1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpufreq.h> 43 #include <linux/cpuidle.h> 44 #include <linux/cpuset.h> 45 #include <linux/ctype.h> 46 #include <linux/debugfs.h> 47 #include <linux/delayacct.h> 48 #include <linux/energy_model.h> 49 #include <linux/init_task.h> 50 #include <linux/kprobes.h> 51 #include <linux/kthread.h> 52 #include <linux/membarrier.h> 53 #include <linux/migrate.h> 54 #include <linux/mmu_context.h> 55 #include <linux/nmi.h> 56 #include <linux/proc_fs.h> 57 #include <linux/prefetch.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcupdate_wait.h> 61 #include <linux/security.h> 62 #include <linux/stop_machine.h> 63 #include <linux/suspend.h> 64 #include <linux/swait.h> 65 #include <linux/syscalls.h> 66 #include <linux/task_work.h> 67 #include <linux/tsacct_kern.h> 68 69 #include <asm/tlb.h> 70 71 #ifdef CONFIG_PARAVIRT 72 # include <asm/paravirt.h> 73 #endif 74 75 #include "cpupri.h" 76 #include "cpudeadline.h" 77 78 #ifdef CONFIG_SCHED_DEBUG 79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 80 #else 81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 82 #endif 83 84 struct rq; 85 struct cpuidle_state; 86 87 /* task_struct::on_rq states: */ 88 #define TASK_ON_RQ_QUEUED 1 89 #define TASK_ON_RQ_MIGRATING 2 90 91 extern __read_mostly int scheduler_running; 92 93 extern unsigned long calc_load_update; 94 extern atomic_long_t calc_load_tasks; 95 96 extern void calc_global_load_tick(struct rq *this_rq); 97 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 98 99 /* 100 * Helpers for converting nanosecond timing to jiffy resolution 101 */ 102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 103 104 /* 105 * Increase resolution of nice-level calculations for 64-bit architectures. 106 * The extra resolution improves shares distribution and load balancing of 107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 108 * hierarchies, especially on larger systems. This is not a user-visible change 109 * and does not change the user-interface for setting shares/weights. 110 * 111 * We increase resolution only if we have enough bits to allow this increased 112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 113 * are pretty high and the returns do not justify the increased costs. 114 * 115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 116 * increase coverage and consistency always enable it on 64-bit platforms. 117 */ 118 #ifdef CONFIG_64BIT 119 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 120 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 121 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) 122 #else 123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 124 # define scale_load(w) (w) 125 # define scale_load_down(w) (w) 126 #endif 127 128 /* 129 * Task weight (visible to users) and its load (invisible to users) have 130 * independent resolution, but they should be well calibrated. We use 131 * scale_load() and scale_load_down(w) to convert between them. The 132 * following must be true: 133 * 134 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD 135 * 136 */ 137 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 138 139 /* 140 * Single value that decides SCHED_DEADLINE internal math precision. 141 * 10 -> just above 1us 142 * 9 -> just above 0.5us 143 */ 144 #define DL_SCALE 10 145 146 /* 147 * Single value that denotes runtime == period, ie unlimited time. 148 */ 149 #define RUNTIME_INF ((u64)~0ULL) 150 151 static inline int idle_policy(int policy) 152 { 153 return policy == SCHED_IDLE; 154 } 155 static inline int fair_policy(int policy) 156 { 157 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 158 } 159 160 static inline int rt_policy(int policy) 161 { 162 return policy == SCHED_FIFO || policy == SCHED_RR; 163 } 164 165 static inline int dl_policy(int policy) 166 { 167 return policy == SCHED_DEADLINE; 168 } 169 static inline bool valid_policy(int policy) 170 { 171 return idle_policy(policy) || fair_policy(policy) || 172 rt_policy(policy) || dl_policy(policy); 173 } 174 175 static inline int task_has_idle_policy(struct task_struct *p) 176 { 177 return idle_policy(p->policy); 178 } 179 180 static inline int task_has_rt_policy(struct task_struct *p) 181 { 182 return rt_policy(p->policy); 183 } 184 185 static inline int task_has_dl_policy(struct task_struct *p) 186 { 187 return dl_policy(p->policy); 188 } 189 190 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 191 192 /* 193 * !! For sched_setattr_nocheck() (kernel) only !! 194 * 195 * This is actually gross. :( 196 * 197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 198 * tasks, but still be able to sleep. We need this on platforms that cannot 199 * atomically change clock frequency. Remove once fast switching will be 200 * available on such platforms. 201 * 202 * SUGOV stands for SchedUtil GOVernor. 203 */ 204 #define SCHED_FLAG_SUGOV 0x10000000 205 206 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 207 { 208 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 210 #else 211 return false; 212 #endif 213 } 214 215 /* 216 * Tells if entity @a should preempt entity @b. 217 */ 218 static inline bool 219 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 220 { 221 return dl_entity_is_special(a) || 222 dl_time_before(a->deadline, b->deadline); 223 } 224 225 /* 226 * This is the priority-queue data structure of the RT scheduling class: 227 */ 228 struct rt_prio_array { 229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 230 struct list_head queue[MAX_RT_PRIO]; 231 }; 232 233 struct rt_bandwidth { 234 /* nests inside the rq lock: */ 235 raw_spinlock_t rt_runtime_lock; 236 ktime_t rt_period; 237 u64 rt_runtime; 238 struct hrtimer rt_period_timer; 239 unsigned int rt_period_active; 240 }; 241 242 void __dl_clear_params(struct task_struct *p); 243 244 /* 245 * To keep the bandwidth of -deadline tasks and groups under control 246 * we need some place where: 247 * - store the maximum -deadline bandwidth of the system (the group); 248 * - cache the fraction of that bandwidth that is currently allocated. 249 * 250 * This is all done in the data structure below. It is similar to the 251 * one used for RT-throttling (rt_bandwidth), with the main difference 252 * that, since here we are only interested in admission control, we 253 * do not decrease any runtime while the group "executes", neither we 254 * need a timer to replenish it. 255 * 256 * With respect to SMP, the bandwidth is given on a per-CPU basis, 257 * meaning that: 258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 259 * - dl_total_bw array contains, in the i-eth element, the currently 260 * allocated bandwidth on the i-eth CPU. 261 * Moreover, groups consume bandwidth on each CPU, while tasks only 262 * consume bandwidth on the CPU they're running on. 263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 264 * that will be shown the next time the proc or cgroup controls will 265 * be red. It on its turn can be changed by writing on its own 266 * control. 267 */ 268 struct dl_bandwidth { 269 raw_spinlock_t dl_runtime_lock; 270 u64 dl_runtime; 271 u64 dl_period; 272 }; 273 274 static inline int dl_bandwidth_enabled(void) 275 { 276 return sysctl_sched_rt_runtime >= 0; 277 } 278 279 struct dl_bw { 280 raw_spinlock_t lock; 281 u64 bw; 282 u64 total_bw; 283 }; 284 285 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 286 287 static inline 288 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 289 { 290 dl_b->total_bw -= tsk_bw; 291 __dl_update(dl_b, (s32)tsk_bw / cpus); 292 } 293 294 static inline 295 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 296 { 297 dl_b->total_bw += tsk_bw; 298 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 299 } 300 301 static inline 302 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 303 { 304 return dl_b->bw != -1 && 305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 306 } 307 308 extern void dl_change_utilization(struct task_struct *p, u64 new_bw); 309 extern void init_dl_bw(struct dl_bw *dl_b); 310 extern int sched_dl_global_validate(void); 311 extern void sched_dl_do_global(void); 312 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 313 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 314 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 315 extern bool __checkparam_dl(const struct sched_attr *attr); 316 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 317 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 318 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 319 extern bool dl_cpu_busy(unsigned int cpu); 320 321 #ifdef CONFIG_CGROUP_SCHED 322 323 #include <linux/cgroup.h> 324 #include <linux/psi.h> 325 326 