1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 264 const struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 static inline int dl_bandwidth_enabled(void) 290 { 291 return sysctl_sched_rt_runtime >= 0; 292 } 293 294 /* 295 * To keep the bandwidth of -deadline tasks under control 296 * we need some place where: 297 * - store the maximum -deadline bandwidth of each cpu; 298 * - cache the fraction of bandwidth that is currently allocated in 299 * each root domain; 300 * 301 * This is all done in the data structure below. It is similar to the 302 * one used for RT-throttling (rt_bandwidth), with the main difference 303 * that, since here we are only interested in admission control, we 304 * do not decrease any runtime while the group "executes", neither we 305 * need a timer to replenish it. 306 * 307 * With respect to SMP, bandwidth is given on a per root domain basis, 308 * meaning that: 309 * - bw (< 100%) is the deadline bandwidth of each CPU; 310 * - total_bw is the currently allocated bandwidth in each root domain; 311 */ 312 struct dl_bw { 313 raw_spinlock_t lock; 314 u64 bw; 315 u64 total_bw; 316 }; 317 318 extern void init_dl_bw(struct dl_bw *dl_b); 319 extern int sched_dl_global_validate(void); 320 extern void sched_dl_do_global(void); 321 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 322 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 323 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 324 extern bool __checkparam_dl(const struct sched_attr *attr); 325 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 326 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 327 extern int dl_bw_check_overflow(int cpu); 328 329 #ifdef CONFIG_CGROUP_SCHED 330 331 struct cfs_rq; 332 struct rt_rq; 333 334 extern struct list_head task_groups; 335 336 struct cfs_bandwidth { 337 #ifdef CONFIG_CFS_BANDWIDTH 338 raw_spinlock_t lock; 339 ktime_t period; 340 u64 quota; 341 u64 runtime; 342 u64 burst; 343 u64 runtime_snap; 344 s64 hierarchical_quota; 345 346 u8 idle; 347 u8 period_active; 348 u8 slack_started; 349 struct hrtimer period_timer; 350 struct hrtimer slack_timer; 351 struct list_head throttled_cfs_rq; 352 353 /* Statistics: */ 354 int nr_periods; 355 int nr_throttled; 356 int nr_burst; 357 u64 throttled_time; 358 u64 burst_time; 359 #endif 360 }; 361 362 /* Task group related information */ 363 struct task_group { 364 struct cgroup_subsys_state css; 365 366 #ifdef CONFIG_FAIR_GROUP_SCHED 367 /* schedulable entities of this group on each CPU */ 368 struct sched_entity **se; 369 /* runqueue "owned" by this group on each CPU */ 370 struct cfs_rq **cfs_rq; 371 unsigned long shares; 372 373 /* A positive value indicates that this is a SCHED_IDLE group. */ 374 int idle; 375 376 #ifdef CONFIG_SMP 377 /* 378 * load_avg can be heavily contended at clock tick time, so put 379 * it in its own cacheline separated from the fields above which 380 * will also be accessed at each tick. 381 */ 382 atomic_long_t load_avg ____cacheline_aligned; 383 #endif 384 #endif 385 386 #ifdef CONFIG_RT_GROUP_SCHED 387 struct sched_rt_entity **rt_se; 388 struct rt_rq **rt_rq; 389 390 struct rt_bandwidth rt_bandwidth; 391 #endif 392 393 struct rcu_head rcu; 394 struct list_head list; 395 396 struct task_group *parent; 397 struct list_head siblings; 398 struct list_head children; 399 400 #ifdef CONFIG_SCHED_AUTOGROUP 401 struct autogroup *autogroup; 402 #endif 403 404 struct cfs_bandwidth cfs_bandwidth; 405 406 #ifdef CONFIG_UCLAMP_TASK_GROUP 407 /* The two decimal precision [%] value requested from user-space */ 408 unsigned int uclamp_pct[UCLAMP_CNT]; 409 /* Clamp values requested for a task group */ 410 struct uclamp_se uclamp_req[UCLAMP_CNT]; 411 /* Effective clamp values used for a task group */ 412 struct uclamp_se uclamp[UCLAMP_CNT]; 413 #endif 414 415 }; 416 417 #ifdef CONFIG_FAIR_GROUP_SCHED 418 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 419 420 /* 421 * A weight of 0 or 1 can cause arithmetics problems. 422 * A weight of a cfs_rq is the sum of weights of which entities 423 * are queued on this cfs_rq, so a weight of a entity should not be 424 * too large, so as the shares value of a task group. 425 * (The default weight is 1024 - so there's no practical 426 * limitation from this.) 427 */ 428 #define MIN_SHARES (1UL << 1) 429 #define MAX_SHARES (1UL << 18) 430 #endif 431 432 typedef int (*tg_visitor)(struct task_group *, void *); 433 434 extern int walk_tg_tree_from(struct task_group *from, 435 tg_visitor down, tg_visitor up, void *data); 436 437 /* 438 * Iterate the full tree, calling @down when first entering a node and @up when 439 * leaving it for the final time. 440 * 441 * Caller must hold rcu_lock or sufficient equivalent. 442 */ 443 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 444 { 445 return walk_tg_tree_from(&root_task_group, down, up, data); 446 } 447 448 extern int tg_nop(struct task_group *tg, void *data); 449 450 extern void free_fair_sched_group(struct task_group *tg); 451 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 452 extern void online_fair_sched_group(struct task_group *tg); 453 extern void unregister_fair_sched_group(struct task_group *tg); 454 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 455 struct sched_entity *se, int cpu, 456 struct sched_entity *parent); 457 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 458 459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 460 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 461 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 462 463 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 464 struct sched_rt_entity *rt_se, int cpu, 465 struct sched_rt_entity *parent); 466 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 467 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 468 extern long sched_group_rt_runtime(struct task_group *tg); 469 extern long sched_group_rt_period(struct task_group *tg); 470 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 471 472 extern struct task_group *sched_create_group(struct task_group *parent); 473 extern void sched_online_group(struct task_group *tg, 474 struct task_group *parent); 475 extern void sched_destroy_group(struct task_group *tg); 476 extern void sched_release_group(struct task_group *tg); 477 478 extern void sched_move_task(struct task_struct *tsk); 479 480 #ifdef CONFIG_FAIR_GROUP_SCHED 481 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 482 483 extern int sched_group_set_idle(struct task_group *tg, long idle); 484 485 #ifdef CONFIG_SMP 486 extern void set_task_rq_fair(struct sched_entity *se, 487 struct cfs_rq *prev, struct cfs_rq *next); 488 #else /* !CONFIG_SMP */ 489 static inline void set_task_rq_fair(struct sched_entity *se, 490 struct cfs_rq *prev, struct cfs_rq *next) { } 491 #endif /* CONFIG_SMP */ 492 #endif /* CONFIG_FAIR_GROUP_SCHED */ 493 494 #else /* CONFIG_CGROUP_SCHED */ 495 496 struct cfs_bandwidth { }; 497 498 #endif /* CONFIG_CGROUP_SCHED */ 499 500 extern void unregister_rt_sched_group(struct task_group *tg); 501 extern void free_rt_sched_group(struct task_group *tg); 502 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 503 504 /* 505 * u64_u32_load/u64_u32_store 506 * 507 * Use a copy of a u64 value to protect against data race. This is only 508 * applicable for 32-bits architectures. 509 */ 510 #ifdef CONFIG_64BIT 511 # define u64_u32_load_copy(var, copy) var 512 # define u64_u32_store_copy(var, copy, val) (var = val) 513 #else 514 # define u64_u32_load_copy(var, copy) \ 515 ({ \ 516 u64 __val, __val_copy; \ 517 do { \ 518 __val_copy = copy; \ 519 /* \ 520 * paired with u64_u32_store_copy(), ordering access \ 521 * to var and copy. \ 522 */ \ 523 smp_rmb(); \ 524 __val = var; \ 525 } while (__val != __val_copy); \ 526 __val; \ 527 }) 528 # define u64_u32_store_copy(var, copy, val) \ 529 do { \ 530 typeof(val) __val = (val); \ 531 var = __val; \ 532 /* \ 533 * paired with u64_u32_load_copy(), ordering access to var and \ 534 * copy. \ 535 */ \ 536 smp_wmb(); \ 537 copy = __val; \ 538 } while (0) 539 #endif 540 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 541 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 542 543 /* CFS-related fields in a runqueue */ 544 struct cfs_rq { 545 struct load_weight load; 546 unsigned int nr_running; 547 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 548 unsigned int idle_nr_running; /* SCHED_IDLE */ 549 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 550 551 u64 exec_clock; 552 u64 min_vruntime; 553 #ifdef CONFIG_SCHED_CORE 554 unsigned int forceidle_seq; 555 u64 min_vruntime_fi; 556 #endif 557 558 #ifndef CONFIG_64BIT 559 u64 min_vruntime_copy; 560 #endif 561 562 struct rb_root_cached tasks_timeline; 563 564 /* 565 * 'curr' points to currently running entity on this cfs_rq. 566 * It is set to NULL otherwise (i.e when none are currently running). 567 */ 568 struct sched_entity *curr; 569 struct sched_entity *next; 570 struct sched_entity *last; 571 struct sched_entity *skip; 572 573 #ifdef CONFIG_SCHED_DEBUG 574 unsigned int nr_spread_over; 575 #endif 576 577 #ifdef CONFIG_SMP 578 /* 579 * CFS load tracking 580 */ 581 struct sched_avg avg; 582 #ifndef CONFIG_64BIT 583 u64 last_update_time_copy; 584 #endif 585 struct { 586 raw_spinlock_t lock ____cacheline_aligned; 587 int nr; 588 unsigned long load_avg; 589 unsigned long util_avg; 590 unsigned long runnable_avg; 591 } removed; 592 593 #ifdef CONFIG_FAIR_GROUP_SCHED 594 unsigned long tg_load_avg_contrib; 595 long propagate; 596 long prop_runnable_sum; 597 598 /* 599 * h_load = weight * f(tg) 600 * 601 * Where f(tg) is the recursive weight fraction assigned to 602 * this group. 603 */ 604 unsigned long h_load; 605 u64 last_h_load_update; 606 struct sched_entity *h_load_next; 607 #endif /* CONFIG_FAIR_GROUP_SCHED */ 608 #endif /* CONFIG_SMP */ 609 610 #ifdef CONFIG_FAIR_GROUP_SCHED 611 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 612 613 /* 614 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 615 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 616 * (like users, containers etc.) 617 * 618 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 619 * This list is used during load balance. 