * Verify the fitness of task @p to run on @cpu taking into account the 329 * CPU original capacity and the runtime/deadline ratio of the task. 330 * 331 * The function will return true if the CPU original capacity of the 332 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 333 * task and false otherwise. 334 */ 335 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 336 { 337 unsigned long cap = arch_scale_cpu_capacity(cpu); 338 339 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 340 } 341 342 extern void init_dl_bw(struct dl_bw *dl_b); 343 extern int sched_dl_global_validate(void); 344 extern void sched_dl_do_global(void); 345 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 346 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 347 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 348 extern bool __checkparam_dl(const struct sched_attr *attr); 349 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 350 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 351 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 352 extern bool dl_cpu_busy(unsigned int cpu); 353 354 #ifdef CONFIG_CGROUP_SCHED 355 356 #include <linux/cgroup.h> 357 #include <linux/psi.h> 358 359 struct cfs_rq; 360 struct rt_rq; 361 362 extern struct list_head task_groups; 363 364 struct cfs_bandwidth { 365 #ifdef CONFIG_CFS_BANDWIDTH 366 raw_spinlock_t lock; 367 ktime_t period; 368 u64 quota; 369 u64 runtime; 370 u64 burst; 371 u64 runtime_snap; 372 s64 hierarchical_quota; 373 374 u8 idle; 375 u8 period_active; 376 u8 slack_started; 377 struct hrtimer period_timer; 378 struct hrtimer slack_timer; 379 struct list_head throttled_cfs_rq; 380 381 /* Statistics: */ 382 int nr_periods; 383 int nr_throttled; 384 int nr_burst; 385 u64 throttled_time; 386 u64 burst_time; 387 #endif 388 }; 389 390 /* Task group related information */ 391 struct task_group { 392 struct cgroup_subsys_state css; 393 394 #ifdef CONFIG_FAIR_GROUP_SCHED 395 /* schedulable entities of this group on each CPU */ 396 struct sched_entity **se; 397 /* runqueue "owned" by this group on each CPU */ 398 struct cfs_rq **cfs_rq; 399 unsigned long shares; 400 401 /* A positive value indicates that this is a SCHED_IDLE group. */ 402 int idle; 403 404 #ifdef CONFIG_SMP 405 /* 406 * load_avg can be heavily contended at clock tick time, so put 407 * it in its own cacheline separated from the fields above which 408 * will also be accessed at each tick. 409 */ 410 atomic_long_t load_avg ____cacheline_aligned; 411 #endif 412 #endif 413 414 #ifdef CONFIG_RT_GROUP_SCHED 415 struct sched_rt_entity **rt_se; 416 struct rt_rq **rt_rq; 417 418 struct rt_bandwidth rt_bandwidth; 419 #endif 420 421 struct rcu_head rcu; 422 struct list_head list; 423 424 struct task_group *parent; 425 struct list_head siblings; 426 struct list_head children; 427 428 #ifdef CONFIG_SCHED_AUTOGROUP 429 struct autogroup *autogroup; 430 #endif 431 432 struct cfs_bandwidth cfs_bandwidth; 433 434 #ifdef CONFIG_UCLAMP_TASK_GROUP 435 /* The two decimal precision [%] value requested from user-space */ 436 unsigned int uclamp_pct[UCLAMP_CNT]; 437 /* Clamp values requested for a task group */ 438 struct uclamp_se uclamp_req[UCLAMP_CNT]; 439 /* Effective clamp values used for a task group */ 440 struct uclamp_se uclamp[UCLAMP_CNT]; 441 #endif 442 443 }; 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 447 448 /* 449 * A weight of 0 or 1 can cause arithmetics problems. 450 * A weight of a cfs_rq is the sum of weights of which entities 451 * are queued on this cfs_rq, so a weight of a entity should not be 452 * too large, so as the shares value of a task group. 453 * (The default weight is 1024 - so there's no practical 454 * limitation from this.) 455 */ 456 #define MIN_SHARES (1UL << 1) 457 #define MAX_SHARES (1UL << 18) 458 #endif 459 460 typedef int (*tg_visitor)(struct task_group *, void *); 461 462 extern int walk_tg_tree_from(struct task_group *from, 463 tg_visitor down, tg_visitor up, void *data); 464 465 /* 466 * Iterate the full tree, calling @down when first entering a node and @up when 467 * leaving it for the final time. 468 * 469 * Caller must hold rcu_lock or sufficient equivalent. 470 */ 471 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 472 { 473 return walk_tg_tree_from(&root_task_group, down, up, data); 474 } 475 476 extern int tg_nop(struct task_group *tg, void *data); 477 478 extern void free_fair_sched_group(struct task_group *tg); 479 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 480 extern void online_fair_sched_group(struct task_group *tg); 481 extern void unregister_fair_sched_group(struct task_group *tg); 482 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 483 struct sched_entity *se, int cpu, 484 struct sched_entity *parent); 485 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 486 487 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 488 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 489 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 490 491 extern void unregister_rt_sched_group(struct task_group *tg); 492 extern void free_rt_sched_group(struct task_group *tg); 493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 494 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 495 struct sched_rt_entity *rt_se, int cpu, 496 struct sched_rt_entity *parent); 497 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 498 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 499 extern long sched_group_rt_runtime(struct task_group *tg); 500 extern long sched_group_rt_period(struct task_group *tg); 501 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 502 503 extern struct task_group *sched_create_group(struct task_group *parent); 504 extern void sched_online_group(struct task_group *tg, 505 struct task_group *parent); 506 extern void sched_destroy_group(struct task_group *tg); 507 extern void sched_release_group(struct task_group *tg); 508 509 extern void sched_move_task(struct task_struct *tsk); 510 511 #ifdef CONFIG_FAIR_GROUP_SCHED 512 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 513 514 extern int sched_group_set_idle(struct task_group *tg, long idle); 515 516 #ifdef CONFIG_SMP 517 extern void set_task_rq_fair(struct sched_entity *se, 518 struct cfs_rq *prev, struct cfs_rq *next); 519 #else /* !CONFIG_SMP */ 520 static inline void set_task_rq_fair(struct sched_entity *se, 521 struct cfs_rq *prev, struct cfs_rq *next) { } 522 #endif /* CONFIG_SMP */ 523 #endif /* CONFIG_FAIR_GROUP_SCHED */ 524 525 #else /* CONFIG_CGROUP_SCHED */ 526 527 struct cfs_bandwidth { }; 528 529 #endif /* CONFIG_CGROUP_SCHED */ 530 531 /* CFS-related fields in a runqueue */ 532 struct cfs_rq { 533 struct load_weight load; 534 unsigned int nr_running; 535 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 536 unsigned int idle_nr_running; /* SCHED_IDLE */ 537 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 538 539 u64 exec_clock; 540 u64 min_vruntime; 541 #ifdef CONFIG_SCHED_CORE 542 unsigned int forceidle_seq; 543 u64 min_vruntime_fi; 544 #endif 545 546 #ifndef CONFIG_64BIT 547 u64 min_vruntime_copy; 548 #endif 549 550 struct rb_root_cached tasks_timeline; 551 552 /* 553 * 'curr' points to currently running entity on this cfs_rq. 554 * It is set to NULL otherwise (i.e when none are currently running). 555 */ 556 struct sched_entity *curr; 557 struct sched_entity *next; 558 struct sched_entity *last; 559 struct sched_entity *skip; 560 561 #ifdef CONFIG_SCHED_DEBUG 562 unsigned int nr_spread_over; 563 #endif 564 565 #ifdef CONFIG_SMP 566 /* 567 * CFS load tracking 568 */ 569 struct sched_avg avg; 570 #ifndef CONFIG_64BIT 571 u64 load_last_update_time_copy; 572 #endif 573 struct { 574 raw_spinlock_t lock ____cacheline_aligned; 575 int nr; 576 unsigned long load_avg; 577 unsigned long util_avg; 578 unsigned long runnable_avg; 579 } removed; 580 581 #ifdef CONFIG_FAIR_GROUP_SCHED 582 unsigned long tg_load_avg_contrib; 583 long propagate; 584 long prop_runnable_sum; 585 586 /* 587 * h_load = weight * f(tg) 588 * 589 * Where f(tg) is the recursive weight fraction assigned to 590 * this group. 591 */ 592 unsigned long h_load; 593 u64 last_h_load_update; 594 struct sched_entity *h_load_next; 595 #endif /* CONFIG_FAIR_GROUP_SCHED */ 596 #endif /* CONFIG_SMP */ 597 598 #ifdef CONFIG_FAIR_GROUP_SCHED 599 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 600 601 /* 602 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 603 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 604 * (like users, containers etc.) 605 * 606 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 607 * This list is used during load balance. 608 */ 609 int on_list; 610 struct list_head leaf_cfs_rq_list; 611 struct task_group *tg; /* group that "owns" this runqueue */ 612 613 /* Locally cached copy of our task_group's idle value */ 614 int idle; 615 616 #ifdef CONFIG_CFS_BANDWIDTH 617 int runtime_enabled; 618 s64 runtime_remaining; 619 620 u64 throttled_clock; 621 u64 throttled_clock_task; 622 u64 throttled_clock_task_time; 623 int throttled; 624 int throttle_count; 625 struct list_head throttled_list; 626 #endif /* CONFIG_CFS_BANDWIDTH */ 627 #endif /* CONFIG_FAIR_GROUP_SCHED */ 628 }; 629 630 static inline int rt_bandwidth_enabled(void) 631 { 632 return sysctl_sched_rt_runtime >= 0; 633 } 634 635 /* RT IPI pull logic requires IRQ_WORK */ 636 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 637 # define HAVE_RT_PUSH_IPI 638 #endif 639 640 /* Real-Time classes' related field in a runqueue: */ 641 struct rt_rq { 642 struct rt_prio_array active; 643 unsigned int rt_nr_running; 644 unsigned int rr_nr_running; 645 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 646 struct { 647 int curr; /* highest queued rt task prio */ 648 #ifdef CONFIG_SMP 649 int next; /* next highest */ 650 #endif 651 } highest_prio; 652 #endif 653 #ifdef CONFIG_SMP 654 unsigned int rt_nr_migratory; 655 unsigned int rt_nr_total; 656 int overloaded; 657 struct plist_head pushable_tasks; 658 659 #endif /* CONFIG_SMP */ 660 int rt_queued; 661 662 int rt_throttled; 663 u64 rt_time; 664 u64 rt_runtime; 665 /* Nests inside the rq lock: */ 666 raw_spinlock_t rt_runtime_lock; 667 668 #ifdef CONFIG_RT_GROUP_SCHED 669 unsigned int rt_nr_boosted; 670 671 struct rq *rq; 672 struct task_group *tg; 673 #endif 674 }; 675 676 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 677 { 678 return rt_rq->rt_queued && rt_rq->rt_nr_running; 679 } 680 681 /* Deadline class' related fields in a runqueue */ 682 struct dl_rq { 683 /* runqueue is an rbtree, ordered by deadline */ 684 struct rb_root_cached root; 685 686 unsigned int dl_nr_running; 687 688 #ifdef CONFIG_SMP 689 /* 690 * Deadline values of the currently executing and the 691 * earliest ready task on this rq. Caching these facilitates 692 * the decision whether or not a ready but not running task 693 * should migrate somewhere else. 694 */ 695 struct { 696 u64 curr; 697 u64 next; 698 } earliest_dl; 699 700 unsigned int dl_nr_migratory; 701 int overloaded; 702 703 /* 704 * Tasks on this rq that can be pushed away. They are kept in 705 * an rb-tree, ordered by tasks' deadlines, with caching 706 * of the leftmost (earliest deadline) element. 