xref: /openbmc/linux/kernel/sched/sched.h (revision b34e08d5)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11 
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15 
16 struct rq;
17 
18 extern __read_mostly int scheduler_running;
19 
20 extern unsigned long calc_load_update;
21 extern atomic_long_t calc_load_tasks;
22 
23 extern long calc_load_fold_active(struct rq *this_rq);
24 extern void update_cpu_load_active(struct rq *this_rq);
25 
26 /*
27  * Helpers for converting nanosecond timing to jiffy resolution
28  */
29 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30 
31 /*
32  * Increase resolution of nice-level calculations for 64-bit architectures.
33  * The extra resolution improves shares distribution and load balancing of
34  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35  * hierarchies, especially on larger systems. This is not a user-visible change
36  * and does not change the user-interface for setting shares/weights.
37  *
38  * We increase resolution only if we have enough bits to allow this increased
39  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41  * increased costs.
42  */
43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
44 # define SCHED_LOAD_RESOLUTION	10
45 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
46 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
47 #else
48 # define SCHED_LOAD_RESOLUTION	0
49 # define scale_load(w)		(w)
50 # define scale_load_down(w)	(w)
51 #endif
52 
53 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
54 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
55 
56 #define NICE_0_LOAD		SCHED_LOAD_SCALE
57 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
58 
59 /*
60  * Single value that decides SCHED_DEADLINE internal math precision.
61  * 10 -> just above 1us
62  * 9  -> just above 0.5us
63  */
64 #define DL_SCALE (10)
65 
66 /*
67  * These are the 'tuning knobs' of the scheduler:
68  */
69 
70 /*
71  * single value that denotes runtime == period, ie unlimited time.
72  */
73 #define RUNTIME_INF	((u64)~0ULL)
74 
75 static inline int fair_policy(int policy)
76 {
77 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78 }
79 
80 static inline int rt_policy(int policy)
81 {
82 	return policy == SCHED_FIFO || policy == SCHED_RR;
83 }
84 
85 static inline int dl_policy(int policy)
86 {
87 	return policy == SCHED_DEADLINE;
88 }
89 
90 static inline int task_has_rt_policy(struct task_struct *p)
91 {
92 	return rt_policy(p->policy);
93 }
94 
95 static inline int task_has_dl_policy(struct task_struct *p)
96 {
97 	return dl_policy(p->policy);
98 }
99 
100 static inline bool dl_time_before(u64 a, u64 b)
101 {
102 	return (s64)(a - b) < 0;
103 }
104 
105 /*
106  * Tells if entity @a should preempt entity @b.
107  */
108 static inline bool
109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
110 {
111 	return dl_time_before(a->deadline, b->deadline);
112 }
113 
114 /*
115  * This is the priority-queue data structure of the RT scheduling class:
116  */
117 struct rt_prio_array {
118 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 	struct list_head queue[MAX_RT_PRIO];
120 };
121 
122 struct rt_bandwidth {
123 	/* nests inside the rq lock: */
124 	raw_spinlock_t		rt_runtime_lock;
125 	ktime_t			rt_period;
126 	u64			rt_runtime;
127 	struct hrtimer		rt_period_timer;
128 };
129 /*
130  * To keep the bandwidth of -deadline tasks and groups under control
131  * we need some place where:
132  *  - store the maximum -deadline bandwidth of the system (the group);
133  *  - cache the fraction of that bandwidth that is currently allocated.
134  *
135  * This is all done in the data structure below. It is similar to the
136  * one used for RT-throttling (rt_bandwidth), with the main difference
137  * that, since here we are only interested in admission control, we
138  * do not decrease any runtime while the group "executes", neither we
139  * need a timer to replenish it.
140  *
141  * With respect to SMP, the bandwidth is given on a per-CPU basis,
142  * meaning that:
143  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144  *  - dl_total_bw array contains, in the i-eth element, the currently
145  *    allocated bandwidth on the i-eth CPU.
146  * Moreover, groups consume bandwidth on each CPU, while tasks only
147  * consume bandwidth on the CPU they're running on.
148  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149  * that will be shown the next time the proc or cgroup controls will
150  * be red. It on its turn can be changed by writing on its own
151  * control.
152  */
153 struct dl_bandwidth {
154 	raw_spinlock_t dl_runtime_lock;
155 	u64 dl_runtime;
156 	u64 dl_period;
157 };
158 
159 static inline int dl_bandwidth_enabled(void)
160 {
161 	return sysctl_sched_rt_runtime >= 0;
162 }
163 
164 extern struct dl_bw *dl_bw_of(int i);
165 
166 struct dl_bw {
167 	raw_spinlock_t lock;
168 	u64 bw, total_bw;
169 };
170 
171 extern struct mutex sched_domains_mutex;
172 
173 #ifdef CONFIG_CGROUP_SCHED
174 
175 #include <linux/cgroup.h>
176 
177 struct cfs_rq;
178 struct rt_rq;
179 
180 extern struct list_head task_groups;
181 
182 struct cfs_bandwidth {
183 #ifdef CONFIG_CFS_BANDWIDTH
184 	raw_spinlock_t lock;
185 	ktime_t period;
186 	u64 quota, runtime;
187 	s64 hierarchal_quota;
188 	u64 runtime_expires;
189 
190 	int idle, timer_active;
191 	struct hrtimer period_timer, slack_timer;
192 	struct list_head throttled_cfs_rq;
193 
194 	/* statistics */
195 	int nr_periods, nr_throttled;
196 	u64 throttled_time;
197 #endif
198 };
199 
200 /* task group related information */
201 struct task_group {
202 	struct cgroup_subsys_state css;
203 
204 #ifdef CONFIG_FAIR_GROUP_SCHED
205 	/* schedulable entities of this group on each cpu */
206 	struct sched_entity **se;
207 	/* runqueue "owned" by this group on each cpu */
208 	struct cfs_rq **cfs_rq;
209 	unsigned long shares;
210 
211 #ifdef	CONFIG_SMP
212 	atomic_long_t load_avg;
213 	atomic_t runnable_avg;
214 #endif
215 #endif
216 
217 #ifdef CONFIG_RT_GROUP_SCHED
218 	struct sched_rt_entity **rt_se;
219 	struct rt_rq **rt_rq;
220 
221 	struct rt_bandwidth rt_bandwidth;
222 #endif
223 
224 	struct rcu_head rcu;
225 	struct list_head list;
226 
227 	struct task_group *parent;
228 	struct list_head siblings;
229 	struct list_head children;
230 
231 #ifdef CONFIG_SCHED_AUTOGROUP
232 	struct autogroup *autogroup;
233 #endif
234 
235 	struct cfs_bandwidth cfs_bandwidth;
236 };
237 
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
240 
241 /*
242  * A weight of 0 or 1 can cause arithmetics problems.
