1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/mutex.h> 6 #include <linux/spinlock.h> 7 #include <linux/stop_machine.h> 8 9 #include "cpupri.h" 10 11 extern __read_mostly int scheduler_running; 12 13 /* 14 * Convert user-nice values [ -20 ... 0 ... 19 ] 15 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 16 * and back. 17 */ 18 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 19 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 20 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 21 22 /* 23 * 'User priority' is the nice value converted to something we 24 * can work with better when scaling various scheduler parameters, 25 * it's a [ 0 ... 39 ] range. 26 */ 27 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 28 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 29 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 30 31 /* 32 * Helpers for converting nanosecond timing to jiffy resolution 33 */ 34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 35 36 #define NICE_0_LOAD SCHED_LOAD_SCALE 37 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 38 39 /* 40 * These are the 'tuning knobs' of the scheduler: 41 */ 42 43 /* 44 * single value that denotes runtime == period, ie unlimited time. 45 */ 46 #define RUNTIME_INF ((u64)~0ULL) 47 48 static inline int rt_policy(int policy) 49 { 50 if (policy == SCHED_FIFO || policy == SCHED_RR) 51 return 1; 52 return 0; 53 } 54 55 static inline int task_has_rt_policy(struct task_struct *p) 56 { 57 return rt_policy(p->policy); 58 } 59 60 /* 61 * This is the priority-queue data structure of the RT scheduling class: 62 */ 63 struct rt_prio_array { 64 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 65 struct list_head queue[MAX_RT_PRIO]; 66 }; 67 68 struct rt_bandwidth { 69 /* nests inside the rq lock: */ 70 raw_spinlock_t rt_runtime_lock; 71 ktime_t rt_period; 72 u64 rt_runtime; 73 struct hrtimer rt_period_timer; 74 }; 75 76 extern struct mutex sched_domains_mutex; 77 78 #ifdef CONFIG_CGROUP_SCHED 79 80 #include <linux/cgroup.h> 81 82 struct cfs_rq; 83 struct rt_rq; 84 85 extern struct list_head task_groups; 86 87 struct cfs_bandwidth { 88 #ifdef CONFIG_CFS_BANDWIDTH 89 raw_spinlock_t lock; 90 ktime_t period; 91 u64 quota, runtime; 92 s64 hierarchal_quota; 93 u64 runtime_expires; 94 95 int idle, timer_active; 96 struct hrtimer period_timer, slack_timer; 97 struct list_head throttled_cfs_rq; 98 99 /* statistics */ 100 int nr_periods, nr_throttled; 101 u64 throttled_time; 102 #endif 103 }; 104 105 /* task group related information */ 106 struct task_group { 107 struct cgroup_subsys_state css; 108 109 #ifdef CONFIG_FAIR_GROUP_SCHED 110 /* schedulable entities of this group on each cpu */ 111 struct sched_entity **se; 112 /* runqueue "owned" by this group on each cpu */ 113 struct cfs_rq **cfs_rq; 114 unsigned long shares; 115 116 atomic_t load_weight; 117 atomic64_t load_avg; 118 atomic_t runnable_avg; 119 #endif 120 121 #ifdef CONFIG_RT_GROUP_SCHED 122 struct sched_rt_entity **rt_se; 123 struct rt_rq **rt_rq; 124 125 struct rt_bandwidth rt_bandwidth; 126 #endif 127 128 struct rcu_head rcu; 129 struct list_head list; 130 131 struct task_group *parent; 132 struct list_head siblings; 133 struct list_head children; 134 135 #ifdef CONFIG_SCHED_AUTOGROUP 136 struct autogroup *autogroup; 137 #endif 138 139 struct cfs_bandwidth cfs_bandwidth; 140 }; 141 142 #ifdef CONFIG_FAIR_GROUP_SCHED 143 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 144 145 /* 146 * A weight of 0 or 1 can cause arithmetics problems. 147 * A weight of a cfs_rq is the sum of weights of which entities 148 * are queued on this cfs_rq, so a weight of a entity should not be 149 * too large, so as the shares value of a task group. 150 * (The default weight is 1024 - so there's no practical 151 * limitation from this.) 152 */ 153 #define MIN_SHARES (1UL << 1) 154 #define MAX_SHARES (1UL << 18) 155 #endif 156 157 /* Default task group. 158 * Every task in system belong to this group at bootup. 159 */ 160 extern struct task_group root_task_group; 161 162 typedef int (*tg_visitor)(struct task_group *, void *); 163 164 extern int walk_tg_tree_from(struct task_group *from, 165 tg_visitor down, tg_visitor up, void *data); 166 167 /* 168 * Iterate the full tree, calling @down when first entering a node and @up when 169 * leaving it for the final time. 170 * 171 * Caller must hold rcu_lock or sufficient equivalent. 