xref: /openbmc/linux/kernel/sched/sched.h (revision 9d749629)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 
9 #include "cpupri.h"
10 
11 extern __read_mostly int scheduler_running;
12 
13 /*
14  * Convert user-nice values [ -20 ... 0 ... 19 ]
15  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
16  * and back.
17  */
18 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
19 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
20 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
21 
22 /*
23  * 'User priority' is the nice value converted to something we
24  * can work with better when scaling various scheduler parameters,
25  * it's a [ 0 ... 39 ] range.
26  */
27 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
28 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
29 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
30 
31 /*
32  * Helpers for converting nanosecond timing to jiffy resolution
33  */
34 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35 
36 #define NICE_0_LOAD		SCHED_LOAD_SCALE
37 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
38 
39 /*
40  * These are the 'tuning knobs' of the scheduler:
41  */
42 
43 /*
44  * single value that denotes runtime == period, ie unlimited time.
45  */
46 #define RUNTIME_INF	((u64)~0ULL)
47 
48 static inline int rt_policy(int policy)
49 {
50 	if (policy == SCHED_FIFO || policy == SCHED_RR)
51 		return 1;
52 	return 0;
53 }
54 
55 static inline int task_has_rt_policy(struct task_struct *p)
56 {
57 	return rt_policy(p->policy);
58 }
59 
60 /*
61  * This is the priority-queue data structure of the RT scheduling class:
62  */
63 struct rt_prio_array {
64 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
65 	struct list_head queue[MAX_RT_PRIO];
66 };
67 
68 struct rt_bandwidth {
69 	/* nests inside the rq lock: */
70 	raw_spinlock_t		rt_runtime_lock;
71 	ktime_t			rt_period;
72 	u64			rt_runtime;
73 	struct hrtimer		rt_period_timer;
74 };
75 
76 extern struct mutex sched_domains_mutex;
77 
78 #ifdef CONFIG_CGROUP_SCHED
79 
80 #include <linux/cgroup.h>
81 
82 struct cfs_rq;
83 struct rt_rq;
84 
85 extern struct list_head task_groups;
86 
87 struct cfs_bandwidth {
88 #ifdef CONFIG_CFS_BANDWIDTH
89 	raw_spinlock_t lock;
90 	ktime_t period;
91 	u64 quota, runtime;
92 	s64 hierarchal_quota;
93 	u64 runtime_expires;
94 
95 	int idle, timer_active;
96 	struct hrtimer period_timer, slack_timer;
97 	struct list_head throttled_cfs_rq;
98 
99 	/* statistics */
100 	int nr_periods, nr_throttled;
101 	u64 throttled_time;
102 #endif
103 };
104 
105 /* task group related information */
106 struct task_group {
107 	struct cgroup_subsys_state css;
108 
109 #ifdef CONFIG_FAIR_GROUP_SCHED
110 	/* schedulable entities of this group on each cpu */
111 	struct sched_entity **se;
112 	/* runqueue "owned" by this group on each cpu */
113 	struct cfs_rq **cfs_rq;
114 	unsigned long shares;
115 
116 	atomic_t load_weight;
117 	atomic64_t load_avg;
118 	atomic_t runnable_avg;
119 #endif
120 
121 #ifdef CONFIG_RT_GROUP_SCHED
122 	struct sched_rt_entity **rt_se;
123 	struct rt_rq **rt_rq;
124 
125 	struct rt_bandwidth rt_bandwidth;
126 #endif
127 
128 	struct rcu_head rcu;
129 	struct list_head list;
130 
131 	struct task_group *parent;
132 	struct list_head siblings;
133 	struct list_head children;
134 
135 #ifdef CONFIG_SCHED_AUTOGROUP
136 	struct autogroup *autogroup;
137 #endif
138 
139 	struct cfs_bandwidth cfs_bandwidth;
140 };
141 
142 #ifdef CONFIG_FAIR_GROUP_SCHED
143 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
144 
145 /*
146  * A weight of 0 or 1 can cause arithmetics problems.
147  * A weight of a cfs_rq is the sum of weights of which entities
148  * are queued on this cfs_rq, so a weight of a entity should not be
149  * too large, so as the shares value of a task group.
150  * (The default weight is 1024 - so there's no practical
151  *  limitation from this.)
152  */
153 #define MIN_SHARES	(1UL <<  1)
154 #define MAX_SHARES	(1UL << 18)
155 #endif
156 
157 /* Default task group.
158  *	Every task in system belong to this group at bootup.
