xref: /openbmc/linux/kernel/sched/sched.h (revision 97a532c3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include <asm/barrier.h>
92 
93 #include "cpupri.h"
94 #include "cpudeadline.h"
95 
96 #ifdef CONFIG_SCHED_DEBUG
97 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
98 #else
99 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
100 #endif
101 
102 struct rq;
103 struct cpuidle_state;
104 
105 /* task_struct::on_rq states: */
106 #define TASK_ON_RQ_QUEUED	1
107 #define TASK_ON_RQ_MIGRATING	2
108 
109 extern __read_mostly int scheduler_running;
110 
111 extern unsigned long calc_load_update;
112 extern atomic_long_t calc_load_tasks;
113 
114 extern unsigned int sysctl_sched_child_runs_first;
115 
116 extern void calc_global_load_tick(struct rq *this_rq);
117 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
118 
119 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
120 
121 extern unsigned int sysctl_sched_rt_period;
122 extern int sysctl_sched_rt_runtime;
123 extern int sched_rr_timeslice;
124 
125 /*
126  * Helpers for converting nanosecond timing to jiffy resolution
127  */
128 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
129 
130 /*
131  * Increase resolution of nice-level calculations for 64-bit architectures.
132  * The extra resolution improves shares distribution and load balancing of
133  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
134  * hierarchies, especially on larger systems. This is not a user-visible change
135  * and does not change the user-interface for setting shares/weights.
136  *
137  * We increase resolution only if we have enough bits to allow this increased
138  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
139  * are pretty high and the returns do not justify the increased costs.
140  *
141  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
142  * increase coverage and consistency always enable it on 64-bit platforms.
143  */
144 #ifdef CONFIG_64BIT
145 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
146 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
147 # define scale_load_down(w) \
148 ({ \
149 	unsigned long __w = (w); \
150 	if (__w) \
151 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
152 	__w; \
153 })
154 #else
155 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
156 # define scale_load(w)		(w)
157 # define scale_load_down(w)	(w)
158 #endif
159 
160 /*
161  * Task weight (visible to users) and its load (invisible to users) have
162  * independent resolution, but they should be well calibrated. We use
163  * scale_load() and scale_load_down(w) to convert between them. The
164  * following must be true:
165  *
166  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
167  *
168  */
169 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
170 
171 /*
172  * Single value that decides SCHED_DEADLINE internal math precision.
173  * 10 -> just above 1us
174  * 9  -> just above 0.5us
175  */
176 #define DL_SCALE		10
177 
178 /*
179  * Single value that denotes runtime == period, ie unlimited time.
180  */
181 #define RUNTIME_INF		((u64)~0ULL)
182 
183 static inline int idle_policy(int policy)
184 {
185 	return policy == SCHED_IDLE;
186 }
187 static inline int fair_policy(int policy)
188 {
189 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
190 }
191 
192 static inline int rt_policy(int policy)
193 {
194 	return policy == SCHED_FIFO || policy == SCHED_RR;
195 }
196 
197 static inline int dl_policy(int policy)
198 {
199 	return policy == SCHED_DEADLINE;
200 }
201 static inline bool valid_policy(int policy)
202 {
203 	return idle_policy(policy) || fair_policy(policy) ||
204 		rt_policy(policy) || dl_policy(policy);
205 }
206 
207 static inline int task_has_idle_policy(struct task_struct *p)
208 {
209 	return idle_policy(p->policy);
210 }
211 
212 static inline int task_has_rt_policy(struct task_struct *p)
213 {
214 	return rt_policy(p->policy);
215 }
216 
217 static inline int task_has_dl_policy(struct task_struct *p)
218 {
219 	return dl_policy(p->policy);
220 }
221 
222 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
223 
224 static inline void update_avg(u64 *avg, u64 sample)
225 {
226 	s64 diff = sample - *avg;
227 	*avg += diff / 8;
228 }
229 
230 /*
231  * Shifting a value by an exponent greater *or equal* to the size of said value
232  * is UB; cap at size-1.
233  */
234 #define shr_bound(val, shift)							\
235 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
236 
237 /*
238  * !! For sched_setattr_nocheck() (kernel) only !!
239  *
240  * This is actually gross. :(
241  *
242  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
243  * tasks, but still be able to sleep. We need this on platforms that cannot
244  * atomically change clock frequency. Remove once fast switching will be
245  * available on such platforms.
246  *
247  * SUGOV stands for SchedUtil GOVernor.
248  */
249 #define SCHED_FLAG_SUGOV	0x10000000
250 
251 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
252 
253 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
254 {
255 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
256 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
257 #else
258 	return false;
259 #endif
260 }
261 
262 /*
263  * Tells if entity @a should preempt entity @b.
264  */
265 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
266 				     const struct sched_dl_entity *b)
267 {
268 	return dl_entity_is_special(a) ||
269 	       dl_time_before(a->deadline, b->deadline);
270 }
271 
272 /*
273  * This is the priority-queue data structure of the RT scheduling class:
274  */
275 struct rt_prio_array {
276 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
277 	struct list_head queue[MAX_RT_PRIO];
278 };
279 
280 struct rt_bandwidth {
281 	/* nests inside the rq lock: */
282 	raw_spinlock_t		rt_runtime_lock;
283 	ktime_t			rt_period;
284 	u64			rt_runtime;
285 	struct hrtimer		rt_period_timer;
286 	unsigned int		rt_period_active;
287 };
288 
289 void __dl_clear_params(struct task_struct *p);
290 
291 static inline int dl_bandwidth_enabled(void)
292 {
293 	return sysctl_sched_rt_runtime >= 0;
294 }
295 
296 /*
297  * To keep the bandwidth of -deadline tasks under control
298  * we need some place where:
299  *  - store the maximum -deadline bandwidth of each cpu;
300  *  - cache the fraction of bandwidth that is currently allocated in
301  *    each root domain;
302  *
303  * This is all done in the data structure below. It is similar to the
304  * one used for RT-throttling (rt_bandwidth), with the main difference
305  * that, since here we are only interested in admission control, we
306  * do not decrease any runtime while the group "executes", neither we
307  * need a timer to replenish it.
308  *
309  * With respect to SMP, bandwidth is given on a per root domain basis,
310  * meaning that:
311  *  - bw (< 100%) is the deadline bandwidth of each CPU;
312  *  - total_bw is the currently allocated bandwidth in each root domain;
313  */
314 struct dl_bw {
315 	raw_spinlock_t		lock;
316 	u64			bw;
317 	u64			total_bw;
318 };
319 
320 extern void init_dl_bw(struct dl_bw *dl_b);
321 extern int  sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
324 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
325 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
326 extern bool __checkparam_dl(const struct sched_attr *attr);
327 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
328 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
329 extern int  dl_bw_check_overflow(int cpu);
330 
331 #ifdef CONFIG_CGROUP_SCHED
332 
333 struct cfs_rq;
334 struct rt_rq;
335 
336 extern struct list_head task_groups;
337 
338 struct cfs_bandwidth {
339 #ifdef CONFIG_CFS_BANDWIDTH
340 	raw_spinlock_t		lock;
341 	ktime_t			period;
342 	u64			quota;
343 	u64			runtime;
344 	u64			burst;
345 	u64			runtime_snap;
346 	s64			hierarchical_quota;
347 
348 	u8			idle;
349 	u8			period_active;
350 	u8			slack_started;
351 	struct hrtimer		period_timer;
352 	struct hrtimer		slack_timer;
353 	struct list_head	throttled_cfs_rq;
354 
355 	/* Statistics: */
356 	int			nr_periods;
357 	int			nr_throttled;
358 	int			nr_burst;
359 	u64			throttled_time;
360 	u64			burst_time;
361 #endif
362 };
363 
364 /* Task group related information */
365 struct task_group {
366 	struct cgroup_subsys_state css;
367 
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 	/* schedulable entities of this group on each CPU */
370 	struct sched_entity	**se;
371 	/* runqueue "owned" by this group on each CPU */
372 	struct cfs_rq		**cfs_rq;
373 	unsigned long		shares;
374 
375 	/* A positive value indicates that this is a SCHED_IDLE group. */
376 	int			idle;
377 
378 #ifdef	CONFIG_SMP
379 	/*
380 	 * load_avg can be heavily contended at clock tick time, so put
381 	 * it in its own cacheline separated from the fields above which
382 	 * will also be accessed at each tick.
383 	 */
384 	atomic_long_t		load_avg ____cacheline_aligned;
385 #endif
386 #endif
387 
388 #ifdef CONFIG_RT_GROUP_SCHED
389 	struct sched_rt_entity	**rt_se;
390 	struct rt_rq		**rt_rq;
391 
392 	struct rt_bandwidth	rt_bandwidth;
393 #endif
394 
395 	struct rcu_head		rcu;
396 	struct list_head	list;
397 
398 	struct task_group	*parent;
399 	struct list_head	siblings;
400 	struct list_head	children;
401 
402 #ifdef CONFIG_SCHED_AUTOGROUP
403 	struct autogroup	*autogroup;
404 #endif
405 
406 	struct cfs_bandwidth	cfs_bandwidth;
407 
408 #ifdef CONFIG_UCLAMP_TASK_GROUP
409 	/* The two decimal precision [%] value requested from user-space */
410 	unsigned int		uclamp_pct[UCLAMP_CNT];
411 	/* Clamp values requested for a task group */
412 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
413 	/* Effective clamp values used for a task group */
414 	struct uclamp_se	uclamp[UCLAMP_CNT];
415 #endif
416 
417 };
418 
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
421 
422 /*
423  * A weight of 0 or 1 can cause arithmetics problems.
424  * A weight of a cfs_rq is the sum of weights of which entities
425  * are queued on this cfs_rq, so a weight of a entity should not be
426  * too large, so as the shares value of a task group.
427  * (The default weight is 1024 - so there's no practical
428  *  limitation from this.)
429  */
430 #define MIN_SHARES		(1UL <<  1)
431 #define MAX_SHARES		(1UL << 18)
432 #endif
433 
434 typedef int (*tg_visitor)(struct task_group *, void *);
435 
436 extern int walk_tg_tree_from(struct task_group *from,
437 			     tg_visitor down, tg_visitor up, void *data);
438 
439 /*
440  * Iterate the full tree, calling @down when first entering a node and @up when
441  * leaving it for the final time.