struct cfs_rq; 327 struct rt_rq; 328 329 extern struct list_head task_groups; 330 331 struct cfs_bandwidth { 332 #ifdef CONFIG_CFS_BANDWIDTH 333 raw_spinlock_t lock; 334 ktime_t period; 335 u64 quota; 336 u64 runtime; 337 s64 hierarchical_quota; 338 u64 runtime_expires; 339 int expires_seq; 340 341 u8 idle; 342 u8 period_active; 343 u8 distribute_running; 344 u8 slack_started; 345 struct hrtimer period_timer; 346 struct hrtimer slack_timer; 347 struct list_head throttled_cfs_rq; 348 349 /* Statistics: */ 350 int nr_periods; 351 int nr_throttled; 352 u64 throttled_time; 353 #endif 354 }; 355 356 /* Task group related information */ 357 struct task_group { 358 struct cgroup_subsys_state css; 359 360 #ifdef CONFIG_FAIR_GROUP_SCHED 361 /* schedulable entities of this group on each CPU */ 362 struct sched_entity **se; 363 /* runqueue "owned" by this group on each CPU */ 364 struct cfs_rq **cfs_rq; 365 unsigned long shares; 366 367 #ifdef CONFIG_SMP 368 /* 369 * load_avg can be heavily contended at clock tick time, so put 370 * it in its own cacheline separated from the fields above which 371 * will also be accessed at each tick. 372 */ 373 atomic_long_t load_avg ____cacheline_aligned; 374 #endif 375 #endif 376 377 #ifdef CONFIG_RT_GROUP_SCHED 378 struct sched_rt_entity **rt_se; 379 struct rt_rq **rt_rq; 380 381 struct rt_bandwidth rt_bandwidth; 382 #endif 383 384 struct rcu_head rcu; 385 struct list_head list; 386 387 struct task_group *parent; 388 struct list_head siblings; 389 struct list_head children; 390 391 #ifdef CONFIG_SCHED_AUTOGROUP 392 struct autogroup *autogroup; 393 #endif 394 395 struct cfs_bandwidth cfs_bandwidth; 396 }; 397 398 #ifdef CONFIG_FAIR_GROUP_SCHED 399 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 400 401 /* 402 * A weight of 0 or 1 can cause arithmetics problems. 403 * A weight of a cfs_rq is the sum of weights of which entities 404 * are queued on this cfs_rq, so a weight of a entity should not be 405 * too large, so as the shares value of a task group. 406 * (The default weight is 1024 - so there's no practical 407 * limitation from this.) 408 */ 409 #define MIN_SHARES (1UL << 1) 410 #define MAX_SHARES (1UL << 18) 411 #endif 412 413 typedef int (*tg_visitor)(struct task_group *, void *); 414 415 extern int walk_tg_tree_from(struct task_group *from, 416 tg_visitor down, tg_visitor up, void *data); 417 418 /* 419 * Iterate the full tree, calling @down when first entering a node and @up when 420 * leaving it for the final time. 421 * 422 * Caller must hold rcu_lock or sufficient equivalent. 423 */ 424 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 425 { 426 return walk_tg_tree_from(&root_task_group, down, up, data); 427 } 428 429 extern int tg_nop(struct task_group *tg, void *data); 430 431 extern void free_fair_sched_group(struct task_group *tg); 432 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 433 extern void online_fair_sched_group(struct task_group *tg); 434 extern void unregister_fair_sched_group(struct task_group *tg); 435 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 436 struct sched_entity *se, int cpu, 437 struct sched_entity *parent); 438 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 439 440 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 441 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 442 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 443 444 extern void free_rt_sched_group(struct task_group *tg); 445 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 446 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 447 struct sched_rt_entity *rt_se, int cpu, 448 struct sched_rt_entity *parent); 449 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 450 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 451 extern long sched_group_rt_runtime(struct task_group *tg); 452 extern long sched_group_rt_period(struct task_group *tg); 453 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 454 455 extern struct task_group *sched_create_group(struct task_group *parent); 456 extern void sched_online_group(struct task_group *tg, 457 struct task_group *parent); 458 extern void sched_destroy_group(struct task_group *tg); 459 extern void sched_offline_group(struct task_group *tg); 460 461 extern void sched_move_task(struct task_struct *tsk); 462 463 #ifdef CONFIG_FAIR_GROUP_SCHED 464 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 465 466 #ifdef CONFIG_SMP 467 extern void set_task_rq_fair(struct sched_entity *se, 468 struct cfs_rq *prev, struct cfs_rq *next); 469 #else /* !CONFIG_SMP */ 470 static inline void set_task_rq_fair(struct sched_entity *se, 471 struct cfs_rq *prev, struct cfs_rq *next) { } 472 #endif /* CONFIG_SMP */ 473 #endif /* CONFIG_FAIR_GROUP_SCHED */ 474 475 #else /* CONFIG_CGROUP_SCHED */ 476 477 struct cfs_bandwidth { }; 478 479 #endif /* CONFIG_CGROUP_SCHED */ 480 481 /* CFS-related fields in a runqueue */ 482 struct cfs_rq { 483 struct load_weight load; 484 unsigned long runnable_weight; 485 unsigned int nr_running; 486 unsigned int h_nr_running; 487 488 u64 exec_clock; 489 u64 min_vruntime; 490 #ifndef CONFIG_64BIT 491 u64 min_vruntime_copy; 492 #endif 493 494 struct rb_root_cached tasks_timeline; 495 496 /* 497 * 'curr' points to currently running entity on this cfs_rq. 498 * It is set to NULL otherwise (i.e when none are currently running). 499 */ 500 struct sched_entity *curr; 501 struct sched_entity *next; 502 struct sched_entity *last; 503 struct sched_entity *skip; 504 505 #ifdef CONFIG_SCHED_DEBUG 506 unsigned int nr_spread_over; 507 #endif 508 509 #ifdef CONFIG_SMP 510 /* 511 * CFS load tracking 512 */ 513 struct sched_avg avg; 514 #ifndef CONFIG_64BIT 515 u64 load_last_update_time_copy; 516 #endif 517 struct { 518 raw_spinlock_t lock ____cacheline_aligned; 519 int nr; 520 unsigned long load_avg; 521 unsigned long util_avg; 522 unsigned long runnable_sum; 523 } removed; 524 525 #ifdef CONFIG_FAIR_GROUP_SCHED 526 unsigned long tg_load_avg_contrib; 527 long propagate; 528 long prop_runnable_sum; 529 530 /* 531 * h_load = weight * f(tg) 532 * 533 * Where f(tg) is the recursive weight fraction assigned to 534 * this group. 535 */ 536 unsigned long h_load; 537 u64 last_h_load_update; 538 struct sched_entity *h_load_next; 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 #endif /* CONFIG_SMP */ 541 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 544 545 /* 546 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 547 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 548 * (like users, containers etc.) 549 * 550 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 551 * This list is used during load balance. 552 */ 553 int on_list; 554 struct list_head leaf_cfs_rq_list; 555 struct task_group *tg; /* group that "owns" this runqueue */ 556 557 #ifdef CONFIG_CFS_BANDWIDTH 558 int runtime_enabled; 559 int expires_seq; 560 u64 runtime_expires; 561 s64 runtime_remaining; 562 563 u64 throttled_clock; 564 u64 throttled_clock_task; 565 u64 throttled_clock_task_time; 566 int throttled; 567 int throttle_count; 568 struct list_head throttled_list; 569 #endif /* CONFIG_CFS_BANDWIDTH */ 570 #endif /* CONFIG_FAIR_GROUP_SCHED */ 571 }; 572 573 static inline int rt_bandwidth_enabled(void) 574 { 575 return sysctl_sched_rt_runtime >= 0; 576 } 577 578 /* RT IPI pull logic requires IRQ_WORK */ 579 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 580 # define HAVE_RT_PUSH_IPI 581 #endif 582 583 /* Real-Time classes' related field in a runqueue: */ 584 struct rt_rq { 585 struct rt_prio_array active; 586 unsigned int rt_nr_running; 587 unsigned int rr_nr_running; 588 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 589 struct { 590 int curr; /* highest queued rt task prio */ 591 #ifdef CONFIG_SMP 592 int next; /* next highest */ 593 #endif 594 } highest_prio; 595 #endif 596 #ifdef CONFIG_SMP 597 unsigned long rt_nr_migratory; 598 unsigned long rt_nr_total; 599 int overloaded; 600 struct plist_head pushable_tasks; 601 602 #endif /* CONFIG_SMP */ 603 int rt_queued; 604 605 int rt_throttled; 606 u64 rt_time; 607 u64 rt_runtime; 608 /* Nests inside the rq lock: */ 609 raw_spinlock_t rt_runtime_lock; 610 611 #ifdef CONFIG_RT_GROUP_SCHED 612 unsigned long rt_nr_boosted; 613 614 struct rq *rq; 615 struct task_group *tg; 616 #endif 617 }; 618 619 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 620 { 621 return rt_rq->rt_queued && rt_rq->rt_nr_running; 622 } 623 624 /* Deadline class' related fields in a runqueue */ 625 struct dl_rq { 626 /* runqueue is an rbtree, ordered by deadline */ 627 struct rb_root_cached root; 628 629 unsigned long dl_nr_running; 630 631 #ifdef CONFIG_SMP 632 /* 633 * Deadline values of the currently executing and the 634 * earliest ready task on this rq. Caching these facilitates 635 * the decision whether or not a ready but not running task 636 * should migrate somewhere else. 637 */ 638 struct { 639 u64 curr; 640 u64 next; 641 } earliest_dl; 642 643 unsigned long dl_nr_migratory; 644 int overloaded; 645 646 /* 647 * Tasks on this rq that can be pushed away. They are kept in 648 * an rb-tree, ordered by tasks' deadlines, with caching 649 * of the leftmost (earliest deadline) element. 