xref: /openbmc/linux/kernel/sched/sched.h (revision aadaeca4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/cpufreq.h>
31 #include <linux/cpumask_api.h>
32 #include <linux/ctype.h>
33 #include <linux/file.h>
34 #include <linux/fs_api.h>
35 #include <linux/hrtimer_api.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq_work.h>
38 #include <linux/jiffies.h>
39 #include <linux/kref_api.h>
40 #include <linux/kthread.h>
41 #include <linux/ktime_api.h>
42 #include <linux/lockdep_api.h>
43 #include <linux/lockdep.h>
44 #include <linux/minmax.h>
45 #include <linux/mm.h>
46 #include <linux/module.h>
47 #include <linux/mutex_api.h>
48 #include <linux/plist.h>
49 #include <linux/poll.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/psi.h>
53 #include <linux/rcupdate.h>
54 #include <linux/seq_file.h>
55 #include <linux/seqlock.h>
56 #include <linux/softirq.h>
57 #include <linux/spinlock_api.h>
58 #include <linux/static_key.h>
59 #include <linux/stop_machine.h>
60 #include <linux/syscalls_api.h>
61 #include <linux/syscalls.h>
62 #include <linux/tick.h>
63 #include <linux/topology.h>
64 #include <linux/types.h>
65 #include <linux/u64_stats_sync_api.h>
66 #include <linux/uaccess.h>
67 #include <linux/wait_api.h>
68 #include <linux/wait_bit.h>
69 #include <linux/workqueue_api.h>
70 
71 #include <trace/events/power.h>
72 #include <trace/events/sched.h>
73 
74 #include "../workqueue_internal.h"
75 
76 #ifdef CONFIG_CGROUP_SCHED
77 #include <linux/cgroup.h>
78 #include <linux/psi.h>
79 #endif
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # include <linux/static_key.h>
83 #endif
84 
85 #ifdef CONFIG_PARAVIRT
86 # include <asm/paravirt.h>
87 # include <asm/paravirt_api_clock.h>
88 #endif
89 
90 #include "cpupri.h"
91 #include "cpudeadline.h"
92 
93 #ifdef CONFIG_SCHED_DEBUG
94 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
95 #else
96 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
97 #endif
98 
99 struct rq;
100 struct cpuidle_state;
101 
102 /* task_struct::on_rq states: */
103 #define TASK_ON_RQ_QUEUED	1
104 #define TASK_ON_RQ_MIGRATING	2
105 
106 extern __read_mostly int scheduler_running;
107 
108 extern unsigned long calc_load_update;
109 extern atomic_long_t calc_load_tasks;
110 
111 extern void calc_global_load_tick(struct rq *this_rq);
112 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
113 
114 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
115 /*
116  * Helpers for converting nanosecond timing to jiffy resolution
117  */
118 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
119 
120 /*
121  * Increase resolution of nice-level calculations for 64-bit architectures.
122  * The extra resolution improves shares distribution and load balancing of
123  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
124  * hierarchies, especially on larger systems. This is not a user-visible change
125  * and does not change the user-interface for setting shares/weights.
126  *
127  * We increase resolution only if we have enough bits to allow this increased
128  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
129  * are pretty high and the returns do not justify the increased costs.
130  *
131  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
132  * increase coverage and consistency always enable it on 64-bit platforms.
133  */
134 #ifdef CONFIG_64BIT
135 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
136 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
137 # define scale_load_down(w) \
138 ({ \
139 	unsigned long __w = (w); \
140 	if (__w) \
141 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
142 	__w; \
143 })
144 #else
145 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
146 # define scale_load(w)		(w)
147 # define scale_load_down(w)	(w)
148 #endif
149 
150 /*
151  * Task weight (visible to users) and its load (invisible to users) have
152  * independent resolution, but they should be well calibrated. We use
153  * scale_load() and scale_load_down(w) to convert between them. The
154  * following must be true:
155  *
156  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
157  *
158  */
159 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
160 
161 /*
162  * Single value that decides SCHED_DEADLINE internal math precision.
163  * 10 -> just above 1us
164  * 9  -> just above 0.5us
165  */
166 #define DL_SCALE		10
167 
168 /*
169  * Single value that denotes runtime == period, ie unlimited time.
170  */
171 #define RUNTIME_INF		((u64)~0ULL)
172 
173 static inline int idle_policy(int policy)
174 {
175 	return policy == SCHED_IDLE;
176 }
177 static inline int fair_policy(int policy)
178 {
179 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
180 }
181 
182 static inline int rt_policy(int policy)
183 {
184 	return policy == SCHED_FIFO || policy == SCHED_RR;
185 }
186 
187 static inline int dl_policy(int policy)
188 {
189 	return policy == SCHED_DEADLINE;
190 }
191 static inline bool valid_policy(int policy)
192 {
193 	return idle_policy(policy) || fair_policy(policy) ||
194 		rt_policy(policy) || dl_policy(policy);
195 }
196 
197 static inline int task_has_idle_policy(struct task_struct *p)
198 {
199 	return idle_policy(p->policy);
200 }
201 
202 static inline int task_has_rt_policy(struct task_struct *p)
203 {
204 	return rt_policy(p->policy);
205 }
206 
207 static inline int task_has_dl_policy(struct task_struct *p)
208 {
209 	return dl_policy(p->policy);
210 }
211 
212 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
213 
214 static inline void update_avg(u64 *avg, u64 sample)
215 {
216 	s64 diff = sample - *avg;
217 	*avg += diff / 8;
218 }
219 
220 /*
221  * Shifting a value by an exponent greater *or equal* to the size of said value
222  * is UB; cap at size-1.
223  */
224 #define shr_bound(val, shift)							\
225 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
226 
227 /*
228  * !! For sched_setattr_nocheck() (kernel) only !!
229  *
230  * This is actually gross. :(
231  *
232  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
233  * tasks, but still be able to sleep. We need this on platforms that cannot
234  * atomically change clock frequency. Remove once fast switching will be
235  * available on such platforms.
236  *
237  * SUGOV stands for SchedUtil GOVernor.
238  */
239 #define SCHED_FLAG_SUGOV	0x10000000
240 
241 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
242 
243 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
244 {
245 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
246 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
247 #else
248 	return false;
249 #endif
250 }
251 
252 /*
253  * Tells if entity @a should preempt entity @b.
254  */
255 static inline bool
256 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
257 {
258 	return dl_entity_is_special(a) ||
259 	       dl_time_before(a->deadline, b->deadline);
260 }
261 
262 /*
263  * This is the priority-queue data structure of the RT scheduling class:
264  */
265 struct rt_prio_array {
266 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
267 	struct list_head queue[MAX_RT_PRIO];
268 };
269 
270 struct rt_bandwidth {
271 	/* nests inside the rq lock: */
272 	raw_spinlock_t		rt_runtime_lock;
273 	ktime_t			rt_period;
274 	u64			rt_runtime;
275 	struct hrtimer		rt_period_timer;
276 	unsigned int		rt_period_active;
277 };
278 
279 void __dl_clear_params(struct task_struct *p);
280 
281 struct dl_bandwidth {
282 	raw_spinlock_t		dl_runtime_lock;
283 	u64			dl_runtime;
284 	u64			dl_period;
285 };
286 
287 static inline int dl_bandwidth_enabled(void)
288 {
289 	return sysctl_sched_rt_runtime >= 0;
290 }
291 
292 /*
293  * To keep the bandwidth of -deadline tasks under control
294  * we need some place where:
295  *  - store the maximum -deadline bandwidth of each cpu;
296  *  - cache the fraction of bandwidth that is currently allocated in
297  *    each root domain;
298  *
299  * This is all done in the data structure below. It is similar to the
300  * one used for RT-throttling (rt_bandwidth), with the main difference
301  * that, since here we are only interested in admission control, we
302  * do not decrease any runtime while the group "executes", neither we
303  * need a timer to replenish it.
304  *
305  * With respect to SMP, bandwidth is given on a per root domain basis,
306  * meaning that:
307  *  - bw (< 100%) is the deadline bandwidth of each CPU;
308  *  - total_bw is the currently allocated bandwidth in each root domain;
309  */
310 struct dl_bw {
311 	raw_spinlock_t		lock;
312 	u64			bw;
313 	u64			total_bw;
314 };
315 
316 /*
317  * Verify the fitness of task @p to run on @cpu taking into account the
318  * CPU original capacity and the runtime/deadline ratio of the task.
319  *
320  * The function will return true if the CPU original capacity of the
321  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
322  * task and false otherwise.
323  */
324 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
325 {
326 	unsigned long cap = arch_scale_cpu_capacity(cpu);
327 
328 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
329 }
330 
331 extern void init_dl_bw(struct dl_bw *dl_b);
332 extern int  sched_dl_global_validate(void);
333 extern void sched_dl_do_global(void);
334 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
335 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
336 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
337 extern bool __checkparam_dl(const struct sched_attr *attr);
338 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
339 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
340 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
341 
342 #ifdef CONFIG_CGROUP_SCHED
343 
344 struct cfs_rq;
345 struct rt_rq;
346 
347 extern struct list_head task_groups;
348 
349 struct cfs_bandwidth {
350 #ifdef CONFIG_CFS_BANDWIDTH
351 	raw_spinlock_t		lock;
352 	ktime_t			period;
353 	u64			quota;
354 	u64			runtime;
355 	u64			burst;
356 	u64			runtime_snap;
357 	s64			hierarchical_quota;
358 
359 	u8			idle;
360 	u8			period_active;
361 	u8			slack_started;
362 	struct hrtimer		period_timer;
363 	struct hrtimer		slack_timer;
364 	struct list_head	throttled_cfs_rq;
365 
366 	/* Statistics: */
367 	int			nr_periods;
368 	int			nr_throttled;
369 	int			nr_burst;
370 	u64			throttled_time;
371 	u64			burst_time;
372 #endif
373 };
374 
375 /* Task group related information */
376 struct task_group {
377 	struct cgroup_subsys_state css;
378 
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 	/* schedulable entities of this group on each CPU */
381 	struct sched_entity	**se;
382 	/* runqueue "owned" by this group on each CPU */
383 	struct cfs_rq		**cfs_rq;
384 	unsigned long		shares;
385 
386 	/* A positive value indicates that this is a SCHED_IDLE group. */
387 	int			idle;
388 
389 #ifdef	CONFIG_SMP
390 	/*
391 	 * load_avg can be heavily contended at clock tick time, so put
392 	 * it in its own cacheline separated from the fields above which
393 	 * will also be accessed at each tick.
394 	 */
395 	atomic_long_t		load_avg ____cacheline_aligned;
396 #endif
397 #endif
398 
399 #ifdef CONFIG_RT_GROUP_SCHED
400 	struct sched_rt_entity	**rt_se;
401 	struct rt_rq		**rt_rq;
402 
403 	struct rt_bandwidth	rt_bandwidth;
404 #endif
405 
406 	struct rcu_head		rcu;
407 	struct list_head	list;
408 
409 	struct task_group	*parent;
410 	struct list_head	siblings;
411 	struct list_head	children;
412 
413 #ifdef CONFIG_SCHED_AUTOGROUP
414 	struct autogroup	*autogroup;
415 #endif
416 
417 	struct cfs_bandwidth	cfs_bandwidth;
418 
419 #ifdef CONFIG_UCLAMP_TASK_GROUP
420 	/* The two decimal precision [%] value requested from user-space */
421 	unsigned int		uclamp_pct[UCLAMP_CNT];
422 	/* Clamp values requested for a task group */
423 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
424 	/* Effective clamp values used for a task group */
425 	struct uclamp_se	uclamp[UCLAMP_CNT];
426 #endif
427 
428 };
429 
430 #ifdef CONFIG_FAIR_GROUP_SCHED
431 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
432 
433 /*
434  * A weight of 0 or 1 can cause arithmetics problems.