442  *
443  * Caller must hold rcu_lock or sufficient equivalent.
444  */
445 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
446 {
447 	return walk_tg_tree_from(&root_task_group, down, up, data);
448 }
449 
450 extern int tg_nop(struct task_group *tg, void *data);
451 
452 extern void free_fair_sched_group(struct task_group *tg);
453 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
454 extern void online_fair_sched_group(struct task_group *tg);
455 extern void unregister_fair_sched_group(struct task_group *tg);
456 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
457 			struct sched_entity *se, int cpu,
458 			struct sched_entity *parent);
459 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
460 
461 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
462 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
463 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
464 extern bool cfs_task_bw_constrained(struct task_struct *p);
465 
466 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
467 		struct sched_rt_entity *rt_se, int cpu,
468 		struct sched_rt_entity *parent);
469 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
470 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
471 extern long sched_group_rt_runtime(struct task_group *tg);
472 extern long sched_group_rt_period(struct task_group *tg);
473 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
474 
475 extern struct task_group *sched_create_group(struct task_group *parent);
476 extern void sched_online_group(struct task_group *tg,
477 			       struct task_group *parent);
478 extern void sched_destroy_group(struct task_group *tg);
479 extern void sched_release_group(struct task_group *tg);
480 
481 extern void sched_move_task(struct task_struct *tsk);
482 
483 #ifdef CONFIG_FAIR_GROUP_SCHED
484 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
485 
486 extern int sched_group_set_idle(struct task_group *tg, long idle);
487 
488 #ifdef CONFIG_SMP
489 extern void set_task_rq_fair(struct sched_entity *se,
490 			     struct cfs_rq *prev, struct cfs_rq *next);
491 #else /* !CONFIG_SMP */
492 static inline void set_task_rq_fair(struct sched_entity *se,
493 			     struct cfs_rq *prev, struct cfs_rq *next) { }
494 #endif /* CONFIG_SMP */
495 #endif /* CONFIG_FAIR_GROUP_SCHED */
496 
497 #else /* CONFIG_CGROUP_SCHED */
498 
499 struct cfs_bandwidth { };
500 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
501 
502 #endif	/* CONFIG_CGROUP_SCHED */
503 
504 extern void unregister_rt_sched_group(struct task_group *tg);
505 extern void free_rt_sched_group(struct task_group *tg);
506 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
507 
508 /*
509  * u64_u32_load/u64_u32_store
510  *
511  * Use a copy of a u64 value to protect against data race. This is only
512  * applicable for 32-bits architectures.
513  */
514 #ifdef CONFIG_64BIT
515 # define u64_u32_load_copy(var, copy)       var
516 # define u64_u32_store_copy(var, copy, val) (var = val)
517 #else
518 # define u64_u32_load_copy(var, copy)					\
519 ({									\
520 	u64 __val, __val_copy;						\
521 	do {								\
522 		__val_copy = copy;					\
523 		/*							\
524 		 * paired with u64_u32_store_copy(), ordering access	\
525 		 * to var and copy.					\
526 		 */							\
527 		smp_rmb();						\
528 		__val = var;						\
529 	} while (__val != __val_copy);					\
530 	__val;								\
531 })
532 # define u64_u32_store_copy(var, copy, val)				\
533 do {									\
534 	typeof(val) __val = (val);					\
535 	var = __val;							\
536 	/*								\
537 	 * paired with u64_u32_load_copy(), ordering access to var and	\
538 	 * copy.							\
539 	 */								\
540 	smp_wmb();							\
541 	copy = __val;							\
542 } while (0)
543 #endif
544 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
545 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
546 
547 /* CFS-related fields in a runqueue */
548 struct cfs_rq {
549 	struct load_weight	load;
550 	unsigned int		nr_running;
551 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
552 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
553 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
554 
555 	s64			avg_vruntime;
556 	u64			avg_load;
557 
558 	u64			exec_clock;
559 	u64			min_vruntime;
560 #ifdef CONFIG_SCHED_CORE
561 	unsigned int		forceidle_seq;
562 	u64			min_vruntime_fi;
563 #endif
564 
565 #ifndef CONFIG_64BIT
566 	u64			min_vruntime_copy;
567 #endif
568 
569 	struct rb_root_cached	tasks_timeline;
570 
571 	/*
572 	 * 'curr' points to currently running entity on this cfs_rq.
573 	 * It is set to NULL otherwise (i.e when none are currently running).
574 	 */
575 	struct sched_entity	*curr;
576 	struct sched_entity	*next;
577 
578 #ifdef	CONFIG_SCHED_DEBUG
579 	unsigned int		nr_spread_over;
580 #endif
581 
582 #ifdef CONFIG_SMP
583 	/*
584 	 * CFS load tracking
585 	 */
586 	struct sched_avg	avg;
587 #ifndef CONFIG_64BIT
588 	u64			last_update_time_copy;
589 #endif
590 	struct {
591 		raw_spinlock_t	lock ____cacheline_aligned;
592 		int		nr;
593 		unsigned long	load_avg;
594 		unsigned long	util_avg;
595 		unsigned long	runnable_avg;
596 	} removed;
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	unsigned long		tg_load_avg_contrib;
600 	long			propagate;
601 	long			prop_runnable_sum;
602 
603 	/*
604 	 *   h_load = weight * f(tg)
605 	 *
606 	 * Where f(tg) is the recursive weight fraction assigned to
607 	 * this group.
608 	 */
609 	unsigned long		h_load;
610 	u64			last_h_load_update;
611 	struct sched_entity	*h_load_next;
612 #endif /* CONFIG_FAIR_GROUP_SCHED */
613 #endif /* CONFIG_SMP */
614 
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
617 
618 	/*
619 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
620 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
621 	 * (like users, containers etc.)
622 	 *
623 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
624 	 * This list is used during load balance.
625 	 */
626 	int			on_list;
627 	struct list_head	leaf_cfs_rq_list;
628 	struct task_group	*tg;	/* group that "owns" this runqueue */
629 
630 	/* Locally cached copy of our task_group's idle value */
631 	int			idle;
632 
633 #ifdef CONFIG_CFS_BANDWIDTH
634 	int			runtime_enabled;
635 	s64			runtime_remaining;
636 
637 	u64			throttled_pelt_idle;
638 #ifndef CONFIG_64BIT
639 	u64                     throttled_pelt_idle_copy;
640 #endif
641 	u64			throttled_clock;
642 	u64			throttled_clock_pelt;
643 	u64			throttled_clock_pelt_time;
644 	u64			throttled_clock_self;
645 	u64			throttled_clock_self_time;
646 	int			throttled;
647 	int			throttle_count;
648 	struct list_head	throttled_list;
649 #ifdef CONFIG_SMP
650 	struct list_head	throttled_csd_list;
651 #endif
652 #endif /* CONFIG_CFS_BANDWIDTH */
653 #endif /* CONFIG_FAIR_GROUP_SCHED */
654 };
655 
656 static inline int rt_bandwidth_enabled(void)
657 {
658 	return sysctl_sched_rt_runtime >= 0;
659 }
660 
661 /* RT IPI pull logic requires IRQ_WORK */
662 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
663 # define HAVE_RT_PUSH_IPI
664 #endif
665 
666 /* Real-Time classes' related field in a runqueue: */
667 struct rt_rq {
668 	struct rt_prio_array	active;
669 	unsigned int		rt_nr_running;
670 	unsigned int		rr_nr_running;
671 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
672 	struct {
673 		int		curr; /* highest queued rt task prio */
674 #ifdef CONFIG_SMP
675 		int		next; /* next highest */
676 #endif
677 	} highest_prio;
678 #endif
679 #ifdef CONFIG_SMP
680 	unsigned int		rt_nr_migratory;
681 	unsigned int		rt_nr_total;
682 	int			overloaded;
683 	struct plist_head	pushable_tasks;
684 
685 #endif /* CONFIG_SMP */
686 	int			rt_queued;
687 
688 	int			rt_throttled;
689 	u64			rt_time;
690 	u64			rt_runtime;
691 	/* Nests inside the rq lock: */
692 	raw_spinlock_t		rt_runtime_lock;
693 
694 #ifdef CONFIG_RT_GROUP_SCHED
695 	unsigned int		rt_nr_boosted;
696 
697 	struct rq		*rq;
698 	struct task_group	*tg;
699 #endif
700 };
701 
702 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
703 {
704 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
705 }
706 
707 /* Deadline class' related fields in a runqueue */
708 struct dl_rq {
709 	/* runqueue is an rbtree, ordered by deadline */
710 	struct rb_root_cached	root;
711 
712 	unsigned int		dl_nr_running;
713 
714 #ifdef CONFIG_SMP
715 	/*
716 	 * Deadline values of the currently executing and the
717 	 * earliest ready task on this rq. Caching these facilitates
718 	 * the decision whether or not a ready but not running task
719 	 * should migrate somewhere else.
720 	 */
721 	struct {
722 		u64		curr;
723 		u64		next;
724 	} earliest_dl;
725 
726 	unsigned int		dl_nr_migratory;
727 	int			overloaded;
728 
729 	/*
730 	 * Tasks on this rq that can be pushed away. They are kept in
731 	 * an rb-tree, ordered by tasks' deadlines, with caching
732 	 * of the leftmost (earliest deadline) element.
733 	 */
734 	struct rb_root_cached	pushable_dl_tasks_root;
735 #else
736 	struct dl_bw		dl_bw;
737 #endif
738 	/*
739 	 * "Active utilization" for this runqueue: increased when a
740 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
741 	 * task blocks
742 	 */
743 	u64			running_bw;
744 
745 	/*
746 	 * Utilization of the tasks "assigned" to this runqueue (including
747 	 * the tasks that are in runqueue and the tasks that executed on this
748 	 * CPU and blocked). Increased when a task moves to this runqueue, and
749 	 * decreased when the task moves away (migrates, changes scheduling
750 	 * policy, or terminates).
751 	 * This is needed to compute the "inactive utilization" for the
752 	 * runqueue (inactive utilization = this_bw - running_bw).
753 	 */
754 	u64			this_bw;
755 	u64			extra_bw;
756 
757 	/*
758 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
759 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
760 	 */
761 	u64			max_bw;
762 
763 	/*
764 	 * Inverse of the fraction of CPU utilization that can be reclaimed
765 	 * by the GRUB algorithm.