620 */ 621 int on_list; 622 struct list_head leaf_cfs_rq_list; 623 struct task_group *tg; /* group that "owns" this runqueue */ 624 625 /* Locally cached copy of our task_group's idle value */ 626 int idle; 627 628 #ifdef CONFIG_CFS_BANDWIDTH 629 int runtime_enabled; 630 s64 runtime_remaining; 631 632 u64 throttled_pelt_idle; 633 #ifndef CONFIG_64BIT 634 u64 throttled_pelt_idle_copy; 635 #endif 636 u64 throttled_clock; 637 u64 throttled_clock_pelt; 638 u64 throttled_clock_pelt_time; 639 int throttled; 640 int throttle_count; 641 struct list_head throttled_list; 642 #ifdef CONFIG_SMP 643 struct list_head throttled_csd_list; 644 #endif 645 #endif /* CONFIG_CFS_BANDWIDTH */ 646 #endif /* CONFIG_FAIR_GROUP_SCHED */ 647 }; 648 649 static inline int rt_bandwidth_enabled(void) 650 { 651 return sysctl_sched_rt_runtime >= 0; 652 } 653 654 /* RT IPI pull logic requires IRQ_WORK */ 655 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 656 # define HAVE_RT_PUSH_IPI 657 #endif 658 659 /* Real-Time classes' related field in a runqueue: */ 660 struct rt_rq { 661 struct rt_prio_array active; 662 unsigned int rt_nr_running; 663 unsigned int rr_nr_running; 664 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 665 struct { 666 int curr; /* highest queued rt task prio */ 667 #ifdef CONFIG_SMP 668 int next; /* next highest */ 669 #endif 670 } highest_prio; 671 #endif 672 #ifdef CONFIG_SMP 673 unsigned int rt_nr_migratory; 674 unsigned int rt_nr_total; 675 int overloaded; 676 struct plist_head pushable_tasks; 677 678 #endif /* CONFIG_SMP */ 679 int rt_queued; 680 681 int rt_throttled; 682 u64 rt_time; 683 u64 rt_runtime; 684 /* Nests inside the rq lock: */ 685 raw_spinlock_t rt_runtime_lock; 686 687 #ifdef CONFIG_RT_GROUP_SCHED 688 unsigned int rt_nr_boosted; 689 690 struct rq *rq; 691 struct task_group *tg; 692 #endif 693 }; 694 695 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 696 { 697 return rt_rq->rt_queued && rt_rq->rt_nr_running; 698 } 699 700 /* Deadline class' related fields in a runqueue */ 701 struct dl_rq { 702 /* runqueue is an rbtree, ordered by deadline */ 703 struct rb_root_cached root; 704 705 unsigned int dl_nr_running; 706 707 #ifdef CONFIG_SMP 708 /* 709 * Deadline values of the currently executing and the 710 * earliest ready task on this rq. Caching these facilitates 711 * the decision whether or not a ready but not running task 712 * should migrate somewhere else. 713 */ 714 struct { 715 u64 curr; 716 u64 next; 717 } earliest_dl; 718 719 unsigned int dl_nr_migratory; 720 int overloaded; 721 722 /* 723 * Tasks on this rq that can be pushed away. They are kept in 724 * an rb-tree, ordered by tasks' deadlines, with caching 725 * of the leftmost (earliest deadline) element. 726 */ 727 struct rb_root_cached pushable_dl_tasks_root; 728 #else 729 struct dl_bw dl_bw; 730 #endif 731 /* 732 * "Active utilization" for this runqueue: increased when a 733 * task wakes up (becomes TASK_RUNNING) and decreased when a 734 * task blocks 735 */ 736 u64 running_bw; 737 738 /* 739 * Utilization of the tasks "assigned" to this runqueue (including 740 * the tasks that are in runqueue and the tasks that executed on this 741 * CPU and blocked). Increased when a task moves to this runqueue, and 742 * decreased when the task moves away (migrates, changes scheduling 743 * policy, or terminates). 744 * This is needed to compute the "inactive utilization" for the 745 * runqueue (inactive utilization = this_bw - running_bw). 746 */ 747 u64 this_bw; 748 u64 extra_bw; 749 750 /* 751 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 752 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 753 */ 754 u64 max_bw; 755 756 /* 757 * Inverse of the fraction of CPU utilization that can be reclaimed 758 * by the GRUB algorithm. 759 */ 760 u64 bw_ratio; 761 }; 762 763 #ifdef CONFIG_FAIR_GROUP_SCHED 764 /* An entity is a task if it doesn't "own" a runqueue */ 765 #define entity_is_task(se) (!se->my_q) 766 767 static inline void se_update_runnable(struct sched_entity *se) 768 { 769 if (!entity_is_task(se)) 770 se->runnable_weight = se->my_q->h_nr_running; 771 } 772 773 static inline long se_runnable(struct sched_entity *se) 774 { 775 if (entity_is_task(se)) 776 return !!se->on_rq; 777 else 778 return se->runnable_weight; 779 } 780 781 #else 782 #define entity_is_task(se) 1 783 784 static inline void se_update_runnable(struct sched_entity *se) {} 785 786 static inline long se_runnable(struct sched_entity *se) 787 { 788 return !!se->on_rq; 789 } 790 #endif 791 792 #ifdef CONFIG_SMP 793 /* 794 * XXX we want to get rid of these helpers and use the full load resolution. 795 */ 796 static inline long se_weight(struct sched_entity *se) 797 { 798 return scale_load_down(se->load.weight); 799 } 800 801 802 static inline bool sched_asym_prefer(int a, int b) 803 { 804 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 805 } 806 807 struct perf_domain { 808 struct em_perf_domain *em_pd; 809 struct perf_domain *next; 810 struct rcu_head rcu; 811 }; 812 813 /* Scheduling group status flags */ 814 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 815 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 816 817 /* 818 * We add the notion of a root-domain which will be used to define per-domain 819 * variables. Each exclusive cpuset essentially defines an island domain by 820 * fully partitioning the member CPUs from any other cpuset. Whenever a new 821 * exclusive cpuset is created, we also create and attach a new root-domain 822 * object. 823 * 824 */ 825 struct root_domain { 826 atomic_t refcount; 827 atomic_t rto_count; 828 struct rcu_head rcu; 829 cpumask_var_t span; 830 cpumask_var_t online; 831 832 /* 833 * Indicate pullable load on at least one CPU, e.g: 834 * - More than one runnable task 835 * - Running task is misfit 836 */ 837 int overload; 838 839 /* Indicate one or more cpus over-utilized (tipping point) */ 840 int overutilized; 841 842 /* 843 * The bit corresponding to a CPU gets set here if such CPU has more 844 * than one runnable -deadline task (as it is below for RT tasks). 845 */ 846 cpumask_var_t dlo_mask; 847 atomic_t dlo_count; 848 struct dl_bw dl_bw; 849 struct cpudl cpudl; 850 851 /* 852 * Indicate whether a root_domain's dl_bw has been checked or 853 * updated. It's monotonously increasing value. 854 * 855 * Also, some corner cases, like 'wrap around' is dangerous, but given 856 * that u64 is 'big enough'. So that shouldn't be a concern. 857 */ 858 u64 visit_gen; 859 860 #ifdef HAVE_RT_PUSH_IPI 861 /* 862 * For IPI pull requests, loop across the rto_mask. 863 */ 864 struct irq_work rto_push_work; 865 raw_spinlock_t rto_lock; 866 /* These are only updated and read within rto_lock */ 867 int rto_loop; 868 int rto_cpu; 869 /* These atomics are updated outside of a lock */ 870 atomic_t rto_loop_next; 871 atomic_t rto_loop_start; 872 #endif 873 /* 874 * The "RT overload" flag: it gets set if a CPU has more than 875 * one runnable RT task. 876 */ 877 cpumask_var_t rto_mask; 878 struct cpupri cpupri; 879 880 unsigned long max_cpu_capacity; 881 882 /* 883 * NULL-terminated list of performance domains intersecting with the 884 * CPUs of the rd. Protected by RCU. 885 */ 886 struct perf_domain __rcu *pd; 887 }; 888 889 extern void init_defrootdomain(void); 890 extern int sched_init_domains(const struct cpumask *cpu_map); 891 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 892 extern void sched_get_rd(struct root_domain *rd); 893 extern void sched_put_rd(struct root_domain *rd); 894 895 #ifdef HAVE_RT_PUSH_IPI 896 extern void rto_push_irq_work_func(struct irq_work *work); 897 #endif 898 #endif /* CONFIG_SMP */ 899 900 #ifdef CONFIG_UCLAMP_TASK 901 /* 902 * struct uclamp_bucket - Utilization clamp bucket 903 * @value: utilization clamp value for tasks on this clamp bucket 904 * @tasks: number of RUNNABLE tasks on this clamp bucket 905 * 906 * Keep track of how many tasks are RUNNABLE for a given utilization 907 * clamp value. 908 */ 909 struct uclamp_bucket { 910 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 911 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 912 }; 913 914 /* 915 * struct uclamp_rq - rq's utilization clamp 916 * @value: currently active clamp values for a rq 917 * @bucket: utilization clamp buckets affecting a rq 918 * 919 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 920 * A clamp value is affecting a rq when there is at least one task RUNNABLE 921 * (or actually running) with that value. 922 * 923 * There are up to UCLAMP_CNT possible different clamp values, currently there 924 * are only two: minimum utilization and maximum utilization. 925 * 926 * All utilization clamping values are MAX aggregated, since: 927 * - for util_min: we want to run the CPU at least at the max of the minimum 928 * utilization required by its currently RUNNABLE tasks. 929 * - for util_max: we want to allow the CPU to run up to the max of the 930 * maximum utilization allowed by its currently RUNNABLE tasks. 931 * 932 * Since on each system we expect only a limited number of different 933 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 934 * the metrics required to compute all the per-rq utilization clamp values. 935 */ 936 struct uclamp_rq { 937 unsigned int value; 938 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 939 }; 940 941 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 942 #endif /* CONFIG_UCLAMP_TASK */ 943 944 struct rq; 945 struct balance_callback { 946 struct balance_callback *next; 947 void (*func)(struct rq *rq); 948 }; 949 950 /* 951 * This is the main, per-CPU runqueue data structure. 952 * 953 * Locking rule: those places that want to lock multiple runqueues 954 * (such as the load balancing or the thread migration code), lock 955 * acquire operations must be ordered by ascending &runqueue. 956 */ 957 struct rq { 958 /* runqueue lock: */ 959 raw_spinlock_t __lock; 960 961 /* 962 * nr_running and cpu_load should be in the same cacheline because 963 * remote CPUs use both these fields when doing load calculation. 964 */ 965 unsigned int nr_running; 966 #ifdef CONFIG_NUMA_BALANCING 967 unsigned int nr_numa_running; 968 unsigned int nr_preferred_running; 969 unsigned int numa_migrate_on; 970 #endif 971 #ifdef CONFIG_NO_HZ_COMMON 972 #ifdef CONFIG_SMP 973 unsigned long last_blocked_load_update_tick; 974 unsigned int has_blocked_load; 975 call_single_data_t nohz_csd; 976 #endif /* CONFIG_SMP */ 977 unsigned int nohz_tick_stopped; 978 atomic_t nohz_flags; 979 #endif /* CONFIG_NO_HZ_COMMON */ 980 981 #ifdef CONFIG_SMP 982 unsigned int ttwu_pending; 983 #endif 984 u64 nr_switches; 985 986 #ifdef CONFIG_UCLAMP_TASK 987 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 988 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 989 unsigned int uclamp_flags; 990 #define UCLAMP_FLAG_IDLE 0x01 991 #endif 992 993 struct cfs_rq cfs; 994 struct rt_rq rt; 995 struct dl_rq dl; 996 997 #ifdef CONFIG_FAIR_GROUP_SCHED 998 /* list of leaf cfs_rq on this CPU: */ 999 struct list_head leaf_cfs_rq_list; 1000 struct list_head *tmp_alone_branch; 1001 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1002 1003 /* 1004 * This is part of a global counter where only the total sum 1005 * over all CPUs matters. A task can increase this counter on 1006 * one CPU and if it got migrated afterwards it may decrease 1007 * it on another CPU. Always updated under the runqueue lock: 1008 */ 1009 unsigned int nr_uninterruptible; 1010 1011 struct task_struct __rcu *curr; 1012 struct task_struct *idle; 1013 struct task_struct *stop; 1014 unsigned long next_balance; 1015 struct mm_struct *prev_mm; 1016 1017 unsigned int clock_update_flags; 1018 u64 clock; 1019 /* Ensure that all clocks are in the same cache line */ 1020 u64 clock_task ____cacheline_aligned; 1021 u64 clock_pelt; 1022 unsigned long lost_idle_time; 1023 u64 clock_pelt_idle; 1024 u64 clock_idle; 1025 #ifndef CONFIG_64BIT 1026 u64 clock_pelt_idle_copy; 1027 u64 clock_idle_copy; 1028 #endif 1029 1030 atomic_t nr_iowait; 1031 1032 #ifdef CONFIG_SCHED_DEBUG 1033 u64 last_seen_need_resched_ns; 1034 int ticks_without_resched; 1035 #endif 1036 1037 #ifdef CONFIG_MEMBARRIER 1038 int membarrier_state; 1039 #endif 1040 1041 #ifdef CONFIG_SMP 1042 struct root_domain *rd; 1043 struct sched_domain __rcu *sd; 1044 1045 unsigned long cpu_capacity; 1046 unsigned long cpu_capacity_orig; 1047 1048 struct balance_callback *balance_callback; 1049 1050 unsigned char nohz_idle_balance; 1051 unsigned char idle_balance; 1052 1053 unsigned long misfit_task_load; 1054 1055 /* For active balancing */ 1056 int active_balance; 1057 int push_cpu; 1058 struct cpu_stop_work active_balance_work; 1059 1060 /* CPU of this runqueue: */ 1061 int cpu; 1062 int online; 1063 1064 struct list_head cfs_tasks; 1065 1066 struct sched_avg avg_rt; 1067 struct sched_avg avg_dl; 1068 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1069 struct