707 */ 708 struct rb_root_cached pushable_dl_tasks_root; 709 #else 710 struct dl_bw dl_bw; 711 #endif 712 /* 713 * "Active utilization" for this runqueue: increased when a 714 * task wakes up (becomes TASK_RUNNING) and decreased when a 715 * task blocks 716 */ 717 u64 running_bw; 718 719 /* 720 * Utilization of the tasks "assigned" to this runqueue (including 721 * the tasks that are in runqueue and the tasks that executed on this 722 * CPU and blocked). Increased when a task moves to this runqueue, and 723 * decreased when the task moves away (migrates, changes scheduling 724 * policy, or terminates). 725 * This is needed to compute the "inactive utilization" for the 726 * runqueue (inactive utilization = this_bw - running_bw). 727 */ 728 u64 this_bw; 729 u64 extra_bw; 730 731 /* 732 * Inverse of the fraction of CPU utilization that can be reclaimed 733 * by the GRUB algorithm. 734 */ 735 u64 bw_ratio; 736 }; 737 738 #ifdef CONFIG_FAIR_GROUP_SCHED 739 /* An entity is a task if it doesn't "own" a runqueue */ 740 #define entity_is_task(se) (!se->my_q) 741 742 static inline void se_update_runnable(struct sched_entity *se) 743 { 744 if (!entity_is_task(se)) 745 se->runnable_weight = se->my_q->h_nr_running; 746 } 747 748 static inline long se_runnable(struct sched_entity *se) 749 { 750 if (entity_is_task(se)) 751 return !!se->on_rq; 752 else 753 return se->runnable_weight; 754 } 755 756 #else 757 #define entity_is_task(se) 1 758 759 static inline void se_update_runnable(struct sched_entity *se) {} 760 761 static inline long se_runnable(struct sched_entity *se) 762 { 763 return !!se->on_rq; 764 } 765 #endif 766 767 #ifdef CONFIG_SMP 768 /* 769 * XXX we want to get rid of these helpers and use the full load resolution. 770 */ 771 static inline long se_weight(struct sched_entity *se) 772 { 773 return scale_load_down(se->load.weight); 774 } 775 776 777 static inline bool sched_asym_prefer(int a, int b) 778 { 779 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 780 } 781 782 struct perf_domain { 783 struct em_perf_domain *em_pd; 784 struct perf_domain *next; 785 struct rcu_head rcu; 786 }; 787 788 /* Scheduling group status flags */ 789 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 790 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 791 792 /* 793 * We add the notion of a root-domain which will be used to define per-domain 794 * variables. Each exclusive cpuset essentially defines an island domain by 795 * fully partitioning the member CPUs from any other cpuset. Whenever a new 796 * exclusive cpuset is created, we also create and attach a new root-domain 797 * object. 798 * 799 */ 800 struct root_domain { 801 atomic_t refcount; 802 atomic_t rto_count; 803 struct rcu_head rcu; 804 cpumask_var_t span; 805 cpumask_var_t online; 806 807 /* 808 * Indicate pullable load on at least one CPU, e.g: 809 * - More than one runnable task 810 * - Running task is misfit 811 */ 812 int overload; 813 814 /* Indicate one or more cpus over-utilized (tipping point) */ 815 int overutilized; 816 817 /* 818 * The bit corresponding to a CPU gets set here if such CPU has more 819 * than one runnable -deadline task (as it is below for RT tasks). 820 */ 821 cpumask_var_t dlo_mask; 822 atomic_t dlo_count; 823 struct dl_bw dl_bw; 824 struct cpudl cpudl; 825 826 /* 827 * Indicate whether a root_domain's dl_bw has been checked or 828 * updated. It's monotonously increasing value. 829 * 830 * Also, some corner cases, like 'wrap around' is dangerous, but given 831 * that u64 is 'big enough'. So that shouldn't be a concern. 832 */ 833 u64 visit_gen; 834 835 #ifdef HAVE_RT_PUSH_IPI 836 /* 837 * For IPI pull requests, loop across the rto_mask. 838 */ 839 struct irq_work rto_push_work; 840 raw_spinlock_t rto_lock; 841 /* These are only updated and read within rto_lock */ 842 int rto_loop; 843 int rto_cpu; 844 /* These atomics are updated outside of a lock */ 845 atomic_t rto_loop_next; 846 atomic_t rto_loop_start; 847 #endif 848 /* 849 * The "RT overload" flag: it gets set if a CPU has more than 850 * one runnable RT task. 851 */ 852 cpumask_var_t rto_mask; 853 struct cpupri cpupri; 854 855 unsigned long max_cpu_capacity; 856 857 /* 858 * NULL-terminated list of performance domains intersecting with the 859 * CPUs of the rd. Protected by RCU. 860 */ 861 struct perf_domain __rcu *pd; 862 }; 863 864 extern void init_defrootdomain(void); 865 extern int sched_init_domains(const struct cpumask *cpu_map); 866 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 867 extern void sched_get_rd(struct root_domain *rd); 868 extern void sched_put_rd(struct root_domain *rd); 869 870 #ifdef HAVE_RT_PUSH_IPI 871 extern void rto_push_irq_work_func(struct irq_work *work); 872 #endif 873 #endif /* CONFIG_SMP */ 874 875 #ifdef CONFIG_UCLAMP_TASK 876 /* 877 * struct uclamp_bucket - Utilization clamp bucket 878 * @value: utilization clamp value for tasks on this clamp bucket 879 * @tasks: number of RUNNABLE tasks on this clamp bucket 880 * 881 * Keep track of how many tasks are RUNNABLE for a given utilization 882 * clamp value. 883 */ 884 struct uclamp_bucket { 885 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 886 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 887 }; 888 889 /* 890 * struct uclamp_rq - rq's utilization clamp 891 * @value: currently active clamp values for a rq 892 * @bucket: utilization clamp buckets affecting a rq 893 * 894 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 895 * A clamp value is affecting a rq when there is at least one task RUNNABLE 896 * (or actually running) with that value. 897 * 898 * There are up to UCLAMP_CNT possible different clamp values, currently there 899 * are only two: minimum utilization and maximum utilization. 900 * 901 * All utilization clamping values are MAX aggregated, since: 902 * - for util_min: we want to run the CPU at least at the max of the minimum 903 * utilization required by its currently RUNNABLE tasks. 904 * - for util_max: we want to allow the CPU to run up to the max of the 905 * maximum utilization allowed by its currently RUNNABLE tasks. 906 * 907 * Since on each system we expect only a limited number of different 908 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 909 * the metrics required to compute all the per-rq utilization clamp values. 910 */ 911 struct uclamp_rq { 912 unsigned int value; 913 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 914 }; 915 916 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 917 #endif /* CONFIG_UCLAMP_TASK */ 918 919 /* 920 * This is the main, per-CPU runqueue data structure. 921 * 922 * Locking rule: those places that want to lock multiple runqueues 923 * (such as the load balancing or the thread migration code), lock 924 * acquire operations must be ordered by ascending &runqueue. 925 */ 926 struct rq { 927 /* runqueue lock: */ 928 raw_spinlock_t __lock; 929 930 /* 931 * nr_running and cpu_load should be in the same cacheline because 932 * remote CPUs use both these fields when doing load calculation. 933 */ 934 unsigned int nr_running; 935 #ifdef CONFIG_NUMA_BALANCING 936 unsigned int nr_numa_running; 937 unsigned int nr_preferred_running; 938 unsigned int numa_migrate_on; 939 #endif 940 #ifdef CONFIG_NO_HZ_COMMON 941 #ifdef CONFIG_SMP 942 unsigned long last_blocked_load_update_tick; 943 unsigned int has_blocked_load; 944 call_single_data_t nohz_csd; 945 #endif /* CONFIG_SMP */ 946 unsigned int nohz_tick_stopped; 947 atomic_t nohz_flags; 948 #endif /* CONFIG_NO_HZ_COMMON */ 949 950 #ifdef CONFIG_SMP 951 unsigned int ttwu_pending; 952 #endif 953 u64 nr_switches; 954 955 #ifdef CONFIG_UCLAMP_TASK 956 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 957 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 958 unsigned int uclamp_flags; 959 #define UCLAMP_FLAG_IDLE 0x01 960 #endif 961 962 struct cfs_rq cfs; 963 struct rt_rq rt; 964 struct dl_rq dl; 965 966 #ifdef CONFIG_FAIR_GROUP_SCHED 967 /* list of leaf cfs_rq on this CPU: */ 968 struct list_head leaf_cfs_rq_list; 969 struct list_head *tmp_alone_branch; 970 #endif /* CONFIG_FAIR_GROUP_SCHED */ 971 972 /* 973 * This is part of a global counter where only the total sum 974 * over all CPUs matters. A task can increase this counter on 975 * one CPU and if it got migrated afterwards it may decrease 976 * it on another CPU. Always updated under the runqueue lock: 977 */ 978 unsigned int nr_uninterruptible; 979 980 struct task_struct __rcu *curr; 981 struct task_struct *idle; 982 struct task_struct *stop; 983 unsigned long next_balance; 984 struct mm_struct *prev_mm; 985 986 unsigned int clock_update_flags; 987 u64 clock; 988 /* Ensure that all clocks are in the same cache line */ 989 u64 clock_task ____cacheline_aligned; 990 u64 clock_pelt; 991 unsigned long lost_idle_time; 992 993 atomic_t nr_iowait; 994 995 #ifdef CONFIG_SCHED_DEBUG 996 u64 last_seen_need_resched_ns; 997 int ticks_without_resched; 998 #endif 999 1000 #ifdef CONFIG_MEMBARRIER 1001 int membarrier_state; 1002 #endif 1003 1004 #ifdef