650 */ 651 struct rb_root_cached pushable_dl_tasks_root; 652 #else 653 struct dl_bw dl_bw; 654 #endif 655 /* 656 * "Active utilization" for this runqueue: increased when a 657 * task wakes up (becomes TASK_RUNNING) and decreased when a 658 * task blocks 659 */ 660 u64 running_bw; 661 662 /* 663 * Utilization of the tasks "assigned" to this runqueue (including 664 * the tasks that are in runqueue and the tasks that executed on this 665 * CPU and blocked). Increased when a task moves to this runqueue, and 666 * decreased when the task moves away (migrates, changes scheduling 667 * policy, or terminates). 668 * This is needed to compute the "inactive utilization" for the 669 * runqueue (inactive utilization = this_bw - running_bw). 670 */ 671 u64 this_bw; 672 u64 extra_bw; 673 674 /* 675 * Inverse of the fraction of CPU utilization that can be reclaimed 676 * by the GRUB algorithm. 677 */ 678 u64 bw_ratio; 679 }; 680 681 #ifdef CONFIG_FAIR_GROUP_SCHED 682 /* An entity is a task if it doesn't "own" a runqueue */ 683 #define entity_is_task(se) (!se->my_q) 684 #else 685 #define entity_is_task(se) 1 686 #endif 687 688 #ifdef CONFIG_SMP 689 /* 690 * XXX we want to get rid of these helpers and use the full load resolution. 691 */ 692 static inline long se_weight(struct sched_entity *se) 693 { 694 return scale_load_down(se->load.weight); 695 } 696 697 static inline long se_runnable(struct sched_entity *se) 698 { 699 return scale_load_down(se->runnable_weight); 700 } 701 702 static inline bool sched_asym_prefer(int a, int b) 703 { 704 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 705 } 706 707 struct perf_domain { 708 struct em_perf_domain *em_pd; 709 struct perf_domain *next; 710 struct rcu_head rcu; 711 }; 712 713 /* Scheduling group status flags */ 714 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 715 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 716 717 /* 718 * We add the notion of a root-domain which will be used to define per-domain 719 * variables. Each exclusive cpuset essentially defines an island domain by 720 * fully partitioning the member CPUs from any other cpuset. Whenever a new 721 * exclusive cpuset is created, we also create and attach a new root-domain 722 * object. 723 * 724 */ 725 struct root_domain { 726 atomic_t refcount; 727 atomic_t rto_count; 728 struct rcu_head rcu; 729 cpumask_var_t span; 730 cpumask_var_t online; 731 732 /* 733 * Indicate pullable load on at least one CPU, e.g: 734 * - More than one runnable task 735 * - Running task is misfit 736 */ 737 int overload; 738 739 /* Indicate one or more cpus over-utilized (tipping point) */ 740 int overutilized; 741 742 /* 743 * The bit corresponding to a CPU gets set here if such CPU has more 744 * than one runnable -deadline task (as it is below for RT tasks). 745 */ 746 cpumask_var_t dlo_mask; 747 atomic_t dlo_count; 748 struct dl_bw dl_bw; 749 struct cpudl cpudl; 750 751 #ifdef HAVE_RT_PUSH_IPI 752 /* 753 * For IPI pull requests, loop across the rto_mask. 754 */ 755 struct irq_work rto_push_work; 756 raw_spinlock_t rto_lock; 757 /* These are only updated and read within rto_lock */ 758 int rto_loop; 759 int rto_cpu; 760 /* These atomics are updated outside of a lock */ 761 atomic_t rto_loop_next; 762 atomic_t rto_loop_start; 763 #endif 764 /* 765 * The "RT overload" flag: it gets set if a CPU has more than 766 * one runnable RT task. 767 */ 768 cpumask_var_t rto_mask; 769 struct cpupri cpupri; 770 771 unsigned long max_cpu_capacity; 772 773 /* 774 * NULL-terminated list of performance domains intersecting with the 775 * CPUs of the rd. Protected by RCU. 776 */ 777 struct perf_domain __rcu *pd; 778 }; 779 780 extern struct root_domain def_root_domain; 781 extern struct mutex sched_domains_mutex; 782 783 extern void init_defrootdomain(void); 784 extern int sched_init_domains(const struct cpumask *cpu_map); 785 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 786 extern void sched_get_rd(struct root_domain *rd); 787 extern void sched_put_rd(struct root_domain *rd); 788 789 #ifdef HAVE_RT_PUSH_IPI 790 extern void rto_push_irq_work_func(struct irq_work *work); 791 #endif 792 #endif /* CONFIG_SMP */ 793 794 #ifdef CONFIG_UCLAMP_TASK 795 /* 796 * struct uclamp_bucket - Utilization clamp bucket 797 * @value: utilization clamp value for tasks on this clamp bucket 798 * @tasks: number of RUNNABLE tasks on this clamp bucket 799 * 800 * Keep track of how many tasks are RUNNABLE for a given utilization 801 * clamp value. 802 */ 803 struct uclamp_bucket { 804 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 805 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 806 }; 807 808 /* 809 * struct uclamp_rq - rq's utilization clamp 810 * @value: currently active clamp values for a rq 811 * @bucket: utilization clamp buckets affecting a rq 812 * 813 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 814 * A clamp value is affecting a rq when there is at least one task RUNNABLE 815 * (or actually running) with that value. 816 * 817 * There are up to UCLAMP_CNT possible different clamp values, currently there 818 * are only two: minimum utilization and maximum utilization. 819 * 820 * All utilization clamping values are MAX aggregated, since: 821 * - for util_min: we want to run the CPU at least at the max of the minimum 822 * utilization required by its currently RUNNABLE tasks. 823 * - for util_max: we want to allow the CPU to run up to the max of the 824 * maximum utilization allowed by its currently RUNNABLE tasks. 825 * 826 * Since on each system we expect only a limited number of different 827 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 828 * the metrics required to compute all the per-rq utilization clamp values. 829 */ 830 struct uclamp_rq { 831 unsigned int value; 832 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 833 }; 834 #endif /* CONFIG_UCLAMP_TASK */ 835 836 /* 837 * This is the main, per-CPU runqueue data structure. 838 * 839 * Locking rule: those places that want to lock multiple runqueues 840 * (such as the load balancing or the thread migration code), lock 841 * acquire operations must be ordered by ascending &runqueue. 842 */ 843 struct rq { 844 /* runqueue lock: */ 845 raw_spinlock_t lock; 846 847 /* 848 * nr_running and cpu_load should be in the same cacheline because 849 * remote CPUs use both these fields when doing load calculation. 850 */ 851 unsigned int nr_running; 852 #ifdef CONFIG_NUMA_BALANCING 853 unsigned int nr_numa_running; 854 unsigned int nr_preferred_running; 855 unsigned int numa_migrate_on; 856 #endif 857 #ifdef CONFIG_NO_HZ_COMMON 858 #ifdef CONFIG_SMP 859 unsigned long last_load_update_tick; 860 unsigned long last_blocked_load_update_tick; 861 unsigned int has_blocked_load; 862 #endif /* CONFIG_SMP */ 863 unsigned int nohz_tick_stopped; 864 atomic_t nohz_flags; 865 #endif /* CONFIG_NO_HZ_COMMON */ 866 867 unsigned long nr_load_updates; 868 u64 nr_switches; 869 870 #ifdef CONFIG_UCLAMP_TASK 871 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 872 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 873 unsigned int uclamp_flags; 874 #define UCLAMP_FLAG_IDLE 0x01 875 #endif 876 877 struct cfs_rq cfs; 878 struct rt_rq rt; 879 struct dl_rq dl; 880 881 #ifdef CONFIG_FAIR_GROUP_SCHED 882 /* list of leaf cfs_rq on this CPU: */ 883 struct list_head leaf_cfs_rq_list; 884 struct list_head *tmp_alone_branch; 885 #endif /* CONFIG_FAIR_GROUP_SCHED */ 886 887 /* 888 * This is part of a global counter where only the total sum 889 * over all CPUs matters. A task can increase this counter on 890 * one CPU and if it got migrated afterwards it may decrease 891 * it on another CPU. Always updated under the runqueue lock: 892 */ 893 unsigned long nr_uninterruptible; 894 895 struct task_struct *curr; 896 struct task_struct *idle; 897 struct task_struct *stop; 898 unsigned long next_balance; 899 struct mm_struct *prev_mm; 900 901 unsigned int clock_update_flags; 902 u64 clock; 903 /* Ensure that all clocks are in the same cache line */ 904 u64 clock_task ____cacheline_aligned; 905 u64 clock_pelt; 906 unsigned long lost_idle_time; 907 908 atomic_t nr_iowait; 909 910 #ifdef