159  */
160 extern struct task_group root_task_group;
161 
162 typedef int (*tg_visitor)(struct task_group *, void *);
163 
164 extern int walk_tg_tree_from(struct task_group *from,
165 			     tg_visitor down, tg_visitor up, void *data);
166 
167 /*
168  * Iterate the full tree, calling @down when first entering a node and @up when
169  * leaving it for the final time.
170  *
171  * Caller must hold rcu_lock or sufficient equivalent.
172  */
173 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
174 {
175 	return walk_tg_tree_from(&root_task_group, down, up, data);
176 }
177 
178 extern int tg_nop(struct task_group *tg, void *data);
179 
180 extern void free_fair_sched_group(struct task_group *tg);
181 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
182 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
183 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
184 			struct sched_entity *se, int cpu,
185 			struct sched_entity *parent);
186 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
188 
189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
190 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
191 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
192 
193 extern void free_rt_sched_group(struct task_group *tg);
194 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
195 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
196 		struct sched_rt_entity *rt_se, int cpu,
197 		struct sched_rt_entity *parent);
198 
199 #else /* CONFIG_CGROUP_SCHED */
200 
201 struct cfs_bandwidth { };
202 
203 #endif	/* CONFIG_CGROUP_SCHED */
204 
205 /* CFS-related fields in a runqueue */
206 struct cfs_rq {
207 	struct load_weight load;
208 	unsigned int nr_running, h_nr_running;
209 
210 	u64 exec_clock;
211 	u64 min_vruntime;
212 #ifndef CONFIG_64BIT
213 	u64 min_vruntime_copy;
214 #endif
215 
216 	struct rb_root tasks_timeline;
217 	struct rb_node *rb_leftmost;
218 
219 	/*
220 	 * 'curr' points to currently running entity on this cfs_rq.
221 	 * It is set to NULL otherwise (i.e when none are currently running).
222 	 */
223 	struct sched_entity *curr, *next, *last, *skip;
224 
225 #ifdef	CONFIG_SCHED_DEBUG
226 	unsigned int nr_spread_over;
227 #endif
228 
229 #ifdef CONFIG_SMP
230 /*
231  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
232  * removed when useful for applications beyond shares distribution (e.g.
233  * load-balance).
234  */
235 #ifdef CONFIG_FAIR_GROUP_SCHED
236 	/*
237 	 * CFS Load tracking
238 	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
239 	 * This allows for the description of both thread and group usage (in
240 	 * the FAIR_GROUP_SCHED case).
241 	 */
242 	u64 runnable_load_avg, blocked_load_avg;
243 	atomic64_t decay_counter, removed_load;
244 	u64 last_decay;
245 #endif /* CONFIG_FAIR_GROUP_SCHED */
246 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
247 #ifdef CONFIG_FAIR_GROUP_SCHED
248 	u32 tg_runnable_contrib;
249 	u64 tg_load_contrib;
250 #endif /* CONFIG_FAIR_GROUP_SCHED */
251 
252 	/*
253 	 *   h_load = weight * f(tg)
254 	 *
255 	 * Where f(tg) is the recursive weight fraction assigned to
256 	 * this group.
257 	 */
258 	unsigned long h_load;
259 #endif /* CONFIG_SMP */
260 
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
263 
264 	/*
265 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
266 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
267 	 * (like users, containers etc.)
268 	 *
269 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
270 	 * list is used during load balance.
271 	 */
272 	int on_list;
273 	struct list_head leaf_cfs_rq_list;
274 	struct task_group *tg;	/* group that "owns" this runqueue */
275 
276 #ifdef CONFIG_CFS_BANDWIDTH
277 	int runtime_enabled;
278 	u64 runtime_expires;
279 	s64 runtime_remaining;
280 
281 	u64 throttled_clock, throttled_clock_task;
282 	u64 throttled_clock_task_time;
283 	int throttled, throttle_count;
284 	struct list_head throttled_list;
285 #endif /* CONFIG_CFS_BANDWIDTH */
286 #endif /* CONFIG_FAIR_GROUP_SCHED */
287 };
288 
289 static inline int rt_bandwidth_enabled(void)
290 {
291 	return sysctl_sched_rt_runtime >= 0;
292 }
293 
294 /* Real-Time classes' related field in a runqueue: */
295 struct rt_rq {
296 	struct rt_prio_array active;
297 	unsigned int rt_nr_running;
298 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
299 	struct {
300 		int curr; /* highest queued rt task prio */
301 #ifdef CONFIG_SMP
302 		int next; /* next highest */
303 #endif
304 	} highest_prio;
305 #endif
306 #ifdef CONFIG_SMP
307 	unsigned long rt_nr_migratory;
308 	unsigned long rt_nr_total;
309 	int overloaded;
310 	struct plist_head pushable_tasks;
311 #endif
312 	int rt_throttled;
313 	u64 rt_time;
314 	u64 rt_runtime;
315 	/* Nests inside the rq lock: */
316 	raw_spinlock_t rt_runtime_lock;
317 
318 #ifdef CONFIG_RT_GROUP_SCHED
319 	unsigned long rt_nr_boosted;
320 
321 	struct rq *rq;
322 	struct list_head leaf_rt_rq_list;
323 	struct task_group *tg;
324 #endif
325 };
326 
327 #ifdef CONFIG_SMP
328 
329 /*
330  * We add the notion of a root-domain which will be used to define per-domain
331  * variables. Each exclusive cpuset essentially defines an island domain by
332  * fully partitioning the member cpus from any other cpuset. Whenever a new
333  * exclusive cpuset is created, we also create and attach a new root-domain
334  * object.