766 	 */
767 	u64			bw_ratio;
768 };
769 
770 #ifdef CONFIG_FAIR_GROUP_SCHED
771 /* An entity is a task if it doesn't "own" a runqueue */
772 #define entity_is_task(se)	(!se->my_q)
773 
774 static inline void se_update_runnable(struct sched_entity *se)
775 {
776 	if (!entity_is_task(se))
777 		se->runnable_weight = se->my_q->h_nr_running;
778 }
779 
780 static inline long se_runnable(struct sched_entity *se)
781 {
782 	if (entity_is_task(se))
783 		return !!se->on_rq;
784 	else
785 		return se->runnable_weight;
786 }
787 
788 #else
789 #define entity_is_task(se)	1
790 
791 static inline void se_update_runnable(struct sched_entity *se) {}
792 
793 static inline long se_runnable(struct sched_entity *se)
794 {
795 	return !!se->on_rq;
796 }
797 #endif
798 
799 #ifdef CONFIG_SMP
800 /*
801  * XXX we want to get rid of these helpers and use the full load resolution.
802  */
803 static inline long se_weight(struct sched_entity *se)
804 {
805 	return scale_load_down(se->load.weight);
806 }
807 
808 
809 static inline bool sched_asym_prefer(int a, int b)
810 {
811 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
812 }
813 
814 struct perf_domain {
815 	struct em_perf_domain *em_pd;
816 	struct perf_domain *next;
817 	struct rcu_head rcu;
818 };
819 
820 /* Scheduling group status flags */
821 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
822 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
823 
824 /*
825  * We add the notion of a root-domain which will be used to define per-domain
826  * variables. Each exclusive cpuset essentially defines an island domain by
827  * fully partitioning the member CPUs from any other cpuset. Whenever a new
828  * exclusive cpuset is created, we also create and attach a new root-domain
829  * object.
830  *
831  */
832 struct root_domain {
833 	atomic_t		refcount;
834 	atomic_t		rto_count;
835 	struct rcu_head		rcu;
836 	cpumask_var_t		span;
837 	cpumask_var_t		online;
838 
839 	/*
840 	 * Indicate pullable load on at least one CPU, e.g:
841 	 * - More than one runnable task
842 	 * - Running task is misfit
843 	 */
844 	int			overload;
845 
846 	/* Indicate one or more cpus over-utilized (tipping point) */
847 	int			overutilized;
848 
849 	/*
850 	 * The bit corresponding to a CPU gets set here if such CPU has more
851 	 * than one runnable -deadline task (as it is below for RT tasks).
852 	 */
853 	cpumask_var_t		dlo_mask;
854 	atomic_t		dlo_count;
855 	struct dl_bw		dl_bw;
856 	struct cpudl		cpudl;
857 
858 	/*
859 	 * Indicate whether a root_domain's dl_bw has been checked or
860 	 * updated. It's monotonously increasing value.
861 	 *
862 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
863 	 * that u64 is 'big enough'. So that shouldn't be a concern.
864 	 */
865 	u64 visit_gen;
866 
867 #ifdef HAVE_RT_PUSH_IPI
868 	/*
869 	 * For IPI pull requests, loop across the rto_mask.
870 	 */
871 	struct irq_work		rto_push_work;
872 	raw_spinlock_t		rto_lock;
873 	/* These are only updated and read within rto_lock */
874 	int			rto_loop;
875 	int			rto_cpu;
876 	/* These atomics are updated outside of a lock */
877 	atomic_t		rto_loop_next;
878 	atomic_t		rto_loop_start;
879 #endif
880 	/*
881 	 * The "RT overload" flag: it gets set if a CPU has more than
882 	 * one runnable RT task.
883 	 */
884 	cpumask_var_t		rto_mask;
885 	struct cpupri		cpupri;
886 
887 	unsigned long		max_cpu_capacity;
888 
889 	/*
890 	 * NULL-terminated list of performance domains intersecting with the
891 	 * CPUs of the rd. Protected by RCU.
892 	 */
893 	struct perf_domain __rcu *pd;
894 };
895 
896 extern void init_defrootdomain(void);
897 extern int sched_init_domains(const struct cpumask *cpu_map);
898 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
899 extern void sched_get_rd(struct root_domain *rd);
900 extern void sched_put_rd(struct root_domain *rd);
901 
902 #ifdef HAVE_RT_PUSH_IPI
903 extern void rto_push_irq_work_func(struct irq_work *work);
904 #endif
905 #endif /* CONFIG_SMP */
906 
907 #ifdef CONFIG_UCLAMP_TASK
908 /*
909  * struct uclamp_bucket - Utilization clamp bucket
910  * @value: utilization clamp value for tasks on this clamp bucket
911  * @tasks: number of RUNNABLE tasks on this clamp bucket
912  *
913  * Keep track of how many tasks are RUNNABLE for a given utilization
914  * clamp value.
915  */
916 struct uclamp_bucket {
917 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
918 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
919 };
920 
921 /*
922  * struct uclamp_rq - rq's utilization clamp
923  * @value: currently active clamp values for a rq
924  * @bucket: utilization clamp buckets affecting a rq
925  *
926  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
927  * A clamp value is affecting a rq when there is at least one task RUNNABLE
928  * (or actually running) with that value.
929  *
930  * There are up to UCLAMP_CNT possible different clamp values, currently there
931  * are only two: minimum utilization and maximum utilization.
932  *
933  * All utilization clamping values are MAX aggregated, since:
934  * - for util_min: we want to run the CPU at least at the max of the minimum
935  *   utilization required by its currently RUNNABLE tasks.
936  * - for util_max: we want to allow the CPU to run up to the max of the
937  *   maximum utilization allowed by its currently RUNNABLE tasks.
938  *
939  * Since on each system we expect only a limited number of different
940  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
941  * the metrics required to compute all the per-rq utilization clamp values.
942  */
943 struct uclamp_rq {
944 	unsigned int value;
945 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
946 };
947 
948 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
949 #endif /* CONFIG_UCLAMP_TASK */
950 
951 struct rq;
952 struct balance_callback {
953 	struct balance_callback *next;
954 	void (*func)(struct rq *rq);
955 };
956 
957 /*
958  * This is the main, per-CPU runqueue data structure.
959  *
960  * Locking rule: those places that want to lock multiple runqueues
961  * (such as the load balancing or the thread migration code), lock
962  * acquire operations must be ordered by ascending &runqueue.
963  */
964 struct rq {
965 	/* runqueue lock: */
966 	raw_spinlock_t		__lock;
967 
968 	/*
969 	 * nr_running and cpu_load should be in the same cacheline because
970 	 * remote CPUs use both these fields when doing load calculation.
971 	 */
972 	unsigned int		nr_running;
973 #ifdef CONFIG_NUMA_BALANCING
974 	unsigned int		nr_numa_running;
975 	unsigned int		nr_preferred_running;
976 	unsigned int		numa_migrate_on;
977 #endif
978 #ifdef CONFIG_NO_HZ_COMMON
979 #ifdef CONFIG_SMP
980 	unsigned long		last_blocked_load_update_tick;
981 	unsigned int		has_blocked_load;
982 	call_single_data_t	nohz_csd;
983 #endif /* CONFIG_SMP */
984 	unsigned int		nohz_tick_stopped;
985 	atomic_t		nohz_flags;
986 #endif /* CONFIG_NO_HZ_COMMON */
987 
988 #ifdef CONFIG_SMP
989 	unsigned int		ttwu_pending;
990 #endif
991 	u64			nr_switches;
992 
993 #ifdef CONFIG_UCLAMP_TASK
994 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
995 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
996 	unsigned int		uclamp_flags;
997 #define UCLAMP_FLAG_IDLE 0x01
998 #endif
999 
1000 	struct cfs_rq		cfs;
1001 	struct rt_rq		rt;
1002 	struct dl_rq		dl;
1003 
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 	/* list of leaf cfs_rq on this CPU: */
1006 	struct list_head	leaf_cfs_rq_list;
1007 	struct list_head	*tmp_alone_branch;
1008 #endif /* CONFIG_FAIR_GROUP_SCHED */
1009 
1010 	/*
1011 	 * This is part of a global counter where only the total sum
1012 	 * over all CPUs matters. A task can increase this counter on
1013 	 * one CPU and if it got migrated afterwards it may decrease
1014 	 * it on another CPU. Always updated under the runqueue lock:
1015 	 */
1016 	unsigned int		nr_uninterruptible;
1017 
1018 	struct task_struct __rcu	*curr;
1019 	struct task_struct	*idle;
1020 	struct task_struct	*stop;
1021 	unsigned long		next_balance;
1022 	struct mm_struct	*prev_mm;
1023 
1024 	unsigned int		clock_update_flags;
1025 	u64			clock;
1026 	/* Ensure that all clocks are in the same cache line */
1027 	u64			clock_task ____cacheline_aligned;
1028 	u64			clock_pelt;
1029 	unsigned long		lost_idle_time;
1030 	u64			clock_pelt_idle;
1031 	u64			clock_idle;
1032 #ifndef CONFIG_64BIT
1033 	u64			clock_pelt_idle_copy;
1034 	u64			clock_idle_copy;
1035 #endif
1036 
1037 	atomic_t		nr_iowait;
1038 
1039 #ifdef CONFIG_SCHED_DEBUG
1040 	u64 last_seen_need_resched_ns;
1041 	int ticks_without_resched;
1042 #endif
1043 
1044 #ifdef CONFIG_MEMBARRIER
1045 	int membarrier_state;
1046 #endif
1047 
1048 #ifdef CONFIG_SMP
1049 	struct root_domain		*rd;
1050 	struct sched_domain __rcu	*sd;
1051 
1052 	unsigned long		cpu_capacity;
1053 	unsigned long		cpu_capacity_orig;
1054 
1055 	struct balance_callback *balance_callback;
1056 
1057 	unsigned char		nohz_idle_balance;
1058 	unsigned char		idle_balance;
1059 
1060 	unsigned long		misfit_task_load;
1061 
1062 	/* For active balancing */
1063 	int			active_balance;
1064 	int			push_cpu;
1065 	struct cpu_stop_work	active_balance_work;
1066 
1067 	/* CPU of this runqueue: */
1068 	int			cpu;
1069 	int			online;
1070 
1071 	struct list_head cfs_tasks;
1072 
1073 	struct sched_avg	avg_rt;
1074 	struct sched_avg	avg_dl;
1075 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1076 	struct sched_avg	avg_irq;
1077 #endif
1078 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1079 	struct sched_avg	avg_thermal;
1080 #endif
1081 	u64			idle_stamp;
1082 	u64			avg_idle;
1083 
1084 	unsigned long		wake_stamp;
1085 	u64			wake_avg_idle;
1086 
1087 	/* This is used to determine avg_idle's max value */
1088 	u64			max_idle_balance_cost;
1089 
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 	struct rcuwait		hotplug_wait;
1092 #endif
1093 #endif /* CONFIG_SMP */
1094 
1095 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1096 	u64			prev_irq_time;