CONFIG_SMP 911 struct root_domain *rd; 912 struct sched_domain __rcu *sd; 913 914 unsigned long cpu_capacity; 915 unsigned long cpu_capacity_orig; 916 917 struct callback_head *balance_callback; 918 919 unsigned char idle_balance; 920 921 unsigned long misfit_task_load; 922 923 /* For active balancing */ 924 int active_balance; 925 int push_cpu; 926 struct cpu_stop_work active_balance_work; 927 928 /* CPU of this runqueue: */ 929 int cpu; 930 int online; 931 932 struct list_head cfs_tasks; 933 934 struct sched_avg avg_rt; 935 struct sched_avg avg_dl; 936 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 937 struct sched_avg avg_irq; 938 #endif 939 u64 idle_stamp; 940 u64 avg_idle; 941 942 /* This is used to determine avg_idle's max value */ 943 u64 max_idle_balance_cost; 944 #endif 945 946 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 947 u64 prev_irq_time; 948 #endif 949 #ifdef CONFIG_PARAVIRT 950 u64 prev_steal_time; 951 #endif 952 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 953 u64 prev_steal_time_rq; 954 #endif 955 956 /* calc_load related fields */ 957 unsigned long calc_load_update; 958 long calc_load_active; 959 960 #ifdef CONFIG_SCHED_HRTICK 961 #ifdef CONFIG_SMP 962 int hrtick_csd_pending; 963 call_single_data_t hrtick_csd; 964 #endif 965 struct hrtimer hrtick_timer; 966 #endif 967 968 #ifdef CONFIG_SCHEDSTATS 969 /* latency stats */ 970 struct sched_info rq_sched_info; 971 unsigned long long rq_cpu_time; 972 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 973 974 /* sys_sched_yield() stats */ 975 unsigned int yld_count; 976 977 /* schedule() stats */ 978 unsigned int sched_count; 979 unsigned int sched_goidle; 980 981 /* try_to_wake_up() stats */ 982 unsigned int ttwu_count; 983 unsigned int ttwu_local; 984 #endif 985 986 #ifdef CONFIG_SMP 987 struct llist_head wake_list; 988 #endif 989 990 #ifdef CONFIG_CPU_IDLE 991 /* Must be inspected within a rcu lock section */ 992 struct cpuidle_state *idle_state; 993 #endif 994 }; 995 996 #ifdef CONFIG_FAIR_GROUP_SCHED 997 998 /* CPU runqueue to which this cfs_rq is attached */ 999 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1000 { 1001 return cfs_rq->rq; 1002 } 1003 1004 #else 1005 1006 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1007 { 1008 return container_of(cfs_rq, struct rq, cfs); 1009 } 1010 #endif 1011 1012 static inline int cpu_of(struct rq *rq) 1013 { 1014 #ifdef CONFIG_SMP 1015 return rq->cpu; 1016 #else 1017 return 0; 1018 #endif 1019 } 1020 1021 1022 #ifdef CONFIG_SCHED_SMT 1023 extern void __update_idle_core(struct rq *rq); 1024 1025 static inline void update_idle_core(struct rq *rq) 1026 { 1027 if (static_branch_unlikely(&sched_smt_present)) 1028 __update_idle_core(rq); 1029 } 1030 1031 #else 1032 static inline void update_idle_core(struct rq *rq) { } 1033 #endif 1034 1035 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1036 1037 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1038 #define this_rq() this_cpu_ptr(&runqueues) 1039 #define task_rq(p) cpu_rq(task_cpu(p)) 1040 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1041 #define raw_rq() raw_cpu_ptr(&runqueues) 1042 1043 extern void update_rq_clock(struct rq *rq); 1044 1045 static inline u64 __rq_clock_broken(struct rq *rq) 1046 { 1047 return READ_ONCE(rq->clock); 1048 } 1049 1050 /* 1051 * rq::clock_update_flags bits 1052 * 1053 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1054 * call to __schedule(). This is an optimisation to avoid 1055 * neighbouring rq clock updates. 1056 * 1057 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1058 * in effect and calls to update_rq_clock() are being ignored. 1059 * 1060 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1061 * made to update_rq_clock() since the last time rq::lock was pinned. 1062 * 1063 * If inside of __schedule(), clock_update_flags will have been 1064 * shifted left (a left shift is a cheap operation for the fast path 1065 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1066 * 1067 * if (rq-clock_update_flags >= RQCF_UPDATED) 1068 * 1069 * to check if %RQCF_UPADTED is set. It'll never be shifted more than 1070 * one position though, because the next rq_unpin_lock() will shift it 1071 * back. 1072 */ 1073 #define RQCF_REQ_SKIP 0x01 1074 #define RQCF_ACT_SKIP 0x02 1075 #define RQCF_UPDATED 0x04 1076 1077 static inline void assert_clock_updated(struct rq *rq) 1078 { 1079 /* 1080 * The only reason for not seeing a clock update since the 1081 * last rq_pin_lock() is if we're currently skipping updates. 1082 */ 1083 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1084 } 1085 1086 static inline u64 rq_clock(struct rq *rq) 1087 { 1088 lockdep_assert_held(&rq->lock); 1089 assert_clock_updated(rq); 1090 1091 return rq->clock; 1092 } 1093 1094 static inline u64 rq_clock_task(struct rq *rq) 1095 { 1096 lockdep_assert_held(&rq->lock); 1097 assert_clock_updated(rq); 1098 1099 return rq->clock_task; 1100 } 1101 1102 static inline void rq_clock_skip_update(struct rq *rq) 1103 { 1104 lockdep_assert_held(&rq->lock); 1105 rq->clock_update_flags |= RQCF_REQ_SKIP; 1106 } 1107 1108 /* 1109 * See rt task throttling, which is the only time a skip 1110 * request is cancelled. 1111 */ 1112 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1113 { 1114 lockdep_assert_held(&rq->lock); 1115 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1116 } 1117 1118 struct rq_flags { 1119 unsigned long flags; 1120 struct pin_cookie cookie; 1121 #ifdef CONFIG_SCHED_DEBUG 1122 /* 1123 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1124 * current pin context is stashed here in case it needs to be 1125 * restored in rq_repin_lock(). 1126 */ 1127 unsigned int clock_update_flags; 1128 #endif 1129 }; 1130 1131 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1132 { 1133 rf->cookie = lockdep_pin_lock(&rq->lock); 1134 1135 #ifdef CONFIG_SCHED_DEBUG 1136 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1137 rf->clock_update_flags = 0; 1138 #endif 1139 } 1140 1141 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1142 { 1143 #ifdef CONFIG_SCHED_DEBUG 1144 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1145 rf->clock_update_flags = RQCF_UPDATED; 1146 #endif 1147 1148 lockdep_unpin_lock(&rq->lock, rf->cookie); 1149 } 1150 1151 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1152 { 1153 lockdep_repin_lock(&rq->lock, rf->cookie); 1154 1155 #ifdef CONFIG_SCHED_DEBUG 1156 /* 1157 * Restore the value we stashed in @rf for this pin context. 1158 */ 1159 rq->clock_update_flags |= rf->clock_update_flags; 1160 #endif 1161 } 1162 1163 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1164 __acquires(rq->lock); 1165 1166 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1167 __acquires(p->pi_lock) 1168 __acquires(rq->lock); 1169 1170 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1171 __releases(rq->lock) 1172 { 1173 rq_unpin_lock(rq, rf); 1174 raw_spin_unlock(&rq->lock); 1175 } 1176 1177 static inline void 1178 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1179 __releases(rq->lock) 1180 __releases(p->pi_lock) 1181 { 1182 rq_unpin_lock(rq, rf); 1183 raw_spin_unlock(&rq->lock); 1184 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1185 } 1186 1187 static inline void 1188 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1189 __acquires(rq->lock) 1190 { 1191 raw_spin_lock_irqsave(&rq->lock, rf->flags); 1192 rq_pin_lock(rq, rf); 1193 } 1194 1195 static inline void 1196 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1197 __acquires(rq->lock) 1198 { 1199 raw_spin_lock_irq(&rq->lock); 1200 rq_pin_lock(rq, rf); 1201 } 1202 1203 static inline void 1204 rq_lock(struct rq *rq, struct rq_flags *rf) 1205 __acquires(rq->lock) 1206 { 1207 raw_spin_lock(&rq->lock); 1208 rq_pin_lock(rq, rf); 1209 } 1210 1211 static inline void 1212 rq_relock(struct rq *rq, struct rq_flags *rf) 1213 __acquires(rq->lock) 1214 { 1215 raw_spin_lock(&rq->lock); 1216 rq_repin_lock(rq, rf); 1217 } 1218 1219 static inline void 1220 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1221 __releases(rq->lock) 1222 { 1223 rq_unpin_lock(rq, rf); 1224 raw_spin_unlock_irqrestore(&rq->lock, rf->flags); 1225 } 1226 1227 static inline void 1228 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1229 __releases(rq->lock) 1230 { 1231 rq_unpin_lock(rq, rf); 1232 raw_spin_unlock_irq(&rq->lock); 1233 } 1234 1235 static inline void 1236 rq_unlock(struct rq *rq, struct rq_flags *rf) 1237 __releases(rq->lock) 1238 { 1239 rq_unpin_lock(rq, rf); 1240 raw_spin_unlock(&rq->lock); 1241 } 1242 1243 static inline struct rq * 1244 this_rq_lock_irq(struct rq_flags *rf) 1245 __acquires(rq->lock) 1246 { 1247 struct rq *rq; 1248 1249 local_irq_disable(); 1250 rq = this_rq(); 1251 rq_lock(rq, rf); 1252 return rq; 1253 } 1254 1255 #ifdef CONFIG_NUMA 1256 enum numa_topology_type { 1257 NUMA_DIRECT, 1258 NUMA_GLUELESS_MESH, 1259 NUMA_BACKPLANE, 1260 }; 1261 extern enum numa_topology_type sched_numa_topology_type; 1262 extern int sched_max_numa_distance; 1263 extern bool find_numa_distance(int distance); 1264 #endif 1265 1266 #ifdef CONFIG_NUMA 1267 extern void sched_init_numa(void); 1268 extern void sched_domains_numa_masks_set(unsigned int cpu); 1269 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1270 #else 1271 static inline void sched_init_numa(void) { } 1272 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1273 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1274 #endif 1275 1276 #ifdef CONFIG_NUMA_BALANCING 1277 /* The regions in numa_faults array from task_struct */ 1278 enum numa_faults_stats { 1279 NUMA_MEM = 0, 1280 NUMA_CPU, 1281 NUMA_MEMBUF, 1282 NUMA_CPUBUF 1283 }; 1284 extern void sched_setnuma(struct task_struct *p, int node); 1285 extern int migrate_task_to(struct task_struct *p, int cpu); 1286 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1287 int cpu, int scpu); 1288 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1289 #else 1290 static inline void 1291 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1292 { 1293 } 1294 #endif /* CONFIG_NUMA_BALANCING */ 1295 1296 #ifdef CONFIG_SMP 1297 1298 static inline void 1299 queue_balance_callback(struct rq *rq, 1300 struct callback_head *head, 1301 void (*func)(struct rq *rq)) 1302 { 1303 lockdep_assert_held(&rq->lock); 1304 1305 if (unlikely(head->next)) 1306 return; 1307 1308 head->func = (void (*)(struct callback_head *))func; 1309 head->next = rq->balance_callback; 1310 rq->balance_callback = head; 1311 } 1312 1313 extern void sched_ttwu_pending(void); 1314 1315 #define rcu_dereference_check_sched_domain(p) \ 1316 rcu_dereference_check((p), \ 1317 lockdep_is_held(&sched_domains_mutex)) 1318 1319 /* 1320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1321 * See destroy_sched_domains: call_rcu for details. 1322 * 1323 * The domain tree of any CPU may only be accessed from within 1324 * preempt-disabled sections. 1325 */ 1326 #define for_each_domain(cpu, __sd) \ 1327 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1328 __sd; __sd = __sd->parent) 1329 1330 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 1331 1332 /** 1333 * highest_flag_domain - Return highest sched_domain containing flag. 1334 * @cpu: The CPU whose highest level of sched domain is to 1335 * be returned. 1336 * @flag: The flag to check for the highest sched_domain 1337 * for the given CPU. 1338 * 1339 * Returns the highest sched_domain of a CPU which contains the given flag. 1340 */ 1341 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1342 { 1343 struct sched_domain *sd, *hsd = NULL; 1344 1345 for_each_domain(cpu, sd) { 1346 if (!(sd->flags & flag)) 1347 break; 1348 hsd = sd; 1349 } 1350 1351 return hsd; 1352 } 1353 1354 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1355 { 1356 struct sched_domain *sd; 1357 1358 for_each_domain(cpu, sd) { 1359 if (sd->flags & flag) 1360 break; 1361 } 1362 1363 return sd; 1364 } 1365 1366 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1367 DECLARE_PER_CPU(int, sd_llc_size); 1368 DECLARE_PER_CPU(int, sd_llc_id); 1369 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1370 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1371 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1372 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1373 extern struct static_key_false sched_asym_cpucapacity; 1374 1375 struct sched_group_capacity { 1376 atomic_t ref; 1377 /* 1378 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1379 * for a single CPU. 1380 */ 1381 unsigned long capacity; 1382 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1383 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1384 unsigned long next_update; 1385 int imbalance; /* XXX unrelated to capacity but shared group state */ 1386 1387 #ifdef CONFIG_SCHED_DEBUG 1388 int id; 1389 #endif 1390 1391 unsigned long cpumask[0]; /* Balance mask */ 1392 }; 1393 1394 struct sched_group { 1395 struct sched_group *next; /* Must be a circular list */ 1396 atomic_t ref; 1397 1398 unsigned int group_weight; 1399 struct sched_group_capacity *sgc; 1400 int asym_prefer_cpu; /* CPU of highest priority in group */ 1401 1402 /* 1403 * The CPUs this group covers. 1404 * 1405 * NOTE: this field is variable length. (Allocated dynamically 1406 * by attaching extra space to the end of the structure, 1407 * depending on how many CPUs the kernel has booted up with) 1408 */ 1409 unsigned long cpumask[0]; 1410 }; 1411 1412 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1413 { 1414 return to_cpumask(sg->cpumask); 1415 } 1416 1417 /* 1418 * See build_balance_mask(). 1419 */ 1420 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1421 { 1422 return to_cpumask(sg->sgc->cpumask); 1423 } 1424 1425 /** 1426 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1427 * @group: The group whose first CPU is to be returned. 1428 */ 1429 static inline unsigned int group_first_cpu(struct sched_group *group) 1430 { 1431 return cpumask_first(sched_group_span(group)); 1432 } 1433 1434 extern int group_balance_cpu(struct sched_group *sg); 1435 1436 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 1437 void register_sched_domain_sysctl(void); 1438 void dirty_sched_domain_sysctl(int cpu); 1439 void unregister_sched_domain_sysctl(void); 1440 #else 1441 static inline void register_sched_domain_sysctl(void) 1442 { 1443 } 1444 static inline void dirty_sched_domain_sysctl(int cpu) 1445 { 1446 } 1447 static inline void unregister_sched_domain_sysctl(void) 1448 { 1449 } 1450 #endif 1451 1452 #else 1453 1454 static inline void sched_ttwu_pending(void) { } 1455 1456 #endif /* CONFIG_SMP */ 1457 1458 #include "stats.h" 1459 #include "autogroup.h" 1460 1461 #ifdef CONFIG_CGROUP_SCHED 1462 1463 /* 1464 * Return the group to which this tasks belongs. 1465 * 1466 * We cannot use task_css() and friends because the cgroup subsystem 1467 * changes that value before the cgroup_subsys::attach() method is called, 1468 * therefore we cannot pin it and might observe the wrong value. 1469 * 1470 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1471 * core changes this before calling sched_move_task(). 1472 * 1473 * Instead we use a 'copy' which is updated from sched_move_task() while 1474 * holding both task_struct::pi_lock and rq::lock. 1475 */ 1476 static inline struct task_group *task_group(struct task_struct *p) 1477 { 1478 return p->sched_task_group; 1479 } 1480 1481 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1482 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1483 { 1484 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1485 struct task_group *tg = task_group(p); 1486 #endif 1487 1488 #ifdef CONFIG_FAIR_GROUP_SCHED 1489 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1490 p->se.cfs_rq = tg->cfs_rq[cpu]; 1491 p->se.parent = tg->se[cpu]; 1492 #endif 1493 1494 #ifdef CONFIG_RT_GROUP_SCHED 1495 p->rt.rt_rq = tg->rt_rq[cpu]; 1496 p->rt.parent = tg->rt_se[cpu]; 1497 #endif 1498 } 1499 1500 #else /* CONFIG_CGROUP_SCHED */ 1501 1502 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1503 static inline struct task_group *task_group(struct task_struct *p) 1504 { 1505 return NULL; 1506 } 1507 1508 #endif /* CONFIG_CGROUP_SCHED */ 1509 1510 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1511 { 1512 set_task_rq(p, cpu); 1513 #ifdef CONFIG_SMP 1514 /* 1515 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1516 * successfully executed on another CPU. We must ensure that updates of 1517 * per-task data have been completed by this moment. 1518 */ 1519 smp_wmb(); 1520 #ifdef CONFIG_THREAD_INFO_IN_TASK 1521 WRITE_ONCE(p->cpu, cpu); 1522 #else 1523 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1524 #endif 1525 p->wake_cpu = cpu; 1526 #endif 1527 } 1528 1529 /* 1530 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1531 */ 1532 #ifdef CONFIG_SCHED_DEBUG 1533 # include <linux/static_key.h> 1534 # define const_debug __read_mostly 1535 #else 1536 # define const_debug const 1537 #endif 1538 1539 #define SCHED_FEAT(name, enabled) \ 1540 __SCHED_FEAT_##name , 1541 1542 enum { 1543 #include "features.h" 1544 __SCHED_FEAT_NR, 1545 }; 1546 1547 #undef SCHED_FEAT 1548 1549 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 1550 1551 /* 1552 * To support run-time toggling of sched features, all the translation units 1553 * (but core.c) reference the sysctl_sched_features defined in core.c. 1554 */ 1555 extern const_debug unsigned int sysctl_sched_features; 1556 1557 #define SCHED_FEAT(name, enabled) \ 1558 static __always_inline bool static_branch_##name(struct static_key *key) \ 1559 { \ 1560 return static_key_##enabled(key); \ 1561 } 1562 1563 #include "features.h" 1564 #undef SCHED_FEAT 1565 1566 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1567 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1568 1569 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */ 1570 1571 /* 1572 * Each translation unit has its own copy of sysctl_sched_features to allow 1573 * constants propagation at compile time and compiler optimization based on 1574 * features default. 