sched_avg avg_irq; 1070 #endif 1071 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1072 struct sched_avg avg_thermal; 1073 #endif 1074 u64 idle_stamp; 1075 u64 avg_idle; 1076 1077 unsigned long wake_stamp; 1078 u64 wake_avg_idle; 1079 1080 /* This is used to determine avg_idle's max value */ 1081 u64 max_idle_balance_cost; 1082 1083 #ifdef CONFIG_HOTPLUG_CPU 1084 struct rcuwait hotplug_wait; 1085 #endif 1086 #endif /* CONFIG_SMP */ 1087 1088 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1089 u64 prev_irq_time; 1090 #endif 1091 #ifdef CONFIG_PARAVIRT 1092 u64 prev_steal_time; 1093 #endif 1094 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1095 u64 prev_steal_time_rq; 1096 #endif 1097 1098 /* calc_load related fields */ 1099 unsigned long calc_load_update; 1100 long calc_load_active; 1101 1102 #ifdef CONFIG_SCHED_HRTICK 1103 #ifdef CONFIG_SMP 1104 call_single_data_t hrtick_csd; 1105 #endif 1106 struct hrtimer hrtick_timer; 1107 ktime_t hrtick_time; 1108 #endif 1109 1110 #ifdef CONFIG_SCHEDSTATS 1111 /* latency stats */ 1112 struct sched_info rq_sched_info; 1113 unsigned long long rq_cpu_time; 1114 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1115 1116 /* sys_sched_yield() stats */ 1117 unsigned int yld_count; 1118 1119 /* schedule() stats */ 1120 unsigned int sched_count; 1121 unsigned int sched_goidle; 1122 1123 /* try_to_wake_up() stats */ 1124 unsigned int ttwu_count; 1125 unsigned int ttwu_local; 1126 #endif 1127 1128 #ifdef CONFIG_CPU_IDLE 1129 /* Must be inspected within a rcu lock section */ 1130 struct cpuidle_state *idle_state; 1131 #endif 1132 1133 #ifdef CONFIG_SMP 1134 unsigned int nr_pinned; 1135 #endif 1136 unsigned int push_busy; 1137 struct cpu_stop_work push_work; 1138 1139 #ifdef CONFIG_SCHED_CORE 1140 /* per rq */ 1141 struct rq *core; 1142 struct task_struct *core_pick; 1143 unsigned int core_enabled; 1144 unsigned int core_sched_seq; 1145 struct rb_root core_tree; 1146 1147 /* shared state -- careful with sched_core_cpu_deactivate() */ 1148 unsigned int core_task_seq; 1149 unsigned int core_pick_seq; 1150 unsigned long core_cookie; 1151 unsigned int core_forceidle_count; 1152 unsigned int core_forceidle_seq; 1153 unsigned int core_forceidle_occupation; 1154 u64 core_forceidle_start; 1155 #endif 1156 1157 /* Scratch cpumask to be temporarily used under rq_lock */ 1158 cpumask_var_t scratch_mask; 1159 1160 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1161 call_single_data_t cfsb_csd; 1162 struct list_head cfsb_csd_list; 1163 #endif 1164 }; 1165 1166 #ifdef CONFIG_FAIR_GROUP_SCHED 1167 1168 /* CPU runqueue to which this cfs_rq is attached */ 1169 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1170 { 1171 return cfs_rq->rq; 1172 } 1173 1174 #else 1175 1176 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1177 { 1178 return container_of(cfs_rq, struct rq, cfs); 1179 } 1180 #endif 1181 1182 static inline int cpu_of(struct rq *rq) 1183 { 1184 #ifdef CONFIG_SMP 1185 return rq->cpu; 1186 #else 1187 return 0; 1188 #endif 1189 } 1190 1191 #define MDF_PUSH 0x01 1192 1193 static inline bool is_migration_disabled(struct task_struct *p) 1194 { 1195 #ifdef CONFIG_SMP 1196 return p->migration_disabled; 1197 #else 1198 return false; 1199 #endif 1200 } 1201 1202 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1203 1204 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1205 #define this_rq() this_cpu_ptr(&runqueues) 1206 #define task_rq(p) cpu_rq(task_cpu(p)) 1207 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1208 #define raw_rq() raw_cpu_ptr(&runqueues) 1209 1210 struct sched_group; 1211 #ifdef CONFIG_SCHED_CORE 1212 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1213 1214 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1215 1216 static inline bool sched_core_enabled(struct rq *rq) 1217 { 1218 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1219 } 1220 1221 static inline bool sched_core_disabled(void) 1222 { 1223 return !static_branch_unlikely(&__sched_core_enabled); 1224 } 1225 1226 /* 1227 * Be careful with this function; not for general use. The return value isn't 1228 * stable unless you actually hold a relevant rq->__lock. 1229 */ 1230 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1231 { 1232 if (sched_core_enabled(rq)) 1233 return &rq->core->__lock; 1234 1235 return &rq->__lock; 1236 } 1237 1238 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1239 { 1240 if (rq->core_enabled) 1241 return &rq->core->__lock; 1242 1243 return &rq->__lock; 1244 } 1245 1246 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 1247 bool fi); 1248 1249 /* 1250 * Helpers to check if the CPU's core cookie matches with the task's cookie 1251 * when core scheduling is enabled. 1252 * A special case is that the task's cookie always matches with CPU's core 1253 * cookie if the CPU is in an idle core. 1254 */ 1255 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1256 { 1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1258 if (!sched_core_enabled(rq)) 1259 return true; 1260 1261 return rq->core->core_cookie == p->core_cookie; 1262 } 1263 1264 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1265 { 1266 bool idle_core = true; 1267 int cpu; 1268 1269 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1270 if (!sched_core_enabled(rq)) 1271 return true; 1272 1273 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1274 if (!available_idle_cpu(cpu)) { 1275 idle_core = false; 1276 break; 1277 } 1278 } 1279 1280 /* 1281 * A CPU in an idle core is always the best choice for tasks with 1282 * cookies. 1283 */ 1284 return idle_core || rq->core->core_cookie == p->core_cookie; 1285 } 1286 1287 static inline bool sched_group_cookie_match(struct rq *rq, 1288 struct task_struct *p, 1289 struct sched_group *group) 1290 { 1291 int cpu; 1292 1293 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1294 if (!sched_core_enabled(rq)) 1295 return true; 1296 1297 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1298 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1299 return true; 1300 } 1301 return false; 1302 } 1303 1304 static inline bool sched_core_enqueued(struct task_struct *p) 1305 { 1306 return !RB_EMPTY_NODE(&p->core_node); 1307 } 1308 1309 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1310 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1311 1312 extern void sched_core_get(void); 1313 extern void sched_core_put(void); 1314 1315 #else /* !CONFIG_SCHED_CORE */ 1316 1317 static inline bool sched_core_enabled(struct rq *rq) 1318 { 1319 return false; 1320 } 1321 1322 static inline bool sched_core_disabled(void) 1323 { 1324 return true; 1325 } 1326 1327 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1328 { 1329 return &rq->__lock; 1330 } 1331 1332 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1333 { 1334 return &rq->__lock; 1335 } 1336 1337 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1338 { 1339 return true; 1340 } 1341 1342 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1343 { 1344 return true; 1345 } 1346 1347 static inline bool sched_group_cookie_match(struct rq *rq, 1348 struct task_struct *p, 1349 struct sched_group *group) 1350 { 1351 return true; 1352 } 1353 #endif /* CONFIG_SCHED_CORE */ 1354 1355 static inline void lockdep_assert_rq_held(struct rq *rq) 1356 { 1357 lockdep_assert_held(__rq_lockp(rq)); 1358 } 1359 1360 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1361 extern bool raw_spin_rq_trylock(struct rq *rq); 1362 extern void raw_spin_rq_unlock(struct rq *rq); 1363 1364 static inline void raw_spin_rq_lock(struct rq *rq) 1365 { 1366 raw_spin_rq_lock_nested(rq, 0); 1367 } 1368 1369 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1370 { 1371 local_irq_disable(); 1372 raw_spin_rq_lock(rq); 1373 } 1374 1375 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1376 { 1377 raw_spin_rq_unlock(rq); 1378 local_irq_enable(); 1379 } 1380 1381 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1382 { 1383 unsigned long flags; 1384 local_irq_save(flags); 1385 raw_spin_rq_lock(rq); 1386 return flags; 1387 } 1388 1389 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1390 { 1391 raw_spin_rq_unlock(rq); 1392 local_irq_restore(flags); 1393 } 1394 1395 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1396 do { \ 1397 flags = _raw_spin_rq_lock_irqsave(rq); \ 1398 } while (0) 1399 1400 #ifdef CONFIG_SCHED_SMT 1401 extern void __update_idle_core(struct rq *rq); 1402 1403 static inline void update_idle_core(struct rq *rq) 1404 { 1405 if (static_branch_unlikely(&sched_smt_present)) 1406 __update_idle_core(rq); 1407 } 1408 1409 #else 1410 static inline void update_idle_core(struct rq *rq) { } 1411 #endif 1412 1413 #ifdef CONFIG_FAIR_GROUP_SCHED 1414 static inline struct task_struct *task_of(struct sched_entity *se) 1415 { 1416 SCHED_WARN_ON(!entity_is_task(se)); 1417 return container_of(se, struct task_struct, se); 1418 } 1419 1420 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1421 { 1422 return p->se.cfs_rq; 1423 } 1424 1425 /* runqueue on which this entity is (to be) queued */ 1426 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1427 { 1428 return se->cfs_rq; 1429 } 1430 1431 /* runqueue "owned" by this group */ 1432 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1433 { 1434 return grp->my_q; 1435 } 1436 1437 #else 1438 1439 #define task_of(_se) container_of(_se, struct task_struct, se) 1440 1441 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1442 { 1443 return &task_rq(p)->cfs; 1444 } 1445 1446 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1447 { 1448 const struct task_struct *p = task_of(se); 1449 struct rq *rq = task_rq(p); 1450 1451 return &rq->cfs; 1452 } 1453 1454 /* runqueue "owned" by this group */ 1455 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1456 { 1457 return NULL; 1458 } 1459 #endif 1460 1461 extern void update_rq_clock(struct rq *rq); 1462 1463 /* 1464 * rq::clock_update_flags bits 1465 * 1466 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1467 * call to __schedule(). This is an optimisation to avoid 1468 * neighbouring rq clock updates. 1469 * 1470 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1471 * in effect and calls to update_rq_clock() are being ignored. 1472 * 1473 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1474 * made to update_rq_clock() since the last time rq::lock was pinned. 1475 * 1476 * If inside of __schedule(), clock_update_flags will have been 1477 * shifted left (a left shift is a cheap operation for the fast path 1478 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1479 * 1480 * if (rq-clock_update_flags >= RQCF_UPDATED) 1481 * 1482 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1483 * one position though, because the next rq_unpin_lock() will shift it 1484 * back. 1485 */ 1486 #define RQCF_REQ_SKIP 0x01 1487 #define RQCF_ACT_SKIP 0x02 1488 #define RQCF_UPDATED 0x04 1489 1490 static inline void assert_clock_updated(struct rq *rq) 1491 { 1492 /* 1493 * The only reason for not seeing a clock update since the 1494 * last rq_pin_lock() is if we're currently skipping updates. 1495 */ 1496 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1497 } 1498 1499 static inline u64 rq_clock(struct rq *rq) 1500 { 1501 lockdep_assert_rq_held(rq); 1502 assert_clock_updated(rq); 1503 1504 return rq->clock; 1505 } 1506 1507 static inline u64 rq_clock_task(struct rq *rq) 1508 { 1509 lockdep_assert_rq_held(rq); 1510 assert_clock_updated(rq); 1511 1512 return rq->clock_task; 1513 } 1514 1515 /** 1516 * By default the decay is the default pelt decay period. 