CONFIG_SMP 1005 struct root_domain *rd; 1006 struct sched_domain __rcu *sd; 1007 1008 unsigned long cpu_capacity; 1009 unsigned long cpu_capacity_orig; 1010 1011 struct callback_head *balance_callback; 1012 1013 unsigned char nohz_idle_balance; 1014 unsigned char idle_balance; 1015 1016 unsigned long misfit_task_load; 1017 1018 /* For active balancing */ 1019 int active_balance; 1020 int push_cpu; 1021 struct cpu_stop_work active_balance_work; 1022 1023 /* CPU of this runqueue: */ 1024 int cpu; 1025 int online; 1026 1027 struct list_head cfs_tasks; 1028 1029 struct sched_avg avg_rt; 1030 struct sched_avg avg_dl; 1031 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1032 struct sched_avg avg_irq; 1033 #endif 1034 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1035 struct sched_avg avg_thermal; 1036 #endif 1037 u64 idle_stamp; 1038 u64 avg_idle; 1039 1040 unsigned long wake_stamp; 1041 u64 wake_avg_idle; 1042 1043 /* This is used to determine avg_idle's max value */ 1044 u64 max_idle_balance_cost; 1045 1046 #ifdef CONFIG_HOTPLUG_CPU 1047 struct rcuwait hotplug_wait; 1048 #endif 1049 #endif /* CONFIG_SMP */ 1050 1051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1052 u64 prev_irq_time; 1053 #endif 1054 #ifdef CONFIG_PARAVIRT 1055 u64 prev_steal_time; 1056 #endif 1057 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1058 u64 prev_steal_time_rq; 1059 #endif 1060 1061 /* calc_load related fields */ 1062 unsigned long calc_load_update; 1063 long calc_load_active; 1064 1065 #ifdef CONFIG_SCHED_HRTICK 1066 #ifdef CONFIG_SMP 1067 call_single_data_t hrtick_csd; 1068 #endif 1069 struct hrtimer hrtick_timer; 1070 ktime_t hrtick_time; 1071 #endif 1072 1073 #ifdef CONFIG_SCHEDSTATS 1074 /* latency stats */ 1075 struct sched_info rq_sched_info; 1076 unsigned long long rq_cpu_time; 1077 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1078 1079 /* sys_sched_yield() stats */ 1080 unsigned int yld_count; 1081 1082 /* schedule() stats */ 1083 unsigned int sched_count; 1084 unsigned int sched_goidle; 1085 1086 /* try_to_wake_up() stats */ 1087 unsigned int ttwu_count; 1088 unsigned int ttwu_local; 1089 #endif 1090 1091 #ifdef CONFIG_CPU_IDLE 1092 /* Must be inspected within a rcu lock section */ 1093 struct cpuidle_state *idle_state; 1094 #endif 1095 1096 #ifdef CONFIG_SMP 1097 unsigned int nr_pinned; 1098 #endif 1099 unsigned int push_busy; 1100 struct cpu_stop_work push_work; 1101 1102 #ifdef CONFIG_SCHED_CORE 1103 /* per rq */ 1104 struct rq *core; 1105 struct task_struct *core_pick; 1106 unsigned int core_enabled; 1107 unsigned int core_sched_seq; 1108 struct rb_root core_tree; 1109 1110 /* shared state -- careful with sched_core_cpu_deactivate() */ 1111 unsigned int core_task_seq; 1112 unsigned int core_pick_seq; 1113 unsigned long core_cookie; 1114 unsigned int core_forceidle_count; 1115 unsigned int core_forceidle_seq; 1116 unsigned int core_forceidle_occupation; 1117 u64 core_forceidle_start; 1118 #endif 1119 }; 1120 1121 #ifdef CONFIG_FAIR_GROUP_SCHED 1122 1123 /* CPU runqueue to which this cfs_rq is attached */ 1124 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1125 { 1126 return cfs_rq->rq; 1127 } 1128 1129 #else 1130 1131 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1132 { 1133 return container_of(cfs_rq, struct rq, cfs); 1134 } 1135 #endif 1136 1137 static inline int cpu_of(struct rq *rq) 1138 { 1139 #ifdef CONFIG_SMP 1140 return rq->cpu; 1141 #else 1142 return 0; 1143 #endif 1144 } 1145 1146 #define MDF_PUSH 0x01 1147 1148 static inline bool is_migration_disabled(struct task_struct *p) 1149 { 1150 #ifdef CONFIG_SMP 1151 return p->migration_disabled; 1152 #else 1153 return false; 1154 #endif 1155 } 1156 1157 struct sched_group; 1158 #ifdef CONFIG_SCHED_CORE 1159 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1160 1161 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1162 1163 static inline bool sched_core_enabled(struct rq *rq) 1164 { 1165 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1166 } 1167 1168 static inline bool sched_core_disabled(void) 1169 { 1170 return !static_branch_unlikely(&__sched_core_enabled); 1171 } 1172 1173 /* 1174 * Be careful with this function; not for general use. The return value isn't 1175 * stable unless you actually hold a relevant rq->__lock. 1176 */ 1177 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1178 { 1179 if (sched_core_enabled(rq)) 1180 return &rq->core->__lock; 1181 1182 return &rq->__lock; 1183 } 1184 1185 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1186 { 1187 if (rq->core_enabled) 1188 return &rq->core->__lock; 1189 1190 return &rq->__lock; 1191 } 1192 1193 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1194 1195 /* 1196 * Helpers to check if the CPU's core cookie matches with the task's cookie 1197 * when core scheduling is enabled. 1198 * A special case is that the task's cookie always matches with CPU's core 1199 * cookie if the CPU is in an idle core. 1200 */ 1201 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1202 { 1203 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1204 if (!sched_core_enabled(rq)) 1205 return true; 1206 1207 return rq->core->core_cookie == p->core_cookie; 1208 } 1209 1210 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1211 { 1212 bool idle_core = true; 1213 int cpu; 1214 1215 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1216 if (!sched_core_enabled(rq)) 1217 return true; 1218 1219 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1220 if (!available_idle_cpu(cpu)) { 1221 idle_core = false; 1222 break; 1223 } 1224 } 1225 1226 /* 1227 * A CPU in an idle core is always the best choice for tasks with 1228 * cookies. 1229 */ 1230 return idle_core || rq->core->core_cookie == p->core_cookie; 1231 } 1232 1233 static inline bool sched_group_cookie_match(struct rq *rq, 1234 struct task_struct *p, 1235 struct sched_group *group) 1236 { 1237 int cpu; 1238 1239 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1240 if (!sched_core_enabled(rq)) 1241 return true; 1242 1243 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1244 if (sched_core_cookie_match(rq, p)) 1245 return true; 1246 } 1247 return false; 1248 } 1249 1250 extern void queue_core_balance(struct rq *rq); 1251 1252 static inline bool sched_core_enqueued(struct task_struct *p) 1253 { 1254 return !RB_EMPTY_NODE(&p->core_node); 1255 } 1256 1257 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1258 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1259 1260 extern void sched_core_get(void); 1261 extern void sched_core_put(void); 1262 1263 #else /* !CONFIG_SCHED_CORE */ 1264 1265 static inline bool sched_core_enabled(struct rq *rq) 1266 { 1267 return false; 1268 } 1269 1270 static inline bool sched_core_disabled(void) 1271 { 1272 return true; 1273 } 1274 1275 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1276 { 1277 return &rq->__lock; 1278 } 1279 1280 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1281 { 1282 return &rq->__lock; 1283 } 1284 1285 static inline void queue_core_balance(struct rq *rq) 1286 { 1287 } 1288 1289 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1290 { 1291 return true; 1292 } 1293 1294 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1295 { 1296 return true; 1297 } 1298 1299 static inline bool sched_group_cookie_match(struct rq *rq, 1300 struct task_struct *p, 1301 struct sched_group *group) 1302 { 1303 return true; 1304 } 1305 #endif /* CONFIG_SCHED_CORE */ 1306 1307 static inline void lockdep_assert_rq_held(struct rq *rq) 1308 { 1309 lockdep_assert_held(__rq_lockp(rq)); 1310 } 1311 1312 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1313 extern bool raw_spin_rq_trylock(struct rq *rq); 1314 extern void raw_spin_rq_unlock(struct rq *rq); 1315 1316 static inline void raw_spin_rq_lock(struct rq *rq) 1317 { 1318 raw_spin_rq_lock_nested(rq, 0); 1319 } 1320 1321 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1322 { 1323 local_irq_disable(); 1324 raw_spin_rq_lock(rq); 1325 } 1326 1327 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1328 { 1329 raw_spin_rq_unlock(rq); 1330 local_irq_enable(); 1331 } 1332 1333 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1334 { 1335 unsigned long flags; 1336 local_irq_save(flags); 1337 raw_spin_rq_lock(rq); 1338 return flags; 1339 } 1340 1341 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1342 { 1343 raw_spin_rq_unlock(rq); 1344 local_irq_restore(flags); 1345 } 1346 1347 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1348 do { \ 1349 flags = _raw_spin_rq_lock_irqsave(rq); \ 1350 } while (0) 1351 1352 #ifdef CONFIG_SCHED_SMT 1353 extern void __update_idle_core(struct rq *rq); 1354 1355 static inline void update_idle_core(struct rq *rq) 1356 { 1357 if (static_branch_unlikely(&sched_smt_present)) 1358 __update_idle_core(rq); 1359 } 1360 1361 #else 1362 static inline void update_idle_core(struct rq *rq) { } 1363 #endif 1364 1365 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1366 1367 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1368 #define this_rq() this_cpu_ptr(&runqueues) 1369 #define task_rq(p) cpu_rq(task_cpu(p)) 1370 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1371 #define raw_rq() raw_cpu_ptr(&runqueues) 1372 1373 #ifdef CONFIG_FAIR_GROUP_SCHED 1374 static inline struct task_struct *task_of(struct sched_entity *se) 1375 { 1376 SCHED_WARN_ON(!entity_is_task(se)); 1377 return container_of(se, struct task_struct, se); 1378 } 1379 1380 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1381 { 1382 return p->se.cfs_rq; 1383 } 1384 1385 /* runqueue on which this entity is (to be) queued */ 1386 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1387 { 1388 return se->cfs_rq; 1389 } 1390 1391 /* runqueue "owned" by this group */ 1392 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1393 { 1394 return grp->my_q; 1395 } 1396 1397 #else 1398 1399 static inline struct task_struct *task_of(struct sched_entity *se) 1400 { 1401 return container_of(se, struct task_struct, se); 1402 } 1403 1404 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1405 { 1406 return &task_rq(p)->cfs; 1407 } 1408 1409 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1410 { 1411 struct task_struct *p = task_of(se); 1412 struct rq *rq = task_rq(p); 1413 1414 return &rq->cfs; 1415 } 1416 1417 /* runqueue "owned" by this group */ 1418 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1419 { 1420 return NULL; 1421 } 1422 #endif 1423 1424 extern void update_rq_clock(struct rq *rq); 1425 1426 /* 1427 * rq::clock_update_flags bits 1428 * 1429 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1430 * call to __schedule(). This is an optimisation to avoid 1431 * neighbouring rq clock updates. 