243  * A weight of a cfs_rq is the sum of weights of which entities
244  * are queued on this cfs_rq, so a weight of a entity should not be
245  * too large, so as the shares value of a task group.
246  * (The default weight is 1024 - so there's no practical
247  *  limitation from this.)
248  */
249 #define MIN_SHARES	(1UL <<  1)
250 #define MAX_SHARES	(1UL << 18)
251 #endif
252 
253 typedef int (*tg_visitor)(struct task_group *, void *);
254 
255 extern int walk_tg_tree_from(struct task_group *from,
256 			     tg_visitor down, tg_visitor up, void *data);
257 
258 /*
259  * Iterate the full tree, calling @down when first entering a node and @up when
260  * leaving it for the final time.
261  *
262  * Caller must hold rcu_lock or sufficient equivalent.
263  */
264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265 {
266 	return walk_tg_tree_from(&root_task_group, down, up, data);
267 }
268 
269 extern int tg_nop(struct task_group *tg, void *data);
270 
271 extern void free_fair_sched_group(struct task_group *tg);
272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 			struct sched_entity *se, int cpu,
276 			struct sched_entity *parent);
277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279 
280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283 
284 extern void free_rt_sched_group(struct task_group *tg);
285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 		struct sched_rt_entity *rt_se, int cpu,
288 		struct sched_rt_entity *parent);
289 
290 extern struct task_group *sched_create_group(struct task_group *parent);
291 extern void sched_online_group(struct task_group *tg,
292 			       struct task_group *parent);
293 extern void sched_destroy_group(struct task_group *tg);
294 extern void sched_offline_group(struct task_group *tg);
295 
296 extern void sched_move_task(struct task_struct *tsk);
297 
298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300 #endif
301 
302 #else /* CONFIG_CGROUP_SCHED */
303 
304 struct cfs_bandwidth { };
305 
306 #endif	/* CONFIG_CGROUP_SCHED */
307 
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 	struct load_weight load;
311 	unsigned int nr_running, h_nr_running;
312 
313 	u64 exec_clock;
314 	u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 	u64 min_vruntime_copy;
317 #endif
318 
319 	struct rb_root tasks_timeline;
320 	struct rb_node *rb_leftmost;
321 
322 	/*
323 	 * 'curr' points to currently running entity on this cfs_rq.
324 	 * It is set to NULL otherwise (i.e when none are currently running).
325 	 */
326 	struct sched_entity *curr, *next, *last, *skip;
327 
328 #ifdef	CONFIG_SCHED_DEBUG
329 	unsigned int nr_spread_over;
330 #endif
331 
332 #ifdef CONFIG_SMP
333 	/*
334 	 * CFS Load tracking
335 	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 	 * This allows for the description of both thread and group usage (in
337 	 * the FAIR_GROUP_SCHED case).
338 	 */
339 	unsigned long runnable_load_avg, blocked_load_avg;
340 	atomic64_t decay_counter;
341 	u64 last_decay;
342 	atomic_long_t removed_load;
343 
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 	/* Required to track per-cpu representation of a task_group */
346 	u32 tg_runnable_contrib;
347 	unsigned long tg_load_contrib;
348 
349 	/*
350 	 *   h_load = weight * f(tg)
351 	 *
352 	 * Where f(tg) is the recursive weight fraction assigned to
353 	 * this group.
354 	 */
355 	unsigned long h_load;
356 	u64 last_h_load_update;
357 	struct sched_entity *h_load_next;
358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359 #endif /* CONFIG_SMP */
360 
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
363 
364 	/*
365 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 	 * (like users, containers etc.)
368 	 *
369 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 	 * list is used during load balance.