1517 * The decay shift can change the decay period in 1518 * multiples of 32. 1519 * Decay shift Decay period(ms) 1520 * 0 32 1521 * 1 64 1522 * 2 128 1523 * 3 256 1524 * 4 512 1525 */ 1526 extern int sched_thermal_decay_shift; 1527 1528 static inline u64 rq_clock_thermal(struct rq *rq) 1529 { 1530 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1531 } 1532 1533 static inline void rq_clock_skip_update(struct rq *rq) 1534 { 1535 lockdep_assert_rq_held(rq); 1536 rq->clock_update_flags |= RQCF_REQ_SKIP; 1537 } 1538 1539 /* 1540 * See rt task throttling, which is the only time a skip 1541 * request is canceled. 1542 */ 1543 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1544 { 1545 lockdep_assert_rq_held(rq); 1546 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1547 } 1548 1549 /* 1550 * During cpu offlining and rq wide unthrottling, we can trigger 1551 * an update_rq_clock() for several cfs and rt runqueues (Typically 1552 * when using list_for_each_entry_*) 1553 * rq_clock_start_loop_update() can be called after updating the clock 1554 * once and before iterating over the list to prevent multiple update. 1555 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1556 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1557 */ 1558 static inline void rq_clock_start_loop_update(struct rq *rq) 1559 { 1560 lockdep_assert_rq_held(rq); 1561 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1562 rq->clock_update_flags |= RQCF_ACT_SKIP; 1563 } 1564 1565 static inline void rq_clock_stop_loop_update(struct rq *rq) 1566 { 1567 lockdep_assert_rq_held(rq); 1568 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1569 } 1570 1571 struct rq_flags { 1572 unsigned long flags; 1573 struct pin_cookie cookie; 1574 #ifdef CONFIG_SCHED_DEBUG 1575 /* 1576 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1577 * current pin context is stashed here in case it needs to be 1578 * restored in rq_repin_lock(). 1579 */ 1580 unsigned int clock_update_flags; 1581 #endif 1582 }; 1583 1584 extern struct balance_callback balance_push_callback; 1585 1586 /* 1587 * Lockdep annotation that avoids accidental unlocks; it's like a 1588 * sticky/continuous lockdep_assert_held(). 1589 * 1590 * This avoids code that has access to 'struct rq *rq' (basically everything in 1591 * the scheduler) from accidentally unlocking the rq if they do not also have a 1592 * copy of the (on-stack) 'struct rq_flags rf'. 1593 * 1594 * Also see Documentation/locking/lockdep-design.rst. 1595 */ 1596 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1597 { 1598 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1599 1600 #ifdef CONFIG_SCHED_DEBUG 1601 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1602 rf->clock_update_flags = 0; 1603 #ifdef CONFIG_SMP 1604 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1605 #endif 1606 #endif 1607 } 1608 1609 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1610 { 1611 #ifdef CONFIG_SCHED_DEBUG 1612 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1613 rf->clock_update_flags = RQCF_UPDATED; 1614 #endif 1615 1616 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1617 } 1618 1619 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1620 { 1621 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1622 1623 #ifdef CONFIG_SCHED_DEBUG 1624 /* 1625 * Restore the value we stashed in @rf for this pin context. 1626 */ 1627 rq->clock_update_flags |= rf->clock_update_flags; 1628 #endif 1629 } 1630 1631 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1632 __acquires(rq->lock); 1633 1634 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1635 __acquires(p->pi_lock) 1636 __acquires(rq->lock); 1637 1638 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1639 __releases(rq->lock) 1640 { 1641 rq_unpin_lock(rq, rf); 1642 raw_spin_rq_unlock(rq); 1643 } 1644 1645 static inline void 1646 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1647 __releases(rq->lock) 1648 __releases(p->pi_lock) 1649 { 1650 rq_unpin_lock(rq, rf); 1651 raw_spin_rq_unlock(rq); 1652 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1653 } 1654 1655 static inline void 1656 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1657 __acquires(rq->lock) 1658 { 1659 raw_spin_rq_lock_irqsave(rq, rf->flags); 1660 rq_pin_lock(rq, rf); 1661 } 1662 1663 static inline void 1664 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1665 __acquires(rq->lock) 1666 { 1667 raw_spin_rq_lock_irq(rq); 1668 rq_pin_lock(rq, rf); 1669 } 1670 1671 static inline void 1672 rq_lock(struct rq *rq, struct rq_flags *rf) 1673 __acquires(rq->lock) 1674 { 1675 raw_spin_rq_lock(rq); 1676 rq_pin_lock(rq, rf); 1677 } 1678 1679 static inline void 1680 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1681 __releases(rq->lock) 1682 { 1683 rq_unpin_lock(rq, rf); 1684 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1685 } 1686 1687 static inline void 1688 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1689 __releases(rq->lock) 1690 { 1691 rq_unpin_lock(rq, rf); 1692 raw_spin_rq_unlock_irq(rq); 1693 } 1694 1695 static inline void 1696 rq_unlock(struct rq *rq, struct rq_flags *rf) 1697 __releases(rq->lock) 1698 { 1699 rq_unpin_lock(rq, rf); 1700 raw_spin_rq_unlock(rq); 1701 } 1702 1703 static inline struct rq * 1704 this_rq_lock_irq(struct rq_flags *rf) 1705 __acquires(rq->lock) 1706 { 1707 struct rq *rq; 1708 1709 local_irq_disable(); 1710 rq = this_rq(); 1711 rq_lock(rq, rf); 1712 return rq; 1713 } 1714 1715 #ifdef CONFIG_NUMA 1716 enum numa_topology_type { 1717 NUMA_DIRECT, 1718 NUMA_GLUELESS_MESH, 1719 NUMA_BACKPLANE, 1720 }; 1721 extern enum numa_topology_type sched_numa_topology_type; 1722 extern int sched_max_numa_distance; 1723 extern bool find_numa_distance(int distance); 1724 extern void sched_init_numa(int offline_node); 1725 extern void sched_update_numa(int cpu, bool online); 1726 extern void sched_domains_numa_masks_set(unsigned int cpu); 1727 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1728 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1729 #else 1730 static inline void sched_init_numa(int offline_node) { } 1731 static inline void sched_update_numa(int cpu, bool online) { } 1732 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1733 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1734 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1735 { 1736 return nr_cpu_ids; 1737 } 1738 #endif 1739 1740 #ifdef CONFIG_NUMA_BALANCING 1741 /* The regions in numa_faults array from task_struct */ 1742 enum numa_faults_stats { 1743 NUMA_MEM = 0, 1744 NUMA_CPU, 1745 NUMA_MEMBUF, 1746 NUMA_CPUBUF 1747 }; 1748 extern void sched_setnuma(struct task_struct *p, int node); 1749 extern int migrate_task_to(struct task_struct *p, int cpu); 1750 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1751 int cpu, int scpu); 1752 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1753 #else 1754 static inline void 1755 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1756 { 1757 } 1758 #endif /* CONFIG_NUMA_BALANCING */ 1759 1760 #ifdef CONFIG_SMP 1761 1762 static inline void 1763 queue_balance_callback(struct rq *rq, 1764 struct balance_callback *head, 1765 void (*func)(struct rq *rq)) 1766 { 1767 lockdep_assert_rq_held(rq); 1768 1769 /* 1770 * Don't (re)queue an already queued item; nor queue anything when 1771 * balance_push() is active, see the comment with 1772 * balance_push_callback. 1773 */ 1774 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1775 return; 1776 1777 head->func = func; 1778 head->next = rq->balance_callback; 1779 rq->balance_callback = head; 1780 } 1781 1782 #define rcu_dereference_check_sched_domain(p) \ 1783 rcu_dereference_check((p), \ 1784 lockdep_is_held(&sched_domains_mutex)) 1785 1786 /* 1787 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1788 * See destroy_sched_domains: call_rcu for details. 1789 * 1790 * The domain tree of any CPU may only be accessed from within 1791 * preempt-disabled sections. 1792 */ 1793 #define for_each_domain(cpu, __sd) \ 1794 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1795 __sd; __sd = __sd->parent) 1796 1797 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1798 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1799 static const unsigned int SD_SHARED_CHILD_MASK = 1800 #include <linux/sched/sd_flags.h> 1801 0; 1802 #undef SD_FLAG 1803 1804 /** 1805 * highest_flag_domain - Return highest sched_domain containing flag. 1806 * @cpu: The CPU whose highest level of sched domain is to 1807 * be returned. 1808 * @flag: The flag to check for the highest sched_domain 1809 * for the given CPU. 1810 * 1811 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1812 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1813 */ 1814 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1815 { 1816 struct sched_domain *sd, *hsd = NULL; 1817 1818 for_each_domain(cpu, sd) { 1819 if (sd->flags & flag) { 1820 hsd = sd; 1821 continue; 1822 } 1823 1824 /* 1825 * Stop the search if @flag is known to be shared at lower 1826 * levels. It will not be found further up. 1827 */ 1828 if (flag & SD_SHARED_CHILD_MASK) 1829 break; 1830 } 1831 1832 return hsd; 1833 } 1834 1835 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1836 { 1837 struct sched_domain *sd; 1838 1839 for_each_domain(cpu, sd) { 1840 if (sd->flags & flag) 1841 break; 1842 } 1843 1844 return sd; 1845 } 1846 1847 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1848 DECLARE_PER_CPU(int, sd_llc_size); 1849 DECLARE_PER_CPU(int, sd_llc_id); 1850 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1851 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1852 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1853 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1854 extern struct static_key_false sched_asym_cpucapacity; 1855 1856 static __always_inline bool sched_asym_cpucap_active(void) 1857 { 1858 return static_branch_unlikely(&sched_asym_cpucapacity); 1859 } 1860 1861 struct sched_group_capacity { 1862 atomic_t ref; 1863 /* 1864 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1865 * for a single CPU. 1866 */ 1867 unsigned long capacity; 1868 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1869 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1870 unsigned long next_update; 1871 int imbalance; /* XXX unrelated to capacity but shared group state */ 1872 1873 #ifdef CONFIG_SCHED_DEBUG 1874 int id; 1875 #endif 1876 1877 unsigned long cpumask[]; /* Balance mask */ 1878 }; 1879 1880 struct sched_group { 1881 struct sched_group *next; /* Must be a circular list */ 1882 atomic_t ref; 1883 1884 unsigned int group_weight; 1885 struct sched_group_capacity *sgc; 1886 int asym_prefer_cpu; /* CPU of highest priority in group */ 1887 int flags; 1888 1889 /* 1890 * The CPUs this group covers. 1891 * 1892 * NOTE: this field is variable length. (Allocated dynamically 1893 * by attaching extra space to the end of the structure, 1894 * depending on how many CPUs the kernel has booted up with) 1895 */ 1896 unsigned long cpumask[]; 1897 }; 1898 1899 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1900 { 1901 return to_cpumask(sg->cpumask); 1902 } 1903 1904 /* 1905 * See build_balance_mask(). 