335  *
336  */
337 struct root_domain {
338 	atomic_t refcount;
339 	atomic_t rto_count;
340 	struct rcu_head rcu;
341 	cpumask_var_t span;
342 	cpumask_var_t online;
343 
344 	/*
345 	 * The "RT overload" flag: it gets set if a CPU has more than
346 	 * one runnable RT task.
347 	 */
348 	cpumask_var_t rto_mask;
349 	struct cpupri cpupri;
350 };
351 
352 extern struct root_domain def_root_domain;
353 
354 #endif /* CONFIG_SMP */
355 
356 /*
357  * This is the main, per-CPU runqueue data structure.
358  *
359  * Locking rule: those places that want to lock multiple runqueues
360  * (such as the load balancing or the thread migration code), lock
361  * acquire operations must be ordered by ascending &runqueue.
362  */
363 struct rq {
364 	/* runqueue lock: */
365 	raw_spinlock_t lock;
366 
367 	/*
368 	 * nr_running and cpu_load should be in the same cacheline because
369 	 * remote CPUs use both these fields when doing load calculation.
370 	 */
371 	unsigned int nr_running;
372 	#define CPU_LOAD_IDX_MAX 5
373 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
374 	unsigned long last_load_update_tick;
375 #ifdef CONFIG_NO_HZ
376 	u64 nohz_stamp;
377 	unsigned long nohz_flags;
378 #endif
379 	int skip_clock_update;
380 
381 	/* capture load from *all* tasks on this cpu: */
382 	struct load_weight load;
383 	unsigned long nr_load_updates;
384 	u64 nr_switches;
385 
386 	struct cfs_rq cfs;
387 	struct rt_rq rt;
388 
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 	/* list of leaf cfs_rq on this cpu: */
391 	struct list_head leaf_cfs_rq_list;
392 #ifdef CONFIG_SMP
393 	unsigned long h_load_throttle;
394 #endif /* CONFIG_SMP */
395 #endif /* CONFIG_FAIR_GROUP_SCHED */
396 
397 #ifdef CONFIG_RT_GROUP_SCHED
398 	struct list_head leaf_rt_rq_list;
399 #endif
400 
401 	/*
402 	 * This is part of a global counter where only the total sum
403 	 * over all CPUs matters. A task can increase this counter on
404 	 * one CPU and if it got migrated afterwards it may decrease
405 	 * it on another CPU. Always updated under the runqueue lock:
406 	 */
407 	unsigned long nr_uninterruptible;
408 
409 	struct task_struct *curr, *idle, *stop;
410 	unsigned long next_balance;
411 	struct mm_struct *prev_mm;
412 
413 	u64 clock;
414 	u64 clock_task;
415 
416 	atomic_t nr_iowait;
417 
418 #ifdef CONFIG_SMP
419 	struct root_domain *rd;
420 	struct sched_domain *sd;
421 
422 	unsigned long cpu_power;
423 
424 	unsigned char idle_balance;
425 	/* For active balancing */
426 	int post_schedule;
427 	int active_balance;
428 	int push_cpu;
429 	struct cpu_stop_work active_balance_work;
430 	/* cpu of this runqueue: */
431 	int cpu;
432 	int online;
433 
434 	struct list_head cfs_tasks;
435 
436 	u64 rt_avg;
437 	u64 age_stamp;
438 	u64 idle_stamp;
439 	u64 avg_idle;
440 #endif
441 
442 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
443 	u64 prev_irq_time;
444 #endif
445 #ifdef CONFIG_PARAVIRT
446 	u64 prev_steal_time;
447 #endif
448 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
449 	u64 prev_steal_time_rq;
450 #endif
451 
452 	/* calc_load related fields */
453 	unsigned long calc_load_update;
454 	long calc_load_active;
455 
456 #ifdef CONFIG_SCHED_HRTICK
457 #ifdef CONFIG_SMP
458 	int hrtick_csd_pending;
459 	struct call_single_data hrtick_csd;
460 #endif
461 	struct hrtimer hrtick_timer;
462 #endif
463 
464 #ifdef CONFIG_SCHEDSTATS
465 	/* latency stats */
466 	struct sched_info rq_sched_info;
467 	unsigned long long rq_cpu_time;
468 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
469 
470 	/* sys_sched_yield() stats */
471 	unsigned int yld_count;
472 
473 	/* schedule() stats */
474 	unsigned int sched_count;
475 	unsigned int sched_goidle;
476 
477 	/* try_to_wake_up() stats */
478 	unsigned int ttwu_count;
479 	unsigned int ttwu_local;
480 #endif
481 