371 	 */
372 	int on_list;
373 	struct list_head leaf_cfs_rq_list;
374 	struct task_group *tg;	/* group that "owns" this runqueue */
375 
376 #ifdef CONFIG_CFS_BANDWIDTH
377 	int runtime_enabled;
378 	u64 runtime_expires;
379 	s64 runtime_remaining;
380 
381 	u64 throttled_clock, throttled_clock_task;
382 	u64 throttled_clock_task_time;
383 	int throttled, throttle_count;
384 	struct list_head throttled_list;
385 #endif /* CONFIG_CFS_BANDWIDTH */
386 #endif /* CONFIG_FAIR_GROUP_SCHED */
387 };
388 
389 static inline int rt_bandwidth_enabled(void)
390 {
391 	return sysctl_sched_rt_runtime >= 0;
392 }
393 
394 /* Real-Time classes' related field in a runqueue: */
395 struct rt_rq {
396 	struct rt_prio_array active;
397 	unsigned int rt_nr_running;
398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 	struct {
400 		int curr; /* highest queued rt task prio */
401 #ifdef CONFIG_SMP
402 		int next; /* next highest */
403 #endif
404 	} highest_prio;
405 #endif
406 #ifdef CONFIG_SMP
407 	unsigned long rt_nr_migratory;
408 	unsigned long rt_nr_total;
409 	int overloaded;
410 	struct plist_head pushable_tasks;
411 #endif
412 	int rt_throttled;
413 	u64 rt_time;
414 	u64 rt_runtime;
415 	/* Nests inside the rq lock: */
416 	raw_spinlock_t rt_runtime_lock;
417 
418 #ifdef CONFIG_RT_GROUP_SCHED
419 	unsigned long rt_nr_boosted;
420 
421 	struct rq *rq;
422 	struct task_group *tg;
423 #endif
424 };
425 
426 #ifdef CONFIG_RT_GROUP_SCHED
427 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
428 {
429 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
430 }
431 #else
432 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
433 {
434 	return rt_rq->rt_throttled;
435 }
436 #endif
437 
438 /* Deadline class' related fields in a runqueue */
439 struct dl_rq {
440 	/* runqueue is an rbtree, ordered by deadline */
441 	struct rb_root rb_root;
442 	struct rb_node *rb_leftmost;
443 
444 	unsigned long dl_nr_running;
445 
446 #ifdef CONFIG_SMP
447 	/*
448 	 * Deadline values of the currently executing and the
449 	 * earliest ready task on this rq. Caching these facilitates
450 	 * the decision wether or not a ready but not running task
451 	 * should migrate somewhere else.
452 	 */
453 	struct {
454 		u64 curr;
455 		u64 next;
456 	} earliest_dl;
457 
458 	unsigned long dl_nr_migratory;
459 	int overloaded;
460 
461 	/*
462 	 * Tasks on this rq that can be pushed away. They are kept in
463 	 * an rb-tree, ordered by tasks' deadlines, with caching
464 	 * of the leftmost (earliest deadline) element.
465 	 */
466 	struct rb_root pushable_dl_tasks_root;
467 	struct rb_node *pushable_dl_tasks_leftmost;
468 #else
469 	struct dl_bw dl_bw;
470 #endif
471 };
472 
473 #ifdef CONFIG_SMP
474 
475 /*
476  * We add the notion of a root-domain which will be used to define per-domain
477  * variables. Each exclusive cpuset essentially defines an island domain by
478  * fully partitioning the member cpus from any other cpuset. Whenever a new
479  * exclusive cpuset is created, we also create and attach a new root-domain
480  * object.
481  *
482  */
483 struct root_domain {
484 	atomic_t refcount;
485 	atomic_t rto_count;
486 	struct rcu_head rcu;
487 	cpumask_var_t span;
488 	cpumask_var_t online;
489 
490 	/*
491 	 * The bit corresponding to a CPU gets set here if such CPU has more
492 	 * than one runnable -deadline task (as it is below for RT tasks).
493 	 */
494 	cpumask_var_t dlo_mask;
495 	atomic_t dlo_count;
496 	struct dl_bw dl_bw;
497 	struct cpudl cpudl;
498 
499 	/*
500 	 * The "RT overload" flag: it gets set if a CPU has more than
501 	 * one runnable RT task.
502 	 */
503 	cpumask_var_t rto_mask;
504 	struct cpupri cpupri;
505 };
506 
507 extern struct root_domain def_root_domain;
508 
509 #endif /* CONFIG_SMP */
510 
511 /*
512  * This is the main, per-CPU runqueue data structure.
513  *
514  * Locking rule: those places that want to lock multiple runqueues
515  * (such as the load balancing or the thread migration code), lock
516  * acquire operations must be ordered by ascending &runqueue.
517  */
518 struct rq {
519 	/* runqueue lock: */
520 	raw_spinlock_t lock;
521 
522 	/*
523 	 * nr_running and cpu_load should be in the same cacheline because
524 	 * remote CPUs use both these fields when doing load calculation.