172 */ 173 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 174 { 175 return walk_tg_tree_from(&root_task_group, down, up, data); 176 } 177 178 extern int tg_nop(struct task_group *tg, void *data); 179 180 extern void free_fair_sched_group(struct task_group *tg); 181 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 182 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 183 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 184 struct sched_entity *se, int cpu, 185 struct sched_entity *parent); 186 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 187 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 188 189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 190 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 191 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 192 193 extern void free_rt_sched_group(struct task_group *tg); 194 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 195 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 196 struct sched_rt_entity *rt_se, int cpu, 197 struct sched_rt_entity *parent); 198 199 #else /* CONFIG_CGROUP_SCHED */ 200 201 struct cfs_bandwidth { }; 202 203 #endif /* CONFIG_CGROUP_SCHED */ 204 205 /* CFS-related fields in a runqueue */ 206 struct cfs_rq { 207 struct load_weight load; 208 unsigned int nr_running, h_nr_running; 209 210 u64 exec_clock; 211 u64 min_vruntime; 212 #ifndef CONFIG_64BIT 213 u64 min_vruntime_copy; 214 #endif 215 216 struct rb_root tasks_timeline; 217 struct rb_node *rb_leftmost; 218 219 /* 220 * 'curr' points to currently running entity on this cfs_rq. 221 * It is set to NULL otherwise (i.e when none are currently running). 222 */ 223 struct sched_entity *curr, *next, *last, *skip; 224 225 #ifdef CONFIG_SCHED_DEBUG 226 unsigned int nr_spread_over; 227 #endif 228 229 #ifdef CONFIG_SMP 230 /* 231 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 232 * removed when useful for applications beyond shares distribution (e.g. 233 * load-balance). 234 */ 235 #ifdef CONFIG_FAIR_GROUP_SCHED 236 /* 237 * CFS Load tracking 238 * Under CFS, load is tracked on a per-entity basis and aggregated up. 239 * This allows for the description of both thread and group usage (in 240 * the FAIR_GROUP_SCHED case). 241 */ 242 u64 runnable_load_avg, blocked_load_avg; 243 atomic64_t decay_counter, removed_load; 244 u64 last_decay; 245 #endif /* CONFIG_FAIR_GROUP_SCHED */ 246 /* These always depend on CONFIG_FAIR_GROUP_SCHED */ 247 #ifdef CONFIG_FAIR_GROUP_SCHED 248 u32 tg_runnable_contrib; 249 u64 tg_load_contrib; 250 #endif /* CONFIG_FAIR_GROUP_SCHED */ 251 252 /* 253 * h_load = weight * f(tg) 254 * 255 * Where f(tg) is the recursive weight fraction assigned to 256 * this group. 257 */ 258 unsigned long h_load; 259 #endif /* CONFIG_SMP */ 260 261 #ifdef CONFIG_FAIR_GROUP_SCHED 262 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 263 264 /* 265 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 266 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 267 * (like users, containers etc.) 268 * 269 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 270 * list is used during load balance. 271 */ 272 int on_list; 273 struct list_head leaf_cfs_rq_list; 274 struct task_group *tg; /* group that "owns" this runqueue */ 275 276 #ifdef CONFIG_CFS_BANDWIDTH 277 int runtime_enabled; 278 u64 runtime_expires; 279 s64 runtime_remaining; 280 281 u64 throttled_clock, throttled_clock_task; 282 u64 throttled_clock_task_time; 283 int throttled, throttle_count; 284 struct list_head throttled_list; 285 #endif /* CONFIG_CFS_BANDWIDTH */ 286 #endif /* CONFIG_FAIR_GROUP_SCHED */ 287 }; 288 289 static inline int rt_bandwidth_enabled(void) 290 { 291 return sysctl_sched_rt_runtime >= 0; 292 } 293 294 /* Real-Time classes' related field in a runqueue: */ 295 struct rt_rq { 296 struct rt_prio_array active; 297 unsigned int rt_nr_running; 298 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 299 struct { 300 int curr; /* highest queued rt task prio */ 301 #ifdef CONFIG_SMP 302 int next; /* next highest */ 303 #endif 304 } highest_prio; 305 #endif 306 #ifdef CONFIG_SMP 307 unsigned long rt_nr_migratory; 308 unsigned long rt_nr_total; 309 int overloaded; 310 struct plist_head pushable_tasks; 311 #endif 312 int rt_throttled; 313 u64 rt_time; 314 u64 rt_runtime; 315 /* Nests inside the rq lock: */ 316 raw_spinlock_t rt_runtime_lock; 317 318 #ifdef CONFIG_RT_GROUP_SCHED 319 unsigned long rt_nr_boosted; 320 321 struct rq *rq; 322 struct list_head leaf_rt_rq_list; 323 struct task_group *tg; 324 #endif 325 }; 326 327 #ifdef CONFIG_SMP 328 329 /* 330 * We add the notion of a root-domain which will be used to define per-domain 331 * variables. Each exclusive cpuset essentially defines an island domain by 332 * fully partitioning the member cpus from any other cpuset. Whenever a new 333 * exclusive cpuset is created, we also create and attach a new root-domain 334 * object. 