1432 * 1433 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1434 * in effect and calls to update_rq_clock() are being ignored. 1435 * 1436 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1437 * made to update_rq_clock() since the last time rq::lock was pinned. 1438 * 1439 * If inside of __schedule(), clock_update_flags will have been 1440 * shifted left (a left shift is a cheap operation for the fast path 1441 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1442 * 1443 * if (rq-clock_update_flags >= RQCF_UPDATED) 1444 * 1445 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1446 * one position though, because the next rq_unpin_lock() will shift it 1447 * back. 1448 */ 1449 #define RQCF_REQ_SKIP 0x01 1450 #define RQCF_ACT_SKIP 0x02 1451 #define RQCF_UPDATED 0x04 1452 1453 static inline void assert_clock_updated(struct rq *rq) 1454 { 1455 /* 1456 * The only reason for not seeing a clock update since the 1457 * last rq_pin_lock() is if we're currently skipping updates. 1458 */ 1459 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1460 } 1461 1462 static inline u64 rq_clock(struct rq *rq) 1463 { 1464 lockdep_assert_rq_held(rq); 1465 assert_clock_updated(rq); 1466 1467 return rq->clock; 1468 } 1469 1470 static inline u64 rq_clock_task(struct rq *rq) 1471 { 1472 lockdep_assert_rq_held(rq); 1473 assert_clock_updated(rq); 1474 1475 return rq->clock_task; 1476 } 1477 1478 /** 1479 * By default the decay is the default pelt decay period. 1480 * The decay shift can change the decay period in 1481 * multiples of 32. 1482 * Decay shift Decay period(ms) 1483 * 0 32 1484 * 1 64 1485 * 2 128 1486 * 3 256 1487 * 4 512 1488 */ 1489 extern int sched_thermal_decay_shift; 1490 1491 static inline u64 rq_clock_thermal(struct rq *rq) 1492 { 1493 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1494 } 1495 1496 static inline void rq_clock_skip_update(struct rq *rq) 1497 { 1498 lockdep_assert_rq_held(rq); 1499 rq->clock_update_flags |= RQCF_REQ_SKIP; 1500 } 1501 1502 /* 1503 * See rt task throttling, which is the only time a skip 1504 * request is canceled. 1505 */ 1506 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1507 { 1508 lockdep_assert_rq_held(rq); 1509 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1510 } 1511 1512 struct rq_flags { 1513 unsigned long flags; 1514 struct pin_cookie cookie; 1515 #ifdef CONFIG_SCHED_DEBUG 1516 /* 1517 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1518 * current pin context is stashed here in case it needs to be 1519 * restored in rq_repin_lock(). 1520 */ 1521 unsigned int clock_update_flags; 1522 #endif 1523 }; 1524 1525 extern struct callback_head balance_push_callback; 1526 1527 /* 1528 * Lockdep annotation that avoids accidental unlocks; it's like a 1529 * sticky/continuous lockdep_assert_held(). 1530 * 1531 * This avoids code that has access to 'struct rq *rq' (basically everything in 1532 * the scheduler) from accidentally unlocking the rq if they do not also have a 1533 * copy of the (on-stack) 'struct rq_flags rf'. 1534 * 1535 * Also see Documentation/locking/lockdep-design.rst. 1536 */ 1537 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1538 { 1539 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1540 1541 #ifdef CONFIG_SCHED_DEBUG 1542 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1543 rf->clock_update_flags = 0; 1544 #ifdef CONFIG_SMP 1545 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1546 #endif 1547 #endif 1548 } 1549 1550 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1551 { 1552 #ifdef CONFIG_SCHED_DEBUG 1553 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1554 rf->clock_update_flags = RQCF_UPDATED; 1555 #endif 1556 1557 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1558 } 1559 1560 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1561 { 1562 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1563 1564 #ifdef CONFIG_SCHED_DEBUG 1565 /* 1566 * Restore the value we stashed in @rf for this pin context. 1567 */ 1568 rq->clock_update_flags |= rf->clock_update_flags; 1569 #endif 1570 } 1571 1572 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1573 __acquires(rq->lock); 1574 1575 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1576 __acquires(p->pi_lock) 1577 __acquires(rq->lock); 1578 1579 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1580 __releases(rq->lock) 1581 { 1582 rq_unpin_lock(rq, rf); 1583 raw_spin_rq_unlock(rq); 1584 } 1585 1586 static inline void 1587 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1588 __releases(rq->lock) 1589 __releases(p->pi_lock) 1590 { 1591 rq_unpin_lock(rq, rf); 1592 raw_spin_rq_unlock(rq); 1593 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1594 } 1595 1596 static inline void 1597 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1598 __acquires(rq->lock) 1599 { 1600 raw_spin_rq_lock_irqsave(rq, rf->flags); 1601 rq_pin_lock(rq, rf); 1602 } 1603 1604 static inline void 1605 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1606 __acquires(rq->lock) 1607 { 1608 raw_spin_rq_lock_irq(rq); 1609 rq_pin_lock(rq, rf); 1610 } 1611 1612 static inline void 1613 rq_lock(struct rq *rq, struct rq_flags *rf) 1614 __acquires(rq->lock) 1615 { 1616 raw_spin_rq_lock(rq); 1617 rq_pin_lock(rq, rf); 1618 } 1619 1620 static inline void 1621 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1622 __releases(rq->lock) 1623 { 1624 rq_unpin_lock(rq, rf); 1625 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1626 } 1627 1628 static inline void 1629 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1630 __releases(rq->lock) 1631 { 1632 rq_unpin_lock(rq, rf); 1633 raw_spin_rq_unlock_irq(rq); 1634 } 1635 1636 static inline void 1637 rq_unlock(struct rq *rq, struct rq_flags *rf) 1638 __releases(rq->lock) 1639 { 1640 rq_unpin_lock(rq, rf); 1641 raw_spin_rq_unlock(rq); 1642 } 1643 1644 static inline struct rq * 1645 this_rq_lock_irq(struct rq_flags *rf) 1646 __acquires(rq->lock) 1647 { 1648 struct rq *rq; 1649 1650 local_irq_disable(); 1651 rq = this_rq(); 1652 rq_lock(rq, rf); 1653 return rq; 1654 } 1655 1656 #ifdef CONFIG_NUMA 1657 enum numa_topology_type { 1658 NUMA_DIRECT, 1659 NUMA_GLUELESS_MESH, 1660 NUMA_BACKPLANE, 1661 }; 1662 extern enum numa_topology_type sched_numa_topology_type; 1663 extern int sched_max_numa_distance; 1664 extern bool find_numa_distance(int distance); 1665 extern void sched_init_numa(void); 1666 extern void sched_domains_numa_masks_set(unsigned int cpu); 1667 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1668 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1669 #else 1670 static inline void sched_init_numa(void) { } 1671 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1672 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1673 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1674 { 1675 return nr_cpu_ids; 1676 } 1677 #endif 1678 1679 #ifdef CONFIG_NUMA_BALANCING 1680 /* The regions in numa_faults array from task_struct */ 1681 enum numa_faults_stats { 1682 NUMA_MEM = 0, 1683 NUMA_CPU, 1684 NUMA_MEMBUF, 1685 NUMA_CPUBUF 1686 }; 1687 extern void sched_setnuma(struct task_struct *p, int node); 1688 extern int migrate_task_to(struct task_struct *p, int cpu); 1689 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1690 int cpu, int scpu); 1691 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1692 #else 1693 static inline void 1694 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1695 { 1696 } 1697 #endif /* CONFIG_NUMA_BALANCING */ 1698 1699 #ifdef CONFIG_SMP 1700 1701 static inline void 1702 queue_balance_callback(struct rq *rq, 1703 struct callback_head *head, 1704 void (*func)(struct rq *rq)) 1705 { 1706 lockdep_assert_rq_held(rq); 1707 1708 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1709 return; 1710 1711 head->func = (void (*)(struct callback_head *))func; 1712 head->next = rq->balance_callback; 1713 rq->balance_callback = head; 1714 } 1715 1716 #define rcu_dereference_check_sched_domain(p) \ 1717 rcu_dereference_check((p), \ 1718 lockdep_is_held(&sched_domains_mutex)) 1719 1720 /* 1721 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1722 * See destroy_sched_domains: call_rcu for details. 1723 * 1724 * The domain tree of any CPU may only be accessed from within 1725 * preempt-disabled sections. 1726 */ 1727 #define for_each_domain(cpu, __sd) \ 1728 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1729 __sd; __sd = __sd->parent) 1730 1731 /** 1732 * highest_flag_domain - Return highest sched_domain containing flag. 1733 * @cpu: The CPU whose highest level of sched domain is to 1734 * be returned. 1735 * @flag: The flag to check for the highest sched_domain 1736 * for the given CPU. 1737 * 1738 * Returns the highest sched_domain of a CPU which contains the given flag. 1739 */ 1740 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1741 { 1742 struct sched_domain *sd, *hsd = NULL; 1743 1744 for_each_domain(cpu, sd) { 1745 if (!