525 	 */
526 	unsigned int nr_running;
527 #ifdef CONFIG_NUMA_BALANCING
528 	unsigned int nr_numa_running;
529 	unsigned int nr_preferred_running;
530 #endif
531 	#define CPU_LOAD_IDX_MAX 5
532 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
533 	unsigned long last_load_update_tick;
534 #ifdef CONFIG_NO_HZ_COMMON
535 	u64 nohz_stamp;
536 	unsigned long nohz_flags;
537 #endif
538 #ifdef CONFIG_NO_HZ_FULL
539 	unsigned long last_sched_tick;
540 #endif
541 	int skip_clock_update;
542 
543 	/* capture load from *all* tasks on this cpu: */
544 	struct load_weight load;
545 	unsigned long nr_load_updates;
546 	u64 nr_switches;
547 
548 	struct cfs_rq cfs;
549 	struct rt_rq rt;
550 	struct dl_rq dl;
551 
552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 	/* list of leaf cfs_rq on this cpu: */
554 	struct list_head leaf_cfs_rq_list;
555 
556 	struct sched_avg avg;
557 #endif /* CONFIG_FAIR_GROUP_SCHED */
558 
559 	/*
560 	 * This is part of a global counter where only the total sum
561 	 * over all CPUs matters. A task can increase this counter on
562 	 * one CPU and if it got migrated afterwards it may decrease
563 	 * it on another CPU. Always updated under the runqueue lock:
564 	 */
565 	unsigned long nr_uninterruptible;
566 
567 	struct task_struct *curr, *idle, *stop;
568 	unsigned long next_balance;
569 	struct mm_struct *prev_mm;
570 
571 	u64 clock;
572 	u64 clock_task;
573 
574 	atomic_t nr_iowait;
575 
576 #ifdef CONFIG_SMP
577 	struct root_domain *rd;
578 	struct sched_domain *sd;
579 
580 	unsigned long cpu_power;
581 
582 	unsigned char idle_balance;
583 	/* For active balancing */
584 	int post_schedule;
585 	int active_balance;
586 	int push_cpu;
587 	struct cpu_stop_work active_balance_work;
588 	/* cpu of this runqueue: */
589 	int cpu;
590 	int online;
591 
592 	struct list_head cfs_tasks;
593 
594 	u64 rt_avg;
595 	u64 age_stamp;
596 	u64 idle_stamp;
597 	u64 avg_idle;
598 
599 	/* This is used to determine avg_idle's max value */
600 	u64 max_idle_balance_cost;
601 #endif
602 
603 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
604 	u64 prev_irq_time;
605 #endif
606 #ifdef CONFIG_PARAVIRT
607 	u64 prev_steal_time;
608 #endif
609 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
610 	u64 prev_steal_time_rq;
611 #endif
612 
613 	/* calc_load related fields */
614 	unsigned long calc_load_update;
615 	long calc_load_active;
616 
617 #ifdef CONFIG_SCHED_HRTICK
618 #ifdef CONFIG_SMP
619 	int hrtick_csd_pending;
620 	struct call_single_data hrtick_csd;
621 #endif
622 	struct hrtimer hrtick_timer;
623 #endif
624 
625 #ifdef CONFIG_SCHEDSTATS
626 	/* latency stats */
627 	struct sched_info rq_sched_info;
628 	unsigned long long rq_cpu_time;
629 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
630 
631 	/* sys_sched_yield() stats */
632 	unsigned int yld_count;
633 
634 	/* schedule() stats */
635 	unsigned int sched_count;
636 	unsigned int sched_goidle;
637 
638 	/* try_to_wake_up() stats */
639 	unsigned int ttwu_count;
640 	unsigned int ttwu_local;
641 #endif
642 
643 #ifdef CONFIG_SMP
644 	struct llist_head wake_list;
645 #endif
646 };
647 
648 static inline int cpu_of(struct rq *rq)
649 {
650 #ifdef CONFIG_SMP
651 	return rq->cpu;
652 #else
653 	return 0;
654 #endif
655 }
656 
657 DECLARE_PER_CPU(struct rq, runqueues);
658 
659 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
660 #define this_rq()		(&__get_cpu_var(runqueues))
661 #define task_rq(p)		cpu_rq(task_cpu(p))
662 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
663 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
664 
665 static inline u64 rq_clock(struct rq *rq)
666 {
667 	return rq->clock;
668 }
669 
670 static inline u64 rq_clock_task(struct rq *rq)
671 {
672 	return rq->clock_task;
673 }
674 
675 #ifdef CONFIG_NUMA_BALANCING
676 extern void sched_setnuma(struct task_struct *p, int node);
677 extern int migrate_task_to(struct task_struct *p, int cpu);
678 extern int migrate_swap(struct task_struct *, struct task_struct *);
679 #endif /* CONFIG_NUMA_BALANCING */
680 
681 #ifdef CONFIG_SMP
682 
683 #define rcu_dereference_check_sched_domain(p) \
684 	rcu_dereference_check((p), \
685 			      lockdep_is_held(&sched_domains_mutex))
686 
687 /*
688  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
689  * See detach_destroy_domains: synchronize_sched for details.
690  *
691  * The domain tree of any CPU may only be accessed from within
692  * preempt-disabled sections.
693  */
694 #define for_each_domain(cpu, __sd) \
695 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
696 			__sd; __sd = __sd->parent)
697 
698 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
699 
700 /**
701  * highest_flag_domain - Return highest sched_domain containing flag.
702  * @cpu:	The cpu whose highest level of sched domain is to
703  *		be returned.
704  * @flag:	The flag to check for the highest sched_domain
705  *		for the given cpu.
706  *
707  * Returns the highest sched_domain of a cpu which contains the given flag.
708  */
709 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
710 {
711 	struct sched_domain *sd, *hsd = NULL;
712 
713 	for_each_domain(cpu, sd) {
714 		if (!(sd->flags & flag))
715 			break;
716 		hsd = sd;
717 	}
718 
719 	return hsd;
720 }
721 
722 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
723 {
724 	struct sched_domain *sd;
725 
726 	for_each_domain(cpu, sd) {
727 		if (sd->flags & flag)
728 			break;
729 	}
730 
731 	return sd;
732 }
733 
734 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
735 DECLARE_PER_CPU(int, sd_llc_size);
736 DECLARE_PER_CPU(int, sd_llc_id);
737 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
738 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
739 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
740 
741 struct sched_group_power {
742 	atomic_t ref;
743 	/*
744 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
745 	 * single CPU.
746 	 */
747 	unsigned int power, power_orig;
748 	unsigned long next_update;
749 	int imbalance; /* XXX unrelated to power but shared group state */
750 	/*
751 	 * Number of busy cpus in this group.
752 	 */
753 	atomic_t nr_busy_cpus;
754 
755 	unsigned long cpumask[0]; /* iteration mask */
756 };
757 
758 struct sched_group {
759 	struct sched_group *next;	/* Must be a circular list */
760 	atomic_t ref;
761 
762 	unsigned int group_weight;
763 	struct sched_group_power *sgp;
764 
765 	/*
766 	 * The CPUs this group covers.