335 * 336 */ 337 struct root_domain { 338 atomic_t refcount; 339 atomic_t rto_count; 340 struct rcu_head rcu; 341 cpumask_var_t span; 342 cpumask_var_t online; 343 344 /* 345 * The "RT overload" flag: it gets set if a CPU has more than 346 * one runnable RT task. 347 */ 348 cpumask_var_t rto_mask; 349 struct cpupri cpupri; 350 }; 351 352 extern struct root_domain def_root_domain; 353 354 #endif /* CONFIG_SMP */ 355 356 /* 357 * This is the main, per-CPU runqueue data structure. 358 * 359 * Locking rule: those places that want to lock multiple runqueues 360 * (such as the load balancing or the thread migration code), lock 361 * acquire operations must be ordered by ascending &runqueue. 362 */ 363 struct rq { 364 /* runqueue lock: */ 365 raw_spinlock_t lock; 366 367 /* 368 * nr_running and cpu_load should be in the same cacheline because 369 * remote CPUs use both these fields when doing load calculation. 370 */ 371 unsigned int nr_running; 372 #define CPU_LOAD_IDX_MAX 5 373 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 374 unsigned long last_load_update_tick; 375 #ifdef CONFIG_NO_HZ 376 u64 nohz_stamp; 377 unsigned long nohz_flags; 378 #endif 379 int skip_clock_update; 380 381 /* capture load from *all* tasks on this cpu: */ 382 struct load_weight load; 383 unsigned long nr_load_updates; 384 u64 nr_switches; 385 386 struct cfs_rq cfs; 387 struct rt_rq rt; 388 389 #ifdef CONFIG_FAIR_GROUP_SCHED 390 /* list of leaf cfs_rq on this cpu: */ 391 struct list_head leaf_cfs_rq_list; 392 #ifdef CONFIG_SMP 393 unsigned long h_load_throttle; 394 #endif /* CONFIG_SMP */ 395 #endif /* CONFIG_FAIR_GROUP_SCHED */ 396 397 #ifdef CONFIG_RT_GROUP_SCHED 398 struct list_head leaf_rt_rq_list; 399 #endif 400 401 /* 402 * This is part of a global counter where only the total sum 403 * over all CPUs matters. A task can increase this counter on 404 * one CPU and if it got migrated afterwards it may decrease 405 * it on another CPU. Always updated under the runqueue lock: 406 */ 407 unsigned long nr_uninterruptible; 408 409 struct task_struct *curr, *idle, *stop; 410 unsigned long next_balance; 411 struct mm_struct *prev_mm; 412 413 u64 clock; 414 u64 clock_task; 415 416 atomic_t nr_iowait; 417 418 #ifdef CONFIG_SMP 419 struct root_domain *rd; 420 struct sched_domain *sd; 421 422 unsigned long cpu_power; 423 424 unsigned char idle_balance; 425 /* For active balancing */ 426 int post_schedule; 427 int active_balance; 428 int push_cpu; 429 struct cpu_stop_work active_balance_work; 430 /* cpu of this runqueue: */ 431 int cpu; 432 int online; 433 434 struct list_head cfs_tasks; 435 436 u64 rt_avg; 437 u64 age_stamp; 438 u64 idle_stamp; 439 u64 avg_idle; 440 #endif 441 442 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 443 u64 prev_irq_time; 444 #endif 445 #ifdef CONFIG_PARAVIRT 446 u64 prev_steal_time; 447 #endif 448 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 449 u64 prev_steal_time_rq; 450 #endif 451 452 /* calc_load related fields */ 453 unsigned long calc_load_update; 454 long calc_load_active; 455 456 #ifdef CONFIG_SCHED_HRTICK 457 #ifdef CONFIG_SMP 458 int hrtick_csd_pending; 459 struct call_single_data hrtick_csd; 460 #endif 461 struct hrtimer hrtick_timer; 462 #endif 463 464 #ifdef CONFIG_SCHEDSTATS 465 /* latency stats */ 466 struct sched_info rq_sched_info; 467 unsigned long long rq_cpu_time; 468 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 469 470 /* sys_sched_yield() stats */ 471 unsigned int yld_count; 472 473 /* schedule() stats */ 474 unsigned int sched_count; 475 unsigned int sched_goidle; 476 477 /* try_to_wake_up() stats */ 478 unsigned int ttwu_count; 479 unsigned int ttwu_local; 480 #endif 481 482 #ifdef CONFIG_SMP 483 struct llist_head wake_list; 484 #endif 485 486 struct sched_avg avg; 487 }; 488 489 static inline int cpu_of(struct rq *rq) 490 { 491 #ifdef CONFIG_SMP 492 return rq->cpu; 493 #else 494 return 0; 495 #endif 496 } 497 498 DECLARE_PER_CPU(struct rq, runqueues); 499 500 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 501 #define this_rq() (&__get_cpu_var(runqueues)) 502 #define task_rq(p) cpu_rq(task_cpu(p)) 503 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 504 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 505 506 #ifdef CONFIG_SMP 507 508 #define rcu_dereference_check_sched_domain(p) \ 509 rcu_dereference_check((p), \ 510 lockdep_is_held(&sched_domains_mutex)) 511 512 /* 513 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 514 * See detach_destroy_domains: synchronize_sched for details. 515 * 516 * The domain tree of any CPU may only be accessed from within 517 * preempt-disabled sections. 518 */ 519 #define for_each_domain(cpu, __sd) \ 520 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 521 __sd; __sd = __sd->parent) 522 523 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 524 525 /** 526 * highest_flag_domain - Return highest sched_domain containing flag. 527 * @cpu: The cpu whose highest level of sched domain is to 528 * be returned. 529 * @flag: The flag to check for the highest sched_domain 530 * for the given cpu. 531 * 532 * Returns the highest sched_domain of a cpu which contains the given flag. 533 */ 534 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 535 { 536 struct sched_domain *sd, *hsd = NULL; 537 538 for_each_domain(cpu, sd) { 539 if (!(sd->flags & flag)) 540 break; 541 hsd = sd; 542 } 543 544 return hsd; 545 } 546 547 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 548 DECLARE_PER_CPU(int, sd_llc_id); 549 550 extern int group_balance_cpu(struct sched_group *sg); 551 552 #endif /* CONFIG_SMP */ 553 554 #include "stats.h" 555 #include "auto_group.h" 556 557 #ifdef CONFIG_CGROUP_SCHED 558 559 /* 560 * Return the group to which this tasks belongs. 561 * 562 * We cannot use task_subsys_state() and friends because the cgroup 563 * subsystem changes that value before the cgroup_subsys::attach() method 564 * is called, therefore we cannot pin it and might observe the wrong value. 565 * 566 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 567 * core changes this before calling sched_move_task(). 568 * 569 * Instead we use a 'copy' which is updated from sched_move_task() while 570 * holding both task_struct::pi_lock and rq::lock. 571 */ 572 static inline struct task_group *task_group(struct task_struct *p) 573 { 574 return p->sched_task_group; 575 } 576 577 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 578 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 579 { 580 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 581 struct task_group *tg = task_group(p); 582 #endif 583 584 #ifdef CONFIG_FAIR_GROUP_SCHED 585 p->se.cfs_rq = tg->cfs_rq[cpu]; 586 p->se.parent = tg->se[cpu]; 587 #endif 588 589 #ifdef CONFIG_RT_GROUP_SCHED 590 p->rt.rt_rq = tg->rt_rq[cpu]; 591 p->rt.parent = tg->rt_se[cpu]; 592 #endif 593 } 594 595 #else /* CONFIG_CGROUP_SCHED */ 596 597 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 598 static inline struct task_group *task_group(struct task_struct *p) 599 { 600 return NULL; 601 } 602 603 #endif /* CONFIG_CGROUP_SCHED */ 604 605 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 606 { 607 set_task_rq(p, cpu); 608 #ifdef CONFIG_SMP 609 /* 610 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 611 * successfuly executed on another CPU. We must ensure that updates of 612 * per-task data have been completed by this moment. 613 */ 614 smp_wmb(); 615 task_thread_info(p)->cpu = cpu; 616 #endif 617 } 618 619 /* 620 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 621 */ 622 #ifdef CONFIG_SCHED_DEBUG 623 # include <linux/static_key.h> 624 # define const_debug __read_mostly 625 #else 626 # define const_debug const 627 #endif 628 629 extern const_debug unsigned int sysctl_sched_features; 630 631 #define SCHED_FEAT(name, enabled) \ 632 __SCHED_FEAT_##name , 633 634 enum { 635 #include "features.h" 636 __SCHED_FEAT_NR, 637 }; 638 639 #undef SCHED_FEAT 640 641 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 642 static __always_inline bool static_branch__true(struct static_key *key) 643 { 644 return