482 #ifdef CONFIG_SMP
483 	struct llist_head wake_list;
484 #endif
485 
486 	struct sched_avg avg;
487 };
488 
489 static inline int cpu_of(struct rq *rq)
490 {
491 #ifdef CONFIG_SMP
492 	return rq->cpu;
493 #else
494 	return 0;
495 #endif
496 }
497 
498 DECLARE_PER_CPU(struct rq, runqueues);
499 
500 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
501 #define this_rq()		(&__get_cpu_var(runqueues))
502 #define task_rq(p)		cpu_rq(task_cpu(p))
503 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
504 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
505 
506 #ifdef CONFIG_SMP
507 
508 #define rcu_dereference_check_sched_domain(p) \
509 	rcu_dereference_check((p), \
510 			      lockdep_is_held(&sched_domains_mutex))
511 
512 /*
513  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
514  * See detach_destroy_domains: synchronize_sched for details.
515  *
516  * The domain tree of any CPU may only be accessed from within
517  * preempt-disabled sections.
518  */
519 #define for_each_domain(cpu, __sd) \
520 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
521 			__sd; __sd = __sd->parent)
522 
523 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
524 
525 /**
526  * highest_flag_domain - Return highest sched_domain containing flag.
527  * @cpu:	The cpu whose highest level of sched domain is to
528  *		be returned.
529  * @flag:	The flag to check for the highest sched_domain
530  *		for the given cpu.
531  *
532  * Returns the highest sched_domain of a cpu which contains the given flag.
533  */
534 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
535 {
536 	struct sched_domain *sd, *hsd = NULL;
537 
538 	for_each_domain(cpu, sd) {
539 		if (!(sd->flags & flag))
540 			break;
541 		hsd = sd;
542 	}
543 
544 	return hsd;
545 }
546 
547 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
548 DECLARE_PER_CPU(int, sd_llc_id);
549 
550 extern int group_balance_cpu(struct sched_group *sg);
551 
552 #endif /* CONFIG_SMP */
553 
554 #include "stats.h"
555 #include "auto_group.h"
556 
557 #ifdef CONFIG_CGROUP_SCHED
558 
559 /*
560  * Return the group to which this tasks belongs.
561  *
562  * We cannot use task_subsys_state() and friends because the cgroup
563  * subsystem changes that value before the cgroup_subsys::attach() method
564  * is called, therefore we cannot pin it and might observe the wrong value.
565  *
566  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
567  * core changes this before calling sched_move_task().
568  *
569  * Instead we use a 'copy' which is updated from sched_move_task() while
570  * holding both task_struct::pi_lock and rq::lock.
571  */
572 static inline struct task_group *task_group(struct task_struct *p)
573 {
574 	return p->sched_task_group;
575 }
576 
577 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
578 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
579 {
580 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
581 	struct task_group *tg = task_group(p);
582 #endif
583 
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 	p->se.cfs_rq = tg->cfs_rq[cpu];
586 	p->se.parent = tg->se[cpu];
587 #endif
588 
589 #ifdef CONFIG_RT_GROUP_SCHED
590 	p->rt.rt_rq  = tg->rt_rq[cpu];
591 	p->rt.parent = tg->rt_se[cpu];
592 #endif
593 }
594 
595 #else /* CONFIG_CGROUP_SCHED */
596 
597 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
598 static inline struct task_group *task_group(struct task_struct *p)
599 {
600 	return NULL;
601 }
602 
603 #endif /* CONFIG_CGROUP_SCHED */
604 
605 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
606 {
607 	set_task_rq(p, cpu);
608 #ifdef CONFIG_SMP
609 	/*
610 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
611 	 * successfuly executed on another CPU. We must ensure that updates of
612 	 * per-task data have been completed by this moment.