767 	 *
768 	 * NOTE: this field is variable length. (Allocated dynamically
769 	 * by attaching extra space to the end of the structure,
770 	 * depending on how many CPUs the kernel has booted up with)
771 	 */
772 	unsigned long cpumask[0];
773 };
774 
775 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
776 {
777 	return to_cpumask(sg->cpumask);
778 }
779 
780 /*
781  * cpumask masking which cpus in the group are allowed to iterate up the domain
782  * tree.
783  */
784 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
785 {
786 	return to_cpumask(sg->sgp->cpumask);
787 }
788 
789 /**
790  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
791  * @group: The group whose first cpu is to be returned.
792  */
793 static inline unsigned int group_first_cpu(struct sched_group *group)
794 {
795 	return cpumask_first(sched_group_cpus(group));
796 }
797 
798 extern int group_balance_cpu(struct sched_group *sg);
799 
800 #endif /* CONFIG_SMP */
801 
802 #include "stats.h"
803 #include "auto_group.h"
804 
805 #ifdef CONFIG_CGROUP_SCHED
806 
807 /*
808  * Return the group to which this tasks belongs.
809  *
810  * We cannot use task_css() and friends because the cgroup subsystem
811  * changes that value before the cgroup_subsys::attach() method is called,
812  * therefore we cannot pin it and might observe the wrong value.
813  *
814  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
815  * core changes this before calling sched_move_task().
816  *
817  * Instead we use a 'copy' which is updated from sched_move_task() while
818  * holding both task_struct::pi_lock and rq::lock.
819  */
820 static inline struct task_group *task_group(struct task_struct *p)
821 {
822 	return p->sched_task_group;
823 }
824 
825 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
826 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
827 {
828 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
829 	struct task_group *tg = task_group(p);
830 #endif
831 
832 #ifdef CONFIG_FAIR_GROUP_SCHED
833 	p->se.cfs_rq = tg->cfs_rq[cpu];
834 	p->se.parent = tg->se[cpu];
835 #endif
836 
837 #ifdef CONFIG_RT_GROUP_SCHED
838 	p->rt.rt_rq  = tg->rt_rq[cpu];
839 	p->rt.parent = tg->rt_se[cpu];
840 #endif
841 }
842 
843 #else /* CONFIG_CGROUP_SCHED */
844 
845 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
846 static inline struct task_group *task_group(struct task_struct *p)
847 {
848 	return NULL;
849 }
850 
851 #endif /* CONFIG_CGROUP_SCHED */
852 
853 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
854 {
855 	set_task_rq(p, cpu);
856 #ifdef CONFIG_SMP
857 	/*
858 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
859 	 * successfuly executed on another CPU. We must ensure that updates of
860 	 * per-task data have been completed by this moment.
861 	 */
862 	smp_wmb();
863 	task_thread_info(p)->cpu = cpu;
864 	p->wake_cpu = cpu;
865 #endif
866 }
867 
868 /*
869  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
870  */
871 #ifdef CONFIG_SCHED_DEBUG
872 # include <linux/static_key.h>
873 # define const_debug __read_mostly
874 #else
875 # define const_debug const
876 #endif
877 
878 extern const_debug unsigned int sysctl_sched_features;
879 
880 #define SCHED_FEAT(name, enabled)	\
881 	__SCHED_FEAT_##name ,
882 
883 enum {
884 #include "features.h"
885 	__SCHED_FEAT_NR,
886 };
887 
888 #undef SCHED_FEAT
889 
890 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
891 static __always_inline bool static_branch__true(struct static_key *key)
892 {
893 	return static_key_true(key); /* Not out of line branch. */
894 }
895 
896 static __always_inline bool static_branch__false(struct static_key *key)
897 {
898 	return static_key_false(key); /* Out of line branch. */
899 }
900 
901 #define SCHED_FEAT(name, enabled)					\
902 static __always_inline bool static_branch_##name(struct static_key *key) \
903 {									\
904 	return static_branch__##enabled(key);				\
905 }
906 
907 #include "features.h"
908 
909 #undef SCHED_FEAT
910 
911 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
912 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
913 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
914 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
915 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
916 
917 #ifdef CONFIG_NUMA_BALANCING
918 #define sched_feat_numa(x) sched_feat(x)
919 #ifdef CONFIG_SCHED_DEBUG
920 #define numabalancing_enabled sched_feat_numa(NUMA)
921 #else
922 extern bool numabalancing_enabled;
923 #endif /* CONFIG_SCHED_DEBUG */
924 #else
925 #define sched_feat_numa(x) (0)
926 #define numabalancing_enabled (0)
927 #endif /* CONFIG_NUMA_BALANCING */
928 
929 static inline u64 global_rt_period(void)
930 {
931 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
932 }
933 
934 static inline u64 global_rt_runtime(void)
935 {
936 	if (sysctl_sched_rt_runtime < 0)
937 		return RUNTIME_INF;
938 
939 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
940 }
941 
942 static inline int task_current(struct rq *rq, struct task_struct *p)
943 {
944 	return rq->curr == p;
945 }
946 
947 static inline int task_running(struct rq *rq, struct task_struct *p)
948 {
949 #ifdef CONFIG_SMP
950 	return p->on_cpu;
951 #else
952 	return task_current(rq, p);
953 #endif
954 }
955 
956 
957 #ifndef prepare_arch_switch
958 # define prepare_arch_switch(next)	do { } while (0)
959 #endif
960 #ifndef finish_arch_switch
961 # define finish_arch_switch(prev)	do { } while (0)
962 #endif
963 #ifndef finish_arch_post_lock_switch
964 # define finish_arch_post_lock_switch()	do { } while (0)
965 #endif
966 
967 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
968 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
969 {
970 #ifdef CONFIG_SMP
971 	/*
972 	 * We can optimise this out completely for !SMP, because the
973 	 * SMP rebalancing from interrupt is the only thing that cares
974 	 * here.