1097 	u64			psi_irq_time;
1098 #endif
1099 #ifdef CONFIG_PARAVIRT
1100 	u64			prev_steal_time;
1101 #endif
1102 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1103 	u64			prev_steal_time_rq;
1104 #endif
1105 
1106 	/* calc_load related fields */
1107 	unsigned long		calc_load_update;
1108 	long			calc_load_active;
1109 
1110 #ifdef CONFIG_SCHED_HRTICK
1111 #ifdef CONFIG_SMP
1112 	call_single_data_t	hrtick_csd;
1113 #endif
1114 	struct hrtimer		hrtick_timer;
1115 	ktime_t 		hrtick_time;
1116 #endif
1117 
1118 #ifdef CONFIG_SCHEDSTATS
1119 	/* latency stats */
1120 	struct sched_info	rq_sched_info;
1121 	unsigned long long	rq_cpu_time;
1122 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1123 
1124 	/* sys_sched_yield() stats */
1125 	unsigned int		yld_count;
1126 
1127 	/* schedule() stats */
1128 	unsigned int		sched_count;
1129 	unsigned int		sched_goidle;
1130 
1131 	/* try_to_wake_up() stats */
1132 	unsigned int		ttwu_count;
1133 	unsigned int		ttwu_local;
1134 #endif
1135 
1136 #ifdef CONFIG_CPU_IDLE
1137 	/* Must be inspected within a rcu lock section */
1138 	struct cpuidle_state	*idle_state;
1139 #endif
1140 
1141 #ifdef CONFIG_SMP
1142 	unsigned int		nr_pinned;
1143 #endif
1144 	unsigned int		push_busy;
1145 	struct cpu_stop_work	push_work;
1146 
1147 #ifdef CONFIG_SCHED_CORE
1148 	/* per rq */
1149 	struct rq		*core;
1150 	struct task_struct	*core_pick;
1151 	unsigned int		core_enabled;
1152 	unsigned int		core_sched_seq;
1153 	struct rb_root		core_tree;
1154 
1155 	/* shared state -- careful with sched_core_cpu_deactivate() */
1156 	unsigned int		core_task_seq;
1157 	unsigned int		core_pick_seq;
1158 	unsigned long		core_cookie;
1159 	unsigned int		core_forceidle_count;
1160 	unsigned int		core_forceidle_seq;
1161 	unsigned int		core_forceidle_occupation;
1162 	u64			core_forceidle_start;
1163 #endif
1164 
1165 	/* Scratch cpumask to be temporarily used under rq_lock */
1166 	cpumask_var_t		scratch_mask;
1167 
1168 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1169 	call_single_data_t	cfsb_csd;
1170 	struct list_head	cfsb_csd_list;
1171 #endif
1172 };
1173 
1174 #ifdef CONFIG_FAIR_GROUP_SCHED
1175 
1176 /* CPU runqueue to which this cfs_rq is attached */
1177 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1178 {
1179 	return cfs_rq->rq;
1180 }
1181 
1182 #else
1183 
1184 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1185 {
1186 	return container_of(cfs_rq, struct rq, cfs);
1187 }
1188 #endif
1189 
1190 static inline int cpu_of(struct rq *rq)
1191 {
1192 #ifdef CONFIG_SMP
1193 	return rq->cpu;
1194 #else
1195 	return 0;
1196 #endif
1197 }
1198 
1199 #define MDF_PUSH	0x01
1200 
1201 static inline bool is_migration_disabled(struct task_struct *p)
1202 {
1203 #ifdef CONFIG_SMP
1204 	return p->migration_disabled;
1205 #else
1206 	return false;
1207 #endif
1208 }
1209 
1210 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1211 
1212 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1213 #define this_rq()		this_cpu_ptr(&runqueues)
1214 #define task_rq(p)		cpu_rq(task_cpu(p))
1215 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1216 #define raw_rq()		raw_cpu_ptr(&runqueues)
1217 
1218 struct sched_group;
1219 #ifdef CONFIG_SCHED_CORE
1220 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1221 
1222 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1223 
1224 static inline bool sched_core_enabled(struct rq *rq)
1225 {
1226 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1227 }
1228 
1229 static inline bool sched_core_disabled(void)
1230 {
1231 	return !static_branch_unlikely(&__sched_core_enabled);
1232 }
1233 
1234 /*
1235  * Be careful with this function; not for general use. The return value isn't
1236  * stable unless you actually hold a relevant rq->__lock.
1237  */
1238 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1239 {
1240 	if (sched_core_enabled(rq))
1241 		return &rq->core->__lock;
1242 
1243 	return &rq->__lock;
1244 }
1245 
1246 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1247 {
1248 	if (rq->core_enabled)
1249 		return &rq->core->__lock;
1250 
1251 	return &rq->__lock;
1252 }
1253 
1254 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1255 			bool fi);
1256 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1257 
1258 /*
1259  * Helpers to check if the CPU's core cookie matches with the task's cookie
1260  * when core scheduling is enabled.
1261  * A special case is that the task's cookie always matches with CPU's core
1262  * cookie if the CPU is in an idle core.
1263  */
1264 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1265 {
1266 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1267 	if (!sched_core_enabled(rq))
1268 		return true;
1269 
1270 	return rq->core->core_cookie == p->core_cookie;
1271 }
1272 
1273 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1274 {
1275 	bool idle_core = true;
1276 	int cpu;
1277 
1278 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1279 	if (!sched_core_enabled(rq))
1280 		return true;
1281 
1282 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1283 		if (!available_idle_cpu(cpu)) {
1284 			idle_core = false;
1285 			break;
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * A CPU in an idle core is always the best choice for tasks with
1291 	 * cookies.
1292 	 */
1293 	return idle_core || rq->core->core_cookie == p->core_cookie;
1294 }
1295 
1296 static inline bool sched_group_cookie_match(struct rq *rq,
1297 					    struct task_struct *p,
1298 					    struct sched_group *group)
1299 {
1300 	int cpu;
1301 
1302 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1303 	if (!sched_core_enabled(rq))
1304 		return true;
1305 
1306 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1307 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1308 			return true;
1309 	}
1310 	return false;
1311 }
1312 
1313 static inline bool sched_core_enqueued(struct task_struct *p)
1314 {
1315 	return !RB_EMPTY_NODE(&p->core_node);
1316 }
1317 
1318 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1319 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1320 
1321 extern void sched_core_get(void);
1322 extern void sched_core_put(void);
1323 
1324 #else /* !CONFIG_SCHED_CORE */
1325 
1326 static inline bool sched_core_enabled(struct rq *rq)
1327 {
1328 	return false;
1329 }
1330 
1331 static inline bool sched_core_disabled(void)
1332 {
1333 	return true;
1334 }
1335 
1336 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1337 {
1338 	return &rq->__lock;
1339 }
1340 
1341 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1342 {
1343 	return &rq->__lock;
1344 }
1345 
1346 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1347 {
1348 	return true;
1349 }
1350 
1351 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1352 {
1353 	return true;
1354 }
1355 
1356 static inline bool sched_group_cookie_match(struct rq *rq,
1357 					    struct task_struct *p,
1358 					    struct sched_group *group)
1359 {
1360 	return true;
1361 }
1362 #endif /* CONFIG_SCHED_CORE */
1363 
1364 static inline void lockdep_assert_rq_held(struct rq *rq)
1365 {
1366 	lockdep_assert_held(__rq_lockp(rq));
1367 }
1368 
1369 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1370 extern bool raw_spin_rq_trylock(struct rq *rq);
1371 extern void raw_spin_rq_unlock(struct rq *rq);
1372 
1373 static inline void raw_spin_rq_lock(struct rq *rq)
1374 {
1375 	raw_spin_rq_lock_nested(rq, 0);
1376 }
1377 
1378 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1379 {
1380 	local_irq_disable();
1381 	raw_spin_rq_lock(rq);
1382 }
1383 
1384 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1385 {
1386 	raw_spin_rq_unlock(rq);
1387 	local_irq_enable();
1388 }
1389 
1390 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1391 {
1392 	unsigned long flags;
1393 	local_irq_save(flags);
1394 	raw_spin_rq_lock(rq);
1395 	return flags;
1396 }
1397 
1398 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1399 {
1400 	raw_spin_rq_unlock(rq);
1401 	local_irq_restore(flags);
1402 }
1403 
1404 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1405 do {						\
1406 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1407 } while (0)
1408 
1409 #ifdef CONFIG_SCHED_SMT
1410 extern void __update_idle_core(struct rq *rq);
1411 
1412 static inline void update_idle_core(struct rq *rq)
1413 {
1414 	if (static_branch_unlikely(&sched_smt_present))
1415 		__update_idle_core(rq);
1416 }
1417 
1418 #else
1419 static inline void update_idle_core(struct rq *rq) { }
1420 #endif
1421 
1422 #ifdef CONFIG_FAIR_GROUP_SCHED
1423 static inline struct task_struct *task_of(struct sched_entity *se)
1424 {
1425 	SCHED_WARN_ON(!entity_is_task(se));
1426 	return container_of(se, struct task_struct, se);
1427 }
1428 
1429 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1430 {
1431 	return p->se.cfs_rq;
1432 }
1433 
1434 /* runqueue on which this entity is (to be) queued */
1435 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1436 {
1437 	return se->cfs_rq;
1438 }
1439 
1440 /* runqueue "owned" by this group */
1441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1442 {
1443 	return grp->my_q;
1444 }
1445 
1446 #else
1447 
1448 #define task_of(_se)	container_of(_se, struct task_struct, se)
1449 
1450 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1451 {
1452 	return &task_rq(p)->cfs;
1453 }
1454 
1455 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1456 {
1457 	const struct task_struct *p = task_of(se);
1458 	struct rq *rq = task_rq(p);
1459 
1460 	return &rq->cfs;
1461 }
1462 
1463 /* runqueue "owned" by this group */
1464 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1465 {
1466 	return NULL;
1467 }
1468 #endif
1469 
1470 extern void update_rq_clock(struct rq *rq);
1471 
1472 /*
1473  * rq::clock_update_flags bits
1474  *
1475  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1476  *  call to __schedule(). This is an optimisation to avoid
1477  *  neighbouring rq clock updates.