1575 */ 1576 #define SCHED_FEAT(name, enabled) \ 1577 (1UL << __SCHED_FEAT_##name) * enabled | 1578 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1579 #include "features.h" 1580 0; 1581 #undef SCHED_FEAT 1582 1583 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1584 1585 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */ 1586 1587 extern struct static_key_false sched_numa_balancing; 1588 extern struct static_key_false sched_schedstats; 1589 1590 static inline u64 global_rt_period(void) 1591 { 1592 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1593 } 1594 1595 static inline u64 global_rt_runtime(void) 1596 { 1597 if (sysctl_sched_rt_runtime < 0) 1598 return RUNTIME_INF; 1599 1600 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1601 } 1602 1603 static inline int task_current(struct rq *rq, struct task_struct *p) 1604 { 1605 return rq->curr == p; 1606 } 1607 1608 static inline int task_running(struct rq *rq, struct task_struct *p) 1609 { 1610 #ifdef CONFIG_SMP 1611 return p->on_cpu; 1612 #else 1613 return task_current(rq, p); 1614 #endif 1615 } 1616 1617 static inline int task_on_rq_queued(struct task_struct *p) 1618 { 1619 return p->on_rq == TASK_ON_RQ_QUEUED; 1620 } 1621 1622 static inline int task_on_rq_migrating(struct task_struct *p) 1623 { 1624 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 1625 } 1626 1627 /* 1628 * wake flags 1629 */ 1630 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ 1631 #define WF_FORK 0x02 /* Child wakeup after fork */ 1632 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */ 1633 1634 /* 1635 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1636 * of tasks with abnormal "nice" values across CPUs the contribution that 1637 * each task makes to its run queue's load is weighted according to its 1638 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1639 * scaled version of the new time slice allocation that they receive on time 1640 * slice expiry etc. 1641 */ 1642 1643 #define WEIGHT_IDLEPRIO 3 1644 #define WMULT_IDLEPRIO 1431655765 1645 1646 extern const int sched_prio_to_weight[40]; 1647 extern const u32 sched_prio_to_wmult[40]; 1648 1649 /* 1650 * {de,en}queue flags: 1651 * 1652 * DEQUEUE_SLEEP - task is no longer runnable 1653 * ENQUEUE_WAKEUP - task just became runnable 1654 * 1655 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1656 * are in a known state which allows modification. Such pairs 1657 * should preserve as much state as possible. 1658 * 1659 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1660 * in the runqueue. 1661 * 1662 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1663 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1664 * ENQUEUE_MIGRATED - the task was migrated during wakeup 1665 * 1666 */ 1667 1668 #define DEQUEUE_SLEEP 0x01 1669 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 1670 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 1671 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 1672 1673 #define ENQUEUE_WAKEUP 0x01 1674 #define ENQUEUE_RESTORE 0x02 1675 #define ENQUEUE_MOVE 0x04 1676 #define ENQUEUE_NOCLOCK 0x08 1677 1678 #define ENQUEUE_HEAD 0x10 1679 #define ENQUEUE_REPLENISH 0x20 1680 #ifdef CONFIG_SMP 1681 #define ENQUEUE_MIGRATED 0x40 1682 #else 1683 #define ENQUEUE_MIGRATED 0x00 1684 #endif 1685 1686 #define RETRY_TASK ((void *)-1UL) 1687 1688 struct sched_class { 1689 const struct sched_class *next; 1690 1691 #ifdef CONFIG_UCLAMP_TASK 1692 int uclamp_enabled; 1693 #endif 1694 1695 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1696 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1697 void (*yield_task) (struct rq *rq); 1698 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); 1699 1700 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 1701 1702 /* 1703 * It is the responsibility of the pick_next_task() method that will 1704 * return the next task to call put_prev_task() on the @prev task or 1705 * something equivalent. 1706 * 1707 * May return RETRY_TASK when it finds a higher prio class has runnable 1708 * tasks. 1709 */ 1710 struct task_struct * (*pick_next_task)(struct rq *rq, 1711 struct task_struct *prev, 1712 struct rq_flags *rf); 1713 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 1714 1715 #ifdef CONFIG_SMP 1716 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1717 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 1718 1719 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 1720 1721 void (*set_cpus_allowed)(struct task_struct *p, 1722 const struct cpumask *newmask); 1723 1724 void (*rq_online)(struct rq *rq); 1725 void (*rq_offline)(struct rq *rq); 1726 #endif 1727 1728 void (*set_curr_task)(struct rq *rq); 1729 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 1730 void (*task_fork)(struct task_struct *p); 1731 void (*task_dead)(struct task_struct *p); 1732 1733 /* 1734 * The switched_from() call is allowed to drop rq->lock, therefore we 1735 * cannot assume the switched_from/switched_to pair is serliazed by 1736 * rq->lock. They are however serialized by p->pi_lock. 1737 */ 1738 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 1739 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1740 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1741 int oldprio); 1742 1743 unsigned int (*get_rr_interval)(struct rq *rq, 1744 struct task_struct *task); 1745 1746 void (*update_curr)(struct rq *rq); 1747 1748 #define TASK_SET_GROUP 0 1749 #define TASK_MOVE_GROUP 1 1750 1751 #ifdef CONFIG_FAIR_GROUP_SCHED 1752 void (*task_change_group)(struct task_struct *p, int type); 1753 #endif 1754 }; 1755 1756 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1757 { 1758 prev->sched_class->put_prev_task(rq, prev); 1759 } 1760 1761 static inline void set_curr_task(struct rq *rq, struct task_struct *curr) 1762 { 1763 curr->sched_class->set_curr_task(rq); 1764 } 1765 1766 #ifdef CONFIG_SMP 1767 #define sched_class_highest (&stop_sched_class) 1768 #else 1769 #define sched_class_highest (&dl_sched_class) 1770 #endif 1771 #define for_each_class(class) \ 1772 for (class = sched_class_highest; class; class = class->next) 1773 1774 extern const struct sched_class stop_sched_class; 1775 extern const struct sched_class dl_sched_class; 1776 extern const struct sched_class rt_sched_class; 1777 extern const struct sched_class fair_sched_class; 1778 extern const struct sched_class idle_sched_class; 1779 1780 1781 #ifdef CONFIG_SMP 1782 1783 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1784 1785 extern void trigger_load_balance(struct rq *rq); 1786 1787 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); 1788 1789 #endif 1790 1791 #ifdef CONFIG_CPU_IDLE 1792 static inline void idle_set_state(struct rq *rq, 1793 struct cpuidle_state *idle_state) 1794 { 1795 rq->idle_state = idle_state; 1796 } 1797 1798 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1799 { 1800 SCHED_WARN_ON(!rcu_read_lock_held()); 1801 1802 return rq->idle_state; 1803 } 1804 #else 1805 static inline void idle_set_state(struct rq *rq, 1806 struct cpuidle_state *idle_state) 1807 { 1808 } 1809 1810 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1811 { 1812 return NULL; 1813 } 1814 #endif 1815 1816 extern void schedule_idle(void); 1817 1818 extern void sysrq_sched_debug_show(void); 1819 extern void sched_init_granularity(void); 1820 extern void update_max_interval(void); 1821 1822 extern void init_sched_dl_class(void); 1823 extern void init_sched_rt_class(void); 1824 extern void init_sched_fair_class(void); 1825 1826 extern void reweight_task(struct task_struct *p, int prio); 1827 1828 extern void resched_curr(struct rq *rq); 1829 extern void resched_cpu(int cpu); 1830 1831 extern struct rt_bandwidth def_rt_bandwidth; 1832 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1833 1834 extern struct dl_bandwidth def_dl_bandwidth; 1835 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1836 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1837 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 1838 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 1839 1840 #define BW_SHIFT 20 1841 #define BW_UNIT (1 << BW_SHIFT) 1842 #define RATIO_SHIFT 8 1843 unsigned long to_ratio(u64 period, u64 runtime); 1844 1845 extern void init_entity_runnable_average(struct sched_entity *se); 1846 extern void post_init_entity_util_avg(struct task_struct *p); 1847 1848 #ifdef CONFIG_NO_HZ_FULL 1849 extern bool sched_can_stop_tick(struct rq *rq); 1850 extern int __init sched_tick_offload_init(void); 1851 1852 /* 1853 * Tick may be needed by tasks in the runqueue depending on their policy and 1854 * requirements. If tick is needed, lets send the target an IPI to kick it out of 1855 * nohz mode if necessary. 