975 	 */
976 	next->on_cpu = 1;
977 #endif
978 }
979 
980 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
981 {
982 #ifdef CONFIG_SMP
983 	/*
984 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
985 	 * We must ensure this doesn't happen until the switch is completely
986 	 * finished.
987 	 */
988 	smp_wmb();
989 	prev->on_cpu = 0;
990 #endif
991 #ifdef CONFIG_DEBUG_SPINLOCK
992 	/* this is a valid case when another task releases the spinlock */
993 	rq->lock.owner = current;
994 #endif
995 	/*
996 	 * If we are tracking spinlock dependencies then we have to
997 	 * fix up the runqueue lock - which gets 'carried over' from
998 	 * prev into current:
999 	 */
1000 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1001 
1002 	raw_spin_unlock_irq(&rq->lock);
1003 }
1004 
1005 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1006 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1007 {
1008 #ifdef CONFIG_SMP
1009 	/*
1010 	 * We can optimise this out completely for !SMP, because the
1011 	 * SMP rebalancing from interrupt is the only thing that cares
1012 	 * here.
1013 	 */
1014 	next->on_cpu = 1;
1015 #endif
1016 	raw_spin_unlock(&rq->lock);
1017 }
1018 
1019 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1020 {
1021 #ifdef CONFIG_SMP
1022 	/*
1023 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1024 	 * We must ensure this doesn't happen until the switch is completely
1025 	 * finished.
1026 	 */
1027 	smp_wmb();
1028 	prev->on_cpu = 0;
1029 #endif
1030 	local_irq_enable();
1031 }
1032 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1033 
1034 /*
1035  * wake flags
1036  */
1037 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1038 #define WF_FORK		0x02		/* child wakeup after fork */
1039 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1040 
1041 /*
1042  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1043  * of tasks with abnormal "nice" values across CPUs the contribution that
1044  * each task makes to its run queue's load is weighted according to its
1045  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1046  * scaled version of the new time slice allocation that they receive on time
1047  * slice expiry etc.
1048  */
1049 
1050 #define WEIGHT_IDLEPRIO                3
1051 #define WMULT_IDLEPRIO         1431655765
1052 
1053 /*
1054  * Nice levels are multiplicative, with a gentle 10% change for every
1055  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1056  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1057  * that remained on nice 0.
1058  *
1059  * The "10% effect" is relative and cumulative: from _any_ nice level,
1060  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1061  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1062  * If a task goes up by ~10% and another task goes down by ~10% then
1063  * the relative distance between them is ~25%.)
1064  */
1065 static const int prio_to_weight[40] = {
1066  /* -20 */     88761,     71755,     56483,     46273,     36291,
1067  /* -15 */     29154,     23254,     18705,     14949,     11916,
1068  /* -10 */      9548,      7620,      6100,      4904,      3906,
1069  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1070  /*   0 */      1024,       820,       655,       526,       423,
1071  /*   5 */       335,       272,       215,       172,       137,
1072  /*  10 */       110,        87,        70,        56,        45,
1073  /*  15 */        36,        29,        23,        18,        15,
1074 };
1075 
1076 /*
1077  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1078  *
1079  * In cases where the weight does not change often, we can use the
1080  * precalculated inverse to speed up arithmetics by turning divisions
1081  * into multiplications:
1082  */
1083 static const u32 prio_to_wmult[40] = {
1084  /* -20 */     48388,     59856,     76040,     92818,    118348,
1085  /* -15 */    147320,    184698,    229616,    287308,    360437,
1086  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1087  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1088  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1089  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1090  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1091  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1092 };
1093 
1094 #define ENQUEUE_WAKEUP		1
1095 #define ENQUEUE_HEAD		2
1096 #ifdef CONFIG_SMP
1097 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1098 #else
1099 #define ENQUEUE_WAKING		0
1100 #endif
1101 #define ENQUEUE_REPLENISH	8
1102 
1103 #define DEQUEUE_SLEEP		1
1104 
1105 #define RETRY_TASK		((void *)-1UL)
1106 
1107 struct sched_class {
1108 	const struct sched_class *next;
1109 
1110 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1111 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1112 	void (*yield_task) (struct rq *rq);
1113 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1114 
1115 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1116 
1117 	/*
1118 	 * It is the responsibility of the pick_next_task() method that will
1119 	 * return the next task to call put_prev_task() on the @prev task or
1120 	 * something equivalent.
1121 	 *
1122 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1123 	 * tasks.