1478  *
1479  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1480  *  in effect and calls to update_rq_clock() are being ignored.
1481  *
1482  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1483  *  made to update_rq_clock() since the last time rq::lock was pinned.
1484  *
1485  * If inside of __schedule(), clock_update_flags will have been
1486  * shifted left (a left shift is a cheap operation for the fast path
1487  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1488  *
1489  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1490  *
1491  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1492  * one position though, because the next rq_unpin_lock() will shift it
1493  * back.
1494  */
1495 #define RQCF_REQ_SKIP		0x01
1496 #define RQCF_ACT_SKIP		0x02
1497 #define RQCF_UPDATED		0x04
1498 
1499 static inline void assert_clock_updated(struct rq *rq)
1500 {
1501 	/*
1502 	 * The only reason for not seeing a clock update since the
1503 	 * last rq_pin_lock() is if we're currently skipping updates.
1504 	 */
1505 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1506 }
1507 
1508 static inline u64 rq_clock(struct rq *rq)
1509 {
1510 	lockdep_assert_rq_held(rq);
1511 	assert_clock_updated(rq);
1512 
1513 	return rq->clock;
1514 }
1515 
1516 static inline u64 rq_clock_task(struct rq *rq)
1517 {
1518 	lockdep_assert_rq_held(rq);
1519 	assert_clock_updated(rq);
1520 
1521 	return rq->clock_task;
1522 }
1523 
1524 /**
1525  * By default the decay is the default pelt decay period.
1526  * The decay shift can change the decay period in
1527  * multiples of 32.
1528  *  Decay shift		Decay period(ms)
1529  *	0			32
1530  *	1			64
1531  *	2			128
1532  *	3			256
1533  *	4			512
1534  */
1535 extern int sched_thermal_decay_shift;
1536 
1537 static inline u64 rq_clock_thermal(struct rq *rq)
1538 {
1539 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1540 }
1541 
1542 static inline void rq_clock_skip_update(struct rq *rq)
1543 {
1544 	lockdep_assert_rq_held(rq);
1545 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1546 }
1547 
1548 /*
1549  * See rt task throttling, which is the only time a skip
1550  * request is canceled.
1551  */
1552 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1553 {
1554 	lockdep_assert_rq_held(rq);
1555 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1556 }
1557 
1558 /*
1559  * During cpu offlining and rq wide unthrottling, we can trigger
1560  * an update_rq_clock() for several cfs and rt runqueues (Typically
1561  * when using list_for_each_entry_*)
1562  * rq_clock_start_loop_update() can be called after updating the clock
1563  * once and before iterating over the list to prevent multiple update.
1564  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1565  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1566  */
1567 static inline void rq_clock_start_loop_update(struct rq *rq)
1568 {
1569 	lockdep_assert_rq_held(rq);
1570 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1571 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1572 }
1573 
1574 static inline void rq_clock_stop_loop_update(struct rq *rq)
1575 {
1576 	lockdep_assert_rq_held(rq);
1577 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1578 }
1579 
1580 struct rq_flags {
1581 	unsigned long flags;
1582 	struct pin_cookie cookie;
1583 #ifdef CONFIG_SCHED_DEBUG
1584 	/*
1585 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1586 	 * current pin context is stashed here in case it needs to be
1587 	 * restored in rq_repin_lock().
1588 	 */
1589 	unsigned int clock_update_flags;
1590 #endif
1591 };
1592 
1593 extern struct balance_callback balance_push_callback;
1594 
1595 /*
1596  * Lockdep annotation that avoids accidental unlocks; it's like a
1597  * sticky/continuous lockdep_assert_held().
1598  *
1599  * This avoids code that has access to 'struct rq *rq' (basically everything in
1600  * the scheduler) from accidentally unlocking the rq if they do not also have a
1601  * copy of the (on-stack) 'struct rq_flags rf'.
1602  *
1603  * Also see Documentation/locking/lockdep-design.rst.
1604  */
1605 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1606 {
1607 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1608 
1609 #ifdef CONFIG_SCHED_DEBUG
1610 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1611 	rf->clock_update_flags = 0;
1612 #ifdef CONFIG_SMP
1613 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1614 #endif
1615 #endif
1616 }
1617 
1618 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1619 {
1620 #ifdef CONFIG_SCHED_DEBUG
1621 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1622 		rf->clock_update_flags = RQCF_UPDATED;
1623 #endif
1624 
1625 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1626 }
1627 
1628 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1629 {
1630 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1631 
1632 #ifdef CONFIG_SCHED_DEBUG
1633 	/*
1634 	 * Restore the value we stashed in @rf for this pin context.
1635 	 */
1636 	rq->clock_update_flags |= rf->clock_update_flags;
1637 #endif
1638 }
1639 
1640 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1641 	__acquires(rq->lock);
1642 
1643 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1644 	__acquires(p->pi_lock)
1645 	__acquires(rq->lock);
1646 
1647 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1648 	__releases(rq->lock)
1649 {
1650 	rq_unpin_lock(rq, rf);
1651 	raw_spin_rq_unlock(rq);
1652 }
1653 
1654 static inline void
1655 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1656 	__releases(rq->lock)
1657 	__releases(p->pi_lock)
1658 {
1659 	rq_unpin_lock(rq, rf);
1660 	raw_spin_rq_unlock(rq);
1661 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1662 }
1663 
1664 static inline void
1665 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1666 	__acquires(rq->lock)
1667 {
1668 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1669 	rq_pin_lock(rq, rf);
1670 }
1671 
1672 static inline void
1673 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1674 	__acquires(rq->lock)
1675 {
1676 	raw_spin_rq_lock_irq(rq);
1677 	rq_pin_lock(rq, rf);
1678 }
1679 
1680 static inline void
1681 rq_lock(struct rq *rq, struct rq_flags *rf)
1682 	__acquires(rq->lock)
1683 {
1684 	raw_spin_rq_lock(rq);
1685 	rq_pin_lock(rq, rf);
1686 }
1687 
1688 static inline void
1689 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1690 	__releases(rq->lock)
1691 {
1692 	rq_unpin_lock(rq, rf);
1693 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1694 }
1695 
1696 static inline void
1697 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1698 	__releases(rq->lock)
1699 {
1700 	rq_unpin_lock(rq, rf);
1701 	raw_spin_rq_unlock_irq(rq);
1702 }
1703 
1704 static inline void
1705 rq_unlock(struct rq *rq, struct rq_flags *rf)
1706 	__releases(rq->lock)
1707 {
1708 	rq_unpin_lock(rq, rf);
1709 	raw_spin_rq_unlock(rq);
1710 }
1711 
1712 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1713 		    rq_lock(_T->lock, &_T->rf),
1714 		    rq_unlock(_T->lock, &_T->rf),
1715 		    struct rq_flags rf)
1716 
1717 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1718 		    rq_lock_irq(_T->lock, &_T->rf),
1719 		    rq_unlock_irq(_T->lock, &_T->rf),
1720 		    struct rq_flags rf)
1721 
1722 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1723 		    rq_lock_irqsave(_T->lock, &_T->rf),
1724 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1725 		    struct rq_flags rf)
1726 
1727 static inline struct rq *
1728 this_rq_lock_irq(struct rq_flags *rf)
1729 	__acquires(rq->lock)
1730 {
1731 	struct rq *rq;
1732 
1733 	local_irq_disable();
1734 	rq = this_rq();
1735 	rq_lock(rq, rf);
1736 	return rq;
1737 }
1738 
1739 #ifdef CONFIG_NUMA
1740 enum numa_topology_type {
1741 	NUMA_DIRECT,
1742 	NUMA_GLUELESS_MESH,
1743 	NUMA_BACKPLANE,
1744 };
1745 extern enum numa_topology_type sched_numa_topology_type;
1746 extern int sched_max_numa_distance;
1747 extern bool find_numa_distance(int distance);
1748 extern void sched_init_numa(int offline_node);
1749 extern void sched_update_numa(int cpu, bool online);
1750 extern void sched_domains_numa_masks_set(unsigned int cpu);
1751 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1752 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1753 #else
1754 static inline void sched_init_numa(int offline_node) { }
1755 static inline void sched_update_numa(int cpu, bool online) { }
1756 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1757 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1758 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1759 {
1760 	return nr_cpu_ids;
1761 }
1762 #endif
1763 
1764 #ifdef CONFIG_NUMA_BALANCING
1765 /* The regions in numa_faults array from task_struct */
1766 enum numa_faults_stats {
1767 	NUMA_MEM = 0,
1768 	NUMA_CPU,
1769 	NUMA_MEMBUF,
1770 	NUMA_CPUBUF
1771 };
1772 extern void sched_setnuma(struct task_struct *p, int node);
1773 extern int migrate_task_to(struct task_struct *p, int cpu);
1774 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1775 			int cpu, int scpu);
1776 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1777 #else
1778 static inline void
1779 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1780 {
1781 }
1782 #endif /* CONFIG_NUMA_BALANCING */
1783 
1784 #ifdef CONFIG_SMP
1785 
1786 static inline void
1787 queue_balance_callback(struct rq *rq,
1788 		       struct balance_callback *head,
1789 		       void (*func)(struct rq *rq))
1790 {
1791 	lockdep_assert_rq_held(rq);
1792 
1793 	/*
1794 	 * Don't (re)queue an already queued item; nor queue anything when
1795 	 * balance_push() is active, see the comment with
1796 	 * balance_push_callback.