static_key_true(key); /* Not out of line branch. */ 645 } 646 647 static __always_inline bool static_branch__false(struct static_key *key) 648 { 649 return static_key_false(key); /* Out of line branch. */ 650 } 651 652 #define SCHED_FEAT(name, enabled) \ 653 static __always_inline bool static_branch_##name(struct static_key *key) \ 654 { \ 655 return static_branch__##enabled(key); \ 656 } 657 658 #include "features.h" 659 660 #undef SCHED_FEAT 661 662 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 663 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 664 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 665 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 666 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 667 668 #ifdef CONFIG_NUMA_BALANCING 669 #define sched_feat_numa(x) sched_feat(x) 670 #ifdef CONFIG_SCHED_DEBUG 671 #define numabalancing_enabled sched_feat_numa(NUMA) 672 #else 673 extern bool numabalancing_enabled; 674 #endif /* CONFIG_SCHED_DEBUG */ 675 #else 676 #define sched_feat_numa(x) (0) 677 #define numabalancing_enabled (0) 678 #endif /* CONFIG_NUMA_BALANCING */ 679 680 static inline u64 global_rt_period(void) 681 { 682 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 683 } 684 685 static inline u64 global_rt_runtime(void) 686 { 687 if (sysctl_sched_rt_runtime < 0) 688 return RUNTIME_INF; 689 690 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 691 } 692 693 694 695 static inline int task_current(struct rq *rq, struct task_struct *p) 696 { 697 return rq->curr == p; 698 } 699 700 static inline int task_running(struct rq *rq, struct task_struct *p) 701 { 702 #ifdef CONFIG_SMP 703 return p->on_cpu; 704 #else 705 return task_current(rq, p); 706 #endif 707 } 708 709 710 #ifndef prepare_arch_switch 711 # define prepare_arch_switch(next) do { } while (0) 712 #endif 713 #ifndef finish_arch_switch 714 # define finish_arch_switch(prev) do { } while (0) 715 #endif 716 #ifndef finish_arch_post_lock_switch 717 # define finish_arch_post_lock_switch() do { } while (0) 718 #endif 719 720 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 721 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 722 { 723 #ifdef CONFIG_SMP 724 /* 725 * We can optimise this out completely for !SMP, because the 726 * SMP rebalancing from interrupt is the only thing that cares 727 * here. 728 */ 729 next->on_cpu = 1; 730 #endif 731 } 732 733 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 734 { 735 #ifdef CONFIG_SMP 736 /* 737 * After ->on_cpu is cleared, the task can be moved to a different CPU. 738 * We must ensure this doesn't happen until the switch is completely 739 * finished. 740 */ 741 smp_wmb(); 742 prev->on_cpu = 0; 743 #endif 744 #ifdef CONFIG_DEBUG_SPINLOCK 745 /* this is a valid case when another task releases the spinlock */ 746 rq->lock.owner = current; 747 #endif 748 /* 749 * If we are tracking spinlock dependencies then we have to 750 * fix up the runqueue lock - which gets 'carried over' from 751 * prev into current: 752 */ 753 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 754 755 raw_spin_unlock_irq(&rq->lock); 756 } 757 758 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 759 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 760 { 761 #ifdef CONFIG_SMP 762 /* 763 * We can optimise this out completely for !SMP, because the 764 * SMP rebalancing from interrupt is the only thing that cares 765 * here. 766 */ 767 next->on_cpu = 1; 768 #endif 769 raw_spin_unlock(&rq->lock); 770 } 771 772 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 773 { 774 #ifdef CONFIG_SMP 775 /* 776 * After ->on_cpu is cleared, the task can be moved to a different CPU. 777 * We must ensure this doesn't happen until the switch is completely 778 * finished. 