(sd->flags & flag)) 1746 break; 1747 hsd = sd; 1748 } 1749 1750 return hsd; 1751 } 1752 1753 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1754 { 1755 struct sched_domain *sd; 1756 1757 for_each_domain(cpu, sd) { 1758 if (sd->flags & flag) 1759 break; 1760 } 1761 1762 return sd; 1763 } 1764 1765 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1766 DECLARE_PER_CPU(int, sd_llc_size); 1767 DECLARE_PER_CPU(int, sd_llc_id); 1768 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1769 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1770 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1771 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1772 extern struct static_key_false sched_asym_cpucapacity; 1773 1774 struct sched_group_capacity { 1775 atomic_t ref; 1776 /* 1777 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1778 * for a single CPU. 1779 */ 1780 unsigned long capacity; 1781 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1782 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1783 unsigned long next_update; 1784 int imbalance; /* XXX unrelated to capacity but shared group state */ 1785 1786 #ifdef CONFIG_SCHED_DEBUG 1787 int id; 1788 #endif 1789 1790 unsigned long cpumask[]; /* Balance mask */ 1791 }; 1792 1793 struct sched_group { 1794 struct sched_group *next; /* Must be a circular list */ 1795 atomic_t ref; 1796 1797 unsigned int group_weight; 1798 struct sched_group_capacity *sgc; 1799 int asym_prefer_cpu; /* CPU of highest priority in group */ 1800 int flags; 1801 1802 /* 1803 * The CPUs this group covers. 1804 * 1805 * NOTE: this field is variable length. (Allocated dynamically 1806 * by attaching extra space to the end of the structure, 1807 * depending on how many CPUs the kernel has booted up with) 1808 */ 1809 unsigned long cpumask[]; 1810 }; 1811 1812 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1813 { 1814 return to_cpumask(sg->cpumask); 1815 } 1816 1817 /* 1818 * See build_balance_mask(). 1819 */ 1820 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1821 { 1822 return to_cpumask(sg->sgc->cpumask); 1823 } 1824 1825 /** 1826 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1827 * @group: The group whose first CPU is to be returned. 1828 */ 1829 static inline unsigned int group_first_cpu(struct sched_group *group) 1830 { 1831 return cpumask_first(sched_group_span(group)); 1832 } 1833 1834 extern int group_balance_cpu(struct sched_group *sg); 1835 1836 #ifdef CONFIG_SCHED_DEBUG 1837 void update_sched_domain_debugfs(void); 1838 void dirty_sched_domain_sysctl(int cpu); 1839 #else 1840 static inline void update_sched_domain_debugfs(void) 1841 { 1842 } 1843 static inline void dirty_sched_domain_sysctl(int cpu) 1844 { 1845 } 1846 #endif 1847 1848 extern int sched_update_scaling(void); 1849 1850 extern void flush_smp_call_function_from_idle(void); 1851 1852 #else /* !CONFIG_SMP: */ 1853 static inline void flush_smp_call_function_from_idle(void) { } 1854 #endif 1855 1856 #include "stats.h" 1857 #include "autogroup.h" 1858 1859 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1860 1861 extern void __sched_core_account_forceidle(struct rq *rq); 1862 1863 static inline void sched_core_account_forceidle(struct rq *rq) 1864 { 1865 if (schedstat_enabled()) 1866 __sched_core_account_forceidle(rq); 1867 } 1868 1869 extern void __sched_core_tick(struct rq *rq); 1870 1871 static inline void sched_core_tick(struct rq *rq) 1872 { 1873 if (sched_core_enabled(rq) && schedstat_enabled()) 1874 __sched_core_tick(rq); 1875 } 1876 1877 #else 1878 1879 static inline void sched_core_account_forceidle(struct rq *rq) {} 1880 1881 static inline void sched_core_tick(struct rq *rq) {} 1882 1883 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1884 1885 #ifdef CONFIG_CGROUP_SCHED 1886 1887 /* 1888 * Return the group to which this tasks belongs. 1889 * 1890 * We cannot use task_css() and friends because the cgroup subsystem 1891 * changes that value before the cgroup_subsys::attach() method is called, 1892 * therefore we cannot pin it and might observe the wrong value. 1893 * 1894 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1895 * core changes this before calling sched_move_task(). 1896 * 1897 * Instead we use a 'copy' which is updated from sched_move_task() while 1898 * holding both task_struct::pi_lock and rq::lock. 1899 */ 1900 static inline struct task_group *task_group(struct task_struct *p) 1901 { 1902 return p->sched_task_group; 1903 } 1904 1905 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1906 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1907 { 1908 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1909 struct task_group *tg = task_group(p); 1910 #endif 1911 1912 #ifdef CONFIG_FAIR_GROUP_SCHED 1913 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1914 p->se.cfs_rq = tg->cfs_rq[cpu]; 1915 p->se.parent = tg->se[cpu]; 1916 #endif 1917 1918 #ifdef CONFIG_RT_GROUP_SCHED 1919 p->rt.rt_rq = tg->rt_rq[cpu]; 1920 p->rt.parent = tg->rt_se[cpu]; 1921 #endif 1922 } 1923 1924 #else /* CONFIG_CGROUP_SCHED */ 1925 1926 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1927 static inline struct task_group *task_group(struct task_struct *p) 1928 { 1929 return NULL; 1930 } 1931 1932 #endif /* CONFIG_CGROUP_SCHED */ 1933 1934 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1935 { 1936 set_task_rq(p, cpu); 1937 #ifdef CONFIG_SMP 1938 /* 1939 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1940 * successfully executed on another CPU. We must ensure that updates of 1941 * per-task data have been completed by this moment. 1942 */ 1943 smp_wmb(); 1944 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1945 p->wake_cpu = cpu; 1946 #endif 1947 } 1948 1949 /* 1950 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1951 */ 1952 #ifdef CONFIG_SCHED_DEBUG 1953 # include <linux/static_key.h> 1954 # define const_debug __read_mostly 1955 #else 1956 # define const_debug const 1957 #endif 1958 1959 #define SCHED_FEAT(name, enabled) \ 1960 __SCHED_FEAT_##name , 1961 1962 enum { 1963 #include "features.h" 1964 __SCHED_FEAT_NR, 1965 }; 1966 1967 #undef SCHED_FEAT 1968 1969 #ifdef CONFIG_SCHED_DEBUG 1970 1971 /* 1972 * To support run-time toggling of sched features, all the translation units 1973 * (but core.c) reference the sysctl_sched_features defined in core.c. 1974 */ 1975 extern const_debug unsigned int sysctl_sched_features; 1976 1977 #ifdef CONFIG_JUMP_LABEL 1978 #define SCHED_FEAT(name, enabled) \ 1979 static __always_inline bool static_branch_##name(struct static_key *key) \ 1980 { \ 1981 return static_key_##enabled(key); \ 1982 } 1983 1984 #include "features.h" 1985 #undef SCHED_FEAT 1986 1987 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1988 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1989 1990 #else /* !CONFIG_JUMP_LABEL */ 1991 1992 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1993 1994 #endif /* CONFIG_JUMP_LABEL */ 1995 1996 #else /* !SCHED_DEBUG */ 1997 1998 /* 1999 * Each translation unit has its own copy of sysctl_sched_features to allow 2000 * constants propagation at compile time and compiler optimization based on 2001 * features default. 2002 */ 2003 #define SCHED_FEAT(name, enabled) \ 2004 (1UL << __SCHED_FEAT_##name) * enabled | 2005 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2006 #include "features.h" 2007 0; 2008 #undef SCHED_FEAT 2009 2010 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2011 2012 #endif /* SCHED_DEBUG */ 2013 2014 extern struct static_key_false sched_numa_balancing; 2015 extern struct static_key_false sched_schedstats; 2016 2017 static inline u64 global_rt_period(void) 2018 { 2019 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2020 } 2021 2022 static inline u64 global_rt_runtime(void) 2023 { 2024 if (sysctl_sched_rt_runtime < 0) 2025 return RUNTIME_INF; 2026 2027 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2028 } 2029 2030 static inline int task_current(struct rq *rq, struct task_struct *p) 2031 { 2032 return rq->curr == p; 2033 } 2034 2035 static inline int task_running(struct rq *rq, struct task_struct *p) 2036 { 2037 #ifdef CONFIG_SMP 2038 return p->on_cpu; 2039 #else 2040 return task_current(rq, p); 2041 #endif 2042 } 2043 2044 static inline int task_on_rq_queued(struct task_struct *p) 2045 { 2046 return p->on_rq == TASK_ON_RQ_QUEUED; 2047 } 2048 2049 static inline int task_on_rq_migrating(struct task_struct *p) 2050 { 2051 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2052 } 2053 2054 /* Wake flags. The first three directly map to some SD flag value */ 2055 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2056 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2057 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2058 2059 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2060 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2061 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 2062 2063 #ifdef CONFIG_SMP 2064 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2065 static_assert(WF_FORK == SD_BALANCE_FORK); 2066 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2067 #endif 2068 2069 /* 2070 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2071 * of tasks with abnormal "nice" values across CPUs the contribution that 2072 * each task makes to its run queue's load is weighted according to its 2073 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2074 * scaled version of the new time slice allocation that they receive on time 2075 * slice expiry etc. 2076 */ 2077 2078 #define WEIGHT_IDLEPRIO 3 2079 #define WMULT_IDLEPRIO 1431655765 2080 2081 extern const int sched_prio_to_weight[40]; 2082 extern const u32 sched_prio_to_wmult[40]; 2083 2084 /* 2085 * {de,en}queue flags: 2086 * 2087 * DEQUEUE_SLEEP - task is no longer runnable 2088 * ENQUEUE_WAKEUP - task just became runnable 2089 * 2090 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2091 * are in a known state which allows modification. Such pairs 2092 * should preserve as much state as possible. 2093 * 2094 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2095 * in the runqueue. 