1797 	 */
1798 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1799 		return;
1800 
1801 	head->func = func;
1802 	head->next = rq->balance_callback;
1803 	rq->balance_callback = head;
1804 }
1805 
1806 #define rcu_dereference_check_sched_domain(p) \
1807 	rcu_dereference_check((p), \
1808 			      lockdep_is_held(&sched_domains_mutex))
1809 
1810 /*
1811  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1812  * See destroy_sched_domains: call_rcu for details.
1813  *
1814  * The domain tree of any CPU may only be accessed from within
1815  * preempt-disabled sections.
1816  */
1817 #define for_each_domain(cpu, __sd) \
1818 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1819 			__sd; __sd = __sd->parent)
1820 
1821 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1822 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1823 static const unsigned int SD_SHARED_CHILD_MASK =
1824 #include <linux/sched/sd_flags.h>
1825 0;
1826 #undef SD_FLAG
1827 
1828 /**
1829  * highest_flag_domain - Return highest sched_domain containing flag.
1830  * @cpu:	The CPU whose highest level of sched domain is to
1831  *		be returned.
1832  * @flag:	The flag to check for the highest sched_domain
1833  *		for the given CPU.
1834  *
1835  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1836  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1837  */
1838 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1839 {
1840 	struct sched_domain *sd, *hsd = NULL;
1841 
1842 	for_each_domain(cpu, sd) {
1843 		if (sd->flags & flag) {
1844 			hsd = sd;
1845 			continue;
1846 		}
1847 
1848 		/*
1849 		 * Stop the search if @flag is known to be shared at lower
1850 		 * levels. It will not be found further up.
1851 		 */
1852 		if (flag & SD_SHARED_CHILD_MASK)
1853 			break;
1854 	}
1855 
1856 	return hsd;
1857 }
1858 
1859 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1860 {
1861 	struct sched_domain *sd;
1862 
1863 	for_each_domain(cpu, sd) {
1864 		if (sd->flags & flag)
1865 			break;
1866 	}
1867 
1868 	return sd;
1869 }
1870 
1871 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1872 DECLARE_PER_CPU(int, sd_llc_size);
1873 DECLARE_PER_CPU(int, sd_llc_id);
1874 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1875 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1876 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1877 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1878 extern struct static_key_false sched_asym_cpucapacity;
1879 
1880 static __always_inline bool sched_asym_cpucap_active(void)
1881 {
1882 	return static_branch_unlikely(&sched_asym_cpucapacity);
1883 }
1884 
1885 struct sched_group_capacity {
1886 	atomic_t		ref;
1887 	/*
1888 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1889 	 * for a single CPU.
1890 	 */
1891 	unsigned long		capacity;
1892 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1893 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1894 	unsigned long		next_update;
1895 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1896 
1897 #ifdef CONFIG_SCHED_DEBUG
1898 	int			id;
1899 #endif
1900 
1901 	unsigned long		cpumask[];		/* Balance mask */
1902 };
1903 
1904 struct sched_group {
1905 	struct sched_group	*next;			/* Must be a circular list */
1906 	atomic_t		ref;
1907 
1908 	unsigned int		group_weight;
1909 	unsigned int		cores;
1910 	struct sched_group_capacity *sgc;
1911 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1912 	int			flags;
1913 
1914 	/*
1915 	 * The CPUs this group covers.
1916 	 *
1917 	 * NOTE: this field is variable length. (Allocated dynamically
1918 	 * by attaching extra space to the end of the structure,
1919 	 * depending on how many CPUs the kernel has booted up with)
1920 	 */
1921 	unsigned long		cpumask[];
1922 };
1923 
1924 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1925 {
1926 	return to_cpumask(sg->cpumask);
1927 }
1928 
1929 /*
1930  * See build_balance_mask().
1931  */
1932 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1933 {
1934 	return to_cpumask(sg->sgc->cpumask);
1935 }
1936 
1937 extern int group_balance_cpu(struct sched_group *sg);
1938 
1939 #ifdef CONFIG_SCHED_DEBUG
1940 void update_sched_domain_debugfs(void);
1941 void dirty_sched_domain_sysctl(int cpu);
1942 #else
1943 static inline void update_sched_domain_debugfs(void)
1944 {
1945 }
1946 static inline void dirty_sched_domain_sysctl(int cpu)
1947 {
1948 }
1949 #endif
1950 
1951 extern int sched_update_scaling(void);
1952 
1953 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1954 {
1955 	if (!p->user_cpus_ptr)
1956 		return cpu_possible_mask; /* &init_task.cpus_mask */
1957 	return p->user_cpus_ptr;
1958 }
1959 #endif /* CONFIG_SMP */
1960 
1961 #include "stats.h"
1962 
1963 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1964 
1965 extern void __sched_core_account_forceidle(struct rq *rq);
1966 
1967 static inline void sched_core_account_forceidle(struct rq *rq)
1968 {
1969 	if (schedstat_enabled())
1970 		__sched_core_account_forceidle(rq);
1971 }
1972 
1973 extern void __sched_core_tick(struct rq *rq);
1974 
1975 static inline void sched_core_tick(struct rq *rq)
1976 {
1977 	if (sched_core_enabled(rq) && schedstat_enabled())
1978 		__sched_core_tick(rq);
1979 }
1980 
1981 #else
1982 
1983 static inline void sched_core_account_forceidle(struct rq *rq) {}
1984 
1985 static inline void sched_core_tick(struct rq *rq) {}
1986 
1987 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1988 
1989 #ifdef CONFIG_CGROUP_SCHED
1990 
1991 /*
1992  * Return the group to which this tasks belongs.
1993  *
1994  * We cannot use task_css() and friends because the cgroup subsystem
1995  * changes that value before the cgroup_subsys::attach() method is called,
1996  * therefore we cannot pin it and might observe the wrong value.
1997  *
1998  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1999  * core changes this before calling sched_move_task().
2000  *
2001  * Instead we use a 'copy' which is updated from sched_move_task() while
2002  * holding both task_struct::pi_lock and rq::lock.
2003  */
2004 static inline struct task_group *task_group(struct task_struct *p)
2005 {
2006 	return p->sched_task_group;
2007 }
2008 
2009 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2010 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2011 {
2012 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2013 	struct task_group *tg = task_group(p);
2014 #endif
2015 
2016 #ifdef CONFIG_FAIR_GROUP_SCHED
2017 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2018 	p->se.cfs_rq = tg->cfs_rq[cpu];
2019 	p->se.parent = tg->se[cpu];
2020 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2021 #endif
2022 
2023 #ifdef CONFIG_RT_GROUP_SCHED
2024 	p->rt.rt_rq  = tg->rt_rq[cpu];
2025 	p->rt.parent = tg->rt_se[cpu];
2026 #endif
2027 }
2028 
2029 #else /* CONFIG_CGROUP_SCHED */
2030 
2031 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2032 static inline struct task_group *task_group(struct task_struct *p)
2033 {
2034 	return NULL;
2035 }
2036 
2037 #endif /* CONFIG_CGROUP_SCHED */
2038 
2039 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2040 {
2041 	set_task_rq(p, cpu);
2042 #ifdef CONFIG_SMP
2043 	/*
2044 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2045 	 * successfully executed on another CPU. We must ensure that updates of
2046 	 * per-task data have been completed by this moment.
2047 	 */
2048 	smp_wmb();
2049 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2050 	p->wake_cpu = cpu;
2051 #endif
2052 }
2053 
2054 /*
2055  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2056  */
2057 #ifdef CONFIG_SCHED_DEBUG
2058 # define const_debug __read_mostly
2059 #else
2060 # define const_debug const
2061 #endif
2062 
2063 #define SCHED_FEAT(name, enabled)	\
2064 	__SCHED_FEAT_##name ,
2065 
2066 enum {
2067 #include "features.h"
2068 	__SCHED_FEAT_NR,
2069 };
2070 
2071 #undef SCHED_FEAT
2072 
2073 #ifdef CONFIG_SCHED_DEBUG
2074 
2075 /*
2076  * To support run-time toggling of sched features, all the translation units
2077  * (but core.c) reference the sysctl_sched_features defined in core.c.
2078  */
2079 extern const_debug unsigned int sysctl_sched_features;
2080 
2081 #ifdef CONFIG_JUMP_LABEL
2082 #define SCHED_FEAT(name, enabled)					\
2083 static __always_inline bool static_branch_##name(struct static_key *key) \
2084 {									\
2085 	return static_key_##enabled(key);				\
2086 }
2087 
2088 #include "features.h"
2089 #undef SCHED_FEAT
2090 
2091 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2092 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2093 
2094 #else /* !CONFIG_JUMP_LABEL */
2095 
2096 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2097 
2098 #endif /* CONFIG_JUMP_LABEL */
2099 
2100 #else /* !SCHED_DEBUG */
2101 
2102 /*
2103  * Each translation unit has its own copy of sysctl_sched_features to allow
2104  * constants propagation at compile time and compiler optimization based on
2105  * features default.
2106  */
2107 #define SCHED_FEAT(name, enabled)	\
2108 	(1UL << __SCHED_FEAT_##name) * enabled |
2109 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2110 #include "features.h"
2111 	0;
2112 #undef SCHED_FEAT
2113 
2114 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2115 
2116 #endif /* SCHED_DEBUG */
2117 
2118 extern struct static_key_false sched_numa_balancing;
2119 extern struct static_key_false sched_schedstats;
2120 
2121 static inline u64 global_rt_period(void)
2122 {
2123 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2124 }
2125 
2126 static inline u64 global_rt_runtime(void)
2127 {
2128 	if (sysctl_sched_rt_runtime < 0)
2129 		return RUNTIME_INF;
2130 
2131 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2132 }
2133 
2134 static inline int task_current(struct rq *rq, struct task_struct *p)
2135 {
2136 	return rq->curr == p;
2137 }
2138 
2139 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2140 {
2141 #ifdef CONFIG_SMP
2142 	return p->on_cpu;
2143 #else
2144 	return task_current(rq, p);
2145 #endif
2146 }
2147 
2148 static inline int task_on_rq_queued(struct task_struct *p)
2149 {
2150 	return p->on_rq == TASK_ON_RQ_QUEUED;
2151 }
2152 
2153 static inline int task_on_rq_migrating(struct task_struct *p)
2154 {
2155 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2156 }
2157 
2158 /* Wake flags. The first three directly map to some SD flag value */
2159 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2160 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2161 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2162 
2163 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2164 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2165 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2166 
2167 #ifdef CONFIG_SMP
2168 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2169 static_assert(WF_FORK == SD_BALANCE_FORK);
2170 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2171 #endif
2172 
2173 /*
2174  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2175  * of tasks with abnormal "nice" values across CPUs the contribution that
2176  * each task makes to its run queue's load is weighted according to its
2177  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2178  * scaled version of the new time slice allocation that they receive on time
2179  * slice expiry etc.