1124 	 */
1125 	struct task_struct * (*pick_next_task) (struct rq *rq,
1126 						struct task_struct *prev);
1127 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128 
1129 #ifdef CONFIG_SMP
1130 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1131 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132 
1133 	void (*post_schedule) (struct rq *this_rq);
1134 	void (*task_waking) (struct task_struct *task);
1135 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1136 
1137 	void (*set_cpus_allowed)(struct task_struct *p,
1138 				 const struct cpumask *newmask);
1139 
1140 	void (*rq_online)(struct rq *rq);
1141 	void (*rq_offline)(struct rq *rq);
1142 #endif
1143 
1144 	void (*set_curr_task) (struct rq *rq);
1145 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1146 	void (*task_fork) (struct task_struct *p);
1147 	void (*task_dead) (struct task_struct *p);
1148 
1149 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1150 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1151 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1152 			     int oldprio);
1153 
1154 	unsigned int (*get_rr_interval) (struct rq *rq,
1155 					 struct task_struct *task);
1156 
1157 #ifdef CONFIG_FAIR_GROUP_SCHED
1158 	void (*task_move_group) (struct task_struct *p, int on_rq);
1159 #endif
1160 };
1161 
1162 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1163 {
1164 	prev->sched_class->put_prev_task(rq, prev);
1165 }
1166 
1167 #define sched_class_highest (&stop_sched_class)
1168 #define for_each_class(class) \
1169    for (class = sched_class_highest; class; class = class->next)
1170 
1171 extern const struct sched_class stop_sched_class;
1172 extern const struct sched_class dl_sched_class;
1173 extern const struct sched_class rt_sched_class;
1174 extern const struct sched_class fair_sched_class;
1175 extern const struct sched_class idle_sched_class;
1176 
1177 
1178 #ifdef CONFIG_SMP
1179 
1180 extern void update_group_power(struct sched_domain *sd, int cpu);
1181 
1182 extern void trigger_load_balance(struct rq *rq);
1183 
1184 extern void idle_enter_fair(struct rq *this_rq);
1185 extern void idle_exit_fair(struct rq *this_rq);
1186 
1187 #else
1188 
1189 static inline void idle_enter_fair(struct rq *rq) { }
1190 static inline void idle_exit_fair(struct rq *rq) { }
1191 
1192 #endif
1193 
1194 extern void sysrq_sched_debug_show(void);
1195 extern void sched_init_granularity(void);
1196 extern void update_max_interval(void);
1197 
1198 extern void init_sched_dl_class(void);
1199 extern void init_sched_rt_class(void);
1200 extern void init_sched_fair_class(void);
1201 extern void init_sched_dl_class(void);
1202 
1203 extern void resched_task(struct task_struct *p);
1204 extern void resched_cpu(int cpu);
1205 
1206 extern struct rt_bandwidth def_rt_bandwidth;
1207 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1208 
1209 extern struct dl_bandwidth def_dl_bandwidth;
1210 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1211 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1212 
1213 unsigned long to_ratio(u64 period, u64 runtime);
1214 
1215 extern void update_idle_cpu_load(struct rq *this_rq);
1216 
1217 extern void init_task_runnable_average(struct task_struct *p);
1218 
1219 static inline void inc_nr_running(struct rq *rq)
1220 {
1221 	rq->nr_running++;
1222 
1223 #ifdef CONFIG_NO_HZ_FULL
1224 	if (rq->nr_running == 2) {
1225 		if (tick_nohz_full_cpu(rq->cpu)) {
1226 			/* Order rq->nr_running write against the IPI */
1227 			smp_wmb();
1228 			smp_send_reschedule(rq->cpu);
1229 		}
1230        }
1231 #endif
1232 }
1233 
1234 static inline void dec_nr_running(struct rq *rq)
1235 {
1236 	rq->nr_running--;
1237 }
1238 
1239 static inline void rq_last_tick_reset(struct rq *rq)
1240 {
1241 #ifdef CONFIG_NO_HZ_FULL
1242 	rq->last_sched_tick = jiffies;
1243 #endif
1244 }
1245 
1246 extern void update_rq_clock(struct rq *rq);
1247 
1248 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1249 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1250 
1251 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1252 
1253 extern const_debug unsigned int sysctl_sched_time_avg;
1254 extern const_debug unsigned int sysctl_sched_nr_migrate;
1255 extern const_debug unsigned int sysctl_sched_migration_cost;
1256 
1257 static inline u64 sched_avg_period(void)
1258 {
1259 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261 
1262 #ifdef CONFIG_SCHED_HRTICK
1263 
1264 /*
1265  * Use hrtick when:
1266  *  - enabled by features
1267  *  - hrtimer is actually high res
1268  */
1269 static inline int hrtick_enabled(struct rq *rq)
1270 {
1271 	if (!sched_feat(HRTICK))
1272 		return 0;
1273 	if (!cpu_active(cpu_of(rq)))
1274 		return 0;
1275 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1276 }
1277 
1278 void hrtick_start(struct rq *rq, u64 delay);
1279 
1280 #else
1281 
1282 static inline int hrtick_enabled(struct rq *rq)
1283 {
1284 	return 0;
1285 }
1286 
1287 #endif /* CONFIG_SCHED_HRTICK */
1288 
1289 #ifdef CONFIG_SMP
1290 extern void sched_avg_update(struct rq *rq);
1291 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 	rq->rt_avg += rt_delta;
1294 	sched_avg_update(rq);
1295 }
1296 #else
1297 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1298 static inline void sched_avg_update(struct rq *rq) { }
1299 #endif
1300 
1301 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1302 
1303 #ifdef CONFIG_SMP
1304 #ifdef CONFIG_PREEMPT
1305 
1306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1307 
1308 /*
1309  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1310  * way at the expense of forcing extra atomic operations in all
1311  * invocations.  This assures that the double_lock is acquired using the
1312  * same underlying policy as the spinlock_t on this architecture, which
1313  * reduces latency compared to the unfair variant below.  However, it
1314  * also adds more overhead and therefore may reduce throughput.
1315  */
1316 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1317 	__releases(this_rq->lock)
1318 	__acquires(busiest->lock)
1319 	__acquires(this_rq->lock)
1320 {
1321 	raw_spin_unlock(&this_rq->lock);
1322 	double_rq_lock(this_rq, busiest);
1323 
1324 	return 1;
1325 }
1326 
1327 #else
1328 /*
1329  * Unfair double_lock_balance: Optimizes throughput at the expense of
1330  * latency by eliminating extra atomic operations when the locks are
1331  * already in proper order on entry.  This favors lower cpu-ids and will
1332  * grant the double lock to lower cpus over higher ids under contention,
1333  * regardless of entry order into the function.