435  * A weight of a cfs_rq is the sum of weights of which entities
436  * are queued on this cfs_rq, so a weight of a entity should not be
437  * too large, so as the shares value of a task group.
438  * (The default weight is 1024 - so there's no practical
439  *  limitation from this.)
440  */
441 #define MIN_SHARES		(1UL <<  1)
442 #define MAX_SHARES		(1UL << 18)
443 #endif
444 
445 typedef int (*tg_visitor)(struct task_group *, void *);
446 
447 extern int walk_tg_tree_from(struct task_group *from,
448 			     tg_visitor down, tg_visitor up, void *data);
449 
450 /*
451  * Iterate the full tree, calling @down when first entering a node and @up when
452  * leaving it for the final time.
453  *
454  * Caller must hold rcu_lock or sufficient equivalent.
455  */
456 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
457 {
458 	return walk_tg_tree_from(&root_task_group, down, up, data);
459 }
460 
461 extern int tg_nop(struct task_group *tg, void *data);
462 
463 extern void free_fair_sched_group(struct task_group *tg);
464 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
465 extern void online_fair_sched_group(struct task_group *tg);
466 extern void unregister_fair_sched_group(struct task_group *tg);
467 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
468 			struct sched_entity *se, int cpu,
469 			struct sched_entity *parent);
470 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
471 
472 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
473 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
474 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
475 
476 extern void unregister_rt_sched_group(struct task_group *tg);
477 extern void free_rt_sched_group(struct task_group *tg);
478 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
479 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
480 		struct sched_rt_entity *rt_se, int cpu,
481 		struct sched_rt_entity *parent);
482 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
483 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
484 extern long sched_group_rt_runtime(struct task_group *tg);
485 extern long sched_group_rt_period(struct task_group *tg);
486 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
487 
488 extern struct task_group *sched_create_group(struct task_group *parent);
489 extern void sched_online_group(struct task_group *tg,
490 			       struct task_group *parent);
491 extern void sched_destroy_group(struct task_group *tg);
492 extern void sched_release_group(struct task_group *tg);
493 
494 extern void sched_move_task(struct task_struct *tsk);
495 
496 #ifdef CONFIG_FAIR_GROUP_SCHED
497 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
498 
499 extern int sched_group_set_idle(struct task_group *tg, long idle);
500 
501 #ifdef CONFIG_SMP
502 extern void set_task_rq_fair(struct sched_entity *se,
503 			     struct cfs_rq *prev, struct cfs_rq *next);
504 #else /* !CONFIG_SMP */
505 static inline void set_task_rq_fair(struct sched_entity *se,
506 			     struct cfs_rq *prev, struct cfs_rq *next) { }
507 #endif /* CONFIG_SMP */
508 #endif /* CONFIG_FAIR_GROUP_SCHED */
509 
510 #else /* CONFIG_CGROUP_SCHED */
511 
512 struct cfs_bandwidth { };
513 
514 #endif	/* CONFIG_CGROUP_SCHED */
515 
516 /* CFS-related fields in a runqueue */
517 struct cfs_rq {
518 	struct load_weight	load;
519 	unsigned int		nr_running;
520 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
521 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
522 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
523 
524 	u64			exec_clock;
525 	u64			min_vruntime;
526 #ifdef CONFIG_SCHED_CORE
527 	unsigned int		forceidle_seq;
528 	u64			min_vruntime_fi;
529 #endif
530 
531 #ifndef CONFIG_64BIT
532 	u64			min_vruntime_copy;
533 #endif
534 
535 	struct rb_root_cached	tasks_timeline;
536 
537 	/*
538 	 * 'curr' points to currently running entity on this cfs_rq.
539 	 * It is set to NULL otherwise (i.e when none are currently running).
540 	 */
541 	struct sched_entity	*curr;
542 	struct sched_entity	*next;
543 	struct sched_entity	*last;
544 	struct sched_entity	*skip;
545 
546 #ifdef	CONFIG_SCHED_DEBUG
547 	unsigned int		nr_spread_over;
548 #endif
549 
550 #ifdef CONFIG_SMP
551 	/*
552 	 * CFS load tracking
553 	 */
554 	struct sched_avg	avg;
555 #ifndef CONFIG_64BIT
556 	u64			load_last_update_time_copy;
557 #endif
558 	struct {
559 		raw_spinlock_t	lock ____cacheline_aligned;
560 		int		nr;
561 		unsigned long	load_avg;
562 		unsigned long	util_avg;
563 		unsigned long	runnable_avg;
564 	} removed;
565 
566 #ifdef CONFIG_FAIR_GROUP_SCHED
567 	unsigned long		tg_load_avg_contrib;
568 	long			propagate;
569 	long			prop_runnable_sum;
570 
571 	/*
572 	 *   h_load = weight * f(tg)
573 	 *
574 	 * Where f(tg) is the recursive weight fraction assigned to
575 	 * this group.
576 	 */
577 	unsigned long		h_load;
578 	u64			last_h_load_update;
579 	struct sched_entity	*h_load_next;
580 #endif /* CONFIG_FAIR_GROUP_SCHED */
581 #endif /* CONFIG_SMP */
582 
583 #ifdef CONFIG_FAIR_GROUP_SCHED
584 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
585 
586 	/*
587 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
588 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
589 	 * (like users, containers etc.)
590 	 *
591 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
592 	 * This list is used during load balance.
593 	 */
594 	int			on_list;
595 	struct list_head	leaf_cfs_rq_list;
596 	struct task_group	*tg;	/* group that "owns" this runqueue */
597 
598 	/* Locally cached copy of our task_group's idle value */
599 	int			idle;
600 
601 #ifdef CONFIG_CFS_BANDWIDTH
602 	int			runtime_enabled;
603 	s64			runtime_remaining;
604 
605 	u64			throttled_clock;
606 	u64			throttled_clock_task;
607 	u64			throttled_clock_task_time;
608 	int			throttled;
609 	int			throttle_count;
610 	struct list_head	throttled_list;
611 #endif /* CONFIG_CFS_BANDWIDTH */
612 #endif /* CONFIG_FAIR_GROUP_SCHED */
613 };
614 
615 static inline int rt_bandwidth_enabled(void)
616 {
617 	return sysctl_sched_rt_runtime >= 0;
618 }
619 
620 /* RT IPI pull logic requires IRQ_WORK */
621 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
622 # define HAVE_RT_PUSH_IPI
623 #endif
624 
625 /* Real-Time classes' related field in a runqueue: */
626 struct rt_rq {
627 	struct rt_prio_array	active;
628 	unsigned int		rt_nr_running;
629 	unsigned int		rr_nr_running;
630 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
631 	struct {
632 		int		curr; /* highest queued rt task prio */
633 #ifdef CONFIG_SMP
634 		int		next; /* next highest */
635 #endif
636 	} highest_prio;
637 #endif
638 #ifdef CONFIG_SMP
639 	unsigned int		rt_nr_migratory;
640 	unsigned int		rt_nr_total;
641 	int			overloaded;
642 	struct plist_head	pushable_tasks;
643 
644 #endif /* CONFIG_SMP */
645 	int			rt_queued;
646 
647 	int			rt_throttled;
648 	u64			rt_time;
649 	u64			rt_runtime;
650 	/* Nests inside the rq lock: */
651 	raw_spinlock_t		rt_runtime_lock;
652 
653 #ifdef CONFIG_RT_GROUP_SCHED
654 	unsigned int		rt_nr_boosted;
655 
656 	struct rq		*rq;
657 	struct task_group	*tg;
658 #endif
659 };
660 
661 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
662 {
663 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
664 }
665 
666 /* Deadline class' related fields in a runqueue */
667 struct dl_rq {
668 	/* runqueue is an rbtree, ordered by deadline */
669 	struct rb_root_cached	root;
670 
671 	unsigned int		dl_nr_running;
672 
673 #ifdef CONFIG_SMP
674 	/*
675 	 * Deadline values of the currently executing and the
676 	 * earliest ready task on this rq. Caching these facilitates
677 	 * the decision whether or not a ready but not running task
678 	 * should migrate somewhere else.
679 	 */
680 	struct {
681 		u64		curr;
682 		u64		next;
683 	} earliest_dl;
684 
685 	unsigned int		dl_nr_migratory;
686 	int			overloaded;
687 
688 	/*
689 	 * Tasks on this rq that can be pushed away. They are kept in
690 	 * an rb-tree, ordered by tasks' deadlines, with caching
691 	 * of the leftmost (earliest deadline) element.
692 	 */
693 	struct rb_root_cached	pushable_dl_tasks_root;
694 #else
695 	struct dl_bw		dl_bw;
696 #endif
697 	/*
698 	 * "Active utilization" for this runqueue: increased when a
699 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
700 	 * task blocks
701 	 */
702 	u64			running_bw;
703 
704 	/*
705 	 * Utilization of the tasks "assigned" to this runqueue (including
706 	 * the tasks that are in runqueue and the tasks that executed on this
707 	 * CPU and blocked). Increased when a task moves to this runqueue, and
708 	 * decreased when the task moves away (migrates, changes scheduling
709 	 * policy, or terminates).
710 	 * This is needed to compute the "inactive utilization" for the
711 	 * runqueue (inactive utilization = this_bw - running_bw).
712 	 */
713 	u64			this_bw;
714 	u64			extra_bw;
715 
716 	/*
717 	 * Inverse of the fraction of CPU utilization that can be reclaimed
718 	 * by the GRUB algorithm.
719 	 */
720 	u64			bw_ratio;
721 };
722 
723 #ifdef CONFIG_FAIR_GROUP_SCHED
724 /* An entity is a task if it doesn't "own" a runqueue */
725 #define entity_is_task(se)	(!se->my_q)
726 
727 static inline void se_update_runnable(struct sched_entity *se)
728 {
729 	if (!entity_is_task(se))
730 		se->runnable_weight = se->my_q->h_nr_running;
731 }
732 
733 static inline long se_runnable(struct sched_entity *se)
734 {
735 	if (entity_is_task(se))
736 		return !!se->on_rq;
737 	else
738 		return se->runnable_weight;
739 }
740 
741 #else
742 #define entity_is_task(se)	1
743 
744 static inline void se_update_runnable(struct sched_entity *se) {}
745 
746 static inline long se_runnable(struct sched_entity *se)
747 {
748 	return !!se->on_rq;
749 }
750 #endif
751 
752 #ifdef CONFIG_SMP
753 /*
754  * XXX we want to get rid of these helpers and use the full load resolution.
755  */
756 static inline long se_weight(struct sched_entity *se)
757 {
758 	return scale_load_down(se->load.weight);
759 }
760 
761 
762 static inline bool sched_asym_prefer(int a, int b)
763 {
764 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
765 }
766 
767 struct perf_domain {
768 	struct em_perf_domain *em_pd;
769 	struct perf_domain *next;
770 	struct rcu_head rcu;
771 };
772 
773 /* Scheduling group status flags */
774 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
775 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
776 
777 /*
778  * We add the notion of a root-domain which will be used to define per-domain
779  * variables. Each exclusive cpuset essentially defines an island domain by
780  * fully partitioning the member CPUs from any other cpuset. Whenever a new
781  * exclusive cpuset is created, we also create and attach a new root-domain
782  * object.