1906 */ 1907 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1908 { 1909 return to_cpumask(sg->sgc->cpumask); 1910 } 1911 1912 extern int group_balance_cpu(struct sched_group *sg); 1913 1914 #ifdef CONFIG_SCHED_DEBUG 1915 void update_sched_domain_debugfs(void); 1916 void dirty_sched_domain_sysctl(int cpu); 1917 #else 1918 static inline void update_sched_domain_debugfs(void) 1919 { 1920 } 1921 static inline void dirty_sched_domain_sysctl(int cpu) 1922 { 1923 } 1924 #endif 1925 1926 extern int sched_update_scaling(void); 1927 1928 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 1929 { 1930 if (!p->user_cpus_ptr) 1931 return cpu_possible_mask; /* &init_task.cpus_mask */ 1932 return p->user_cpus_ptr; 1933 } 1934 #endif /* CONFIG_SMP */ 1935 1936 #include "stats.h" 1937 1938 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1939 1940 extern void __sched_core_account_forceidle(struct rq *rq); 1941 1942 static inline void sched_core_account_forceidle(struct rq *rq) 1943 { 1944 if (schedstat_enabled()) 1945 __sched_core_account_forceidle(rq); 1946 } 1947 1948 extern void __sched_core_tick(struct rq *rq); 1949 1950 static inline void sched_core_tick(struct rq *rq) 1951 { 1952 if (sched_core_enabled(rq) && schedstat_enabled()) 1953 __sched_core_tick(rq); 1954 } 1955 1956 #else 1957 1958 static inline void sched_core_account_forceidle(struct rq *rq) {} 1959 1960 static inline void sched_core_tick(struct rq *rq) {} 1961 1962 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1963 1964 #ifdef CONFIG_CGROUP_SCHED 1965 1966 /* 1967 * Return the group to which this tasks belongs. 1968 * 1969 * We cannot use task_css() and friends because the cgroup subsystem 1970 * changes that value before the cgroup_subsys::attach() method is called, 1971 * therefore we cannot pin it and might observe the wrong value. 1972 * 1973 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1974 * core changes this before calling sched_move_task(). 1975 * 1976 * Instead we use a 'copy' which is updated from sched_move_task() while 1977 * holding both task_struct::pi_lock and rq::lock. 1978 */ 1979 static inline struct task_group *task_group(struct task_struct *p) 1980 { 1981 return p->sched_task_group; 1982 } 1983 1984 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1985 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1986 { 1987 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1988 struct task_group *tg = task_group(p); 1989 #endif 1990 1991 #ifdef CONFIG_FAIR_GROUP_SCHED 1992 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1993 p->se.cfs_rq = tg->cfs_rq[cpu]; 1994 p->se.parent = tg->se[cpu]; 1995 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 1996 #endif 1997 1998 #ifdef CONFIG_RT_GROUP_SCHED 1999 p->rt.rt_rq = tg->rt_rq[cpu]; 2000 p->rt.parent = tg->rt_se[cpu]; 2001 #endif 2002 } 2003 2004 #else /* CONFIG_CGROUP_SCHED */ 2005 2006 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2007 static inline struct task_group *task_group(struct task_struct *p) 2008 { 2009 return NULL; 2010 } 2011 2012 #endif /* CONFIG_CGROUP_SCHED */ 2013 2014 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2015 { 2016 set_task_rq(p, cpu); 2017 #ifdef CONFIG_SMP 2018 /* 2019 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2020 * successfully executed on another CPU. We must ensure that updates of 2021 * per-task data have been completed by this moment. 2022 */ 2023 smp_wmb(); 2024 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2025 p->wake_cpu = cpu; 2026 #endif 2027 } 2028 2029 /* 2030 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2031 */ 2032 #ifdef CONFIG_SCHED_DEBUG 2033 # define const_debug __read_mostly 2034 #else 2035 # define const_debug const 2036 #endif 2037 2038 #define SCHED_FEAT(name, enabled) \ 2039 __SCHED_FEAT_##name , 2040 2041 enum { 2042 #include "features.h" 2043 __SCHED_FEAT_NR, 2044 }; 2045 2046 #undef SCHED_FEAT 2047 2048 #ifdef CONFIG_SCHED_DEBUG 2049 2050 /* 2051 * To support run-time toggling of sched features, all the translation units 2052 * (but core.c) reference the sysctl_sched_features defined in core.c. 2053 */ 2054 extern const_debug unsigned int sysctl_sched_features; 2055 2056 #ifdef CONFIG_JUMP_LABEL 2057 #define SCHED_FEAT(name, enabled) \ 2058 static __always_inline bool static_branch_##name(struct static_key *key) \ 2059 { \ 2060 return static_key_##enabled(key); \ 2061 } 2062 2063 #include "features.h" 2064 #undef SCHED_FEAT 2065 2066 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2067 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2068 2069 #else /* !CONFIG_JUMP_LABEL */ 2070 2071 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2072 2073 #endif /* CONFIG_JUMP_LABEL */ 2074 2075 #else /* !SCHED_DEBUG */ 2076 2077 /* 2078 * Each translation unit has its own copy of sysctl_sched_features to allow 2079 * constants propagation at compile time and compiler optimization based on 2080 * features default. 2081 */ 2082 #define SCHED_FEAT(name, enabled) \ 2083 (1UL << __SCHED_FEAT_##name) * enabled | 2084 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2085 #include "features.h" 2086 0; 2087 #undef SCHED_FEAT 2088 2089 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2090 2091 #endif /* SCHED_DEBUG */ 2092 2093 extern struct static_key_false sched_numa_balancing; 2094 extern struct static_key_false sched_schedstats; 2095 2096 static inline u64 global_rt_period(void) 2097 { 2098 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2099 } 2100 2101 static inline u64 global_rt_runtime(void) 2102 { 2103 if (sysctl_sched_rt_runtime < 0) 2104 return RUNTIME_INF; 2105 2106 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2107 } 2108 2109 static inline int task_current(struct rq *rq, struct task_struct *p) 2110 { 2111 return rq->curr == p; 2112 } 2113 2114 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2115 { 2116 #ifdef CONFIG_SMP 2117 return p->on_cpu; 2118 #else 2119 return task_current(rq, p); 2120 #endif 2121 } 2122 2123 static inline int task_on_rq_queued(struct task_struct *p) 2124 { 2125 return p->on_rq == TASK_ON_RQ_QUEUED; 2126 } 2127 2128 static inline int task_on_rq_migrating(struct task_struct *p) 2129 { 2130 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2131 } 2132 2133 /* Wake flags. The first three directly map to some SD flag value */ 2134 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2135 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2136 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2137 2138 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2139 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2140 2141 #ifdef CONFIG_SMP 2142 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2143 static_assert(WF_FORK == SD_BALANCE_FORK); 2144 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2145 #endif 2146 2147 /* 2148 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2149 * of tasks with abnormal "nice" values across CPUs the contribution that 2150 * each task makes to its run queue's load is weighted according to its 2151 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2152 * scaled version of the new time slice allocation that they receive on time 2153 * slice expiry etc. 2154 */ 2155 2156 #define WEIGHT_IDLEPRIO 3 2157 #define WMULT_IDLEPRIO 1431655765 2158 2159 extern const int sched_prio_to_weight[40]; 2160 extern const u32 sched_prio_to_wmult[40]; 2161 2162 /* 2163 * {de,en}queue flags: 2164 * 2165 * DEQUEUE_SLEEP - task is no longer runnable 2166 * ENQUEUE_WAKEUP - task just became runnable 2167 * 2168 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2169 * are in a known state which allows modification. Such pairs 2170 * should preserve as much state as possible. 2171 * 2172 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2173 * in the runqueue. 2174 * 2175 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2176 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2177 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2178 * 2179 */ 2180 2181 #define DEQUEUE_SLEEP 0x01 2182 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2183 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2184 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2185 2186 #define ENQUEUE_WAKEUP 0x01 2187 #define ENQUEUE_RESTORE 0x02 2188 #define ENQUEUE_MOVE 0x04 2189 #define ENQUEUE_NOCLOCK 0x08 2190 2191 #define ENQUEUE_HEAD 0x10 2192 #define ENQUEUE_REPLENISH 0x20 2193 #ifdef CONFIG_SMP 2194 #define ENQUEUE_MIGRATED 0x40 2195 #else 2196 #define ENQUEUE_MIGRATED 0x00 2197 #endif 2198 2199 #define RETRY_TASK ((void *)-1UL) 2200 2201 struct affinity_context { 2202 const struct cpumask *new_mask; 2203 struct cpumask *user_mask; 2204 unsigned int flags; 2205 }; 2206 2207 struct sched_class { 2208 2209 #ifdef CONFIG_UCLAMP_TASK 2210 int uclamp_enabled; 2211 #endif 2212 2213 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2214 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2215 void (*yield_task) (struct rq *rq); 2216 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2217 2218 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2219 2220 struct task_struct *(*pick_next_task)(struct rq *rq); 2221 2222 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2223 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2224 2225 #ifdef CONFIG_SMP 2226 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2227 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2228 2229 struct task_struct * (*pick_task)(struct rq *rq); 2230 2231 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2232 2233 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2234 2235 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2236 2237 void (*rq_online)(struct rq *rq); 2238 void (*rq_offline)(struct rq *rq); 2239 2240 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2241 #endif 2242 2243 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2244 void (*task_fork)(struct task_struct *p); 2245 void (*task_dead)(struct task_struct *p); 2246 2247 /* 2248 * The switched_from() call is allowed to drop rq->lock, therefore we 2249 * cannot assume the switched_from/switched_to pair is serialized by 2250 * rq->lock. They are however serialized by p->pi_lock. 2251 */ 2252 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2253 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2254 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2255 int oldprio); 2256 2257 unsigned int (*get_rr_interval)(struct rq *rq, 2258 struct task_struct *task); 2259 2260 void (*update_curr)(struct rq *rq); 2261 2262 #ifdef CONFIG_FAIR_GROUP_SCHED 2263 void (*task_change_group)(struct task_struct *p); 2264 #endif 2265 2266 #ifdef CONFIG_SCHED_CORE 2267 int (*task_is_throttled)(struct task_struct *p, int cpu); 2268 #endif 2269 }; 2270 2271 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2272 { 2273 WARN_ON_ONCE(rq->curr != prev); 2274 prev->sched_class->put_prev_task(rq, prev); 2275 } 2276 2277 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2278 { 2279 next->sched_class->set_next_task(rq, next, false); 2280 } 2281 2282 2283 /* 2284 * Helper to define a sched_class instance; each one is placed in a separate 2285 * section which is ordered by the linker script: 2286 * 2287 * include/asm-generic/vmlinux.lds.h 2288 * 2289 * *CAREFUL* they are laid out in *REVERSE* order!!! 2290 * 2291 * Also enforce alignment on the instance, not the type, to guarantee layout. 