1334  */
1335 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1336 	__releases(this_rq->lock)
1337 	__acquires(busiest->lock)
1338 	__acquires(this_rq->lock)
1339 {
1340 	int ret = 0;
1341 
1342 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1343 		if (busiest < this_rq) {
1344 			raw_spin_unlock(&this_rq->lock);
1345 			raw_spin_lock(&busiest->lock);
1346 			raw_spin_lock_nested(&this_rq->lock,
1347 					      SINGLE_DEPTH_NESTING);
1348 			ret = 1;
1349 		} else
1350 			raw_spin_lock_nested(&busiest->lock,
1351 					      SINGLE_DEPTH_NESTING);
1352 	}
1353 	return ret;
1354 }
1355 
1356 #endif /* CONFIG_PREEMPT */
1357 
1358 /*
1359  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1360  */
1361 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1362 {
1363 	if (unlikely(!irqs_disabled())) {
1364 		/* printk() doesn't work good under rq->lock */
1365 		raw_spin_unlock(&this_rq->lock);
1366 		BUG_ON(1);
1367 	}
1368 
1369 	return _double_lock_balance(this_rq, busiest);
1370 }
1371 
1372 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1373 	__releases(busiest->lock)
1374 {
1375 	raw_spin_unlock(&busiest->lock);
1376 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1377 }
1378 
1379 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1380 {
1381 	if (l1 > l2)
1382 		swap(l1, l2);
1383 
1384 	spin_lock(l1);
1385 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1386 }
1387 
1388 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1389 {
1390 	if (l1 > l2)
1391 		swap(l1, l2);
1392 
1393 	raw_spin_lock(l1);
1394 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1395 }
1396 
1397 /*
1398  * double_rq_lock - safely lock two runqueues
1399  *
1400  * Note this does not disable interrupts like task_rq_lock,
1401  * you need to do so manually before calling.
1402  */
1403 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1404 	__acquires(rq1->lock)
1405 	__acquires(rq2->lock)
1406 {
1407 	BUG_ON(!irqs_disabled());
1408 	if (rq1 == rq2) {
1409 		raw_spin_lock(&rq1->lock);
1410 		__acquire(rq2->lock);	/* Fake it out ;) */
1411 	} else {
1412 		if (rq1 < rq2) {
1413 			raw_spin_lock(&rq1->lock);
1414 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1415 		} else {
1416 			raw_spin_lock(&rq2->lock);
1417 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1418 		}
1419 	}
1420 }
1421 
1422 /*
1423  * double_rq_unlock - safely unlock two runqueues
1424  *
1425  * Note this does not restore interrupts like task_rq_unlock,
1426  * you need to do so manually after calling.
1427  */
1428 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1429 	__releases(rq1->lock)
1430 	__releases(rq2->lock)
1431 {
1432 	raw_spin_unlock(&rq1->lock);
1433 	if (rq1 != rq2)
1434 		raw_spin_unlock(&rq2->lock);
1435 	else
1436 		__release(rq2->lock);
1437 }
1438 
1439 #else /* CONFIG_SMP */
1440 
1441 /*
1442  * double_rq_lock - safely lock two runqueues
1443  *
1444  * Note this does not disable interrupts like task_rq_lock,
1445  * you need to do so manually before calling.
1446  */
1447 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1448 	__acquires(rq1->lock)
1449 	__acquires(rq2->lock)
1450 {
1451 	BUG_ON(!irqs_disabled());
1452 	BUG_ON(rq1 != rq2);
1453 	raw_spin_lock(&rq1->lock);
1454 	__acquire(rq2->lock);	/* Fake it out ;) */
1455 }
1456 
1457 /*
1458  * double_rq_unlock - safely unlock two runqueues
1459  *
1460  * Note this does not restore interrupts like task_rq_unlock,
1461  * you need to do so manually after calling.
1462  */
1463 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1464 	__releases(rq1->lock)
1465 	__releases(rq2->lock)
1466 {
1467 	BUG_ON(rq1 != rq2);
1468 	raw_spin_unlock(&rq1->lock);
1469 	__release(rq2->lock);
1470 }
1471 
1472 #endif
1473 
1474 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1475 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1476 extern void print_cfs_stats(struct seq_file *m, int cpu);
1477 extern void print_rt_stats(struct seq_file *m, int cpu);
1478 
1479 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1480 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1481 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1482 
1483 extern void cfs_bandwidth_usage_inc(void);
1484 extern void cfs_bandwidth_usage_dec(void);
1485 
1486 #ifdef CONFIG_NO_HZ_COMMON
1487 enum rq_nohz_flag_bits {
1488 	NOHZ_TICK_STOPPED,
1489 	NOHZ_BALANCE_KICK,
1490 };
1491 
1492 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1493 #endif
1494 
1495 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1496 
1497 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1498 DECLARE_PER_CPU(u64, cpu_softirq_time);
1499 
1500 #ifndef CONFIG_64BIT
1501 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1502 
1503 static inline void irq_time_write_begin(void)
1504 {
1505 	__this_cpu_inc(irq_time_seq.sequence);
1506 	smp_wmb();
1507 }
1508 
1509 static inline void irq_time_write_end(void)
1510 {
1511 	smp_wmb();
1512 	__this_cpu_inc(irq_time_seq.sequence);
1513 }
1514 
1515 static inline u64 irq_time_read(int cpu)
1516 {
1517 	u64 irq_time;
1518 	unsigned seq;
1519 
1520 	do {
1521 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1522 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1523 			   per_cpu(cpu_hardirq_time, cpu);
1524 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1525 
1526 	return irq_time;
1527 }
1528 #else /* CONFIG_64BIT */
1529 static inline void irq_time_write_begin(void)
1530 {
1531 }
1532 
1533 static inline void irq_time_write_end(void)
1534 {
1535 }
1536 
1537 static inline u64 irq_time_read(int cpu)
1538 {
1539 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1540 }
1541 #endif /* CONFIG_64BIT */
1542 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1543