779 */ 780 smp_wmb(); 781 prev->on_cpu = 0; 782 #endif 783 local_irq_enable(); 784 } 785 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 786 787 788 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 789 { 790 lw->weight += inc; 791 lw->inv_weight = 0; 792 } 793 794 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 795 { 796 lw->weight -= dec; 797 lw->inv_weight = 0; 798 } 799 800 static inline void update_load_set(struct load_weight *lw, unsigned long w) 801 { 802 lw->weight = w; 803 lw->inv_weight = 0; 804 } 805 806 /* 807 * To aid in avoiding the subversion of "niceness" due to uneven distribution 808 * of tasks with abnormal "nice" values across CPUs the contribution that 809 * each task makes to its run queue's load is weighted according to its 810 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 811 * scaled version of the new time slice allocation that they receive on time 812 * slice expiry etc. 813 */ 814 815 #define WEIGHT_IDLEPRIO 3 816 #define WMULT_IDLEPRIO 1431655765 817 818 /* 819 * Nice levels are multiplicative, with a gentle 10% change for every 820 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 821 * nice 1, it will get ~10% less CPU time than another CPU-bound task 822 * that remained on nice 0. 823 * 824 * The "10% effect" is relative and cumulative: from _any_ nice level, 825 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 826 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 827 * If a task goes up by ~10% and another task goes down by ~10% then 828 * the relative distance between them is ~25%.) 829 */ 830 static const int prio_to_weight[40] = { 831 /* -20 */ 88761, 71755, 56483, 46273, 36291, 832 /* -15 */ 29154, 23254, 18705, 14949, 11916, 833 /* -10 */ 9548, 7620, 6100, 4904, 3906, 834 /* -5 */ 3121, 2501, 1991, 1586, 1277, 835 /* 0 */ 1024, 820, 655, 526, 423, 836 /* 5 */ 335, 272, 215, 172, 137, 837 /* 10 */ 110, 87, 70, 56, 45, 838 /* 15 */ 36, 29, 23, 18, 15, 839 }; 840 841 /* 842 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 843 * 844 * In cases where the weight does not change often, we can use the 845 * precalculated inverse to speed up arithmetics by turning divisions 846 * into multiplications: 847 */ 848 static const u32 prio_to_wmult[40] = { 849 /* -20 */ 48388, 59856, 76040, 92818, 118348, 850 /* -15 */ 147320, 184698, 229616, 287308, 360437, 851 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 852 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 853 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 854 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 855 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 856 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 857 }; 858 859 /* Time spent by the tasks of the cpu accounting group executing in ... */ 860 enum cpuacct_stat_index { 861 CPUACCT_STAT_USER, /* ... user mode */ 862 CPUACCT_STAT_SYSTEM, /* ... kernel mode */ 863 864 CPUACCT_STAT_NSTATS, 865 }; 866 867 868 #define sched_class_highest (&stop_sched_class) 869 #define for_each_class(class) \ 870 for (class = sched_class_highest; class; class = class->next) 871 872 extern const struct sched_class stop_sched_class; 873 extern const struct sched_class rt_sched_class; 874 extern const struct sched_class fair_sched_class; 875 extern const struct sched_class idle_sched_class; 876 877 878 #ifdef CONFIG_SMP 879 880 extern void trigger_load_balance(struct rq *rq, int cpu); 881 extern void idle_balance(int this_cpu, struct rq *this_rq); 882 883 #else /* CONFIG_SMP */ 884 885 static inline void idle_balance(int cpu, struct rq *rq) 886 { 887 } 888 889 #endif 890 891 extern void sysrq_sched_debug_show(void); 892 extern void sched_init_granularity(void); 893 extern void update_max_interval(void); 894 extern void update_group_power(struct sched_domain *sd, int cpu); 895 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); 896 extern void init_sched_rt_class(void); 897 extern void init_sched_fair_class(void); 898 899 extern void resched_task(struct task_struct *p); 900 extern void resched_cpu(int cpu); 901 902 extern struct rt_bandwidth def_rt_bandwidth; 903 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 904 905 extern void update_idle_cpu_load(struct rq *this_rq); 906 907 #ifdef CONFIG_CGROUP_CPUACCT 908 #include <linux/cgroup.h> 909 /* track cpu usage of a group of tasks and its child groups */ 910 struct cpuacct { 911 struct cgroup_subsys_state css; 912 /* cpuusage holds pointer to a u64-type object on every cpu */ 913 u64 __percpu *cpuusage; 914 struct kernel_cpustat __percpu *cpustat; 915 }; 916 917 extern struct cgroup_subsys cpuacct_subsys; 918 extern struct cpuacct root_cpuacct; 919 920 /* return cpu accounting group corresponding to this container */ 921 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) 922 { 923 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), 924 struct cpuacct, css); 925 } 926 927 /* return cpu accounting group to which this task belongs */ 