2292 */ 2293 #define DEFINE_SCHED_CLASS(name) \ 2294 const struct sched_class name##_sched_class \ 2295 __aligned(__alignof__(struct sched_class)) \ 2296 __section("__" #name "_sched_class") 2297 2298 /* Defined in include/asm-generic/vmlinux.lds.h */ 2299 extern struct sched_class __sched_class_highest[]; 2300 extern struct sched_class __sched_class_lowest[]; 2301 2302 #define for_class_range(class, _from, _to) \ 2303 for (class = (_from); class < (_to); class++) 2304 2305 #define for_each_class(class) \ 2306 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2307 2308 #define sched_class_above(_a, _b) ((_a) < (_b)) 2309 2310 extern const struct sched_class stop_sched_class; 2311 extern const struct sched_class dl_sched_class; 2312 extern const struct sched_class rt_sched_class; 2313 extern const struct sched_class fair_sched_class; 2314 extern const struct sched_class idle_sched_class; 2315 2316 static inline bool sched_stop_runnable(struct rq *rq) 2317 { 2318 return rq->stop && task_on_rq_queued(rq->stop); 2319 } 2320 2321 static inline bool sched_dl_runnable(struct rq *rq) 2322 { 2323 return rq->dl.dl_nr_running > 0; 2324 } 2325 2326 static inline bool sched_rt_runnable(struct rq *rq) 2327 { 2328 return rq->rt.rt_queued > 0; 2329 } 2330 2331 static inline bool sched_fair_runnable(struct rq *rq) 2332 { 2333 return rq->cfs.nr_running > 0; 2334 } 2335 2336 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2337 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2338 2339 #define SCA_CHECK 0x01 2340 #define SCA_MIGRATE_DISABLE 0x02 2341 #define SCA_MIGRATE_ENABLE 0x04 2342 #define SCA_USER 0x08 2343 2344 #ifdef CONFIG_SMP 2345 2346 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2347 2348 extern void trigger_load_balance(struct rq *rq); 2349 2350 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2351 2352 static inline struct task_struct *get_push_task(struct rq *rq) 2353 { 2354 struct task_struct *p = rq->curr; 2355 2356 lockdep_assert_rq_held(rq); 2357 2358 if (rq->push_busy) 2359 return NULL; 2360 2361 if (p->nr_cpus_allowed == 1) 2362 return NULL; 2363 2364 if (p->migration_disabled) 2365 return NULL; 2366 2367 rq->push_busy = true; 2368 return get_task_struct(p); 2369 } 2370 2371 extern int push_cpu_stop(void *arg); 2372 2373 #endif 2374 2375 #ifdef CONFIG_CPU_IDLE 2376 static inline void idle_set_state(struct rq *rq, 2377 struct cpuidle_state *idle_state) 2378 { 2379 rq->idle_state = idle_state; 2380 } 2381 2382 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2383 { 2384 SCHED_WARN_ON(!rcu_read_lock_held()); 2385 2386 return rq->idle_state; 2387 } 2388 #else 2389 static inline void idle_set_state(struct rq *rq, 2390 struct cpuidle_state *idle_state) 2391 { 2392 } 2393 2394 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2395 { 2396 return NULL; 2397 } 2398 #endif 2399 2400 extern void schedule_idle(void); 2401 2402 extern void sysrq_sched_debug_show(void); 2403 extern void sched_init_granularity(void); 2404 extern void update_max_interval(void); 2405 2406 extern void init_sched_dl_class(void); 2407 extern void init_sched_rt_class(void); 2408 extern void init_sched_fair_class(void); 2409 2410 extern void reweight_task(struct task_struct *p, int prio); 2411 2412 extern void resched_curr(struct rq *rq); 2413 extern void resched_cpu(int cpu); 2414 2415 extern struct rt_bandwidth def_rt_bandwidth; 2416 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2417 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2418 2419 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2420 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2421 2422 #define BW_SHIFT 20 2423 #define BW_UNIT (1 << BW_SHIFT) 2424 #define RATIO_SHIFT 8 2425 #define MAX_BW_BITS (64 - BW_SHIFT) 2426 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2427 unsigned long to_ratio(u64 period, u64 runtime); 2428 2429 extern void init_entity_runnable_average(struct sched_entity *se); 2430 extern void post_init_entity_util_avg(struct task_struct *p); 2431 2432 #ifdef CONFIG_NO_HZ_FULL 2433 extern bool sched_can_stop_tick(struct rq *rq); 2434 extern int __init sched_tick_offload_init(void); 2435 2436 /* 2437 * Tick may be needed by tasks in the runqueue depending on their policy and 2438 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2439 * nohz mode if necessary. 2440 */ 2441 static inline void sched_update_tick_dependency(struct rq *rq) 2442 { 2443 int cpu = cpu_of(rq); 2444 2445 if (!tick_nohz_full_cpu(cpu)) 2446 return; 2447 2448 if (sched_can_stop_tick(rq)) 2449 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2450 else 2451 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2452 } 2453 #else 2454 static inline int sched_tick_offload_init(void) { return 0; } 2455 static inline void sched_update_tick_dependency(struct rq *rq) { } 2456 #endif 2457 2458 static inline void add_nr_running(struct rq *rq, unsigned count) 2459 { 2460 unsigned prev_nr = rq->nr_running; 2461 2462 rq->nr_running = prev_nr + count; 2463 if (trace_sched_update_nr_running_tp_enabled()) { 2464 call_trace_sched_update_nr_running(rq, count); 2465 } 2466 2467 #ifdef CONFIG_SMP 2468 if (prev_nr < 2 && rq->nr_running >= 2) { 2469 if (!READ_ONCE(rq->rd->overload)) 2470 WRITE_ONCE(rq->rd->overload, 1); 2471 } 2472 #endif 2473 2474 sched_update_tick_dependency(rq); 2475 } 2476 2477 static inline void sub_nr_running(struct rq *rq, unsigned count) 2478 { 2479 rq->nr_running -= count; 2480 if (trace_sched_update_nr_running_tp_enabled()) { 2481 call_trace_sched_update_nr_running(rq, -count); 2482 } 2483 2484 /* Check if we still need preemption */ 2485 sched_update_tick_dependency(rq); 2486 } 2487 2488 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2489 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2490 2491 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2492 2493 #ifdef CONFIG_PREEMPT_RT 2494 #define SCHED_NR_MIGRATE_BREAK 8 2495 #else 2496 #define SCHED_NR_MIGRATE_BREAK 32 2497 #endif 2498 2499 extern const_debug unsigned int sysctl_sched_nr_migrate; 2500 extern const_debug unsigned int sysctl_sched_migration_cost; 2501 2502 #ifdef CONFIG_SCHED_DEBUG 2503 extern unsigned int sysctl_sched_latency; 2504 extern unsigned int sysctl_sched_min_granularity; 2505 extern unsigned int sysctl_sched_idle_min_granularity; 2506 extern unsigned int sysctl_sched_wakeup_granularity; 2507 extern int sysctl_resched_latency_warn_ms; 2508 extern int sysctl_resched_latency_warn_once; 2509 2510 extern unsigned int sysctl_sched_tunable_scaling; 2511 2512 extern unsigned int sysctl_numa_balancing_scan_delay; 2513 extern unsigned int sysctl_numa_balancing_scan_period_min; 2514 extern unsigned int sysctl_numa_balancing_scan_period_max; 2515 extern unsigned int sysctl_numa_balancing_scan_size; 2516 extern unsigned int sysctl_numa_balancing_hot_threshold; 2517 #endif 2518 2519 #ifdef CONFIG_SCHED_HRTICK 2520 2521 /* 2522 * Use hrtick when: 2523 * - enabled by features 2524 * - hrtimer is actually high res 2525 */ 2526 static inline int hrtick_enabled(struct rq *rq) 2527 { 2528 if (!cpu_active(cpu_of(rq))) 2529 return 0; 2530 return hrtimer_is_hres_active(&rq->hrtick_timer); 2531 } 2532 2533 static inline int hrtick_enabled_fair(struct rq *rq) 2534 { 2535 if (!sched_feat(HRTICK)) 2536 return 0; 2537 return hrtick_enabled(rq); 2538 } 2539 2540 static inline int hrtick_enabled_dl(struct rq *rq) 2541 { 2542 if (!sched_feat(HRTICK_DL)) 2543 return 0; 2544 return hrtick_enabled(rq); 2545 } 2546 2547 void hrtick_start(struct rq *rq, u64 delay); 2548 2549 #else 2550 2551 static inline int hrtick_enabled_fair(struct rq *rq) 2552 { 2553 return 0; 2554 } 2555 2556 static inline int hrtick_enabled_dl(struct rq *rq) 2557 { 2558 return 0; 2559 } 2560 2561 static inline int hrtick_enabled(struct rq *rq) 2562 { 2563 return 0; 2564 } 2565 2566 #endif /* CONFIG_SCHED_HRTICK */ 2567 2568 #ifndef arch_scale_freq_tick 2569 static __always_inline 2570 void arch_scale_freq_tick(void) 2571 { 2572 } 2573 #endif 2574 2575 #ifndef arch_scale_freq_capacity 2576 /** 2577 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2578 * @cpu: the CPU in question. 2579 * 2580 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2581 * 2582 * f_curr 2583 * ------ * SCHED_CAPACITY_SCALE 2584 * f_max 2585 */ 2586 static __always_inline 2587 unsigned long arch_scale_freq_capacity(int cpu) 2588 { 2589 return SCHED_CAPACITY_SCALE; 2590 } 2591 #endif 2592 2593 #ifdef CONFIG_SCHED_DEBUG 2594 /* 2595 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2596 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2597 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2598 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2599 */ 2600 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2601 { 2602 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2603 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2604 #ifdef CONFIG_SMP 2605 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2606 #endif 2607 } 2608 #else 2609 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2610 #endif 2611 2612 #ifdef CONFIG_SMP 2613 2614 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2615 { 2616 #ifdef CONFIG_SCHED_CORE 2617 /* 2618 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2619 * order by core-id first and cpu-id second. 2620 * 2621 * Notably: 2622 * 2623 * double_rq_lock(0,3); will take core-0, core-1 lock 2624 * double_rq_lock(1,2); will take core-1, core-0 lock 2625 * 2626 * when only cpu-id is considered. 2627 */ 2628 if (rq1->core->cpu < rq2->core->cpu) 2629 return true; 2630 if (rq1->core->cpu > rq2->core->cpu) 2631 return false; 2632 2633 /* 2634 * __sched_core_flip() relies on SMT having cpu-id lock order. 2635 */ 2636 #endif 2637 return rq1->cpu < rq2->cpu; 2638 } 2639 2640 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2641 2642 #ifdef CONFIG_PREEMPTION 2643 2644 /* 2645 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2646 * way at the expense of forcing extra atomic operations in all 2647 * invocations. This assures that the double_lock is acquired using the 2648 * same underlying policy as the spinlock_t on this architecture, which 2649 * reduces latency compared to the unfair variant below. However, it 2650 * also adds more overhead and therefore may reduce throughput. 2651 */ 2652 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2653 __releases(this_rq->lock) 2654 __acquires(busiest->lock) 2655 __acquires(this_rq->lock) 2656 { 2657 raw_spin_rq_unlock(this_rq); 2658 double_rq_lock(this_rq, busiest); 2659 2660 return 1; 2661 } 2662 2663 #else 2664 /* 2665 * Unfair double_lock_balance: Optimizes throughput at the expense of 2666 * latency by eliminating extra atomic operations when the locks are 2667 * already in proper order on entry. This favors lower CPU-ids and will 2668 * grant the double lock to lower CPUs over higher ids under contention, 2669 * regardless of entry order into the function. 2670 */ 2671 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2672 __releases(this_rq->lock) 2673 __acquires(busiest->lock) 2674 __acquires(this_rq->lock) 2675 { 2676 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2677 likely(raw_spin_rq_trylock(busiest))) { 2678 double_rq_clock_clear_update(this_rq, busiest); 2679 return 0; 2680 } 2681 2682 if (rq_order_less(this_rq, busiest)) { 2683 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2684 double_rq_clock_clear_update(this_rq, busiest); 2685 return 0; 2686 } 2687 2688 raw_spin_rq_unlock(this_rq); 2689 double_rq_lock(this_rq, busiest); 2690 2691 return 1; 2692 } 2693 2694 #endif /* CONFIG_PREEMPTION */ 2695 2696 /* 2697 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2698 */ 2699 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2700 { 2701 lockdep_assert_irqs_disabled(); 2702 2703 return _double_lock_balance(this_rq, busiest); 2704 } 2705 2706 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2707 __releases(busiest->lock) 2708 { 2709 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2710 raw_spin_rq_unlock(busiest); 2711 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2712 } 2713 2714 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2715 { 2716 if (l1 > l2) 2717 swap(l1, l2); 2718 2719 spin_lock(l1); 2720 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2721 } 2722 2723 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2724 { 2725 if (l1 > l2) 2726 swap(l1, l2); 2727 2728 spin_lock_irq(l1); 2729 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2730 } 2731 2732 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2733 { 2734 if (l1 > l2) 2735 swap(l1, l2); 2736 2737 raw_spin_lock(l1); 2738 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2739 } 2740 2741 /* 2742 * double_rq_unlock - safely unlock two runqueues 2743 * 2744 * Note this does not restore interrupts like task_rq_unlock, 2745 * you need to do so manually after calling. 