2180  */
2181 
2182 #define WEIGHT_IDLEPRIO		3
2183 #define WMULT_IDLEPRIO		1431655765
2184 
2185 extern const int		sched_prio_to_weight[40];
2186 extern const u32		sched_prio_to_wmult[40];
2187 
2188 /*
2189  * {de,en}queue flags:
2190  *
2191  * DEQUEUE_SLEEP  - task is no longer runnable
2192  * ENQUEUE_WAKEUP - task just became runnable
2193  *
2194  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2195  *                are in a known state which allows modification. Such pairs
2196  *                should preserve as much state as possible.
2197  *
2198  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2199  *        in the runqueue.
2200  *
2201  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2202  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2203  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2204  *
2205  */
2206 
2207 #define DEQUEUE_SLEEP		0x01
2208 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2209 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2210 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2211 
2212 #define ENQUEUE_WAKEUP		0x01
2213 #define ENQUEUE_RESTORE		0x02
2214 #define ENQUEUE_MOVE		0x04
2215 #define ENQUEUE_NOCLOCK		0x08
2216 
2217 #define ENQUEUE_HEAD		0x10
2218 #define ENQUEUE_REPLENISH	0x20
2219 #ifdef CONFIG_SMP
2220 #define ENQUEUE_MIGRATED	0x40
2221 #else
2222 #define ENQUEUE_MIGRATED	0x00
2223 #endif
2224 #define ENQUEUE_INITIAL		0x80
2225 
2226 #define RETRY_TASK		((void *)-1UL)
2227 
2228 struct affinity_context {
2229 	const struct cpumask *new_mask;
2230 	struct cpumask *user_mask;
2231 	unsigned int flags;
2232 };
2233 
2234 struct sched_class {
2235 
2236 #ifdef CONFIG_UCLAMP_TASK
2237 	int uclamp_enabled;
2238 #endif
2239 
2240 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2241 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2242 	void (*yield_task)   (struct rq *rq);
2243 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2244 
2245 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2246 
2247 	struct task_struct *(*pick_next_task)(struct rq *rq);
2248 
2249 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2250 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2251 
2252 #ifdef CONFIG_SMP
2253 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2254 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2255 
2256 	struct task_struct * (*pick_task)(struct rq *rq);
2257 
2258 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2259 
2260 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2261 
2262 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2263 
2264 	void (*rq_online)(struct rq *rq);
2265 	void (*rq_offline)(struct rq *rq);
2266 
2267 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2268 #endif
2269 
2270 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2271 	void (*task_fork)(struct task_struct *p);
2272 	void (*task_dead)(struct task_struct *p);
2273 
2274 	/*
2275 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2276 	 * cannot assume the switched_from/switched_to pair is serialized by
2277 	 * rq->lock. They are however serialized by p->pi_lock.
2278 	 */
2279 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2280 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2281 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2282 			      int oldprio);
2283 
2284 	unsigned int (*get_rr_interval)(struct rq *rq,
2285 					struct task_struct *task);
2286 
2287 	void (*update_curr)(struct rq *rq);
2288 
2289 #ifdef CONFIG_FAIR_GROUP_SCHED
2290 	void (*task_change_group)(struct task_struct *p);
2291 #endif
2292 
2293 #ifdef CONFIG_SCHED_CORE
2294 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2295 #endif
2296 };
2297 
2298 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2299 {
2300 	WARN_ON_ONCE(rq->curr != prev);
2301 	prev->sched_class->put_prev_task(rq, prev);
2302 }
2303 
2304 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2305 {
2306 	next->sched_class->set_next_task(rq, next, false);
2307 }
2308 
2309 
2310 /*
2311  * Helper to define a sched_class instance; each one is placed in a separate
2312  * section which is ordered by the linker script:
2313  *
2314  *   include/asm-generic/vmlinux.lds.h
2315  *
2316  * *CAREFUL* they are laid out in *REVERSE* order!!!
2317  *
2318  * Also enforce alignment on the instance, not the type, to guarantee layout.
2319  */
2320 #define DEFINE_SCHED_CLASS(name) \
2321 const struct sched_class name##_sched_class \
2322 	__aligned(__alignof__(struct sched_class)) \
2323 	__section("__" #name "_sched_class")
2324 
2325 /* Defined in include/asm-generic/vmlinux.lds.h */
2326 extern struct sched_class __sched_class_highest[];
2327 extern struct sched_class __sched_class_lowest[];
2328 
2329 #define for_class_range(class, _from, _to) \
2330 	for (class = (_from); class < (_to); class++)
2331 
2332 #define for_each_class(class) \
2333 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2334 
2335 #define sched_class_above(_a, _b)	((_a) < (_b))
2336 
2337 extern const struct sched_class stop_sched_class;
2338 extern const struct sched_class dl_sched_class;
2339 extern const struct sched_class rt_sched_class;
2340 extern const struct sched_class fair_sched_class;
2341 extern const struct sched_class idle_sched_class;
2342 
2343 static inline bool sched_stop_runnable(struct rq *rq)
2344 {
2345 	return rq->stop && task_on_rq_queued(rq->stop);
2346 }
2347 
2348 static inline bool sched_dl_runnable(struct rq *rq)
2349 {
2350 	return rq->dl.dl_nr_running > 0;
2351 }
2352 
2353 static inline bool sched_rt_runnable(struct rq *rq)
2354 {
2355 	return rq->rt.rt_queued > 0;
2356 }
2357 
2358 static inline bool sched_fair_runnable(struct rq *rq)
2359 {
2360 	return rq->cfs.nr_running > 0;
2361 }
2362 
2363 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2364 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2365 
2366 #define SCA_CHECK		0x01
2367 #define SCA_MIGRATE_DISABLE	0x02
2368 #define SCA_MIGRATE_ENABLE	0x04
2369 #define SCA_USER		0x08
2370 
2371 #ifdef CONFIG_SMP
2372 
2373 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2374 
2375 extern void trigger_load_balance(struct rq *rq);
2376 
2377 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2378 
2379 static inline struct task_struct *get_push_task(struct rq *rq)
2380 {
2381 	struct task_struct *p = rq->curr;
2382 
2383 	lockdep_assert_rq_held(rq);
2384 
2385 	if (rq->push_busy)
2386 		return NULL;
2387 
2388 	if (p->nr_cpus_allowed == 1)
2389 		return NULL;
2390 
2391 	if (p->migration_disabled)
2392 		return NULL;
2393 
2394 	rq->push_busy = true;
2395 	return get_task_struct(p);
2396 }
2397 
2398 extern int push_cpu_stop(void *arg);
2399 
2400 #endif
2401 
2402 #ifdef CONFIG_CPU_IDLE
2403 static inline void idle_set_state(struct rq *rq,
2404 				  struct cpuidle_state *idle_state)
2405 {
2406 	rq->idle_state = idle_state;
2407 }
2408 
2409 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2410 {
2411 	SCHED_WARN_ON(!rcu_read_lock_held());
2412 
2413 	return rq->idle_state;
2414 }
2415 #else
2416 static inline void idle_set_state(struct rq *rq,
2417 				  struct cpuidle_state *idle_state)
2418 {
2419 }
2420 
2421 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2422 {
2423 	return NULL;
2424 }
2425 #endif
2426 
2427 extern void schedule_idle(void);
2428 asmlinkage void schedule_user(void);
2429 
2430 extern void sysrq_sched_debug_show(void);
2431 extern void sched_init_granularity(void);
2432 extern void update_max_interval(void);
2433 
2434 extern void init_sched_dl_class(void);
2435 extern void init_sched_rt_class(void);
2436 extern void init_sched_fair_class(void);
2437 
2438 extern void reweight_task(struct task_struct *p, const struct load_weight *lw);
2439 
2440 extern void resched_curr(struct rq *rq);
2441 extern void resched_cpu(int cpu);
2442 
2443 extern struct rt_bandwidth def_rt_bandwidth;
2444 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2445 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2446 
2447 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2448 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2449 
2450 #define BW_SHIFT		20
2451 #define BW_UNIT			(1 << BW_SHIFT)
2452 #define RATIO_SHIFT		8
2453 #define MAX_BW_BITS		(64 - BW_SHIFT)
2454 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2455 unsigned long to_ratio(u64 period, u64 runtime);
2456 
2457 extern void init_entity_runnable_average(struct sched_entity *se);
2458 extern void post_init_entity_util_avg(struct task_struct *p);
2459 
2460 #ifdef CONFIG_NO_HZ_FULL
2461 extern bool sched_can_stop_tick(struct rq *rq);
2462 extern int __init sched_tick_offload_init(void);
2463 
2464 /*
2465  * Tick may be needed by tasks in the runqueue depending on their policy and
2466  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2467  * nohz mode if necessary.