1856 */ 1857 static inline void sched_update_tick_dependency(struct rq *rq) 1858 { 1859 int cpu; 1860 1861 if (!tick_nohz_full_enabled()) 1862 return; 1863 1864 cpu = cpu_of(rq); 1865 1866 if (!tick_nohz_full_cpu(cpu)) 1867 return; 1868 1869 if (sched_can_stop_tick(rq)) 1870 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 1871 else 1872 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 1873 } 1874 #else 1875 static inline int sched_tick_offload_init(void) { return 0; } 1876 static inline void sched_update_tick_dependency(struct rq *rq) { } 1877 #endif 1878 1879 static inline void add_nr_running(struct rq *rq, unsigned count) 1880 { 1881 unsigned prev_nr = rq->nr_running; 1882 1883 rq->nr_running = prev_nr + count; 1884 1885 #ifdef CONFIG_SMP 1886 if (prev_nr < 2 && rq->nr_running >= 2) { 1887 if (!READ_ONCE(rq->rd->overload)) 1888 WRITE_ONCE(rq->rd->overload, 1); 1889 } 1890 #endif 1891 1892 sched_update_tick_dependency(rq); 1893 } 1894 1895 static inline void sub_nr_running(struct rq *rq, unsigned count) 1896 { 1897 rq->nr_running -= count; 1898 /* Check if we still need preemption */ 1899 sched_update_tick_dependency(rq); 1900 } 1901 1902 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1903 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1904 1905 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1906 1907 extern const_debug unsigned int sysctl_sched_nr_migrate; 1908 extern const_debug unsigned int sysctl_sched_migration_cost; 1909 1910 #ifdef CONFIG_SCHED_HRTICK 1911 1912 /* 1913 * Use hrtick when: 1914 * - enabled by features 1915 * - hrtimer is actually high res 1916 */ 1917 static inline int hrtick_enabled(struct rq *rq) 1918 { 1919 if (!sched_feat(HRTICK)) 1920 return 0; 1921 if (!cpu_active(cpu_of(rq))) 1922 return 0; 1923 return hrtimer_is_hres_active(&rq->hrtick_timer); 1924 } 1925 1926 void hrtick_start(struct rq *rq, u64 delay); 1927 1928 #else 1929 1930 static inline int hrtick_enabled(struct rq *rq) 1931 { 1932 return 0; 1933 } 1934 1935 #endif /* CONFIG_SCHED_HRTICK */ 1936 1937 #ifndef arch_scale_freq_capacity 1938 static __always_inline 1939 unsigned long arch_scale_freq_capacity(int cpu) 1940 { 1941 return SCHED_CAPACITY_SCALE; 1942 } 1943 #endif 1944 1945 #ifdef CONFIG_SMP 1946 #ifdef CONFIG_PREEMPT 1947 1948 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1949 1950 /* 1951 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1952 * way at the expense of forcing extra atomic operations in all 1953 * invocations. This assures that the double_lock is acquired using the 1954 * same underlying policy as the spinlock_t on this architecture, which 1955 * reduces latency compared to the unfair variant below. However, it 1956 * also adds more overhead and therefore may reduce throughput. 1957 */ 1958 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1959 __releases(this_rq->lock) 1960 __acquires(busiest->lock) 1961 __acquires(this_rq->lock) 1962 { 1963 raw_spin_unlock(&this_rq->lock); 1964 double_rq_lock(this_rq, busiest); 1965 1966 return 1; 1967 } 1968 1969 #else 1970 /* 1971 * Unfair double_lock_balance: Optimizes throughput at the expense of 1972 * latency by eliminating extra atomic operations when the locks are 1973 * already in proper order on entry. This favors lower CPU-ids and will 1974 * grant the double lock to lower CPUs over higher ids under contention, 1975 * regardless of entry order into the function. 1976 */ 1977 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1978 __releases(this_rq->lock) 1979 __acquires(busiest->lock) 1980 __acquires(this_rq->lock) 1981 { 1982 int ret = 0; 1983 1984 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1985 if (busiest < this_rq) { 1986 raw_spin_unlock(&this_rq->lock); 1987 raw_spin_lock(&busiest->lock); 1988 raw_spin_lock_nested(&this_rq->lock, 1989 SINGLE_DEPTH_NESTING); 1990 ret = 1; 1991 } else 1992 raw_spin_lock_nested(&busiest->lock, 1993 SINGLE_DEPTH_NESTING); 1994 } 1995 return ret; 1996 } 1997 1998 #endif /* CONFIG_PREEMPT */ 1999 2000 /* 2001 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2002 */ 2003 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2004 { 2005 if (unlikely(!irqs_disabled())) { 2006 /* printk() doesn't work well under rq->lock */ 2007 raw_spin_unlock(&this_rq->lock); 2008 BUG_ON(1); 2009 } 2010 2011 return _double_lock_balance(this_rq, busiest); 2012 } 2013 2014 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2015 __releases(busiest->lock) 2016 { 2017 raw_spin_unlock(&busiest->lock); 2018 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 2019 } 2020 2021 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2022 { 2023 if (l1 > l2) 2024 swap(l1, l2); 2025 2026 spin_lock(l1); 2027 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2028 } 2029 2030 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2031 { 2032 if (l1 > l2) 2033 swap(l1, l2); 2034 2035 spin_lock_irq(l1); 2036 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2037 } 2038 2039 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2040 { 2041 if (l1 > l2) 2042 swap(l1, l2); 2043 2044 raw_spin_lock(l1); 2045 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2046 } 2047 2048 /* 2049 * double_rq_lock - safely lock two runqueues 2050 * 2051 * Note this does not disable interrupts like task_rq_lock, 2052 * you need to do so manually before calling. 2053 */ 2054 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2055 __acquires(rq1->lock) 2056 __acquires(rq2->lock) 2057 { 2058 BUG_ON(!irqs_disabled()); 2059 if (rq1 == rq2) { 2060 raw_spin_lock(&rq1->lock); 2061 __acquire(rq2->lock); /* Fake it out ;) */ 2062 } else { 2063 if (rq1 < rq2) { 2064 raw_spin_lock(&rq1->lock); 2065 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 2066 } else { 2067 raw_spin_lock(&rq2->lock); 2068 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 2069 } 2070 } 2071 } 2072 2073 /* 2074 * double_rq_unlock - safely unlock two runqueues 2075 * 2076 * Note this does not restore interrupts like task_rq_unlock, 2077 * you need to do so manually after calling. 2078 */ 2079 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2080 __releases(rq1->lock) 2081 __releases(rq2->lock) 2082 { 2083 raw_spin_unlock(&rq1->lock); 2084 if (rq1 != rq2) 2085 raw_spin_unlock(&rq2->lock); 2086 else 2087 __release(rq2->lock); 2088 } 2089 2090 extern void set_rq_online (struct rq *rq); 2091 extern void set_rq_offline(struct rq *rq); 2092 extern bool sched_smp_initialized; 2093 2094 #else /* CONFIG_SMP */ 2095 2096 /* 2097 * double_rq_lock - safely lock two runqueues 2098 * 2099 * Note this does not disable interrupts like task_rq_lock, 2100 * you need to do so manually before calling. 2101 */ 2102 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2103 __acquires(rq1->lock) 2104 __acquires(rq2->lock) 2105 { 2106 BUG_ON(!irqs_disabled()); 2107 BUG_ON(rq1 != rq2); 2108 raw_spin_lock(&rq1->lock); 2109 __acquire(rq2->lock); /* Fake it out ;) */ 2110 } 2111 2112 /* 2113 * double_rq_unlock - safely unlock two runqueues 2114 * 2115 * Note this does not restore interrupts like task_rq_unlock, 2116 * you need to do so manually after calling. 