613 	 */
614 	smp_wmb();
615 	task_thread_info(p)->cpu = cpu;
616 #endif
617 }
618 
619 /*
620  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
621  */
622 #ifdef CONFIG_SCHED_DEBUG
623 # include <linux/static_key.h>
624 # define const_debug __read_mostly
625 #else
626 # define const_debug const
627 #endif
628 
629 extern const_debug unsigned int sysctl_sched_features;
630 
631 #define SCHED_FEAT(name, enabled)	\
632 	__SCHED_FEAT_##name ,
633 
634 enum {
635 #include "features.h"
636 	__SCHED_FEAT_NR,
637 };
638 
639 #undef SCHED_FEAT
640 
641 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
642 static __always_inline bool static_branch__true(struct static_key *key)
643 {
644 	return static_key_true(key); /* Not out of line branch. */
645 }
646 
647 static __always_inline bool static_branch__false(struct static_key *key)
648 {
649 	return static_key_false(key); /* Out of line branch. */
650 }
651 
652 #define SCHED_FEAT(name, enabled)					\
653 static __always_inline bool static_branch_##name(struct static_key *key) \
654 {									\
655 	return static_branch__##enabled(key);				\
656 }
657 
658 #include "features.h"
659 
660 #undef SCHED_FEAT
661 
662 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
663 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
664 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
665 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
666 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
667 
668 #ifdef CONFIG_NUMA_BALANCING
669 #define sched_feat_numa(x) sched_feat(x)
670 #ifdef CONFIG_SCHED_DEBUG
671 #define numabalancing_enabled sched_feat_numa(NUMA)
672 #else
673 extern bool numabalancing_enabled;
674 #endif /* CONFIG_SCHED_DEBUG */
675 #else
676 #define sched_feat_numa(x) (0)
677 #define numabalancing_enabled (0)
678 #endif /* CONFIG_NUMA_BALANCING */
679 
680 static inline u64 global_rt_period(void)
681 {
682 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
683 }
684 
685 static inline u64 global_rt_runtime(void)
686 {
687 	if (sysctl_sched_rt_runtime < 0)
688 		return RUNTIME_INF;
689 
690 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
691 }
692 
693 
694 
695 static inline int task_current(struct rq *rq, struct task_struct *p)
696 {
697 	return rq->curr == p;
698 }
699 
700 static inline int task_running(struct rq *rq, struct task_struct *p)
701 {
702 #ifdef CONFIG_SMP
703 	return p->on_cpu;
704 #else
705 	return task_current(rq, p);
706 #endif
707 }
708 
709 
710 #ifndef prepare_arch_switch
711 # define prepare_arch_switch(next)	do { } while (0)
712 #endif
713 #ifndef finish_arch_switch
714 # define finish_arch_switch(prev)	do { } while (0)
715 #endif
716 #ifndef finish_arch_post_lock_switch
717 # define finish_arch_post_lock_switch()	do { } while (0)
718 #endif
719 
720 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
721 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
722 {
723 #ifdef CONFIG_SMP
724 	/*
725 	 * We can optimise this out completely for !SMP, because the
726 	 * SMP rebalancing from interrupt is the only thing that cares
727 	 * here.
728 	 */
729 	next->on_cpu = 1;
730 #endif
731 }
732 
733 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
734 {
735 #ifdef CONFIG_SMP
736 	/*
737 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
738 	 * We must ensure this doesn't happen until the switch is completely
739 	 * finished.
740 	 */
741 	smp_wmb();
742 	prev->on_cpu = 0;
743 #endif
744 #ifdef CONFIG_DEBUG_SPINLOCK
745 	/* this is a valid case when another task releases the spinlock */
746 	rq->lock.owner = current;
747 #endif
748 	/*
749 	 * If we are tracking spinlock dependencies then we have to
750 	 * fix up the runqueue lock - which gets 'carried over' from
751 	 * prev into current:
752 	 */
753 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
754 
755 	raw_spin_unlock_irq(&rq->lock);
756 }
757 
758 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
759 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
760 {
761 #ifdef CONFIG_SMP
762 	/*
763 	 * We can optimise this out completely for !SMP, because the
764 	 * SMP rebalancing from interrupt is the only thing that cares
765 	 * here.
766 	 */
767 	next->on_cpu = 1;
768 #endif
769 	raw_spin_unlock(&rq->lock);
770 }
771 
772 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
773 {
774 #ifdef CONFIG_SMP
775 	/*
776 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
777 	 * We must ensure this doesn't happen until the switch is completely
778 	 * finished.