783  *
784  */
785 struct root_domain {
786 	atomic_t		refcount;
787 	atomic_t		rto_count;
788 	struct rcu_head		rcu;
789 	cpumask_var_t		span;
790 	cpumask_var_t		online;
791 
792 	/*
793 	 * Indicate pullable load on at least one CPU, e.g:
794 	 * - More than one runnable task
795 	 * - Running task is misfit
796 	 */
797 	int			overload;
798 
799 	/* Indicate one or more cpus over-utilized (tipping point) */
800 	int			overutilized;
801 
802 	/*
803 	 * The bit corresponding to a CPU gets set here if such CPU has more
804 	 * than one runnable -deadline task (as it is below for RT tasks).
805 	 */
806 	cpumask_var_t		dlo_mask;
807 	atomic_t		dlo_count;
808 	struct dl_bw		dl_bw;
809 	struct cpudl		cpudl;
810 
811 	/*
812 	 * Indicate whether a root_domain's dl_bw has been checked or
813 	 * updated. It's monotonously increasing value.
814 	 *
815 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
816 	 * that u64 is 'big enough'. So that shouldn't be a concern.
817 	 */
818 	u64 visit_gen;
819 
820 #ifdef HAVE_RT_PUSH_IPI
821 	/*
822 	 * For IPI pull requests, loop across the rto_mask.
823 	 */
824 	struct irq_work		rto_push_work;
825 	raw_spinlock_t		rto_lock;
826 	/* These are only updated and read within rto_lock */
827 	int			rto_loop;
828 	int			rto_cpu;
829 	/* These atomics are updated outside of a lock */
830 	atomic_t		rto_loop_next;
831 	atomic_t		rto_loop_start;
832 #endif
833 	/*
834 	 * The "RT overload" flag: it gets set if a CPU has more than
835 	 * one runnable RT task.
836 	 */
837 	cpumask_var_t		rto_mask;
838 	struct cpupri		cpupri;
839 
840 	unsigned long		max_cpu_capacity;
841 
842 	/*
843 	 * NULL-terminated list of performance domains intersecting with the
844 	 * CPUs of the rd. Protected by RCU.
845 	 */
846 	struct perf_domain __rcu *pd;
847 };
848 
849 extern void init_defrootdomain(void);
850 extern int sched_init_domains(const struct cpumask *cpu_map);
851 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
852 extern void sched_get_rd(struct root_domain *rd);
853 extern void sched_put_rd(struct root_domain *rd);
854 
855 #ifdef HAVE_RT_PUSH_IPI
856 extern void rto_push_irq_work_func(struct irq_work *work);
857 #endif
858 #endif /* CONFIG_SMP */
859 
860 #ifdef CONFIG_UCLAMP_TASK
861 /*
862  * struct uclamp_bucket - Utilization clamp bucket
863  * @value: utilization clamp value for tasks on this clamp bucket
864  * @tasks: number of RUNNABLE tasks on this clamp bucket
865  *
866  * Keep track of how many tasks are RUNNABLE for a given utilization
867  * clamp value.
868  */
869 struct uclamp_bucket {
870 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
871 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
872 };
873 
874 /*
875  * struct uclamp_rq - rq's utilization clamp
876  * @value: currently active clamp values for a rq
877  * @bucket: utilization clamp buckets affecting a rq
878  *
879  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
880  * A clamp value is affecting a rq when there is at least one task RUNNABLE
881  * (or actually running) with that value.
882  *
883  * There are up to UCLAMP_CNT possible different clamp values, currently there
884  * are only two: minimum utilization and maximum utilization.
885  *
886  * All utilization clamping values are MAX aggregated, since:
887  * - for util_min: we want to run the CPU at least at the max of the minimum
888  *   utilization required by its currently RUNNABLE tasks.
889  * - for util_max: we want to allow the CPU to run up to the max of the
890  *   maximum utilization allowed by its currently RUNNABLE tasks.
891  *
892  * Since on each system we expect only a limited number of different
893  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
894  * the metrics required to compute all the per-rq utilization clamp values.
895  */
896 struct uclamp_rq {
897 	unsigned int value;
898 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
899 };
900 
901 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
902 #endif /* CONFIG_UCLAMP_TASK */
903 
904 /*
905  * This is the main, per-CPU runqueue data structure.
906  *
907  * Locking rule: those places that want to lock multiple runqueues
908  * (such as the load balancing or the thread migration code), lock
909  * acquire operations must be ordered by ascending &runqueue.
910  */
911 struct rq {
912 	/* runqueue lock: */
913 	raw_spinlock_t		__lock;
914 
915 	/*
916 	 * nr_running and cpu_load should be in the same cacheline because
917 	 * remote CPUs use both these fields when doing load calculation.
918 	 */
919 	unsigned int		nr_running;
920 #ifdef CONFIG_NUMA_BALANCING
921 	unsigned int		nr_numa_running;
922 	unsigned int		nr_preferred_running;
923 	unsigned int		numa_migrate_on;
924 #endif
925 #ifdef CONFIG_NO_HZ_COMMON
926 #ifdef CONFIG_SMP
927 	unsigned long		last_blocked_load_update_tick;
928 	unsigned int		has_blocked_load;
929 	call_single_data_t	nohz_csd;
930 #endif /* CONFIG_SMP */
931 	unsigned int		nohz_tick_stopped;
932 	atomic_t		nohz_flags;
933 #endif /* CONFIG_NO_HZ_COMMON */
934 
935 #ifdef CONFIG_SMP
936 	unsigned int		ttwu_pending;
937 #endif
938 	u64			nr_switches;
939 
940 #ifdef CONFIG_UCLAMP_TASK
941 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
942 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
943 	unsigned int		uclamp_flags;
944 #define UCLAMP_FLAG_IDLE 0x01
945 #endif
946 
947 	struct cfs_rq		cfs;
948 	struct rt_rq		rt;
949 	struct dl_rq		dl;
950 
951 #ifdef CONFIG_FAIR_GROUP_SCHED
952 	/* list of leaf cfs_rq on this CPU: */
953 	struct list_head	leaf_cfs_rq_list;
954 	struct list_head	*tmp_alone_branch;
955 #endif /* CONFIG_FAIR_GROUP_SCHED */
956 
957 	/*
958 	 * This is part of a global counter where only the total sum
959 	 * over all CPUs matters. A task can increase this counter on
960 	 * one CPU and if it got migrated afterwards it may decrease
961 	 * it on another CPU. Always updated under the runqueue lock:
962 	 */
963 	unsigned int		nr_uninterruptible;
964 
965 	struct task_struct __rcu	*curr;
966 	struct task_struct	*idle;
967 	struct task_struct	*stop;
968 	unsigned long		next_balance;
969 	struct mm_struct	*prev_mm;
970 
971 	unsigned int		clock_update_flags;
972 	u64			clock;
973 	/* Ensure that all clocks are in the same cache line */
974 	u64			clock_task ____cacheline_aligned;
975 	u64			clock_pelt;
976 	unsigned long		lost_idle_time;
977 
978 	atomic_t		nr_iowait;
979 
980 #ifdef CONFIG_SCHED_DEBUG
981 	u64 last_seen_need_resched_ns;
982 	int ticks_without_resched;
983 #endif
984 
985 #ifdef CONFIG_MEMBARRIER
986 	int membarrier_state;
987 #endif
988 
989 #ifdef CONFIG_SMP
990 	struct root_domain		*rd;
991 	struct sched_domain __rcu	*sd;
992 
993 	unsigned long		cpu_capacity;
994 	unsigned long		cpu_capacity_orig;
995 
996 	struct callback_head	*balance_callback;
997 
998 	unsigned char		nohz_idle_balance;
999 	unsigned char		idle_balance;
1000 
1001 	unsigned long		misfit_task_load;
1002 
1003 	/* For active balancing */
1004 	int			active_balance;
1005 	int			push_cpu;
1006 	struct cpu_stop_work	active_balance_work;
1007 
1008 	/* CPU of this runqueue: */
1009 	int			cpu;
1010 	int			online;
1011 
1012 	struct list_head cfs_tasks;
1013 
1014 	struct sched_avg	avg_rt;
1015 	struct sched_avg	avg_dl;
1016 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1017 	struct sched_avg	avg_irq;
1018 #endif
1019 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1020 	struct sched_avg	avg_thermal;
1021 #endif
1022 	u64			idle_stamp;
1023 	u64			avg_idle;
1024 
1025 	unsigned long		wake_stamp;
1026 	u64			wake_avg_idle;
1027 
1028 	/* This is used to determine avg_idle's max value */
1029 	u64			max_idle_balance_cost;
1030 
1031 #ifdef CONFIG_HOTPLUG_CPU
1032 	struct rcuwait		hotplug_wait;
1033 #endif
1034 #endif /* CONFIG_SMP */
1035 
1036 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1037 	u64			prev_irq_time;
1038 #endif
1039 #ifdef CONFIG_PARAVIRT
1040 	u64			prev_steal_time;
1041 #endif
1042 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1043 	u64			prev_steal_time_rq;
1044 #endif
1045 
1046 	/* calc_load related fields */
1047 	unsigned long		calc_load_update;
1048 	long			calc_load_active;
1049 
1050 #ifdef CONFIG_SCHED_HRTICK
1051 #ifdef CONFIG_SMP
1052 	call_single_data_t	hrtick_csd;
1053 #endif
1054 	struct hrtimer		hrtick_timer;
1055 	ktime_t 		hrtick_time;
1056 #endif
1057 
1058 #ifdef CONFIG_SCHEDSTATS
1059 	/* latency stats */
1060 	struct sched_info	rq_sched_info;
1061 	unsigned long long	rq_cpu_time;
1062 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1063 
1064 	/* sys_sched_yield() stats */
1065 	unsigned int		yld_count;
1066 
1067 	/* schedule() stats */
1068 	unsigned int		sched_count;
1069 	unsigned int		sched_goidle;
1070 
1071 	/* try_to_wake_up() stats */
1072 	unsigned int		ttwu_count;
1073 	unsigned int		ttwu_local;
1074 #endif
1075 
1076 #ifdef CONFIG_CPU_IDLE
1077 	/* Must be inspected within a rcu lock section */
1078 	struct cpuidle_state	*idle_state;
1079 #endif
1080 
1081 #ifdef CONFIG_SMP
1082 	unsigned int		nr_pinned;
1083 #endif
1084 	unsigned int		push_busy;
1085 	struct cpu_stop_work	push_work;
1086 
1087 #ifdef CONFIG_SCHED_CORE
1088 	/* per rq */
1089 	struct rq		*core;
1090 	struct task_struct	*core_pick;
1091 	unsigned int		core_enabled;
1092 	unsigned int		core_sched_seq;
1093 	struct rb_root		core_tree;
1094 
1095 	/* shared state -- careful with sched_core_cpu_deactivate() */
1096 	unsigned int		core_task_seq;
1097 	unsigned int		core_pick_seq;
1098 	unsigned long		core_cookie;
1099 	unsigned int		core_forceidle_count;
1100 	unsigned int		core_forceidle_seq;
1101 	unsigned int		core_forceidle_occupation;
1102 	u64			core_forceidle_start;
1103 #endif
1104 };
1105 
1106 #ifdef CONFIG_FAIR_GROUP_SCHED
1107 
1108 /* CPU runqueue to which this cfs_rq is attached */
1109 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1110 {
1111 	return cfs_rq->rq;
1112 }
1113 
1114 #else
1115 
1116 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1117 {
1118 	return container_of(cfs_rq, struct rq, cfs);
1119 }
1120 #endif
1121 
1122 static inline int cpu_of(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 	return rq->cpu;
1126 #else
1127 	return 0;
1128 #endif
1129 }
1130 
1131 #define MDF_PUSH	0x01
1132 
1133 static inline bool is_migration_disabled(struct task_struct *p)
1134 {
1135 #ifdef CONFIG_SMP
1136 	return p->migration_disabled;
1137 #else
1138 	return false;
1139 #endif
1140 }
1141 
1142 struct sched_group;
1143 #ifdef CONFIG_SCHED_CORE
1144 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1145 
1146 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1147 
1148 static inline bool sched_core_enabled(struct rq *rq)
1149 {
1150 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1151 }
1152 
1153 static inline bool sched_core_disabled(void)
1154 {
1155 	return !static_branch_unlikely(&__sched_core_enabled);
1156 }
1157 
1158 /*
1159  * Be careful with this function; not for general use. The return value isn't
1160  * stable unless you actually hold a relevant rq->__lock.