2096 * 2097 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2098 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2099 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2100 * 2101 */ 2102 2103 #define DEQUEUE_SLEEP 0x01 2104 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2105 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2106 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2107 2108 #define ENQUEUE_WAKEUP 0x01 2109 #define ENQUEUE_RESTORE 0x02 2110 #define ENQUEUE_MOVE 0x04 2111 #define ENQUEUE_NOCLOCK 0x08 2112 2113 #define ENQUEUE_HEAD 0x10 2114 #define ENQUEUE_REPLENISH 0x20 2115 #ifdef CONFIG_SMP 2116 #define ENQUEUE_MIGRATED 0x40 2117 #else 2118 #define ENQUEUE_MIGRATED 0x00 2119 #endif 2120 2121 #define RETRY_TASK ((void *)-1UL) 2122 2123 struct sched_class { 2124 2125 #ifdef CONFIG_UCLAMP_TASK 2126 int uclamp_enabled; 2127 #endif 2128 2129 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2130 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2131 void (*yield_task) (struct rq *rq); 2132 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2133 2134 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2135 2136 struct task_struct *(*pick_next_task)(struct rq *rq); 2137 2138 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2139 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2140 2141 #ifdef CONFIG_SMP 2142 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2143 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2144 2145 struct task_struct * (*pick_task)(struct rq *rq); 2146 2147 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2148 2149 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2150 2151 void (*set_cpus_allowed)(struct task_struct *p, 2152 const struct cpumask *newmask, 2153 u32 flags); 2154 2155 void (*rq_online)(struct rq *rq); 2156 void (*rq_offline)(struct rq *rq); 2157 2158 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2159 #endif 2160 2161 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2162 void (*task_fork)(struct task_struct *p); 2163 void (*task_dead)(struct task_struct *p); 2164 2165 /* 2166 * The switched_from() call is allowed to drop rq->lock, therefore we 2167 * cannot assume the switched_from/switched_to pair is serialized by 2168 * rq->lock. They are however serialized by p->pi_lock. 2169 */ 2170 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2171 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2172 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2173 int oldprio); 2174 2175 unsigned int (*get_rr_interval)(struct rq *rq, 2176 struct task_struct *task); 2177 2178 void (*update_curr)(struct rq *rq); 2179 2180 #define TASK_SET_GROUP 0 2181 #define TASK_MOVE_GROUP 1 2182 2183 #ifdef CONFIG_FAIR_GROUP_SCHED 2184 void (*task_change_group)(struct task_struct *p, int type); 2185 #endif 2186 }; 2187 2188 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2189 { 2190 WARN_ON_ONCE(rq->curr != prev); 2191 prev->sched_class->put_prev_task(rq, prev); 2192 } 2193 2194 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2195 { 2196 next->sched_class->set_next_task(rq, next, false); 2197 } 2198 2199 2200 /* 2201 * Helper to define a sched_class instance; each one is placed in a separate 2202 * section which is ordered by the linker script: 2203 * 2204 * include/asm-generic/vmlinux.lds.h 2205 * 2206 * Also enforce alignment on the instance, not the type, to guarantee layout. 2207 */ 2208 #define DEFINE_SCHED_CLASS(name) \ 2209 const struct sched_class name##_sched_class \ 2210 __aligned(__alignof__(struct sched_class)) \ 2211 __section("__" #name "_sched_class") 2212 2213 /* Defined in include/asm-generic/vmlinux.lds.h */ 2214 extern struct sched_class __begin_sched_classes[]; 2215 extern struct sched_class __end_sched_classes[]; 2216 2217 #define sched_class_highest (__end_sched_classes - 1) 2218 #define sched_class_lowest (__begin_sched_classes - 1) 2219 2220 #define for_class_range(class, _from, _to) \ 2221 for (class = (_from); class != (_to); class--) 2222 2223 #define for_each_class(class) \ 2224 for_class_range(class, sched_class_highest, sched_class_lowest) 2225 2226 extern const struct sched_class stop_sched_class; 2227 extern const struct sched_class dl_sched_class; 2228 extern const struct sched_class rt_sched_class; 2229 extern const struct sched_class fair_sched_class; 2230 extern const struct sched_class idle_sched_class; 2231 2232 static inline bool sched_stop_runnable(struct rq *rq) 2233 { 2234 return rq->stop && task_on_rq_queued(rq->stop); 2235 } 2236 2237 static inline bool sched_dl_runnable(struct rq *rq) 2238 { 2239 return rq->dl.dl_nr_running > 0; 2240 } 2241 2242 static inline bool sched_rt_runnable(struct rq *rq) 2243 { 2244 return rq->rt.rt_queued > 0; 2245 } 2246 2247 static inline bool sched_fair_runnable(struct rq *rq) 2248 { 2249 return rq->cfs.nr_running > 0; 2250 } 2251 2252 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2253 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2254 2255 #define SCA_CHECK 0x01 2256 #define SCA_MIGRATE_DISABLE 0x02 2257 #define SCA_MIGRATE_ENABLE 0x04 2258 #define SCA_USER 0x08 2259 2260 #ifdef CONFIG_SMP 2261 2262 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2263 2264 extern void trigger_load_balance(struct rq *rq); 2265 2266 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2267 2268 static inline struct task_struct *get_push_task(struct rq *rq) 2269 { 2270 struct task_struct *p = rq->curr; 2271 2272 lockdep_assert_rq_held(rq); 2273 2274 if (rq->push_busy) 2275 return NULL; 2276 2277 if (p->nr_cpus_allowed == 1) 2278 return NULL; 2279 2280 if (p->migration_disabled) 2281 return NULL; 2282 2283 rq->push_busy = true; 2284 return get_task_struct(p); 2285 } 2286 2287 extern int push_cpu_stop(void *arg); 2288 2289 #endif 2290 2291 #ifdef CONFIG_CPU_IDLE 2292 static inline void idle_set_state(struct rq *rq, 2293 struct cpuidle_state *idle_state) 2294 { 2295 rq->idle_state = idle_state; 2296 } 2297 2298 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2299 { 2300 SCHED_WARN_ON(!rcu_read_lock_held()); 2301 2302 return rq->idle_state; 2303 } 2304 #else 2305 static inline void idle_set_state(struct rq *rq, 2306 struct cpuidle_state *idle_state) 2307 { 2308 } 2309 2310 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2311 { 2312 return NULL; 2313 } 2314 #endif 2315 2316 extern void schedule_idle(void); 2317 2318 extern void sysrq_sched_debug_show(void); 2319 extern void sched_init_granularity(void); 2320 extern void update_max_interval(void); 2321 2322 extern void init_sched_dl_class(void); 2323 extern void init_sched_rt_class(void); 2324 extern void init_sched_fair_class(void); 2325 2326 extern void reweight_task(struct task_struct *p, int prio); 2327 2328 extern void resched_curr(struct rq *rq); 2329 extern void resched_cpu(int cpu); 2330 2331 extern struct rt_bandwidth def_rt_bandwidth; 2332 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2333 2334 extern struct dl_bandwidth def_dl_bandwidth; 2335 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2336 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2337 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2338 2339 #define BW_SHIFT 20 2340 #define BW_UNIT (1 << BW_SHIFT) 2341 #define RATIO_SHIFT 8 2342 #define MAX_BW_BITS (64 - BW_SHIFT) 2343 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2344 unsigned long to_ratio(u64 period, u64 runtime); 2345 2346 extern void init_entity_runnable_average(struct sched_entity *se); 2347 extern void post_init_entity_util_avg(struct task_struct *p); 2348 2349 #ifdef CONFIG_NO_HZ_FULL 2350 extern bool sched_can_stop_tick(struct rq *rq); 2351 extern int __init sched_tick_offload_init(void); 2352 2353 /* 2354 * Tick may be needed by tasks in the runqueue depending on their policy and 2355 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2356 * nohz mode if necessary. 2357 */ 2358 static inline void sched_update_tick_dependency(struct rq *rq) 2359 { 2360 int cpu = cpu_of(rq); 2361 2362 if (!tick_nohz_full_cpu(cpu)) 2363 return; 2364 2365 if (sched_can_stop_tick(rq)) 2366 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2367 else 2368 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2369 } 2370 #else 2371 static inline int sched_tick_offload_init(void) { return 0; } 2372 static inline void sched_update_tick_dependency(struct rq *rq) { } 2373 #endif 2374 2375 static inline void add_nr_running(struct rq *rq, unsigned count) 2376 { 2377 unsigned prev_nr = rq->nr_running; 2378 2379 rq->nr_running = prev_nr + count; 2380 if (trace_sched_update_nr_running_tp_enabled()) { 2381 call_trace_sched_update_nr_running(rq, count); 2382 } 2383 2384 #ifdef CONFIG_SMP 2385 if (prev_nr < 2 && rq->nr_running >= 2) { 2386 if (!READ_ONCE(rq->rd->overload)) 2387 WRITE_ONCE(rq->rd->overload, 1); 2388 } 2389 #endif 2390 2391 sched_update_tick_dependency(rq); 2392 } 2393 2394 static inline void sub_nr_running(struct rq *rq, unsigned count) 2395 { 2396 rq->nr_running -= count; 2397 if (trace_sched_update_nr_running_tp_enabled()) { 2398 call_trace_sched_update_nr_running(rq, -count); 2399 } 2400 2401 /* Check if we still need preemption */ 2402 sched_update_tick_dependency(rq); 2403 } 2404 2405 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2406 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2407 2408 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2409 2410 extern const_debug unsigned int sysctl_sched_nr_migrate; 2411 extern const_debug unsigned int sysctl_sched_migration_cost; 2412 2413 #ifdef CONFIG_SCHED_DEBUG 2414 extern unsigned int sysctl_sched_latency; 2415 extern unsigned int sysctl_sched_min_granularity; 2416 extern unsigned int sysctl_sched_idle_min_granularity; 2417 extern unsigned int sysctl_sched_wakeup_granularity; 2418 extern int sysctl_resched_latency_warn_ms; 2419 extern int sysctl_resched_latency_warn_once; 2420 2421 extern unsigned int sysctl_sched_tunable_scaling; 2422 2423 extern unsigned int sysctl_numa_balancing_scan_delay; 2424 extern unsigned int sysctl_numa_balancing_scan_period_min; 2425 extern unsigned int sysctl_numa_balancing_scan_period_max; 2426 extern unsigned int sysctl_numa_balancing_scan_size; 2427 #endif 2428 2429 #ifdef CONFIG_SCHED_HRTICK 2430 2431 /* 2432 * Use hrtick when: 2433 * - enabled by features 2434 * - hrtimer is actually high res 2435 */ 2436 static inline int hrtick_enabled(struct rq *rq) 2437 { 2438 if (!cpu_active(cpu_of(rq))) 2439 return 0; 2440 return hrtimer_is_hres_active(&rq->hrtick_timer); 2441 } 2442 2443 static inline int hrtick_enabled_fair(struct rq *rq) 2444 { 2445 if (!sched_feat(HRTICK)) 2446 return 0; 2447 return hrtick_enabled(rq); 2448 } 2449 2450 static inline int hrtick_enabled_dl(struct rq *rq) 2451 { 2452 if (!sched_feat(HRTICK_DL)) 2453 return 0; 2454 return hrtick_enabled(rq); 2455 } 2456 2457 void hrtick_start(struct rq *rq, u64 delay); 2458 2459 #else 2460 2461 static inline int hrtick_enabled_fair(struct rq *rq) 2462 { 2463 return 0; 2464 } 2465 2466 static inline int hrtick_enabled_dl(struct rq *rq) 2467 { 2468 return 0; 2469 } 2470 2471 static inline int hrtick_enabled(struct rq *rq) 2472 { 2473 return 0; 2474 } 2475 2476 #endif /* CONFIG_SCHED_HRTICK */ 2477 2478 #ifndef arch_scale_freq_tick 2479 static __always_inline 2480 void arch_scale_freq_tick(void) 2481 { 2482 } 2483 #endif 2484 2485 #ifndef arch_scale_freq_capacity 2486 /** 2487 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2488 * @cpu: the CPU in question. 