779 	 */
780 	smp_wmb();
781 	prev->on_cpu = 0;
782 #endif
783 	local_irq_enable();
784 }
785 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
786 
787 
788 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
789 {
790 	lw->weight += inc;
791 	lw->inv_weight = 0;
792 }
793 
794 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
795 {
796 	lw->weight -= dec;
797 	lw->inv_weight = 0;
798 }
799 
800 static inline void update_load_set(struct load_weight *lw, unsigned long w)
801 {
802 	lw->weight = w;
803 	lw->inv_weight = 0;
804 }
805 
806 /*
807  * To aid in avoiding the subversion of "niceness" due to uneven distribution
808  * of tasks with abnormal "nice" values across CPUs the contribution that
809  * each task makes to its run queue's load is weighted according to its
810  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
811  * scaled version of the new time slice allocation that they receive on time
812  * slice expiry etc.
813  */
814 
815 #define WEIGHT_IDLEPRIO                3
816 #define WMULT_IDLEPRIO         1431655765
817 
818 /*
819  * Nice levels are multiplicative, with a gentle 10% change for every
820  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
821  * nice 1, it will get ~10% less CPU time than another CPU-bound task
822  * that remained on nice 0.
823  *
824  * The "10% effect" is relative and cumulative: from _any_ nice level,
825  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
826  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
827  * If a task goes up by ~10% and another task goes down by ~10% then
828  * the relative distance between them is ~25%.)
829  */
830 static const int prio_to_weight[40] = {
831  /* -20 */     88761,     71755,     56483,     46273,     36291,
832  /* -15 */     29154,     23254,     18705,     14949,     11916,
833  /* -10 */      9548,      7620,      6100,      4904,      3906,
834  /*  -5 */      3121,      2501,      1991,      1586,      1277,
835  /*   0 */      1024,       820,       655,       526,       423,
836  /*   5 */       335,       272,       215,       172,       137,
837  /*  10 */       110,        87,        70,        56,        45,
838  /*  15 */        36,        29,        23,        18,        15,
839 };
840 
841 /*
842  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
843  *
844  * In cases where the weight does not change often, we can use the
845  * precalculated inverse to speed up arithmetics by turning divisions
846  * into multiplications:
847  */
848 static const u32 prio_to_wmult[40] = {
849  /* -20 */     48388,     59856,     76040,     92818,    118348,
850  /* -15 */    147320,    184698,    229616,    287308,    360437,
851  /* -10 */    449829,    563644,    704093,    875809,   1099582,
852  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
853  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
854  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
855  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
856  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
857 };
858 
859 /* Time spent by the tasks of the cpu accounting group executing in ... */
860 enum cpuacct_stat_index {
861 	CPUACCT_STAT_USER,	/* ... user mode */
862 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
863 
864 	CPUACCT_STAT_NSTATS,
865 };
866 
867 
868 #define sched_class_highest (&stop_sched_class)
869 #define for_each_class(class) \
870    for (class = sched_class_highest; class; class = class->next)
871 
872 extern const struct sched_class stop_sched_class;
873 extern const struct sched_class rt_sched_class;
874 extern const struct sched_class fair_sched_class;
875 extern const struct sched_class idle_sched_class;
876 
877 
878 #ifdef CONFIG_SMP
879 
880 extern void trigger_load_balance(struct rq *rq, int cpu);
881 extern void idle_balance(int this_cpu, struct rq *this_rq);
882 
883 #else	/* CONFIG_SMP */
884 
885 static inline void idle_balance(int cpu, struct rq *rq)
886 {
887 }
888 
889 #endif
890 
891 extern void sysrq_sched_debug_show(void);
892 extern void sched_init_granularity(void);
893 extern void update_max_interval(void);
894 extern void update_group_power(struct sched_domain *sd, int cpu);
895 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
896 extern void init_sched_rt_class(void);
897 extern void init_sched_fair_class(void);
898 
899 extern void resched_task(struct task_struct *p);
900 extern void resched_cpu(int cpu);
901 
902 extern struct rt_bandwidth def_rt_bandwidth;
903 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
904 
905 extern void update_idle_cpu_load(struct rq *this_rq);
906 
907 #ifdef CONFIG_CGROUP_CPUACCT
908 #include <linux/cgroup.h>
909 /* track cpu usage of a group of tasks and its child groups */
910 struct cpuacct {
911 	struct cgroup_subsys_state css;
912 	/* cpuusage holds pointer to a u64-type object on every cpu */
913 	u64 __percpu *cpuusage;
914 	struct kernel_cpustat __percpu *cpustat;
915 };
916 
917 extern struct cgroup_subsys cpuacct_subsys;
918 extern struct cpuacct root_cpuacct;
919 
920 /* return cpu accounting group corresponding to this container */
921 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
922 {