1161  */
1162 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1163 {
1164 	if (sched_core_enabled(rq))
1165 		return &rq->core->__lock;
1166 
1167 	return &rq->__lock;
1168 }
1169 
1170 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1171 {
1172 	if (rq->core_enabled)
1173 		return &rq->core->__lock;
1174 
1175 	return &rq->__lock;
1176 }
1177 
1178 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1179 
1180 /*
1181  * Helpers to check if the CPU's core cookie matches with the task's cookie
1182  * when core scheduling is enabled.
1183  * A special case is that the task's cookie always matches with CPU's core
1184  * cookie if the CPU is in an idle core.
1185  */
1186 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1187 {
1188 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1189 	if (!sched_core_enabled(rq))
1190 		return true;
1191 
1192 	return rq->core->core_cookie == p->core_cookie;
1193 }
1194 
1195 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1196 {
1197 	bool idle_core = true;
1198 	int cpu;
1199 
1200 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1201 	if (!sched_core_enabled(rq))
1202 		return true;
1203 
1204 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1205 		if (!available_idle_cpu(cpu)) {
1206 			idle_core = false;
1207 			break;
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * A CPU in an idle core is always the best choice for tasks with
1213 	 * cookies.
1214 	 */
1215 	return idle_core || rq->core->core_cookie == p->core_cookie;
1216 }
1217 
1218 static inline bool sched_group_cookie_match(struct rq *rq,
1219 					    struct task_struct *p,
1220 					    struct sched_group *group)
1221 {
1222 	int cpu;
1223 
1224 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1225 	if (!sched_core_enabled(rq))
1226 		return true;
1227 
1228 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1229 		if (sched_core_cookie_match(rq, p))
1230 			return true;
1231 	}
1232 	return false;
1233 }
1234 
1235 extern void queue_core_balance(struct rq *rq);
1236 
1237 static inline bool sched_core_enqueued(struct task_struct *p)
1238 {
1239 	return !RB_EMPTY_NODE(&p->core_node);
1240 }
1241 
1242 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1243 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1244 
1245 extern void sched_core_get(void);
1246 extern void sched_core_put(void);
1247 
1248 #else /* !CONFIG_SCHED_CORE */
1249 
1250 static inline bool sched_core_enabled(struct rq *rq)
1251 {
1252 	return false;
1253 }
1254 
1255 static inline bool sched_core_disabled(void)
1256 {
1257 	return true;
1258 }
1259 
1260 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1261 {
1262 	return &rq->__lock;
1263 }
1264 
1265 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1266 {
1267 	return &rq->__lock;
1268 }
1269 
1270 static inline void queue_core_balance(struct rq *rq)
1271 {
1272 }
1273 
1274 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1275 {
1276 	return true;
1277 }
1278 
1279 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1280 {
1281 	return true;
1282 }
1283 
1284 static inline bool sched_group_cookie_match(struct rq *rq,
1285 					    struct task_struct *p,
1286 					    struct sched_group *group)
1287 {
1288 	return true;
1289 }
1290 #endif /* CONFIG_SCHED_CORE */
1291 
1292 static inline void lockdep_assert_rq_held(struct rq *rq)
1293 {
1294 	lockdep_assert_held(__rq_lockp(rq));
1295 }
1296 
1297 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1298 extern bool raw_spin_rq_trylock(struct rq *rq);
1299 extern void raw_spin_rq_unlock(struct rq *rq);
1300 
1301 static inline void raw_spin_rq_lock(struct rq *rq)
1302 {
1303 	raw_spin_rq_lock_nested(rq, 0);
1304 }
1305 
1306 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1307 {
1308 	local_irq_disable();
1309 	raw_spin_rq_lock(rq);
1310 }
1311 
1312 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1313 {
1314 	raw_spin_rq_unlock(rq);
1315 	local_irq_enable();
1316 }
1317 
1318 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1319 {
1320 	unsigned long flags;
1321 	local_irq_save(flags);
1322 	raw_spin_rq_lock(rq);
1323 	return flags;
1324 }
1325 
1326 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1327 {
1328 	raw_spin_rq_unlock(rq);
1329 	local_irq_restore(flags);
1330 }
1331 
1332 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1333 do {						\
1334 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1335 } while (0)
1336 
1337 #ifdef CONFIG_SCHED_SMT
1338 extern void __update_idle_core(struct rq *rq);
1339 
1340 static inline void update_idle_core(struct rq *rq)
1341 {
1342 	if (static_branch_unlikely(&sched_smt_present))
1343 		__update_idle_core(rq);
1344 }
1345 
1346 #else
1347 static inline void update_idle_core(struct rq *rq) { }
1348 #endif
1349 
1350 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1351 
1352 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1353 #define this_rq()		this_cpu_ptr(&runqueues)
1354 #define task_rq(p)		cpu_rq(task_cpu(p))
1355 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1356 #define raw_rq()		raw_cpu_ptr(&runqueues)
1357 
1358 #ifdef CONFIG_FAIR_GROUP_SCHED
1359 static inline struct task_struct *task_of(struct sched_entity *se)
1360 {
1361 	SCHED_WARN_ON(!entity_is_task(se));
1362 	return container_of(se, struct task_struct, se);
1363 }
1364 
1365 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1366 {
1367 	return p->se.cfs_rq;
1368 }
1369 
1370 /* runqueue on which this entity is (to be) queued */
1371 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1372 {
1373 	return se->cfs_rq;
1374 }
1375 
1376 /* runqueue "owned" by this group */
1377 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1378 {
1379 	return grp->my_q;
1380 }
1381 
1382 #else
1383 
1384 static inline struct task_struct *task_of(struct sched_entity *se)
1385 {
1386 	return container_of(se, struct task_struct, se);
1387 }
1388 
1389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1390 {
1391 	return &task_rq(p)->cfs;
1392 }
1393 
1394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1395 {
1396 	struct task_struct *p = task_of(se);
1397 	struct rq *rq = task_rq(p);
1398 
1399 	return &rq->cfs;
1400 }
1401 
1402 /* runqueue "owned" by this group */
1403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1404 {
1405 	return NULL;
1406 }
1407 #endif
1408 
1409 extern void update_rq_clock(struct rq *rq);
1410 
1411 /*
1412  * rq::clock_update_flags bits
1413  *
1414  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1415  *  call to __schedule(). This is an optimisation to avoid
1416  *  neighbouring rq clock updates.
1417  *
1418  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1419  *  in effect and calls to update_rq_clock() are being ignored.
1420  *
1421  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1422  *  made to update_rq_clock() since the last time rq::lock was pinned.
1423  *
1424  * If inside of __schedule(), clock_update_flags will have been
1425  * shifted left (a left shift is a cheap operation for the fast path
1426  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1427  *
1428  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1429  *
1430  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1431  * one position though, because the next rq_unpin_lock() will shift it
1432  * back.
1433  */
1434 #define RQCF_REQ_SKIP		0x01
1435 #define RQCF_ACT_SKIP		0x02
1436 #define RQCF_UPDATED		0x04
1437 
1438 static inline void assert_clock_updated(struct rq *rq)
1439 {
1440 	/*
1441 	 * The only reason for not seeing a clock update since the
1442 	 * last rq_pin_lock() is if we're currently skipping updates.
1443 	 */
1444 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1445 }
1446 
1447 static inline u64 rq_clock(struct rq *rq)
1448 {
1449 	lockdep_assert_rq_held(rq);
1450 	assert_clock_updated(rq);
1451 
1452 	return rq->clock;
1453 }
1454 
1455 static inline u64 rq_clock_task(struct rq *rq)
1456 {
1457 	lockdep_assert_rq_held(rq);
1458 	assert_clock_updated(rq);
1459 
1460 	return rq->clock_task;
1461 }
1462 
1463 /**
1464  * By default the decay is the default pelt decay period.
1465  * The decay shift can change the decay period in
1466  * multiples of 32.
1467  *  Decay shift		Decay period(ms)
1468  *	0			32
1469  *	1			64
1470  *	2			128
1471  *	3			256
1472  *	4			512
1473  */
1474 extern int sched_thermal_decay_shift;
1475 
1476 static inline u64 rq_clock_thermal(struct rq *rq)
1477 {
1478 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1479 }
1480 
1481 static inline void rq_clock_skip_update(struct rq *rq)
1482 {
1483 	lockdep_assert_rq_held(rq);
1484 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1485 }
1486 
1487 /*
1488  * See rt task throttling, which is the only time a skip
1489  * request is canceled.
1490  */
1491 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1492 {
1493 	lockdep_assert_rq_held(rq);
1494 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1495 }
1496 
1497 struct rq_flags {
1498 	unsigned long flags;
1499 	struct pin_cookie cookie;
1500 #ifdef CONFIG_SCHED_DEBUG
1501 	/*
1502 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1503 	 * current pin context is stashed here in case it needs to be
1504 	 * restored in rq_repin_lock().
1505 	 */
1506 	unsigned int clock_update_flags;
1507 #endif
1508 };
1509 
1510 extern struct callback_head balance_push_callback;
1511 
1512 /*
1513  * Lockdep annotation that avoids accidental unlocks; it's like a
1514  * sticky/continuous lockdep_assert_held().
1515  *
1516  * This avoids code that has access to 'struct rq *rq' (basically everything in
1517  * the scheduler) from accidentally unlocking the rq if they do not also have a
1518  * copy of the (on-stack) 'struct rq_flags rf'.
1519  *
1520  * Also see Documentation/locking/lockdep-design.rst.
1521  */
1522 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1523 {
1524 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1525 
1526 #ifdef CONFIG_SCHED_DEBUG
1527 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1528 	rf->clock_update_flags = 0;
1529 #ifdef CONFIG_SMP
1530 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1531 #endif
1532 #endif
1533 }
1534 
1535 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1536 {
1537 #ifdef CONFIG_SCHED_DEBUG
1538 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1539 		rf->clock_update_flags = RQCF_UPDATED;
1540 #endif
1541 
1542 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1543 }
1544 
1545 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1546 {
1547 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1548 
1549 #ifdef CONFIG_SCHED_DEBUG
1550 	/*
1551 	 * Restore the value we stashed in @rf for this pin context.