928 static inline struct cpuacct *task_ca(struct task_struct *tsk) 929 { 930 return container_of(task_subsys_state(tsk, cpuacct_subsys_id), 931 struct cpuacct, css); 932 } 933 934 static inline struct cpuacct *parent_ca(struct cpuacct *ca) 935 { 936 if (!ca || !ca->css.cgroup->parent) 937 return NULL; 938 return cgroup_ca(ca->css.cgroup->parent); 939 } 940 941 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); 942 #else 943 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 944 #endif 945 946 #ifdef CONFIG_PARAVIRT 947 static inline u64 steal_ticks(u64 steal) 948 { 949 if (unlikely(steal > NSEC_PER_SEC)) 950 return div_u64(steal, TICK_NSEC); 951 952 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 953 } 954 #endif 955 956 static inline void inc_nr_running(struct rq *rq) 957 { 958 rq->nr_running++; 959 } 960 961 static inline void dec_nr_running(struct rq *rq) 962 { 963 rq->nr_running--; 964 } 965 966 extern void update_rq_clock(struct rq *rq); 967 968 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 969 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 970 971 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 972 973 extern const_debug unsigned int sysctl_sched_time_avg; 974 extern const_debug unsigned int sysctl_sched_nr_migrate; 975 extern const_debug unsigned int sysctl_sched_migration_cost; 976 977 static inline u64 sched_avg_period(void) 978 { 979 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 980 } 981 982 #ifdef CONFIG_SCHED_HRTICK 983 984 /* 985 * Use hrtick when: 986 * - enabled by features 987 * - hrtimer is actually high res 988 */ 989 static inline int hrtick_enabled(struct rq *rq) 990 { 991 if (!sched_feat(HRTICK)) 992 return 0; 993 if (!cpu_active(cpu_of(rq))) 994 return 0; 995 return hrtimer_is_hres_active(&rq->hrtick_timer); 996 } 997 998 void hrtick_start(struct rq *rq, u64 delay); 999 1000 #else 1001 1002 static inline int hrtick_enabled(struct rq *rq) 1003 { 1004 return 0; 1005 } 1006 1007 #endif /* CONFIG_SCHED_HRTICK */ 1008 1009 #ifdef CONFIG_SMP 1010 extern void sched_avg_update(struct rq *rq); 1011 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1012 { 1013 rq->rt_avg += rt_delta; 1014 sched_avg_update(rq); 1015 } 1016 #else 1017 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1018 static inline void sched_avg_update(struct rq *rq) { } 1019 #endif 1020 1021 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1022 1023 #ifdef CONFIG_SMP 1024 #ifdef CONFIG_PREEMPT 1025 1026 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1027 1028 /* 1029 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1030 * way at the expense of forcing extra atomic operations in all 1031 * invocations. This assures that the double_lock is acquired using the 1032 * same underlying policy as the spinlock_t on this architecture, which 1033 * reduces latency compared to the unfair variant below. However, it 1034 * also adds more overhead and therefore may reduce throughput. 1035 */ 1036 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1037 __releases(this_rq->lock) 1038 __acquires(busiest->lock) 1039 __acquires(this_rq->lock) 1040 { 1041 raw_spin_unlock(&this_rq->lock); 1042 double_rq_lock(this_rq, busiest); 1043 1044 return 1; 1045 } 1046 1047 #else 1048 /* 1049 * Unfair double_lock_balance: Optimizes throughput at the expense of 1050 * latency by eliminating extra atomic operations when the locks are 1051 * already in proper order on entry. This favors lower cpu-ids and will 1052 * grant the double lock to lower cpus over higher ids under contention, 1053 * regardless of entry order into the function. 1054 */ 1055 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1056 __releases(this_rq->lock) 1057 __acquires(busiest->lock) 1058 __acquires(this_rq->lock) 1059 { 1060 int ret = 0; 1061 1062 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1063 if (busiest < this_rq) { 1064 raw_spin_unlock(&this_rq->lock); 1065 raw_spin_lock(&busiest->lock); 1066 raw_spin_lock_nested(&this_rq->lock, 1067 SINGLE_DEPTH_NESTING); 1068 ret = 1; 1069 } else 1070 raw_spin_lock_nested(&busiest->lock, 1071 SINGLE_DEPTH_NESTING); 1072 } 1073 return ret; 1074 } 1075 1076 #endif /* CONFIG_PREEMPT */ 1077 1078 /* 1079 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1080 */ 1081 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1082 { 1083 if (unlikely(!irqs_disabled())) { 1084 /* printk() doesn't work good under rq->lock */ 1085 raw_spin_unlock(&this_rq->lock); 1086 BUG_ON(1); 1087 } 1088 1089 return _double_lock_balance(this_rq, busiest); 1090 } 1091 1092 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1093 __releases(busiest->lock) 1094 { 1095 raw_spin_unlock(&busiest->lock); 1096 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1097 } 1098 1099 /* 1100 * double_rq_lock - safely lock two runqueues 1101 * 1102 * Note this does not disable interrupts like task_rq_lock, 1103 * you need to do so manually before calling. 