2746 */ 2747 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2748 __releases(rq1->lock) 2749 __releases(rq2->lock) 2750 { 2751 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2752 raw_spin_rq_unlock(rq2); 2753 else 2754 __release(rq2->lock); 2755 raw_spin_rq_unlock(rq1); 2756 } 2757 2758 extern void set_rq_online (struct rq *rq); 2759 extern void set_rq_offline(struct rq *rq); 2760 extern bool sched_smp_initialized; 2761 2762 #else /* CONFIG_SMP */ 2763 2764 /* 2765 * double_rq_lock - safely lock two runqueues 2766 * 2767 * Note this does not disable interrupts like task_rq_lock, 2768 * you need to do so manually before calling. 2769 */ 2770 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2771 __acquires(rq1->lock) 2772 __acquires(rq2->lock) 2773 { 2774 WARN_ON_ONCE(!irqs_disabled()); 2775 WARN_ON_ONCE(rq1 != rq2); 2776 raw_spin_rq_lock(rq1); 2777 __acquire(rq2->lock); /* Fake it out ;) */ 2778 double_rq_clock_clear_update(rq1, rq2); 2779 } 2780 2781 /* 2782 * double_rq_unlock - safely unlock two runqueues 2783 * 2784 * Note this does not restore interrupts like task_rq_unlock, 2785 * you need to do so manually after calling. 2786 */ 2787 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2788 __releases(rq1->lock) 2789 __releases(rq2->lock) 2790 { 2791 WARN_ON_ONCE(rq1 != rq2); 2792 raw_spin_rq_unlock(rq1); 2793 __release(rq2->lock); 2794 } 2795 2796 #endif 2797 2798 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2799 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2800 2801 #ifdef CONFIG_SCHED_DEBUG 2802 extern bool sched_debug_verbose; 2803 2804 extern void print_cfs_stats(struct seq_file *m, int cpu); 2805 extern void print_rt_stats(struct seq_file *m, int cpu); 2806 extern void print_dl_stats(struct seq_file *m, int cpu); 2807 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2808 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2809 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2810 2811 extern void resched_latency_warn(int cpu, u64 latency); 2812 #ifdef CONFIG_NUMA_BALANCING 2813 extern void 2814 show_numa_stats(struct task_struct *p, struct seq_file *m); 2815 extern void 2816 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2817 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2818 #endif /* CONFIG_NUMA_BALANCING */ 2819 #else 2820 static inline void resched_latency_warn(int cpu, u64 latency) {} 2821 #endif /* CONFIG_SCHED_DEBUG */ 2822 2823 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2824 extern void init_rt_rq(struct rt_rq *rt_rq); 2825 extern void init_dl_rq(struct dl_rq *dl_rq); 2826 2827 extern void cfs_bandwidth_usage_inc(void); 2828 extern void cfs_bandwidth_usage_dec(void); 2829 2830 #ifdef CONFIG_NO_HZ_COMMON 2831 #define NOHZ_BALANCE_KICK_BIT 0 2832 #define NOHZ_STATS_KICK_BIT 1 2833 #define NOHZ_NEWILB_KICK_BIT 2 2834 #define NOHZ_NEXT_KICK_BIT 3 2835 2836 /* Run rebalance_domains() */ 2837 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2838 /* Update blocked load */ 2839 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2840 /* Update blocked load when entering idle */ 2841 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2842 /* Update nohz.next_balance */ 2843 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2844 2845 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2846 2847 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2848 2849 extern void nohz_balance_exit_idle(struct rq *rq); 2850 #else 2851 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2852 #endif 2853 2854 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2855 extern void nohz_run_idle_balance(int cpu); 2856 #else 2857 static inline void nohz_run_idle_balance(int cpu) { } 2858 #endif 2859 2860 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2861 struct irqtime { 2862 u64 total; 2863 u64 tick_delta; 2864 u64 irq_start_time; 2865 struct u64_stats_sync sync; 2866 }; 2867 2868 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2869 2870 /* 2871 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2872 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2873 * and never move forward. 2874 */ 2875 static inline u64 irq_time_read(int cpu) 2876 { 2877 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2878 unsigned int seq; 2879 u64 total; 2880 2881 do { 2882 seq = __u64_stats_fetch_begin(&irqtime->sync); 2883 total = irqtime->total; 2884 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2885 2886 return total; 2887 } 2888 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2889 2890 #ifdef CONFIG_CPU_FREQ 2891 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2892 2893 /** 2894 * cpufreq_update_util - Take a note about CPU utilization changes. 2895 * @rq: Runqueue to carry out the update for. 2896 * @flags: Update reason flags. 2897 * 2898 * This function is called by the scheduler on the CPU whose utilization is 2899 * being updated. 2900 * 2901 * It can only be called from RCU-sched read-side critical sections. 2902 * 2903 * The way cpufreq is currently arranged requires it to evaluate the CPU 2904 * performance state (frequency/voltage) on a regular basis to prevent it from 2905 * being stuck in a completely inadequate performance level for too long. 2906 * That is not guaranteed to happen if the updates are only triggered from CFS 2907 * and DL, though, because they may not be coming in if only RT tasks are 2908 * active all the time (or there are RT tasks only). 2909 * 2910 * As a workaround for that issue, this function is called periodically by the 2911 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2912 * but that really is a band-aid. Going forward it should be replaced with 2913 * solutions targeted more specifically at RT tasks. 2914 */ 2915 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2916 { 2917 struct update_util_data *data; 2918 2919 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2920 cpu_of(rq))); 2921 if (data) 2922 data->func(data, rq_clock(rq), flags); 2923 } 2924 #else 2925 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2926 #endif /* CONFIG_CPU_FREQ */ 2927 2928 #ifdef arch_scale_freq_capacity 2929 # ifndef arch_scale_freq_invariant 2930 # define arch_scale_freq_invariant() true 2931 # endif 2932 #else 2933 # define arch_scale_freq_invariant() false 2934 #endif 2935 2936 #ifdef CONFIG_SMP 2937 static inline unsigned long capacity_orig_of(int cpu) 2938 { 2939 return cpu_rq(cpu)->cpu_capacity_orig; 2940 } 2941 2942 /** 2943 * enum cpu_util_type - CPU utilization type 2944 * @FREQUENCY_UTIL: Utilization used to select frequency 2945 * @ENERGY_UTIL: Utilization used during energy calculation 2946 * 2947 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2948 * need to be aggregated differently depending on the usage made of them. This 2949 * enum is used within effective_cpu_util() to differentiate the types of 2950 * utilization expected by the callers, and adjust the aggregation accordingly. 2951 */ 2952 enum cpu_util_type { 2953 FREQUENCY_UTIL, 2954 ENERGY_UTIL, 2955 }; 2956 2957 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2958 enum cpu_util_type type, 2959 struct task_struct *p); 2960 2961 /* 2962 * Verify the fitness of task @p to run on @cpu taking into account the 2963 * CPU original capacity and the runtime/deadline ratio of the task. 2964 * 2965 * The function will return true if the original capacity of @cpu is 2966 * greater than or equal to task's deadline density right shifted by 2967 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 2968 */ 2969 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 2970 { 2971 unsigned long cap = arch_scale_cpu_capacity(cpu); 2972 2973 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 2974 } 2975 2976 static inline unsigned long cpu_bw_dl(struct rq *rq) 2977 { 2978 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2979 } 2980 2981 static inline unsigned long cpu_util_dl(struct rq *rq) 2982 { 2983 return READ_ONCE(rq->avg_dl.util_avg); 2984 } 2985 2986 2987 extern unsigned long cpu_util_cfs(int cpu); 2988 extern unsigned long cpu_util_cfs_boost(int cpu); 2989 2990 static inline unsigned long cpu_util_rt(struct rq *rq) 2991 { 2992 return READ_ONCE(rq->avg_rt.util_avg); 2993 } 2994 #endif 2995 2996 #ifdef CONFIG_UCLAMP_TASK 2997 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2998 2999 static inline unsigned long uclamp_rq_get(struct rq *rq, 3000 enum uclamp_id clamp_id) 3001 { 3002 return READ_ONCE(rq->uclamp[clamp_id].value); 3003 } 3004 3005 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3006 unsigned int value) 3007 { 3008 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3009 } 3010 3011 static inline bool uclamp_rq_is_idle(struct rq *rq) 3012 { 3013 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3014 } 3015 3016 /** 3017 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 3018 * @rq: The rq to clamp against. Must not be NULL. 3019 * @util: The util value to clamp. 3020 * @p: The task to clamp against. Can be NULL if you want to clamp 3021 * against @rq only. 3022 * 3023 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 3024 * 3025 * If sched_uclamp_used static key is disabled, then just return the util 3026 * without any clamping since uclamp aggregation at the rq level in the fast 3027 * path is disabled, rendering this operation a NOP. 3028 * 3029 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 3030 * will return the correct effective uclamp value of the task even if the 3031 * static key is disabled. 3032 */ 3033 static __always_inline 3034 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3035 struct task_struct *p) 3036 { 3037 unsigned long min_util = 0; 3038 unsigned long max_util = 0; 3039 3040 if (!static_branch_likely(&sched_uclamp_used)) 3041 return util; 3042 3043 if (p) { 3044 min_util = uclamp_eff_value(p, UCLAMP_MIN); 3045 max_util = uclamp_eff_value(p, UCLAMP_MAX); 3046 3047 /* 3048 * Ignore last runnable task's max clamp, as this task will 3049 * reset it. Similarly, no need to read the rq's min clamp. 3050 */ 3051 if (uclamp_rq_is_idle(rq)) 3052 goto out; 3053 } 3054 3055 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN)); 3056 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX)); 3057 out: 3058 /* 3059 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3060 * RUNNABLE tasks with _different_ clamps, we can end up with an 3061 * inversion. Fix it now when the clamps are applied. 