1552 	 */
1553 	rq->clock_update_flags |= rf->clock_update_flags;
1554 #endif
1555 }
1556 
1557 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1558 	__acquires(rq->lock);
1559 
1560 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1561 	__acquires(p->pi_lock)
1562 	__acquires(rq->lock);
1563 
1564 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1565 	__releases(rq->lock)
1566 {
1567 	rq_unpin_lock(rq, rf);
1568 	raw_spin_rq_unlock(rq);
1569 }
1570 
1571 static inline void
1572 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1573 	__releases(rq->lock)
1574 	__releases(p->pi_lock)
1575 {
1576 	rq_unpin_lock(rq, rf);
1577 	raw_spin_rq_unlock(rq);
1578 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1579 }
1580 
1581 static inline void
1582 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1583 	__acquires(rq->lock)
1584 {
1585 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1586 	rq_pin_lock(rq, rf);
1587 }
1588 
1589 static inline void
1590 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1591 	__acquires(rq->lock)
1592 {
1593 	raw_spin_rq_lock_irq(rq);
1594 	rq_pin_lock(rq, rf);
1595 }
1596 
1597 static inline void
1598 rq_lock(struct rq *rq, struct rq_flags *rf)
1599 	__acquires(rq->lock)
1600 {
1601 	raw_spin_rq_lock(rq);
1602 	rq_pin_lock(rq, rf);
1603 }
1604 
1605 static inline void
1606 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1607 	__releases(rq->lock)
1608 {
1609 	rq_unpin_lock(rq, rf);
1610 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1611 }
1612 
1613 static inline void
1614 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1615 	__releases(rq->lock)
1616 {
1617 	rq_unpin_lock(rq, rf);
1618 	raw_spin_rq_unlock_irq(rq);
1619 }
1620 
1621 static inline void
1622 rq_unlock(struct rq *rq, struct rq_flags *rf)
1623 	__releases(rq->lock)
1624 {
1625 	rq_unpin_lock(rq, rf);
1626 	raw_spin_rq_unlock(rq);
1627 }
1628 
1629 static inline struct rq *
1630 this_rq_lock_irq(struct rq_flags *rf)
1631 	__acquires(rq->lock)
1632 {
1633 	struct rq *rq;
1634 
1635 	local_irq_disable();
1636 	rq = this_rq();
1637 	rq_lock(rq, rf);
1638 	return rq;
1639 }
1640 
1641 #ifdef CONFIG_NUMA
1642 enum numa_topology_type {
1643 	NUMA_DIRECT,
1644 	NUMA_GLUELESS_MESH,
1645 	NUMA_BACKPLANE,
1646 };
1647 extern enum numa_topology_type sched_numa_topology_type;
1648 extern int sched_max_numa_distance;
1649 extern bool find_numa_distance(int distance);
1650 extern void sched_init_numa(int offline_node);
1651 extern void sched_update_numa(int cpu, bool online);
1652 extern void sched_domains_numa_masks_set(unsigned int cpu);
1653 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1654 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1655 #else
1656 static inline void sched_init_numa(int offline_node) { }
1657 static inline void sched_update_numa(int cpu, bool online) { }
1658 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1659 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1660 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1661 {
1662 	return nr_cpu_ids;
1663 }
1664 #endif
1665 
1666 #ifdef CONFIG_NUMA_BALANCING
1667 /* The regions in numa_faults array from task_struct */
1668 enum numa_faults_stats {
1669 	NUMA_MEM = 0,
1670 	NUMA_CPU,
1671 	NUMA_MEMBUF,
1672 	NUMA_CPUBUF
1673 };
1674 extern void sched_setnuma(struct task_struct *p, int node);
1675 extern int migrate_task_to(struct task_struct *p, int cpu);
1676 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1677 			int cpu, int scpu);
1678 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1679 #else
1680 static inline void
1681 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1682 {
1683 }
1684 #endif /* CONFIG_NUMA_BALANCING */
1685 
1686 #ifdef CONFIG_SMP
1687 
1688 static inline void
1689 queue_balance_callback(struct rq *rq,
1690 		       struct callback_head *head,
1691 		       void (*func)(struct rq *rq))
1692 {
1693 	lockdep_assert_rq_held(rq);
1694 
1695 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1696 		return;
1697 
1698 	head->func = (void (*)(struct callback_head *))func;
1699 	head->next = rq->balance_callback;
1700 	rq->balance_callback = head;
1701 }
1702 
1703 #define rcu_dereference_check_sched_domain(p) \
1704 	rcu_dereference_check((p), \
1705 			      lockdep_is_held(&sched_domains_mutex))
1706 
1707 /*
1708  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1709  * See destroy_sched_domains: call_rcu for details.
1710  *
1711  * The domain tree of any CPU may only be accessed from within
1712  * preempt-disabled sections.
1713  */
1714 #define for_each_domain(cpu, __sd) \
1715 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1716 			__sd; __sd = __sd->parent)
1717 
1718 /**
1719  * highest_flag_domain - Return highest sched_domain containing flag.
1720  * @cpu:	The CPU whose highest level of sched domain is to
1721  *		be returned.
1722  * @flag:	The flag to check for the highest sched_domain
1723  *		for the given CPU.
1724  *
1725  * Returns the highest sched_domain of a CPU which contains the given flag.
1726  */
1727 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1728 {
1729 	struct sched_domain *sd, *hsd = NULL;
1730 
1731 	for_each_domain(cpu, sd) {
1732 		if (!(sd->flags & flag))
1733 			break;
1734 		hsd = sd;
1735 	}
1736 
1737 	return hsd;
1738 }
1739 
1740 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1741 {
1742 	struct sched_domain *sd;
1743 
1744 	for_each_domain(cpu, sd) {
1745 		if (sd->flags & flag)
1746 			break;
1747 	}
1748 
1749 	return sd;
1750 }
1751 
1752 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1753 DECLARE_PER_CPU(int, sd_llc_size);
1754 DECLARE_PER_CPU(int, sd_llc_id);
1755 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1756 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1757 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1758 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1759 extern struct static_key_false sched_asym_cpucapacity;
1760 
1761 struct sched_group_capacity {
1762 	atomic_t		ref;
1763 	/*
1764 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1765 	 * for a single CPU.
1766 	 */
1767 	unsigned long		capacity;
1768 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1769 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1770 	unsigned long		next_update;
1771 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1772 
1773 #ifdef CONFIG_SCHED_DEBUG
1774 	int			id;
1775 #endif
1776 
1777 	unsigned long		cpumask[];		/* Balance mask */
1778 };
1779 
1780 struct sched_group {
1781 	struct sched_group	*next;			/* Must be a circular list */
1782 	atomic_t		ref;
1783 
1784 	unsigned int		group_weight;
1785 	struct sched_group_capacity *sgc;
1786 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1787 	int			flags;
1788 
1789 	/*
1790 	 * The CPUs this group covers.
1791 	 *
1792 	 * NOTE: this field is variable length. (Allocated dynamically
1793 	 * by attaching extra space to the end of the structure,
1794 	 * depending on how many CPUs the kernel has booted up with)
1795 	 */
1796 	unsigned long		cpumask[];
1797 };
1798 
1799 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1800 {
1801 	return to_cpumask(sg->cpumask);
1802 }
1803 
1804 /*
1805  * See build_balance_mask().
1806  */
1807 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1808 {
1809 	return to_cpumask(sg->sgc->cpumask);
1810 }
1811 
1812 /**
1813  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1814  * @group: The group whose first CPU is to be returned.
1815  */
1816 static inline unsigned int group_first_cpu(struct sched_group *group)
1817 {
1818 	return cpumask_first(sched_group_span(group));
1819 }
1820 
1821 extern int group_balance_cpu(struct sched_group *sg);
1822 
1823 #ifdef CONFIG_SCHED_DEBUG
1824 void update_sched_domain_debugfs(void);
1825 void dirty_sched_domain_sysctl(int cpu);
1826 #else
1827 static inline void update_sched_domain_debugfs(void)
1828 {
1829 }
1830 static inline void dirty_sched_domain_sysctl(int cpu)
1831 {
1832 }
1833 #endif
1834 
1835 extern int sched_update_scaling(void);
1836 
1837 extern void flush_smp_call_function_from_idle(void);
1838 
1839 #else /* !CONFIG_SMP: */
1840 static inline void flush_smp_call_function_from_idle(void) { }
1841 #endif
1842 
1843 #include "stats.h"
1844 
1845 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1846 
1847 extern void __sched_core_account_forceidle(struct rq *rq);
1848 
1849 static inline void sched_core_account_forceidle(struct rq *rq)
1850 {
1851 	if (schedstat_enabled())
1852 		__sched_core_account_forceidle(rq);
1853 }
1854 
1855 extern void __sched_core_tick(struct rq *rq);
1856 
1857 static inline void sched_core_tick(struct rq *rq)
1858 {
1859 	if (sched_core_enabled(rq) && schedstat_enabled())
1860 		__sched_core_tick(rq);
1861 }
1862 
1863 #else
1864 
1865 static inline void sched_core_account_forceidle(struct rq *rq) {}
1866 
1867 static inline void sched_core_tick(struct rq *rq) {}
1868 
1869 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1870 
1871 #ifdef CONFIG_CGROUP_SCHED
1872 
1873 /*
1874  * Return the group to which this tasks belongs.
1875  *
1876  * We cannot use task_css() and friends because the cgroup subsystem
1877  * changes that value before the cgroup_subsys::attach() method is called,
1878  * therefore we cannot pin it and might observe the wrong value.
1879  *
1880  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1881  * core changes this before calling sched_move_task().
1882  *
1883  * Instead we use a 'copy' which is updated from sched_move_task() while
1884  * holding both task_struct::pi_lock and rq::lock.
1885  */
1886 static inline struct task_group *task_group(struct task_struct *p)
1887 {
1888 	return p->sched_task_group;
1889 }
1890 
1891 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1892 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1893 {
1894 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1895 	struct task_group *tg = task_group(p);
1896 #endif
1897 
1898 #ifdef CONFIG_FAIR_GROUP_SCHED
1899 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1900 	p->se.cfs_rq = tg->cfs_rq[cpu];
1901 	p->se.parent = tg->se[cpu];
1902 #endif
1903 
1904 #ifdef CONFIG_RT_GROUP_SCHED
1905 	p->rt.rt_rq  = tg->rt_rq[cpu];
1906 	p->rt.parent = tg->rt_se[cpu];
1907 #endif
1908 }
1909 
1910 #else /* CONFIG_CGROUP_SCHED */
1911 
1912 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1913 static inline struct task_group *task_group(struct task_struct *p)
1914 {
1915 	return NULL;
1916 }
1917 
1918 #endif /* CONFIG_CGROUP_SCHED */
1919 
1920 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1921 {
1922 	set_task_rq(p, cpu);
1923 #ifdef CONFIG_SMP
1924 	/*
1925 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1926 	 * successfully executed on another CPU. We must ensure that updates of
1927 	 * per-task data have been completed by this moment.
1928 	 */
1929 	smp_wmb();
1930 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1931 	p->wake_cpu = cpu;
1932 #endif
1933 }
1934 
1935 /*
1936  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1937  */
1938 #ifdef CONFIG_SCHED_DEBUG
1939 # define const_debug __read_mostly
1940 #else
1941 # define const_debug const
1942 #endif
1943 
1944 #define SCHED_FEAT(name, enabled)	\
1945 	__SCHED_FEAT_##name ,
1946 
1947 enum {
1948 #include "features.h"
1949 	__SCHED_FEAT_NR,
1950 };
1951 
1952 #undef SCHED_FEAT
1953 
1954 #ifdef CONFIG_SCHED_DEBUG
1955 
1956 /*
1957  * To support run-time toggling of sched features, all the translation units
1958  * (but core.c) reference the sysctl_sched_features defined in core.c.