1104 */ 1105 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1106 __acquires(rq1->lock) 1107 __acquires(rq2->lock) 1108 { 1109 BUG_ON(!irqs_disabled()); 1110 if (rq1 == rq2) { 1111 raw_spin_lock(&rq1->lock); 1112 __acquire(rq2->lock); /* Fake it out ;) */ 1113 } else { 1114 if (rq1 < rq2) { 1115 raw_spin_lock(&rq1->lock); 1116 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1117 } else { 1118 raw_spin_lock(&rq2->lock); 1119 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1120 } 1121 } 1122 } 1123 1124 /* 1125 * double_rq_unlock - safely unlock two runqueues 1126 * 1127 * Note this does not restore interrupts like task_rq_unlock, 1128 * you need to do so manually after calling. 1129 */ 1130 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1131 __releases(rq1->lock) 1132 __releases(rq2->lock) 1133 { 1134 raw_spin_unlock(&rq1->lock); 1135 if (rq1 != rq2) 1136 raw_spin_unlock(&rq2->lock); 1137 else 1138 __release(rq2->lock); 1139 } 1140 1141 #else /* CONFIG_SMP */ 1142 1143 /* 1144 * double_rq_lock - safely lock two runqueues 1145 * 1146 * Note this does not disable interrupts like task_rq_lock, 1147 * you need to do so manually before calling. 1148 */ 1149 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1150 __acquires(rq1->lock) 1151 __acquires(rq2->lock) 1152 { 1153 BUG_ON(!irqs_disabled()); 1154 BUG_ON(rq1 != rq2); 1155 raw_spin_lock(&rq1->lock); 1156 __acquire(rq2->lock); /* Fake it out ;) */ 1157 } 1158 1159 /* 1160 * double_rq_unlock - safely unlock two runqueues 1161 * 1162 * Note this does not restore interrupts like task_rq_unlock, 1163 * you need to do so manually after calling. 1164 */ 1165 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1166 __releases(rq1->lock) 1167 __releases(rq2->lock) 1168 { 1169 BUG_ON(rq1 != rq2); 1170 raw_spin_unlock(&rq1->lock); 1171 __release(rq2->lock); 1172 } 1173 1174 #endif 1175 1176 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1177 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1178 extern void print_cfs_stats(struct seq_file *m, int cpu); 1179 extern void print_rt_stats(struct seq_file *m, int cpu); 1180 1181 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1182 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1183 1184 extern void account_cfs_bandwidth_used(int enabled, int was_enabled); 1185 1186 #ifdef CONFIG_NO_HZ 1187 enum rq_nohz_flag_bits { 1188 NOHZ_TICK_STOPPED, 1189 NOHZ_BALANCE_KICK, 1190 NOHZ_IDLE, 1191 }; 1192 1193 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1194 #endif 1195 1196 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1197 1198 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1199 DECLARE_PER_CPU(u64, cpu_softirq_time); 1200 1201 #ifndef CONFIG_64BIT 1202 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1203 1204 static inline void irq_time_write_begin(void) 1205 { 1206 __this_cpu_inc(irq_time_seq.sequence); 1207 smp_wmb(); 1208 } 1209 1210 static inline void irq_time_write_end(void) 1211 { 1212 smp_wmb(); 1213 __this_cpu_inc(irq_time_seq.sequence); 1214 } 1215 1216 static inline u64 irq_time_read(int cpu) 1217 { 1218 u64 irq_time; 1219 unsigned seq; 1220 1221 do { 1222 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1223 irq_time = per_cpu(cpu_softirq_time, cpu) + 1224 per_cpu(cpu_hardirq_time, cpu); 1225 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1226 1227 return irq_time; 1228 } 1229 #else /* CONFIG_64BIT */ 1230 static inline void irq_time_write_begin(void) 1231 { 1232 } 1233 1234 static inline void irq_time_write_end(void) 1235 { 1236 } 1237 1238 static inline u64 irq_time_read(int cpu) 1239 { 1240 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1241 } 1242 #endif /* CONFIG_64BIT */ 1243 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1244