923 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
924 			    struct cpuacct, css);
925 }
926 
927 /* return cpu accounting group to which this task belongs */
928 static inline struct cpuacct *task_ca(struct task_struct *tsk)
929 {
930 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
931 			    struct cpuacct, css);
932 }
933 
934 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
935 {
936 	if (!ca || !ca->css.cgroup->parent)
937 		return NULL;
938 	return cgroup_ca(ca->css.cgroup->parent);
939 }
940 
941 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
942 #else
943 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
944 #endif
945 
946 #ifdef CONFIG_PARAVIRT
947 static inline u64 steal_ticks(u64 steal)
948 {
949 	if (unlikely(steal > NSEC_PER_SEC))
950 		return div_u64(steal, TICK_NSEC);
951 
952 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
953 }
954 #endif
955 
956 static inline void inc_nr_running(struct rq *rq)
957 {
958 	rq->nr_running++;
959 }
960 
961 static inline void dec_nr_running(struct rq *rq)
962 {
963 	rq->nr_running--;
964 }
965 
966 extern void update_rq_clock(struct rq *rq);
967 
968 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
969 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
970 
971 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
972 
973 extern const_debug unsigned int sysctl_sched_time_avg;
974 extern const_debug unsigned int sysctl_sched_nr_migrate;
975 extern const_debug unsigned int sysctl_sched_migration_cost;
976 
977 static inline u64 sched_avg_period(void)
978 {
979 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
980 }
981 
982 #ifdef CONFIG_SCHED_HRTICK
983 
984 /*
985  * Use hrtick when:
986  *  - enabled by features
987  *  - hrtimer is actually high res
988  */
989 static inline int hrtick_enabled(struct rq *rq)
990 {
991 	if (!sched_feat(HRTICK))
992 		return 0;
993 	if (!cpu_active(cpu_of(rq)))
994 		return 0;
995 	return hrtimer_is_hres_active(&rq->hrtick_timer);
996 }
997 
998 void hrtick_start(struct rq *rq, u64 delay);
999 
1000 #else
1001 
1002 static inline int hrtick_enabled(struct rq *rq)
1003 {
1004 	return 0;
1005 }
1006 
1007 #endif /* CONFIG_SCHED_HRTICK */
1008 
1009 #ifdef CONFIG_SMP
1010 extern void sched_avg_update(struct rq *rq);
1011 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1012 {
1013 	rq->rt_avg += rt_delta;
1014 	sched_avg_update(rq);
1015 }
1016 #else
1017 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1018 static inline void sched_avg_update(struct rq *rq) { }
1019 #endif
1020 
1021 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1022 
1023 #ifdef CONFIG_SMP
1024 #ifdef CONFIG_PREEMPT
1025 
1026 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1027 
1028 /*
1029  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1030  * way at the expense of forcing extra atomic operations in all
1031  * invocations.  This assures that the double_lock is acquired using the
1032  * same underlying policy as the spinlock_t on this architecture, which
1033  * reduces latency compared to the unfair variant below.  However, it
1034  * also adds more overhead and therefore may reduce throughput.
1035  */
1036 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1037 	__releases(this_rq->lock)
1038 	__acquires(busiest->lock)
1039 	__acquires(this_rq->lock)
1040 {
1041 	raw_spin_unlock(&this_rq->lock);
1042 	double_rq_lock(this_rq, busiest);
1043 
1044 	return 1;
1045 }
1046 
1047 #else
1048 /*
1049  * Unfair double_lock_balance: Optimizes throughput at the expense of
1050  * latency by eliminating extra atomic operations when the locks are
1051  * already in proper order on entry.  This favors lower cpu-ids and will
1052  * grant the double lock to lower cpus over higher ids under contention,
1053  * regardless of entry order into the function.
1054  */
1055 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1056 	__releases(this_rq->lock)
1057 	__acquires(busiest->lock)
1058 	__acquires(this_rq->lock)
1059 {
1060 	int ret = 0;
1061 
1062 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1063 		if (busiest < this_rq) {
1064 			raw_spin_unlock(&this_rq->lock);
1065 			raw_spin_lock(&busiest->lock);
1066 			raw_spin_lock_nested(&this_rq->lock,
1067 					      SINGLE_DEPTH_NESTING);
1068 			ret = 1;
1069 		} else
1070 			raw_spin_lock_nested(&busiest->lock,
1071 					      SINGLE_DEPTH_NESTING);
1072 	}
1073 	return ret;
1074 }
1075 
1076 #endif /* CONFIG_PREEMPT */
1077 
1078 /*
1079  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1080  */
1081 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1082 {
1083 	if (unlikely(!irqs_disabled())) {
1084 		/* printk() doesn't work good under rq->lock */
1085 		raw_spin_unlock(&this_rq->lock);
1086 		BUG_ON(1);
1087 	}
1088 
1089 	return _double_lock_balance(this_rq, busiest);
1090 }
1091 
1092 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1093 	__releases(busiest->lock)
1094 {
1095 	raw_spin_unlock(&busiest->lock);
1096 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1097 }
1098 
1099 /*
1100  * double_rq_lock - safely lock two runqueues
1101  *
1102  * Note this does not disable interrupts like task_rq_lock,
1103  * you need to do so manually before calling.