1959  */
1960 extern const_debug unsigned int sysctl_sched_features;
1961 
1962 #ifdef CONFIG_JUMP_LABEL
1963 #define SCHED_FEAT(name, enabled)					\
1964 static __always_inline bool static_branch_##name(struct static_key *key) \
1965 {									\
1966 	return static_key_##enabled(key);				\
1967 }
1968 
1969 #include "features.h"
1970 #undef SCHED_FEAT
1971 
1972 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1973 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1974 
1975 #else /* !CONFIG_JUMP_LABEL */
1976 
1977 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1978 
1979 #endif /* CONFIG_JUMP_LABEL */
1980 
1981 #else /* !SCHED_DEBUG */
1982 
1983 /*
1984  * Each translation unit has its own copy of sysctl_sched_features to allow
1985  * constants propagation at compile time and compiler optimization based on
1986  * features default.
1987  */
1988 #define SCHED_FEAT(name, enabled)	\
1989 	(1UL << __SCHED_FEAT_##name) * enabled |
1990 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1991 #include "features.h"
1992 	0;
1993 #undef SCHED_FEAT
1994 
1995 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1996 
1997 #endif /* SCHED_DEBUG */
1998 
1999 extern struct static_key_false sched_numa_balancing;
2000 extern struct static_key_false sched_schedstats;
2001 
2002 static inline u64 global_rt_period(void)
2003 {
2004 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2005 }
2006 
2007 static inline u64 global_rt_runtime(void)
2008 {
2009 	if (sysctl_sched_rt_runtime < 0)
2010 		return RUNTIME_INF;
2011 
2012 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2013 }
2014 
2015 static inline int task_current(struct rq *rq, struct task_struct *p)
2016 {
2017 	return rq->curr == p;
2018 }
2019 
2020 static inline int task_running(struct rq *rq, struct task_struct *p)
2021 {
2022 #ifdef CONFIG_SMP
2023 	return p->on_cpu;
2024 #else
2025 	return task_current(rq, p);
2026 #endif
2027 }
2028 
2029 static inline int task_on_rq_queued(struct task_struct *p)
2030 {
2031 	return p->on_rq == TASK_ON_RQ_QUEUED;
2032 }
2033 
2034 static inline int task_on_rq_migrating(struct task_struct *p)
2035 {
2036 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2037 }
2038 
2039 /* Wake flags. The first three directly map to some SD flag value */
2040 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2041 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2042 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2043 
2044 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2045 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2046 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2047 
2048 #ifdef CONFIG_SMP
2049 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2050 static_assert(WF_FORK == SD_BALANCE_FORK);
2051 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2052 #endif
2053 
2054 /*
2055  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2056  * of tasks with abnormal "nice" values across CPUs the contribution that
2057  * each task makes to its run queue's load is weighted according to its
2058  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2059  * scaled version of the new time slice allocation that they receive on time
2060  * slice expiry etc.
2061  */
2062 
2063 #define WEIGHT_IDLEPRIO		3
2064 #define WMULT_IDLEPRIO		1431655765
2065 
2066 extern const int		sched_prio_to_weight[40];
2067 extern const u32		sched_prio_to_wmult[40];
2068 
2069 /*
2070  * {de,en}queue flags:
2071  *
2072  * DEQUEUE_SLEEP  - task is no longer runnable
2073  * ENQUEUE_WAKEUP - task just became runnable
2074  *
2075  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2076  *                are in a known state which allows modification. Such pairs
2077  *                should preserve as much state as possible.
2078  *
2079  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2080  *        in the runqueue.
2081  *
2082  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2083  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2084  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2085  *
2086  */
2087 
2088 #define DEQUEUE_SLEEP		0x01
2089 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2090 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2091 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2092 
2093 #define ENQUEUE_WAKEUP		0x01
2094 #define ENQUEUE_RESTORE		0x02
2095 #define ENQUEUE_MOVE		0x04
2096 #define ENQUEUE_NOCLOCK		0x08
2097 
2098 #define ENQUEUE_HEAD		0x10
2099 #define ENQUEUE_REPLENISH	0x20
2100 #ifdef CONFIG_SMP
2101 #define ENQUEUE_MIGRATED	0x40
2102 #else
2103 #define ENQUEUE_MIGRATED	0x00
2104 #endif
2105 
2106 #define RETRY_TASK		((void *)-1UL)
2107 
2108 struct sched_class {
2109 
2110 #ifdef CONFIG_UCLAMP_TASK
2111 	int uclamp_enabled;
2112 #endif
2113 
2114 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2115 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2116 	void (*yield_task)   (struct rq *rq);
2117 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2118 
2119 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2120 
2121 	struct task_struct *(*pick_next_task)(struct rq *rq);
2122 
2123 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2124 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2125 
2126 #ifdef CONFIG_SMP
2127 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2128 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2129 
2130 	struct task_struct * (*pick_task)(struct rq *rq);
2131 
2132 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2133 
2134 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2135 
2136 	void (*set_cpus_allowed)(struct task_struct *p,
2137 				 const struct cpumask *newmask,
2138 				 u32 flags);
2139 
2140 	void (*rq_online)(struct rq *rq);
2141 	void (*rq_offline)(struct rq *rq);
2142 
2143 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2144 #endif
2145 
2146 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2147 	void (*task_fork)(struct task_struct *p);
2148 	void (*task_dead)(struct task_struct *p);
2149 
2150 	/*
2151 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2152 	 * cannot assume the switched_from/switched_to pair is serialized by
2153 	 * rq->lock. They are however serialized by p->pi_lock.
2154 	 */
2155 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2156 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2157 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2158 			      int oldprio);
2159 
2160 	unsigned int (*get_rr_interval)(struct rq *rq,
2161 					struct task_struct *task);
2162 
2163 	void (*update_curr)(struct rq *rq);
2164 
2165 #define TASK_SET_GROUP		0
2166 #define TASK_MOVE_GROUP		1
2167 
2168 #ifdef CONFIG_FAIR_GROUP_SCHED
2169 	void (*task_change_group)(struct task_struct *p, int type);
2170 #endif
2171 };
2172 
2173 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2174 {
2175 	WARN_ON_ONCE(rq->curr != prev);
2176 	prev->sched_class->put_prev_task(rq, prev);
2177 }
2178 
2179 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2180 {
2181 	next->sched_class->set_next_task(rq, next, false);
2182 }
2183 
2184 
2185 /*
2186  * Helper to define a sched_class instance; each one is placed in a separate
2187  * section which is ordered by the linker script:
2188  *
2189  *   include/asm-generic/vmlinux.lds.h
2190  *
2191  * Also enforce alignment on the instance, not the type, to guarantee layout.
2192  */
2193 #define DEFINE_SCHED_CLASS(name) \
2194 const struct sched_class name##_sched_class \
2195 	__aligned(__alignof__(struct sched_class)) \
2196 	__section("__" #name "_sched_class")
2197 
2198 /* Defined in include/asm-generic/vmlinux.lds.h */
2199 extern struct sched_class __begin_sched_classes[];
2200 extern struct sched_class __end_sched_classes[];
2201 
2202 #define sched_class_highest (__end_sched_classes - 1)
2203 #define sched_class_lowest  (__begin_sched_classes - 1)
2204 
2205 #define for_class_range(class, _from, _to) \
2206 	for (class = (_from); class != (_to); class--)
2207 
2208 #define for_each_class(class) \
2209 	for_class_range(class, sched_class_highest, sched_class_lowest)
2210 
2211 extern const struct sched_class stop_sched_class;
2212 extern const struct sched_class dl_sched_class;
2213 extern const struct sched_class rt_sched_class;
2214 extern const struct sched_class fair_sched_class;
2215 extern const struct sched_class idle_sched_class;
2216 
2217 static inline bool sched_stop_runnable(struct rq *rq)
2218 {
2219 	return rq->stop && task_on_rq_queued(rq->stop);
2220 }
2221 
2222 static inline bool sched_dl_runnable(struct rq *rq)
2223 {
2224 	return rq->dl.dl_nr_running > 0;
2225 }
2226 
2227 static inline bool sched_rt_runnable(struct rq *rq)
2228 {
2229 	return rq->rt.rt_queued > 0;
2230 }
2231 
2232 static inline bool sched_fair_runnable(struct rq *rq)
2233 {
2234 	return rq->cfs.nr_running > 0;
2235 }
2236 
2237 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2238 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2239 
2240 #define SCA_CHECK		0x01
2241 #define SCA_MIGRATE_DISABLE	0x02
2242 #define SCA_MIGRATE_ENABLE	0x04
2243 #define SCA_USER		0x08
2244 
2245 #ifdef CONFIG_SMP
2246 
2247 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2248 
2249 extern void trigger_load_balance(struct rq *rq);
2250 
2251 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2252 
2253 static inline struct task_struct *get_push_task(struct rq *rq)
2254 {
2255 	struct task_struct *p = rq->curr;
2256 
2257 	lockdep_assert_rq_held(rq);
2258 
2259 	if (rq->push_busy)
2260 		return NULL;
2261 
2262 	if (p->nr_cpus_allowed == 1)
2263 		return NULL;
2264 
2265 	if (p->migration_disabled)
2266 		return NULL;
2267 
2268 	rq->push_busy = true;
2269 	return get_task_struct(p);
2270 }
2271 
2272 extern int push_cpu_stop(void *arg);
2273 
2274 #endif
2275 
2276 #ifdef CONFIG_CPU_IDLE
2277 static inline void idle_set_state(struct rq *rq,
2278 				  struct cpuidle_state *idle_state)
2279 {
2280 	rq->idle_state = idle_state;
2281 }
2282 
2283 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2284 {
2285 	SCHED_WARN_ON(!rcu_read_lock_held());
2286 
2287 	return rq->idle_state;
2288 }
2289 #else
2290 static inline void idle_set_state(struct rq *rq,
2291 				  struct cpuidle_state *idle_state)
2292 {
2293 }
2294 
2295 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2296 {
2297 	return NULL;
2298 }
2299 #endif
2300 
2301 extern void schedule_idle(void);
2302 
2303 extern void sysrq_sched_debug_show(void);
2304 extern void sched_init_granularity(void);
2305 extern void update_max_interval(void);
2306 
2307 extern void init_sched_dl_class(void);
2308 extern void init_sched_rt_class(void);
2309 extern void init_sched_fair_class(void);
2310 
2311 extern void reweight_task(struct task_struct *p, int prio);
2312 
2313 extern void resched_curr(struct rq *rq);
2314 extern void resched_cpu(int cpu);
2315 
2316 extern struct rt_bandwidth def_rt_bandwidth;
2317 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2318 
2319 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2320 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2321 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2322 
2323 #define BW_SHIFT		20
2324 #define BW_UNIT			(1 << BW_SHIFT)
2325 #define RATIO_SHIFT		8
2326 #define MAX_BW_BITS		(64 - BW_SHIFT)
2327 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2328 unsigned long to_ratio(u64 period, u64 runtime);
2329 
2330 extern void init_entity_runnable_average(struct sched_entity *se);
2331 extern void post_init_entity_util_avg(struct task_struct *p);
2332 
2333 #ifdef CONFIG_NO_HZ_FULL
2334 extern bool sched_can_stop_tick(struct rq *rq);
2335 extern int __init sched_tick_offload_init(void);
2336 
2337 /*
2338  * Tick may be needed by tasks in the runqueue depending on their policy and
2339  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2340  * nohz mode if necessary.