2489 * 2490 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2491 * 2492 * f_curr 2493 * ------ * SCHED_CAPACITY_SCALE 2494 * f_max 2495 */ 2496 static __always_inline 2497 unsigned long arch_scale_freq_capacity(int cpu) 2498 { 2499 return SCHED_CAPACITY_SCALE; 2500 } 2501 #endif 2502 2503 2504 #ifdef CONFIG_SMP 2505 2506 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2507 { 2508 #ifdef CONFIG_SCHED_CORE 2509 /* 2510 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2511 * order by core-id first and cpu-id second. 2512 * 2513 * Notably: 2514 * 2515 * double_rq_lock(0,3); will take core-0, core-1 lock 2516 * double_rq_lock(1,2); will take core-1, core-0 lock 2517 * 2518 * when only cpu-id is considered. 2519 */ 2520 if (rq1->core->cpu < rq2->core->cpu) 2521 return true; 2522 if (rq1->core->cpu > rq2->core->cpu) 2523 return false; 2524 2525 /* 2526 * __sched_core_flip() relies on SMT having cpu-id lock order. 2527 */ 2528 #endif 2529 return rq1->cpu < rq2->cpu; 2530 } 2531 2532 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2533 2534 #ifdef CONFIG_PREEMPTION 2535 2536 /* 2537 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2538 * way at the expense of forcing extra atomic operations in all 2539 * invocations. This assures that the double_lock is acquired using the 2540 * same underlying policy as the spinlock_t on this architecture, which 2541 * reduces latency compared to the unfair variant below. However, it 2542 * also adds more overhead and therefore may reduce throughput. 2543 */ 2544 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2545 __releases(this_rq->lock) 2546 __acquires(busiest->lock) 2547 __acquires(this_rq->lock) 2548 { 2549 raw_spin_rq_unlock(this_rq); 2550 double_rq_lock(this_rq, busiest); 2551 2552 return 1; 2553 } 2554 2555 #else 2556 /* 2557 * Unfair double_lock_balance: Optimizes throughput at the expense of 2558 * latency by eliminating extra atomic operations when the locks are 2559 * already in proper order on entry. This favors lower CPU-ids and will 2560 * grant the double lock to lower CPUs over higher ids under contention, 2561 * regardless of entry order into the function. 2562 */ 2563 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2564 __releases(this_rq->lock) 2565 __acquires(busiest->lock) 2566 __acquires(this_rq->lock) 2567 { 2568 if (__rq_lockp(this_rq) == __rq_lockp(busiest)) 2569 return 0; 2570 2571 if (likely(raw_spin_rq_trylock(busiest))) 2572 return 0; 2573 2574 if (rq_order_less(this_rq, busiest)) { 2575 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2576 return 0; 2577 } 2578 2579 raw_spin_rq_unlock(this_rq); 2580 double_rq_lock(this_rq, busiest); 2581 2582 return 1; 2583 } 2584 2585 #endif /* CONFIG_PREEMPTION */ 2586 2587 /* 2588 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2589 */ 2590 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2591 { 2592 lockdep_assert_irqs_disabled(); 2593 2594 return _double_lock_balance(this_rq, busiest); 2595 } 2596 2597 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2598 __releases(busiest->lock) 2599 { 2600 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2601 raw_spin_rq_unlock(busiest); 2602 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2603 } 2604 2605 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2606 { 2607 if (l1 > l2) 2608 swap(l1, l2); 2609 2610 spin_lock(l1); 2611 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2612 } 2613 2614 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2615 { 2616 if (l1 > l2) 2617 swap(l1, l2); 2618 2619 spin_lock_irq(l1); 2620 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2621 } 2622 2623 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2624 { 2625 if (l1 > l2) 2626 swap(l1, l2); 2627 2628 raw_spin_lock(l1); 2629 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2630 } 2631 2632 /* 2633 * double_rq_unlock - safely unlock two runqueues 2634 * 2635 * Note this does not restore interrupts like task_rq_unlock, 2636 * you need to do so manually after calling. 2637 */ 2638 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2639 __releases(rq1->lock) 2640 __releases(rq2->lock) 2641 { 2642 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2643 raw_spin_rq_unlock(rq2); 2644 else 2645 __release(rq2->lock); 2646 raw_spin_rq_unlock(rq1); 2647 } 2648 2649 extern void set_rq_online (struct rq *rq); 2650 extern void set_rq_offline(struct rq *rq); 2651 extern bool sched_smp_initialized; 2652 2653 #else /* CONFIG_SMP */ 2654 2655 /* 2656 * double_rq_lock - safely lock two runqueues 2657 * 2658 * Note this does not disable interrupts like task_rq_lock, 2659 * you need to do so manually before calling. 2660 */ 2661 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2662 __acquires(rq1->lock) 2663 __acquires(rq2->lock) 2664 { 2665 BUG_ON(!irqs_disabled()); 2666 BUG_ON(rq1 != rq2); 2667 raw_spin_rq_lock(rq1); 2668 __acquire(rq2->lock); /* Fake it out ;) */ 2669 } 2670 2671 /* 2672 * double_rq_unlock - safely unlock two runqueues 2673 * 2674 * Note this does not restore interrupts like task_rq_unlock, 2675 * you need to do so manually after calling. 2676 */ 2677 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2678 __releases(rq1->lock) 2679 __releases(rq2->lock) 2680 { 2681 BUG_ON(rq1 != rq2); 2682 raw_spin_rq_unlock(rq1); 2683 __release(rq2->lock); 2684 } 2685 2686 #endif 2687 2688 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2689 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2690 2691 #ifdef CONFIG_SCHED_DEBUG 2692 extern bool sched_debug_verbose; 2693 2694 extern void print_cfs_stats(struct seq_file *m, int cpu); 2695 extern void print_rt_stats(struct seq_file *m, int cpu); 2696 extern void print_dl_stats(struct seq_file *m, int cpu); 2697 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2698 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2699 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2700 2701 extern void resched_latency_warn(int cpu, u64 latency); 2702 #ifdef CONFIG_NUMA_BALANCING 2703 extern void 2704 show_numa_stats(struct task_struct *p, struct seq_file *m); 2705 extern void 2706 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2707 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2708 #endif /* CONFIG_NUMA_BALANCING */ 2709 #else 2710 static inline void resched_latency_warn(int cpu, u64 latency) {} 2711 #endif /* CONFIG_SCHED_DEBUG */ 2712 2713 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2714 extern void init_rt_rq(struct rt_rq *rt_rq); 2715 extern void init_dl_rq(struct dl_rq *dl_rq); 2716 2717 extern void cfs_bandwidth_usage_inc(void); 2718 extern void cfs_bandwidth_usage_dec(void); 2719 2720 #ifdef CONFIG_NO_HZ_COMMON 2721 #define NOHZ_BALANCE_KICK_BIT 0 2722 #define NOHZ_STATS_KICK_BIT 1 2723 #define NOHZ_NEWILB_KICK_BIT 2 2724 #define NOHZ_NEXT_KICK_BIT 3 2725 2726 /* Run rebalance_domains() */ 2727 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2728 /* Update blocked load */ 2729 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2730 /* Update blocked load when entering idle */ 2731 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2732 /* Update nohz.next_balance */ 2733 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2734 2735 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2736 2737 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2738 2739 extern void nohz_balance_exit_idle(struct rq *rq); 2740 #else 2741 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2742 #endif 2743 2744 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2745 extern void nohz_run_idle_balance(int cpu); 2746 #else 2747 static inline void nohz_run_idle_balance(int cpu) { } 2748 #endif 2749 2750 #ifdef CONFIG_SMP 2751 static inline 2752 void __dl_update(struct dl_bw *dl_b, s64 bw) 2753 { 2754 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2755 int i; 2756 2757 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2758 "sched RCU must be held"); 2759 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2760 struct rq *rq = cpu_rq(i); 2761 2762 rq->dl.extra_bw += bw; 2763 } 2764 } 2765 #else 2766 static inline 2767 void __dl_update(struct dl_bw *dl_b, s64 bw) 2768 { 2769 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2770 2771 dl->extra_bw += bw; 2772 } 2773 #endif 2774 2775 2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2777 struct irqtime { 2778 u64 total; 2779 u64 tick_delta; 2780 u64 irq_start_time; 2781 struct u64_stats_sync sync; 2782 }; 2783 2784 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2785 2786 /* 2787 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2788 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2789 * and never move forward. 2790 */ 2791 static inline u64 irq_time_read(int cpu) 2792 { 2793 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2794 unsigned int seq; 2795 u64 total; 2796 2797 do { 2798 seq = __u64_stats_fetch_begin(&irqtime->sync); 2799 total = irqtime->total; 2800 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2801 2802 return total; 2803 } 2804 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2805 2806 #ifdef CONFIG_CPU_FREQ 2807 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2808 2809 /** 2810 * cpufreq_update_util - Take a note about CPU utilization changes. 