1104  */
1105 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1106 	__acquires(rq1->lock)
1107 	__acquires(rq2->lock)
1108 {
1109 	BUG_ON(!irqs_disabled());
1110 	if (rq1 == rq2) {
1111 		raw_spin_lock(&rq1->lock);
1112 		__acquire(rq2->lock);	/* Fake it out ;) */
1113 	} else {
1114 		if (rq1 < rq2) {
1115 			raw_spin_lock(&rq1->lock);
1116 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1117 		} else {
1118 			raw_spin_lock(&rq2->lock);
1119 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1120 		}
1121 	}
1122 }
1123 
1124 /*
1125  * double_rq_unlock - safely unlock two runqueues
1126  *
1127  * Note this does not restore interrupts like task_rq_unlock,
1128  * you need to do so manually after calling.
1129  */
1130 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1131 	__releases(rq1->lock)
1132 	__releases(rq2->lock)
1133 {
1134 	raw_spin_unlock(&rq1->lock);
1135 	if (rq1 != rq2)
1136 		raw_spin_unlock(&rq2->lock);
1137 	else
1138 		__release(rq2->lock);
1139 }
1140 
1141 #else /* CONFIG_SMP */
1142 
1143 /*
1144  * double_rq_lock - safely lock two runqueues
1145  *
1146  * Note this does not disable interrupts like task_rq_lock,
1147  * you need to do so manually before calling.
1148  */
1149 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1150 	__acquires(rq1->lock)
1151 	__acquires(rq2->lock)
1152 {
1153 	BUG_ON(!irqs_disabled());
1154 	BUG_ON(rq1 != rq2);
1155 	raw_spin_lock(&rq1->lock);
1156 	__acquire(rq2->lock);	/* Fake it out ;) */
1157 }
1158 
1159 /*
1160  * double_rq_unlock - safely unlock two runqueues
1161  *
1162  * Note this does not restore interrupts like task_rq_unlock,
1163  * you need to do so manually after calling.
1164  */
1165 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1166 	__releases(rq1->lock)
1167 	__releases(rq2->lock)
1168 {
1169 	BUG_ON(rq1 != rq2);
1170 	raw_spin_unlock(&rq1->lock);
1171 	__release(rq2->lock);
1172 }
1173 
1174 #endif
1175 
1176 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1177 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1178 extern void print_cfs_stats(struct seq_file *m, int cpu);
1179 extern void print_rt_stats(struct seq_file *m, int cpu);
1180 
1181 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1182 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1183 
1184 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1185 
1186 #ifdef CONFIG_NO_HZ
1187 enum rq_nohz_flag_bits {
1188 	NOHZ_TICK_STOPPED,
1189 	NOHZ_BALANCE_KICK,
1190 	NOHZ_IDLE,
1191 };
1192 
1193 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1194 #endif
1195 
1196 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1197 
1198 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1199 DECLARE_PER_CPU(u64, cpu_softirq_time);
1200 
1201 #ifndef CONFIG_64BIT
1202 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1203 
1204 static inline void irq_time_write_begin(void)
1205 {
1206 	__this_cpu_inc(irq_time_seq.sequence);
1207 	smp_wmb();
1208 }
1209 
1210 static inline void irq_time_write_end(void)
1211 {
1212 	smp_wmb();
1213 	__this_cpu_inc(irq_time_seq.sequence);
1214 }
1215 
1216 static inline u64 irq_time_read(int cpu)
1217 {
1218 	u64 irq_time;
1219 	unsigned seq;
1220 
1221 	do {
1222 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1223 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1224 			   per_cpu(cpu_hardirq_time, cpu);
1225 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1226 
1227 	return irq_time;
1228 }
1229 #else /* CONFIG_64BIT */
1230 static inline void irq_time_write_begin(void)
1231 {
1232 }
1233 
1234 static inline void irq_time_write_end(void)
1235 {
1236 }
1237 
1238 static inline u64 irq_time_read(int cpu)
1239 {
1240 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1241 }
1242 #endif /* CONFIG_64BIT */
1243 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1244