3062 */ 3063 if (unlikely(min_util >= max_util)) 3064 return min_util; 3065 3066 return clamp(util, min_util, max_util); 3067 } 3068 3069 /* Is the rq being capped/throttled by uclamp_max? */ 3070 static inline bool uclamp_rq_is_capped(struct rq *rq) 3071 { 3072 unsigned long rq_util; 3073 unsigned long max_util; 3074 3075 if (!static_branch_likely(&sched_uclamp_used)) 3076 return false; 3077 3078 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3079 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3080 3081 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3082 } 3083 3084 /* 3085 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3086 * by default in the fast path and only gets turned on once userspace performs 3087 * an operation that requires it. 3088 * 3089 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3090 * hence is active. 3091 */ 3092 static inline bool uclamp_is_used(void) 3093 { 3094 return static_branch_likely(&sched_uclamp_used); 3095 } 3096 #else /* CONFIG_UCLAMP_TASK */ 3097 static inline unsigned long uclamp_eff_value(struct task_struct *p, 3098 enum uclamp_id clamp_id) 3099 { 3100 if (clamp_id == UCLAMP_MIN) 3101 return 0; 3102 3103 return SCHED_CAPACITY_SCALE; 3104 } 3105 3106 static inline 3107 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3108 struct task_struct *p) 3109 { 3110 return util; 3111 } 3112 3113 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3114 3115 static inline bool uclamp_is_used(void) 3116 { 3117 return false; 3118 } 3119 3120 static inline unsigned long uclamp_rq_get(struct rq *rq, 3121 enum uclamp_id clamp_id) 3122 { 3123 if (clamp_id == UCLAMP_MIN) 3124 return 0; 3125 3126 return SCHED_CAPACITY_SCALE; 3127 } 3128 3129 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3130 unsigned int value) 3131 { 3132 } 3133 3134 static inline bool uclamp_rq_is_idle(struct rq *rq) 3135 { 3136 return false; 3137 } 3138 #endif /* CONFIG_UCLAMP_TASK */ 3139 3140 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3141 static inline unsigned long cpu_util_irq(struct rq *rq) 3142 { 3143 return rq->avg_irq.util_avg; 3144 } 3145 3146 static inline 3147 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3148 { 3149 util *= (max - irq); 3150 util /= max; 3151 3152 return util; 3153 3154 } 3155 #else 3156 static inline unsigned long cpu_util_irq(struct rq *rq) 3157 { 3158 return 0; 3159 } 3160 3161 static inline 3162 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3163 { 3164 return util; 3165 } 3166 #endif 3167 3168 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3169 3170 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3171 3172 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3173 3174 static inline bool sched_energy_enabled(void) 3175 { 3176 return static_branch_unlikely(&sched_energy_present); 3177 } 3178 3179 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3180 3181 #define perf_domain_span(pd) NULL 3182 static inline bool sched_energy_enabled(void) { return false; } 3183 3184 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3185 3186 #ifdef CONFIG_MEMBARRIER 3187 /* 3188 * The scheduler provides memory barriers required by membarrier between: 3189 * - prior user-space memory accesses and store to rq->membarrier_state, 3190 * - store to rq->membarrier_state and following user-space memory accesses. 3191 * In the same way it provides those guarantees around store to rq->curr. 3192 */ 3193 static inline void membarrier_switch_mm(struct rq *rq, 3194 struct mm_struct *prev_mm, 3195 struct mm_struct *next_mm) 3196 { 3197 int membarrier_state; 3198 3199 if (prev_mm == next_mm) 3200 return; 3201 3202 membarrier_state = atomic_read(&next_mm->membarrier_state); 3203 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3204 return; 3205 3206 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3207 } 3208 #else 3209 static inline void membarrier_switch_mm(struct rq *rq, 3210 struct mm_struct *prev_mm, 3211 struct mm_struct *next_mm) 3212 { 3213 } 3214 #endif 3215 3216 #ifdef CONFIG_SMP 3217 static inline bool is_per_cpu_kthread(struct task_struct *p) 3218 { 3219 if (!(p->flags & PF_KTHREAD)) 3220 return false; 3221 3222 if (p->nr_cpus_allowed != 1) 3223 return false; 3224 3225 return true; 3226 } 3227 #endif 3228 3229 extern void swake_up_all_locked(struct swait_queue_head *q); 3230 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3231 3232 #ifdef CONFIG_PREEMPT_DYNAMIC 3233 extern int preempt_dynamic_mode; 3234 extern int sched_dynamic_mode(const char *str); 3235 extern void sched_dynamic_update(int mode); 3236 #endif 3237 3238 static inline void update_current_exec_runtime(struct task_struct *curr, 3239 u64 now, u64 delta_exec) 3240 { 3241 curr->se.sum_exec_runtime += delta_exec; 3242 account_group_exec_runtime(curr, delta_exec); 3243 3244 curr->se.exec_start = now; 3245 cgroup_account_cputime(curr, delta_exec); 3246 } 3247 3248 #ifdef CONFIG_SCHED_MM_CID 3249 3250 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3251 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3252 3253 extern raw_spinlock_t cid_lock; 3254 extern int use_cid_lock; 3255 3256 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3257 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3258 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3259 extern void init_sched_mm_cid(struct task_struct *t); 3260 3261 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3262 { 3263 if (cid < 0) 3264 return; 3265 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3266 } 3267 3268 /* 3269 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3270 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3271 * be held to transition to other states. 3272 * 3273 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3274 * consistent across cpus, which prevents use of this_cpu_cmpxchg. 3275 */ 3276 static inline void mm_cid_put_lazy(struct task_struct *t) 3277 { 3278 struct mm_struct *mm = t->mm; 3279 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3280 int cid; 3281 3282 lockdep_assert_irqs_disabled(); 3283 cid = __this_cpu_read(pcpu_cid->cid); 3284 if (!mm_cid_is_lazy_put(cid) || 3285 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3286 return; 3287 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3288 } 3289 3290 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3291 { 3292 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3293 int cid, res; 3294 3295 lockdep_assert_irqs_disabled(); 3296 cid = __this_cpu_read(pcpu_cid->cid); 3297 for (;;) { 3298 if (mm_cid_is_unset(cid)) 3299 return MM_CID_UNSET; 3300 /* 3301 * Attempt transition from valid or lazy-put to unset. 3302 */ 3303 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3304 if (res == cid) 3305 break; 3306 cid = res; 3307 } 3308 return cid; 3309 } 3310 3311 static inline void mm_cid_put(struct mm_struct *mm) 3312 { 3313 int cid; 3314 3315 lockdep_assert_irqs_disabled(); 3316 cid = mm_cid_pcpu_unset(mm); 3317 if (cid == MM_CID_UNSET) 3318 return; 3319 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3320 } 3321 3322 static inline int __mm_cid_try_get(struct mm_struct *mm) 3323 { 3324 struct cpumask *cpumask; 3325 int cid; 3326 3327 cpumask = mm_cidmask(mm); 3328 /* 3329 * Retry finding first zero bit if the mask is temporarily 3330 * filled. This only happens during concurrent remote-clear 3331 * which owns a cid without holding a rq lock. 3332 */ 3333 for (;;) { 3334 cid = cpumask_first_zero(cpumask); 3335 if (cid < nr_cpu_ids) 3336 break; 3337 cpu_relax(); 3338 } 3339 if (cpumask_test_and_set_cpu(cid, cpumask)) 3340 return -1; 3341 return cid; 3342 } 3343 3344 /* 3345 * Save a snapshot of the current runqueue time of this cpu 3346 * with the per-cpu cid value, allowing to estimate how recently it was used. 3347 */ 3348 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3349 { 3350 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3351 3352 lockdep_assert_rq_held(rq); 3353 WRITE_ONCE(pcpu_cid->time, rq->clock); 3354 } 3355 3356 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) 3357 { 3358 int cid; 3359 3360 /* 3361 * All allocations (even those using the cid_lock) are lock-free. If 3362 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3363 * guarantee forward progress. 3364 */ 3365 if (!READ_ONCE(use_cid_lock)) { 3366 cid = __mm_cid_try_get(mm); 3367 if (cid >= 0) 3368 goto end; 3369 raw_spin_lock(&cid_lock); 3370 } else { 3371 raw_spin_lock(&cid_lock); 3372 cid = __mm_cid_try_get(mm); 3373 if (cid >= 0) 3374 goto unlock; 3375 } 3376 3377 /* 3378 * cid concurrently allocated. Retry while forcing following 3379 * allocations to use the cid_lock to ensure forward progress. 3380 */ 3381 WRITE_ONCE(use_cid_lock, 1); 3382 /* 3383 * Set use_cid_lock before allocation. Only care about program order 3384 * because this is only required for forward progress. 3385 */ 3386 barrier(); 3387 /* 3388 * Retry until it succeeds. It is guaranteed to eventually succeed once 3389 * all newcoming allocations observe the use_cid_lock flag set. 3390 */ 3391 do { 3392 cid = __mm_cid_try_get(mm); 3393 cpu_relax(); 3394 } while (cid < 0); 3395 /* 3396 * Allocate before clearing use_cid_lock. Only care about 3397 * program order because this is for forward progress. 3398 */ 3399 barrier(); 3400 WRITE_ONCE(use_cid_lock, 0); 3401 unlock: 3402 raw_spin_unlock(&cid_lock); 3403 end: 3404 mm_cid_snapshot_time(rq, mm); 3405 return cid; 3406 } 3407 3408 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) 3409 { 3410 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3411 struct cpumask *cpumask; 3412 int cid; 3413 3414 lockdep_assert_rq_held(rq); 3415 cpumask = mm_cidmask(mm); 3416 cid = __this_cpu_read(pcpu_cid->cid); 3417 if (mm_cid_is_valid(cid)) { 3418 mm_cid_snapshot_time(rq, mm); 3419 return cid; 3420 } 3421 if (mm_cid_is_lazy_put(cid)) { 3422 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3423 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3424 } 3425 cid = __mm_cid_get(rq, mm); 3426 __this_cpu_write(pcpu_cid->cid, cid); 3427 return cid; 3428 } 3429 3430 static inline void switch_mm_cid(struct rq *rq, 3431 struct task_struct *prev, 3432 struct task_struct *next) 3433 { 3434 /* 3435 * Provide a memory barrier between rq->curr store and load of 3436 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3437 * 3438 * Should be adapted if context_switch() is modified. 3439 */ 3440 if (!next->mm) { // to kernel 3441 /* 3442 * user -> kernel transition does not guarantee a barrier, but 3443 * we can use the fact that it performs an atomic operation in 3444 * mmgrab(). 3445 */ 3446 if (prev->mm) // from user 3447 smp_mb__after_mmgrab(); 3448 /* 3449 * kernel -> kernel transition does not change rq->curr->mm 3450 * state. It stays NULL. 3451 */ 3452 } else { // to user 3453 /* 3454 * kernel -> user transition does not provide a barrier 3455 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3456 * Provide it here. 3457 */ 3458 if (!prev->mm) // from kernel 3459 smp_mb(); 3460 /* 3461 * user -> user transition guarantees a memory barrier through 3462 * switch_mm() when current->mm changes. If current->mm is 3463 * unchanged, no barrier is needed. 3464 */ 3465 } 3466 if (prev->mm_cid_active) { 3467 mm_cid_snapshot_time(rq, prev->mm); 3468 mm_cid_put_lazy(prev); 3469 prev->mm_cid = -1; 3470 } 3471 if (next->mm_cid_active) 3472 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); 3473 } 3474 3475 #else 3476 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3477 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3478 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3479 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3480 static inline void init_sched_mm_cid(struct task_struct *t) { } 3481 #endif 3482 3483 #endif /* _KERNEL_SCHED_SCHED_H */ 3484