2341  */
2342 static inline void sched_update_tick_dependency(struct rq *rq)
2343 {
2344 	int cpu = cpu_of(rq);
2345 
2346 	if (!tick_nohz_full_cpu(cpu))
2347 		return;
2348 
2349 	if (sched_can_stop_tick(rq))
2350 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2351 	else
2352 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2353 }
2354 #else
2355 static inline int sched_tick_offload_init(void) { return 0; }
2356 static inline void sched_update_tick_dependency(struct rq *rq) { }
2357 #endif
2358 
2359 static inline void add_nr_running(struct rq *rq, unsigned count)
2360 {
2361 	unsigned prev_nr = rq->nr_running;
2362 
2363 	rq->nr_running = prev_nr + count;
2364 	if (trace_sched_update_nr_running_tp_enabled()) {
2365 		call_trace_sched_update_nr_running(rq, count);
2366 	}
2367 
2368 #ifdef CONFIG_SMP
2369 	if (prev_nr < 2 && rq->nr_running >= 2) {
2370 		if (!READ_ONCE(rq->rd->overload))
2371 			WRITE_ONCE(rq->rd->overload, 1);
2372 	}
2373 #endif
2374 
2375 	sched_update_tick_dependency(rq);
2376 }
2377 
2378 static inline void sub_nr_running(struct rq *rq, unsigned count)
2379 {
2380 	rq->nr_running -= count;
2381 	if (trace_sched_update_nr_running_tp_enabled()) {
2382 		call_trace_sched_update_nr_running(rq, -count);
2383 	}
2384 
2385 	/* Check if we still need preemption */
2386 	sched_update_tick_dependency(rq);
2387 }
2388 
2389 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2390 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2391 
2392 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2393 
2394 extern const_debug unsigned int sysctl_sched_nr_migrate;
2395 extern const_debug unsigned int sysctl_sched_migration_cost;
2396 
2397 #ifdef CONFIG_SCHED_DEBUG
2398 extern unsigned int sysctl_sched_latency;
2399 extern unsigned int sysctl_sched_min_granularity;
2400 extern unsigned int sysctl_sched_idle_min_granularity;
2401 extern unsigned int sysctl_sched_wakeup_granularity;
2402 extern int sysctl_resched_latency_warn_ms;
2403 extern int sysctl_resched_latency_warn_once;
2404 
2405 extern unsigned int sysctl_sched_tunable_scaling;
2406 
2407 extern unsigned int sysctl_numa_balancing_scan_delay;
2408 extern unsigned int sysctl_numa_balancing_scan_period_min;
2409 extern unsigned int sysctl_numa_balancing_scan_period_max;
2410 extern unsigned int sysctl_numa_balancing_scan_size;
2411 #endif
2412 
2413 #ifdef CONFIG_SCHED_HRTICK
2414 
2415 /*
2416  * Use hrtick when:
2417  *  - enabled by features
2418  *  - hrtimer is actually high res
2419  */
2420 static inline int hrtick_enabled(struct rq *rq)
2421 {
2422 	if (!cpu_active(cpu_of(rq)))
2423 		return 0;
2424 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2425 }
2426 
2427 static inline int hrtick_enabled_fair(struct rq *rq)
2428 {
2429 	if (!sched_feat(HRTICK))
2430 		return 0;
2431 	return hrtick_enabled(rq);
2432 }
2433 
2434 static inline int hrtick_enabled_dl(struct rq *rq)
2435 {
2436 	if (!sched_feat(HRTICK_DL))
2437 		return 0;
2438 	return hrtick_enabled(rq);
2439 }
2440 
2441 void hrtick_start(struct rq *rq, u64 delay);
2442 
2443 #else
2444 
2445 static inline int hrtick_enabled_fair(struct rq *rq)
2446 {
2447 	return 0;
2448 }
2449 
2450 static inline int hrtick_enabled_dl(struct rq *rq)
2451 {
2452 	return 0;
2453 }
2454 
2455 static inline int hrtick_enabled(struct rq *rq)
2456 {
2457 	return 0;
2458 }
2459 
2460 #endif /* CONFIG_SCHED_HRTICK */
2461 
2462 #ifndef arch_scale_freq_tick
2463 static __always_inline
2464 void arch_scale_freq_tick(void)
2465 {
2466 }
2467 #endif
2468 
2469 #ifndef arch_scale_freq_capacity
2470 /**
2471  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2472  * @cpu: the CPU in question.
2473  *
2474  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2475  *
2476  *     f_curr
2477  *     ------ * SCHED_CAPACITY_SCALE
2478  *     f_max
2479  */
2480 static __always_inline
2481 unsigned long arch_scale_freq_capacity(int cpu)
2482 {
2483 	return SCHED_CAPACITY_SCALE;
2484 }
2485 #endif
2486 
2487 
2488 #ifdef CONFIG_SMP
2489 
2490 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2491 {
2492 #ifdef CONFIG_SCHED_CORE
2493 	/*
2494 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2495 	 * order by core-id first and cpu-id second.
2496 	 *
2497 	 * Notably:
2498 	 *
2499 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2500 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2501 	 *
2502 	 * when only cpu-id is considered.
2503 	 */
2504 	if (rq1->core->cpu < rq2->core->cpu)
2505 		return true;
2506 	if (rq1->core->cpu > rq2->core->cpu)
2507 		return false;
2508 
2509 	/*
2510 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2511 	 */
2512 #endif
2513 	return rq1->cpu < rq2->cpu;
2514 }
2515 
2516 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2517 
2518 #ifdef CONFIG_PREEMPTION
2519 
2520 /*
2521  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2522  * way at the expense of forcing extra atomic operations in all
2523  * invocations.  This assures that the double_lock is acquired using the
2524  * same underlying policy as the spinlock_t on this architecture, which
2525  * reduces latency compared to the unfair variant below.  However, it
2526  * also adds more overhead and therefore may reduce throughput.
2527  */
2528 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2529 	__releases(this_rq->lock)
2530 	__acquires(busiest->lock)
2531 	__acquires(this_rq->lock)
2532 {
2533 	raw_spin_rq_unlock(this_rq);
2534 	double_rq_lock(this_rq, busiest);
2535 
2536 	return 1;
2537 }
2538 
2539 #else
2540 /*
2541  * Unfair double_lock_balance: Optimizes throughput at the expense of
2542  * latency by eliminating extra atomic operations when the locks are
2543  * already in proper order on entry.  This favors lower CPU-ids and will
2544  * grant the double lock to lower CPUs over higher ids under contention,
2545  * regardless of entry order into the function.
2546  */
2547 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2548 	__releases(this_rq->lock)
2549 	__acquires(busiest->lock)
2550 	__acquires(this_rq->lock)
2551 {
2552 	if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2553 		return 0;
2554 
2555 	if (likely(raw_spin_rq_trylock(busiest)))
2556 		return 0;
2557 
2558 	if (rq_order_less(this_rq, busiest)) {
2559 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2560 		return 0;
2561 	}
2562 
2563 	raw_spin_rq_unlock(this_rq);
2564 	double_rq_lock(this_rq, busiest);
2565 
2566 	return 1;
2567 }
2568 
2569 #endif /* CONFIG_PREEMPTION */
2570 
2571 /*
2572  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2573  */
2574 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2575 {
2576 	lockdep_assert_irqs_disabled();
2577 
2578 	return _double_lock_balance(this_rq, busiest);
2579 }
2580 
2581 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2582 	__releases(busiest->lock)
2583 {
2584 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2585 		raw_spin_rq_unlock(busiest);
2586 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2587 }
2588 
2589 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2590 {
2591 	if (l1 > l2)
2592 		swap(l1, l2);
2593 
2594 	spin_lock(l1);
2595 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2596 }
2597 
2598 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2599 {
2600 	if (l1 > l2)
2601 		swap(l1, l2);
2602 
2603 	spin_lock_irq(l1);
2604 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2605 }
2606 
2607 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2608 {
2609 	if (l1 > l2)
2610 		swap(l1, l2);
2611 
2612 	raw_spin_lock(l1);
2613 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2614 }
2615 
2616 /*
2617  * double_rq_unlock - safely unlock two runqueues
2618  *
2619  * Note this does not restore interrupts like task_rq_unlock,
2620  * you need to do so manually after calling.
2621  */
2622 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2623 	__releases(rq1->lock)
2624 	__releases(rq2->lock)
2625 {
2626 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2627 		raw_spin_rq_unlock(rq2);
2628 	else
2629 		__release(rq2->lock);
2630 	raw_spin_rq_unlock(rq1);
2631 }
2632 
2633 extern void set_rq_online (struct rq *rq);
2634 extern void set_rq_offline(struct rq *rq);
2635 extern bool sched_smp_initialized;
2636 
2637 #else /* CONFIG_SMP */
2638 
2639 /*
2640  * double_rq_lock - safely lock two runqueues
2641  *
2642  * Note this does not disable interrupts like task_rq_lock,
2643  * you need to do so manually before calling.
2644  */
2645 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2646 	__acquires(rq1->lock)
2647 	__acquires(rq2->lock)
2648 {
2649 	BUG_ON(!irqs_disabled());
2650 	BUG_ON(rq1 != rq2);
2651 	raw_spin_rq_lock(rq1);
2652 	__acquire(rq2->lock);	/* Fake it out ;) */
2653 }
2654 
2655 /*
2656  * double_rq_unlock - safely unlock two runqueues
2657  *
2658  * Note this does not restore interrupts like task_rq_unlock,
2659  * you need to do so manually after calling.
2660  */
2661 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2662 	__releases(rq1->lock)
2663 	__releases(rq2->lock)
2664 {
2665 	BUG_ON(rq1 != rq2);
2666 	raw_spin_rq_unlock(rq1);
2667 	__release(rq2->lock);
2668 }
2669 
2670 #endif
2671 
2672 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2673 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2674 
2675 #ifdef	CONFIG_SCHED_DEBUG
2676 extern bool sched_debug_verbose;
2677 
2678 extern void print_cfs_stats(struct seq_file *m, int cpu);
2679 extern void print_rt_stats(struct seq_file *m, int cpu);
2680 extern void print_dl_stats(struct seq_file *m, int cpu);
2681 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2682 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2683 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2684 
2685 extern void resched_latency_warn(int cpu, u64 latency);
2686 #ifdef CONFIG_NUMA_BALANCING
2687 extern void
2688 show_numa_stats(struct task_struct *p, struct seq_file *m);
2689 extern void
2690 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2691 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2692 #endif /* CONFIG_NUMA_BALANCING */
2693 #else
2694 static inline void resched_latency_warn(int cpu, u64 latency) {}
2695 #endif /* CONFIG_SCHED_DEBUG */
2696 
2697 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2698 extern void init_rt_rq(struct rt_rq *rt_rq);
2699 extern void init_dl_rq(struct dl_rq *dl_rq);
2700 
2701 extern void cfs_bandwidth_usage_inc(void);
2702 extern void cfs_bandwidth_usage_dec(void);
2703 
2704 #ifdef CONFIG_NO_HZ_COMMON
2705 #define NOHZ_BALANCE_KICK_BIT	0
2706 #define NOHZ_STATS_KICK_BIT	1
2707 #define NOHZ_NEWILB_KICK_BIT	2
2708 #define NOHZ_NEXT_KICK_BIT	3
2709 
2710 /* Run rebalance_domains() */
2711 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2712 /* Update blocked load */
2713 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2714 /* Update blocked load when entering idle */
2715 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2716 /* Update nohz.next_balance */
2717 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2718 
2719 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2720 
2721 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2722 
2723 extern void nohz_balance_exit_idle(struct rq *rq);
2724 #else
2725 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2726 #endif
2727 
2728 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2729 extern void nohz_run_idle_balance(int cpu);
2730 #else
2731 static inline void nohz_run_idle_balance(int cpu) { }
2732 #endif
2733 
2734 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2735 struct irqtime {
2736 	u64			total;
2737 	u64			tick_delta;
2738 	u64			irq_start_time;
2739 	struct u64_stats_sync	sync;
2740 };
2741 
2742 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2743 
2744 /*
2745  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2746  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2747  * and never move forward.