2117 */ 2118 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2119 __releases(rq1->lock) 2120 __releases(rq2->lock) 2121 { 2122 BUG_ON(rq1 != rq2); 2123 raw_spin_unlock(&rq1->lock); 2124 __release(rq2->lock); 2125 } 2126 2127 #endif 2128 2129 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2130 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2131 2132 #ifdef CONFIG_SCHED_DEBUG 2133 extern bool sched_debug_enabled; 2134 2135 extern void print_cfs_stats(struct seq_file *m, int cpu); 2136 extern void print_rt_stats(struct seq_file *m, int cpu); 2137 extern void print_dl_stats(struct seq_file *m, int cpu); 2138 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2139 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2140 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2141 #ifdef CONFIG_NUMA_BALANCING 2142 extern void 2143 show_numa_stats(struct task_struct *p, struct seq_file *m); 2144 extern void 2145 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2146 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2147 #endif /* CONFIG_NUMA_BALANCING */ 2148 #endif /* CONFIG_SCHED_DEBUG */ 2149 2150 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2151 extern void init_rt_rq(struct rt_rq *rt_rq); 2152 extern void init_dl_rq(struct dl_rq *dl_rq); 2153 2154 extern void cfs_bandwidth_usage_inc(void); 2155 extern void cfs_bandwidth_usage_dec(void); 2156 2157 #ifdef CONFIG_NO_HZ_COMMON 2158 #define NOHZ_BALANCE_KICK_BIT 0 2159 #define NOHZ_STATS_KICK_BIT 1 2160 2161 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2162 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2163 2164 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) 2165 2166 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2167 2168 extern void nohz_balance_exit_idle(struct rq *rq); 2169 #else 2170 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2171 #endif 2172 2173 2174 #ifdef CONFIG_SMP 2175 static inline 2176 void __dl_update(struct dl_bw *dl_b, s64 bw) 2177 { 2178 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2179 int i; 2180 2181 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2182 "sched RCU must be held"); 2183 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2184 struct rq *rq = cpu_rq(i); 2185 2186 rq->dl.extra_bw += bw; 2187 } 2188 } 2189 #else 2190 static inline 2191 void __dl_update(struct dl_bw *dl_b, s64 bw) 2192 { 2193 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2194 2195 dl->extra_bw += bw; 2196 } 2197 #endif 2198 2199 2200 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2201 struct irqtime { 2202 u64 total; 2203 u64 tick_delta; 2204 u64 irq_start_time; 2205 struct u64_stats_sync sync; 2206 }; 2207 2208 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2209 2210 /* 2211 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2212 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime 2213 * and never move forward. 2214 */ 2215 static inline u64 irq_time_read(int cpu) 2216 { 2217 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2218 unsigned int seq; 2219 u64 total; 2220 2221 do { 2222 seq = __u64_stats_fetch_begin(&irqtime->sync); 2223 total = irqtime->total; 2224 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2225 2226 return total; 2227 } 2228 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2229 2230 #ifdef CONFIG_CPU_FREQ 2231 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2232 2233 /** 2234 * cpufreq_update_util - Take a note about CPU utilization changes. 2235 * @rq: Runqueue to carry out the update for. 2236 * @flags: Update reason flags. 2237 * 2238 * This function is called by the scheduler on the CPU whose utilization is 2239 * being updated. 2240 * 2241 * It can only be called from RCU-sched read-side critical sections. 2242 * 2243 * The way cpufreq is currently arranged requires it to evaluate the CPU 2244 * performance state (frequency/voltage) on a regular basis to prevent it from 2245 * being stuck in a completely inadequate performance level for too long. 2246 * That is not guaranteed to happen if the updates are only triggered from CFS 2247 * and DL, though, because they may not be coming in if only RT tasks are 2248 * active all the time (or there are RT tasks only). 2249 * 2250 * As a workaround for that issue, this function is called periodically by the 2251 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2252 * but that really is a band-aid. Going forward it should be replaced with 2253 * solutions targeted more specifically at RT tasks. 2254 */ 2255 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2256 { 2257 struct update_util_data *data; 2258 2259 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2260 cpu_of(rq))); 2261 if (data) 2262 data->func(data, rq_clock(rq), flags); 2263 } 2264 #else 2265 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2266 #endif /* CONFIG_CPU_FREQ */ 2267 2268 #ifdef CONFIG_UCLAMP_TASK 2269 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id); 2270 2271 static __always_inline 2272 unsigned int uclamp_util_with(struct rq *rq, unsigned int util, 2273 struct task_struct *p) 2274 { 2275 unsigned int min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value); 2276 unsigned int max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 2277 2278 if (p) { 2279 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN)); 2280 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX)); 2281 } 2282 2283 /* 2284 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2285 * RUNNABLE tasks with _different_ clamps, we can end up with an 2286 * inversion. Fix it now when the clamps are applied. 2287 */ 2288 if (unlikely(min_util >= max_util)) 2289 return min_util; 2290 2291 return clamp(util, min_util, max_util); 2292 } 2293 2294 static inline unsigned int uclamp_util(struct rq *rq, unsigned int util) 2295 { 2296 return uclamp_util_with(rq, util, NULL); 2297 } 2298 #else /* CONFIG_UCLAMP_TASK */ 2299 static inline unsigned int uclamp_util_with(struct rq *rq, unsigned int util, 2300 struct task_struct *p) 2301 { 2302 return util; 2303 } 2304 static inline unsigned int uclamp_util(struct rq *rq, unsigned int util) 2305 { 2306 return util; 2307 } 2308 #endif /* CONFIG_UCLAMP_TASK */ 2309 2310 #ifdef arch_scale_freq_capacity 2311 # ifndef arch_scale_freq_invariant 2312 # define arch_scale_freq_invariant() true 2313 # endif 2314 #else 2315 # define arch_scale_freq_invariant() false 2316 #endif 2317 2318 #ifdef CONFIG_SMP 2319 static inline unsigned long capacity_orig_of(int cpu) 2320 { 2321 return cpu_rq(cpu)->cpu_capacity_orig; 2322 } 2323 #endif 2324 2325 /** 2326 * enum schedutil_type - CPU utilization type 2327 * @FREQUENCY_UTIL: Utilization used to select frequency 2328 * @ENERGY_UTIL: Utilization used during energy calculation 2329 * 2330 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2331 * need to be aggregated differently depending on the usage made of them. This 2332 * enum is used within schedutil_freq_util() to differentiate the types of 2333 * utilization expected by the callers, and adjust the aggregation accordingly. 2334 */ 2335 enum schedutil_type { 2336 FREQUENCY_UTIL, 2337 ENERGY_UTIL, 2338 }; 2339 2340 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 2341 2342 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 2343 unsigned long max, enum schedutil_type type, 2344 struct task_struct *p); 2345 2346 static inline unsigned long cpu_bw_dl(struct rq *rq) 2347 { 2348 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2349 } 2350 2351 static inline unsigned long cpu_util_dl(struct rq *rq) 2352 { 2353 return READ_ONCE(rq->avg_dl.util_avg); 2354 } 2355 2356 static inline unsigned long cpu_util_cfs(struct rq *rq) 2357 { 2358 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2359 2360 if (sched_feat(UTIL_EST)) { 2361 util = max_t(unsigned long, util, 2362 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2363 } 2364 2365 return util; 2366 } 2367 2368 static inline unsigned long cpu_util_rt(struct rq *rq) 2369 { 2370 return READ_ONCE(rq->avg_rt.util_avg); 2371 } 2372 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2373 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 2374 unsigned long max, enum schedutil_type type, 2375 struct task_struct *p) 2376 { 2377 return 0; 2378 } 2379 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2380 2381 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2382 static inline unsigned long cpu_util_irq(struct rq *rq) 2383 { 2384 return rq->avg_irq.util_avg; 2385 } 2386 2387 static inline 2388 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2389 { 2390 util *= (max - irq); 2391 util /= max; 2392 2393 return util; 2394 2395 } 2396 #else 2397 static inline unsigned long cpu_util_irq(struct rq *rq) 2398 { 2399 return 0; 2400 } 2401 2402 static inline 2403 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2404 { 2405 return util; 2406 } 2407 #endif 2408 2409 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2410 2411 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 2412 2413 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 2414 2415 static inline bool sched_energy_enabled(void) 2416 { 2417 return static_branch_unlikely(&sched_energy_present); 2418 } 2419 2420 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 2421 2422 #define perf_domain_span(pd) NULL 2423 static inline bool sched_energy_enabled(void) { return false; } 2424 2425 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2426