2811 * @rq: Runqueue to carry out the update for. 2812 * @flags: Update reason flags. 2813 * 2814 * This function is called by the scheduler on the CPU whose utilization is 2815 * being updated. 2816 * 2817 * It can only be called from RCU-sched read-side critical sections. 2818 * 2819 * The way cpufreq is currently arranged requires it to evaluate the CPU 2820 * performance state (frequency/voltage) on a regular basis to prevent it from 2821 * being stuck in a completely inadequate performance level for too long. 2822 * That is not guaranteed to happen if the updates are only triggered from CFS 2823 * and DL, though, because they may not be coming in if only RT tasks are 2824 * active all the time (or there are RT tasks only). 2825 * 2826 * As a workaround for that issue, this function is called periodically by the 2827 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2828 * but that really is a band-aid. Going forward it should be replaced with 2829 * solutions targeted more specifically at RT tasks. 2830 */ 2831 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2832 { 2833 struct update_util_data *data; 2834 2835 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2836 cpu_of(rq))); 2837 if (data) 2838 data->func(data, rq_clock(rq), flags); 2839 } 2840 #else 2841 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2842 #endif /* CONFIG_CPU_FREQ */ 2843 2844 #ifdef CONFIG_UCLAMP_TASK 2845 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2846 2847 /** 2848 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2849 * @rq: The rq to clamp against. Must not be NULL. 2850 * @util: The util value to clamp. 2851 * @p: The task to clamp against. Can be NULL if you want to clamp 2852 * against @rq only. 2853 * 2854 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2855 * 2856 * If sched_uclamp_used static key is disabled, then just return the util 2857 * without any clamping since uclamp aggregation at the rq level in the fast 2858 * path is disabled, rendering this operation a NOP. 2859 * 2860 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2861 * will return the correct effective uclamp value of the task even if the 2862 * static key is disabled. 2863 */ 2864 static __always_inline 2865 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2866 struct task_struct *p) 2867 { 2868 unsigned long min_util = 0; 2869 unsigned long max_util = 0; 2870 2871 if (!static_branch_likely(&sched_uclamp_used)) 2872 return util; 2873 2874 if (p) { 2875 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2876 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2877 2878 /* 2879 * Ignore last runnable task's max clamp, as this task will 2880 * reset it. Similarly, no need to read the rq's min clamp. 2881 */ 2882 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 2883 goto out; 2884 } 2885 2886 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 2887 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 2888 out: 2889 /* 2890 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2891 * RUNNABLE tasks with _different_ clamps, we can end up with an 2892 * inversion. Fix it now when the clamps are applied. 2893 */ 2894 if (unlikely(min_util >= max_util)) 2895 return min_util; 2896 2897 return clamp(util, min_util, max_util); 2898 } 2899 2900 /* 2901 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2902 * by default in the fast path and only gets turned on once userspace performs 2903 * an operation that requires it. 2904 * 2905 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2906 * hence is active. 2907 */ 2908 static inline bool uclamp_is_used(void) 2909 { 2910 return static_branch_likely(&sched_uclamp_used); 2911 } 2912 #else /* CONFIG_UCLAMP_TASK */ 2913 static inline 2914 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2915 struct task_struct *p) 2916 { 2917 return util; 2918 } 2919 2920 static inline bool uclamp_is_used(void) 2921 { 2922 return false; 2923 } 2924 #endif /* CONFIG_UCLAMP_TASK */ 2925 2926 #ifdef arch_scale_freq_capacity 2927 # ifndef arch_scale_freq_invariant 2928 # define arch_scale_freq_invariant() true 2929 # endif 2930 #else 2931 # define arch_scale_freq_invariant() false 2932 #endif 2933 2934 #ifdef CONFIG_SMP 2935 static inline unsigned long capacity_orig_of(int cpu) 2936 { 2937 return cpu_rq(cpu)->cpu_capacity_orig; 2938 } 2939 2940 /** 2941 * enum cpu_util_type - CPU utilization type 2942 * @FREQUENCY_UTIL: Utilization used to select frequency 2943 * @ENERGY_UTIL: Utilization used during energy calculation 2944 * 2945 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2946 * need to be aggregated differently depending on the usage made of them. This 2947 * enum is used within effective_cpu_util() to differentiate the types of 2948 * utilization expected by the callers, and adjust the aggregation accordingly. 2949 */ 2950 enum cpu_util_type { 2951 FREQUENCY_UTIL, 2952 ENERGY_UTIL, 2953 }; 2954 2955 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2956 unsigned long max, enum cpu_util_type type, 2957 struct task_struct *p); 2958 2959 static inline unsigned long cpu_bw_dl(struct rq *rq) 2960 { 2961 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2962 } 2963 2964 static inline unsigned long cpu_util_dl(struct rq *rq) 2965 { 2966 return READ_ONCE(rq->avg_dl.util_avg); 2967 } 2968 2969 /** 2970 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2971 * @cpu: the CPU to get the utilization for. 2972 * 2973 * The unit of the return value must be the same as the one of CPU capacity 2974 * so that CPU utilization can be compared with CPU capacity. 2975 * 2976 * CPU utilization is the sum of running time of runnable tasks plus the 2977 * recent utilization of currently non-runnable tasks on that CPU. 2978 * It represents the amount of CPU capacity currently used by CFS tasks in 2979 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2980 * capacity at f_max. 2981 * 2982 * The estimated CPU utilization is defined as the maximum between CPU 2983 * utilization and sum of the estimated utilization of the currently 2984 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2985 * previously-executed tasks, which helps better deduce how busy a CPU will 2986 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2987 * of such a task would be significantly decayed at this point of time. 2988 * 2989 * CPU utilization can be higher than the current CPU capacity 2990 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2991 * of rounding errors as well as task migrations or wakeups of new tasks. 2992 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2993 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2995 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2996 * though since this is useful for predicting the CPU capacity required 2997 * after task migrations (scheduler-driven DVFS). 2998 * 2999 * Return: (Estimated) utilization for the specified CPU. 3000 */ 3001 static inline unsigned long cpu_util_cfs(int cpu) 3002 { 3003 struct cfs_rq *cfs_rq; 3004 unsigned long util; 3005 3006 cfs_rq = &cpu_rq(cpu)->cfs; 3007 util = READ_ONCE(cfs_rq->avg.util_avg); 3008 3009 if (sched_feat(UTIL_EST)) { 3010 util = max_t(unsigned long, util, 3011 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 3012 } 3013 3014 return min(util, capacity_orig_of(cpu)); 3015 } 3016 3017 static inline unsigned long cpu_util_rt(struct rq *rq) 3018 { 3019 return READ_ONCE(rq->avg_rt.util_avg); 3020 } 3021 #endif 3022 3023 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3024 static inline unsigned long cpu_util_irq(struct rq *rq) 3025 { 3026 return rq->avg_irq.util_avg; 3027 } 3028 3029 static inline 3030 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3031 { 3032 util *= (max - irq); 3033 util /= max; 3034 3035 return util; 3036 3037 } 3038 #else 3039 static inline unsigned long cpu_util_irq(struct rq *rq) 3040 { 3041 return 0; 3042 } 3043 3044 static inline 3045 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3046 { 3047 return util; 3048 } 3049 #endif 3050 3051 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3052 3053 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3054 3055 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3056 3057 static inline bool sched_energy_enabled(void) 3058 { 3059 return static_branch_unlikely(&sched_energy_present); 3060 } 3061 3062 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3063 3064 #define perf_domain_span(pd) NULL 3065 static inline bool sched_energy_enabled(void) { return false; } 3066 3067 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3068 3069 #ifdef CONFIG_MEMBARRIER 3070 /* 3071 * The scheduler provides memory barriers required by membarrier between: 3072 * - prior user-space memory accesses and store to rq->membarrier_state, 3073 * - store to rq->membarrier_state and following user-space memory accesses. 3074 * In the same way it provides those guarantees around store to rq->curr. 3075 */ 3076 static inline void membarrier_switch_mm(struct rq *rq, 3077 struct mm_struct *prev_mm, 3078 struct mm_struct *next_mm) 3079 { 3080 int membarrier_state; 3081 3082 if (prev_mm == next_mm) 3083 return; 3084 3085 membarrier_state = atomic_read(&next_mm->membarrier_state); 3086 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3087 return; 3088 3089 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3090 } 3091 #else 3092 static inline void membarrier_switch_mm(struct rq *rq, 3093 struct mm_struct *prev_mm, 3094 struct mm_struct *next_mm) 3095 { 3096 } 3097 #endif 3098 3099 #ifdef CONFIG_SMP 3100 static inline bool is_per_cpu_kthread(struct task_struct *p) 3101 { 3102 if (!(p->flags & PF_KTHREAD)) 3103 return false; 3104 3105 if (p->nr_cpus_allowed != 1) 3106 return false; 3107 3108 return true; 3109 } 3110 #endif 3111 3112 extern void swake_up_all_locked(struct swait_queue_head *q); 3113 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3114 3115 #ifdef CONFIG_PREEMPT_DYNAMIC 3116 extern int preempt_dynamic_mode; 3117 extern int sched_dynamic_mode(const char *str); 3118 extern void sched_dynamic_update(int mode); 3119 #endif 3120 3121