2748  */
2749 static inline u64 irq_time_read(int cpu)
2750 {
2751 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2752 	unsigned int seq;
2753 	u64 total;
2754 
2755 	do {
2756 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2757 		total = irqtime->total;
2758 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2759 
2760 	return total;
2761 }
2762 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2763 
2764 #ifdef CONFIG_CPU_FREQ
2765 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2766 
2767 /**
2768  * cpufreq_update_util - Take a note about CPU utilization changes.
2769  * @rq: Runqueue to carry out the update for.
2770  * @flags: Update reason flags.
2771  *
2772  * This function is called by the scheduler on the CPU whose utilization is
2773  * being updated.
2774  *
2775  * It can only be called from RCU-sched read-side critical sections.
2776  *
2777  * The way cpufreq is currently arranged requires it to evaluate the CPU
2778  * performance state (frequency/voltage) on a regular basis to prevent it from
2779  * being stuck in a completely inadequate performance level for too long.
2780  * That is not guaranteed to happen if the updates are only triggered from CFS
2781  * and DL, though, because they may not be coming in if only RT tasks are
2782  * active all the time (or there are RT tasks only).
2783  *
2784  * As a workaround for that issue, this function is called periodically by the
2785  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2786  * but that really is a band-aid.  Going forward it should be replaced with
2787  * solutions targeted more specifically at RT tasks.
2788  */
2789 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2790 {
2791 	struct update_util_data *data;
2792 
2793 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2794 						  cpu_of(rq)));
2795 	if (data)
2796 		data->func(data, rq_clock(rq), flags);
2797 }
2798 #else
2799 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2800 #endif /* CONFIG_CPU_FREQ */
2801 
2802 #ifdef arch_scale_freq_capacity
2803 # ifndef arch_scale_freq_invariant
2804 #  define arch_scale_freq_invariant()	true
2805 # endif
2806 #else
2807 # define arch_scale_freq_invariant()	false
2808 #endif
2809 
2810 #ifdef CONFIG_SMP
2811 static inline unsigned long capacity_orig_of(int cpu)
2812 {
2813 	return cpu_rq(cpu)->cpu_capacity_orig;
2814 }
2815 
2816 /**
2817  * enum cpu_util_type - CPU utilization type
2818  * @FREQUENCY_UTIL:	Utilization used to select frequency
2819  * @ENERGY_UTIL:	Utilization used during energy calculation
2820  *
2821  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2822  * need to be aggregated differently depending on the usage made of them. This
2823  * enum is used within effective_cpu_util() to differentiate the types of
2824  * utilization expected by the callers, and adjust the aggregation accordingly.
2825  */
2826 enum cpu_util_type {
2827 	FREQUENCY_UTIL,
2828 	ENERGY_UTIL,
2829 };
2830 
2831 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2832 				 unsigned long max, enum cpu_util_type type,
2833 				 struct task_struct *p);
2834 
2835 static inline unsigned long cpu_bw_dl(struct rq *rq)
2836 {
2837 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2838 }
2839 
2840 static inline unsigned long cpu_util_dl(struct rq *rq)
2841 {
2842 	return READ_ONCE(rq->avg_dl.util_avg);
2843 }
2844 
2845 /**
2846  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2847  * @cpu: the CPU to get the utilization for.
2848  *
2849  * The unit of the return value must be the same as the one of CPU capacity
2850  * so that CPU utilization can be compared with CPU capacity.
2851  *
2852  * CPU utilization is the sum of running time of runnable tasks plus the
2853  * recent utilization of currently non-runnable tasks on that CPU.
2854  * It represents the amount of CPU capacity currently used by CFS tasks in
2855  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2856  * capacity at f_max.
2857  *
2858  * The estimated CPU utilization is defined as the maximum between CPU
2859  * utilization and sum of the estimated utilization of the currently
2860  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2861  * previously-executed tasks, which helps better deduce how busy a CPU will
2862  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2863  * of such a task would be significantly decayed at this point of time.
2864  *
2865  * CPU utilization can be higher than the current CPU capacity
2866  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2867  * of rounding errors as well as task migrations or wakeups of new tasks.
2868  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2869  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2870  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2871  * capacity. CPU utilization is allowed to overshoot current CPU capacity
2872  * though since this is useful for predicting the CPU capacity required
2873  * after task migrations (scheduler-driven DVFS).
2874  *
2875  * Return: (Estimated) utilization for the specified CPU.
2876  */
2877 static inline unsigned long cpu_util_cfs(int cpu)
2878 {
2879 	struct cfs_rq *cfs_rq;
2880 	unsigned long util;
2881 
2882 	cfs_rq = &cpu_rq(cpu)->cfs;
2883 	util = READ_ONCE(cfs_rq->avg.util_avg);
2884 
2885 	if (sched_feat(UTIL_EST)) {
2886 		util = max_t(unsigned long, util,
2887 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
2888 	}
2889 
2890 	return min(util, capacity_orig_of(cpu));
2891 }
2892 
2893 static inline unsigned long cpu_util_rt(struct rq *rq)
2894 {
2895 	return READ_ONCE(rq->avg_rt.util_avg);
2896 }
2897 #endif
2898 
2899 #ifdef CONFIG_UCLAMP_TASK
2900 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2901 
2902 /**
2903  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2904  * @rq:		The rq to clamp against. Must not be NULL.
2905  * @util:	The util value to clamp.
2906  * @p:		The task to clamp against. Can be NULL if you want to clamp
2907  *		against @rq only.
2908  *
2909  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2910  *
2911  * If sched_uclamp_used static key is disabled, then just return the util
2912  * without any clamping since uclamp aggregation at the rq level in the fast
2913  * path is disabled, rendering this operation a NOP.
2914  *
2915  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2916  * will return the correct effective uclamp value of the task even if the
2917  * static key is disabled.
2918  */
2919 static __always_inline
2920 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2921 				  struct task_struct *p)
2922 {
2923 	unsigned long min_util = 0;
2924 	unsigned long max_util = 0;
2925 
2926 	if (!static_branch_likely(&sched_uclamp_used))
2927 		return util;
2928 
2929 	if (p) {
2930 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2931 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2932 
2933 		/*
2934 		 * Ignore last runnable task's max clamp, as this task will
2935 		 * reset it. Similarly, no need to read the rq's min clamp.
2936 		 */
2937 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2938 			goto out;
2939 	}
2940 
2941 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2942 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2943 out:
2944 	/*
2945 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2946 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2947 	 * inversion. Fix it now when the clamps are applied.
2948 	 */
2949 	if (unlikely(min_util >= max_util))
2950 		return min_util;
2951 
2952 	return clamp(util, min_util, max_util);
2953 }
2954 
2955 /* Is the rq being capped/throttled by uclamp_max? */
2956 static inline bool uclamp_rq_is_capped(struct rq *rq)
2957 {
2958 	unsigned long rq_util;
2959 	unsigned long max_util;
2960 
2961 	if (!static_branch_likely(&sched_uclamp_used))
2962 		return false;
2963 
2964 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
2965 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2966 
2967 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
2968 }
2969 
2970 /*
2971  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2972  * by default in the fast path and only gets turned on once userspace performs
2973  * an operation that requires it.
2974  *
2975  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2976  * hence is active.
2977  */
2978 static inline bool uclamp_is_used(void)
2979 {
2980 	return static_branch_likely(&sched_uclamp_used);
2981 }
2982 #else /* CONFIG_UCLAMP_TASK */
2983 static inline
2984 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2985 				  struct task_struct *p)
2986 {
2987 	return util;
2988 }
2989 
2990 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
2991 
2992 static inline bool uclamp_is_used(void)
2993 {
2994 	return false;
2995 }
2996 #endif /* CONFIG_UCLAMP_TASK */
2997 
2998 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2999 static inline unsigned long cpu_util_irq(struct rq *rq)
3000 {
3001 	return rq->avg_irq.util_avg;
3002 }
3003 
3004 static inline
3005 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3006 {
3007 	util *= (max - irq);
3008 	util /= max;
3009 
3010 	return util;
3011 
3012 }
3013 #else
3014 static inline unsigned long cpu_util_irq(struct rq *rq)
3015 {
3016 	return 0;
3017 }
3018 
3019 static inline
3020 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3021 {
3022 	return util;
3023 }
3024 #endif
3025 
3026 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3027 
3028 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3029 
3030 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3031 
3032 static inline bool sched_energy_enabled(void)
3033 {
3034 	return static_branch_unlikely(&sched_energy_present);
3035 }
3036 
3037 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3038 
3039 #define perf_domain_span(pd) NULL
3040 static inline bool sched_energy_enabled(void) { return false; }
3041 
3042 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3043 
3044 #ifdef CONFIG_MEMBARRIER
3045 /*
3046  * The scheduler provides memory barriers required by membarrier between:
3047  * - prior user-space memory accesses and store to rq->membarrier_state,
3048  * - store to rq->membarrier_state and following user-space memory accesses.
3049  * In the same way it provides those guarantees around store to rq->curr.
3050  */
3051 static inline void membarrier_switch_mm(struct rq *rq,
3052 					struct mm_struct *prev_mm,
3053 					struct mm_struct *next_mm)
3054 {
3055 	int membarrier_state;
3056 
3057 	if (prev_mm == next_mm)
3058 		return;
3059 
3060 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3061 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3062 		return;
3063 
3064 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3065 }
3066 #else
3067 static inline void membarrier_switch_mm(struct rq *rq,
3068 					struct mm_struct *prev_mm,
3069 					struct mm_struct *next_mm)
3070 {
3071 }
3072 #endif
3073 
3074 #ifdef CONFIG_SMP
3075 static inline bool is_per_cpu_kthread(struct task_struct *p)
3076 {
3077 	if (!(p->flags & PF_KTHREAD))
3078 		return false;
3079 
3080 	if (p->nr_cpus_allowed != 1)
3081 		return false;
3082 
3083 	return true;
3084 }
3085 #endif
3086 
3087 extern void swake_up_all_locked(struct swait_queue_head *q);
3088 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3089 
3090 #ifdef CONFIG_PREEMPT_DYNAMIC
3091 extern int preempt_dynamic_mode;
3092 extern int sched_dynamic_mode(const char *str);
3093 extern void sched_dynamic_update(int mode);
3094 #endif
3095 
3096 #endif /* _KERNEL_SCHED_SCHED_H */
3097