2468  */
2469 static inline void sched_update_tick_dependency(struct rq *rq)
2470 {
2471 	int cpu = cpu_of(rq);
2472 
2473 	if (!tick_nohz_full_cpu(cpu))
2474 		return;
2475 
2476 	if (sched_can_stop_tick(rq))
2477 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2478 	else
2479 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2480 }
2481 #else
2482 static inline int sched_tick_offload_init(void) { return 0; }
2483 static inline void sched_update_tick_dependency(struct rq *rq) { }
2484 #endif
2485 
2486 static inline void add_nr_running(struct rq *rq, unsigned count)
2487 {
2488 	unsigned prev_nr = rq->nr_running;
2489 
2490 	rq->nr_running = prev_nr + count;
2491 	if (trace_sched_update_nr_running_tp_enabled()) {
2492 		call_trace_sched_update_nr_running(rq, count);
2493 	}
2494 
2495 #ifdef CONFIG_SMP
2496 	if (prev_nr < 2 && rq->nr_running >= 2) {
2497 		if (!READ_ONCE(rq->rd->overload))
2498 			WRITE_ONCE(rq->rd->overload, 1);
2499 	}
2500 #endif
2501 
2502 	sched_update_tick_dependency(rq);
2503 }
2504 
2505 static inline void sub_nr_running(struct rq *rq, unsigned count)
2506 {
2507 	rq->nr_running -= count;
2508 	if (trace_sched_update_nr_running_tp_enabled()) {
2509 		call_trace_sched_update_nr_running(rq, -count);
2510 	}
2511 
2512 	/* Check if we still need preemption */
2513 	sched_update_tick_dependency(rq);
2514 }
2515 
2516 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2517 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2518 
2519 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2520 
2521 #ifdef CONFIG_PREEMPT_RT
2522 #define SCHED_NR_MIGRATE_BREAK 8
2523 #else
2524 #define SCHED_NR_MIGRATE_BREAK 32
2525 #endif
2526 
2527 extern const_debug unsigned int sysctl_sched_nr_migrate;
2528 extern const_debug unsigned int sysctl_sched_migration_cost;
2529 
2530 extern unsigned int sysctl_sched_base_slice;
2531 
2532 #ifdef CONFIG_SCHED_DEBUG
2533 extern int sysctl_resched_latency_warn_ms;
2534 extern int sysctl_resched_latency_warn_once;
2535 
2536 extern unsigned int sysctl_sched_tunable_scaling;
2537 
2538 extern unsigned int sysctl_numa_balancing_scan_delay;
2539 extern unsigned int sysctl_numa_balancing_scan_period_min;
2540 extern unsigned int sysctl_numa_balancing_scan_period_max;
2541 extern unsigned int sysctl_numa_balancing_scan_size;
2542 extern unsigned int sysctl_numa_balancing_hot_threshold;
2543 #endif
2544 
2545 #ifdef CONFIG_SCHED_HRTICK
2546 
2547 /*
2548  * Use hrtick when:
2549  *  - enabled by features
2550  *  - hrtimer is actually high res
2551  */
2552 static inline int hrtick_enabled(struct rq *rq)
2553 {
2554 	if (!cpu_active(cpu_of(rq)))
2555 		return 0;
2556 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2557 }
2558 
2559 static inline int hrtick_enabled_fair(struct rq *rq)
2560 {
2561 	if (!sched_feat(HRTICK))
2562 		return 0;
2563 	return hrtick_enabled(rq);
2564 }
2565 
2566 static inline int hrtick_enabled_dl(struct rq *rq)
2567 {
2568 	if (!sched_feat(HRTICK_DL))
2569 		return 0;
2570 	return hrtick_enabled(rq);
2571 }
2572 
2573 void hrtick_start(struct rq *rq, u64 delay);
2574 
2575 #else
2576 
2577 static inline int hrtick_enabled_fair(struct rq *rq)
2578 {
2579 	return 0;
2580 }
2581 
2582 static inline int hrtick_enabled_dl(struct rq *rq)
2583 {
2584 	return 0;
2585 }
2586 
2587 static inline int hrtick_enabled(struct rq *rq)
2588 {
2589 	return 0;
2590 }
2591 
2592 #endif /* CONFIG_SCHED_HRTICK */
2593 
2594 #ifndef arch_scale_freq_tick
2595 static __always_inline
2596 void arch_scale_freq_tick(void)
2597 {
2598 }
2599 #endif
2600 
2601 #ifndef arch_scale_freq_capacity
2602 /**
2603  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2604  * @cpu: the CPU in question.
2605  *
2606  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2607  *
2608  *     f_curr
2609  *     ------ * SCHED_CAPACITY_SCALE
2610  *     f_max
2611  */
2612 static __always_inline
2613 unsigned long arch_scale_freq_capacity(int cpu)
2614 {
2615 	return SCHED_CAPACITY_SCALE;
2616 }
2617 #endif
2618 
2619 #ifdef CONFIG_SCHED_DEBUG
2620 /*
2621  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2622  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2623  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2624  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2625  */
2626 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2627 {
2628 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2629 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2630 #ifdef CONFIG_SMP
2631 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2632 #endif
2633 }
2634 #else
2635 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2636 #endif
2637 
2638 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2639 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2640 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2641 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2642   _lock; return _t; }
2643 
2644 #ifdef CONFIG_SMP
2645 
2646 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2647 {
2648 #ifdef CONFIG_SCHED_CORE
2649 	/*
2650 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2651 	 * order by core-id first and cpu-id second.
2652 	 *
2653 	 * Notably:
2654 	 *
2655 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2656 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2657 	 *
2658 	 * when only cpu-id is considered.
2659 	 */
2660 	if (rq1->core->cpu < rq2->core->cpu)
2661 		return true;
2662 	if (rq1->core->cpu > rq2->core->cpu)
2663 		return false;
2664 
2665 	/*
2666 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2667 	 */
2668 #endif
2669 	return rq1->cpu < rq2->cpu;
2670 }
2671 
2672 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2673 
2674 #ifdef CONFIG_PREEMPTION
2675 
2676 /*
2677  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2678  * way at the expense of forcing extra atomic operations in all
2679  * invocations.  This assures that the double_lock is acquired using the
2680  * same underlying policy as the spinlock_t on this architecture, which
2681  * reduces latency compared to the unfair variant below.  However, it
2682  * also adds more overhead and therefore may reduce throughput.
2683  */
2684 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2685 	__releases(this_rq->lock)
2686 	__acquires(busiest->lock)
2687 	__acquires(this_rq->lock)
2688 {
2689 	raw_spin_rq_unlock(this_rq);
2690 	double_rq_lock(this_rq, busiest);
2691 
2692 	return 1;
2693 }
2694 
2695 #else
2696 /*
2697  * Unfair double_lock_balance: Optimizes throughput at the expense of
2698  * latency by eliminating extra atomic operations when the locks are
2699  * already in proper order on entry.  This favors lower CPU-ids and will
2700  * grant the double lock to lower CPUs over higher ids under contention,
2701  * regardless of entry order into the function.
2702  */
2703 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2704 	__releases(this_rq->lock)
2705 	__acquires(busiest->lock)
2706 	__acquires(this_rq->lock)
2707 {
2708 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2709 	    likely(raw_spin_rq_trylock(busiest))) {
2710 		double_rq_clock_clear_update(this_rq, busiest);
2711 		return 0;
2712 	}
2713 
2714 	if (rq_order_less(this_rq, busiest)) {
2715 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2716 		double_rq_clock_clear_update(this_rq, busiest);
2717 		return 0;
2718 	}
2719 
2720 	raw_spin_rq_unlock(this_rq);
2721 	double_rq_lock(this_rq, busiest);
2722 
2723 	return 1;
2724 }
2725 
2726 #endif /* CONFIG_PREEMPTION */
2727 
2728 /*
2729  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2730  */
2731 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2732 {
2733 	lockdep_assert_irqs_disabled();
2734 
2735 	return _double_lock_balance(this_rq, busiest);
2736 }
2737 
2738 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2739 	__releases(busiest->lock)
2740 {
2741 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2742 		raw_spin_rq_unlock(busiest);
2743 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2744 }
2745 
2746 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2747 {
2748 	if (l1 > l2)
2749 		swap(l1, l2);
2750 
2751 	spin_lock(l1);
2752 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2753 }
2754 
2755 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2756 {
2757 	if (l1 > l2)
2758 		swap(l1, l2);
2759 
2760 	spin_lock_irq(l1);
2761 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2762 }
2763 
2764 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2765 {
2766 	if (l1 > l2)
2767 		swap(l1, l2);
2768 
2769 	raw_spin_lock(l1);
2770 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2771 }
2772 
2773 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2774 {
2775 	raw_spin_unlock(l1);
2776 	raw_spin_unlock(l2);
2777 }
2778 
2779 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2780 		    double_raw_lock(_T->lock, _T->lock2),
2781 		    double_raw_unlock(_T->lock, _T->lock2))
2782 
2783 /*
2784  * double_rq_unlock - safely unlock two runqueues
2785  *
2786  * Note this does not restore interrupts like task_rq_unlock,
2787  * you need to do so manually after calling.
2788  */
2789 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2790 	__releases(rq1->lock)
2791 	__releases(rq2->lock)
2792 {
2793 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2794 		raw_spin_rq_unlock(rq2);
2795 	else
2796 		__release(rq2->lock);
2797 	raw_spin_rq_unlock(rq1);
2798 }
2799 
2800 extern void set_rq_online (struct rq *rq);
2801 extern void set_rq_offline(struct rq *rq);
2802 extern bool sched_smp_initialized;
2803 
2804 #else /* CONFIG_SMP */
2805 
2806 /*
2807  * double_rq_lock - safely lock two runqueues
2808  *
2809  * Note this does not disable interrupts like task_rq_lock,
2810  * you need to do so manually before calling.
2811  */
2812 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2813 	__acquires(rq1->lock)
2814 	__acquires(rq2->lock)
2815 {
2816 	WARN_ON_ONCE(!irqs_disabled());
2817 	WARN_ON_ONCE(rq1 != rq2);
2818 	raw_spin_rq_lock(rq1);
2819 	__acquire(rq2->lock);	/* Fake it out ;) */
2820 	double_rq_clock_clear_update(rq1, rq2);
2821 }
2822 
2823 /*
2824  * double_rq_unlock - safely unlock two runqueues
2825  *
2826  * Note this does not restore interrupts like task_rq_unlock,
2827  * you need to do so manually after calling.
2828  */
2829 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2830 	__releases(rq1->lock)
2831 	__releases(rq2->lock)
2832 {
2833 	WARN_ON_ONCE(rq1 != rq2);
2834 	raw_spin_rq_unlock(rq1);
2835 	__release(rq2->lock);
2836 }
2837 
2838 #endif
2839 
2840 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2841 		    double_rq_lock(_T->lock, _T->lock2),
2842 		    double_rq_unlock(_T->lock, _T->lock2))
2843 
2844 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2845 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2846 
2847 #ifdef	CONFIG_SCHED_DEBUG
2848 extern bool sched_debug_verbose;
2849 
2850 extern void print_cfs_stats(struct seq_file *m, int cpu);
2851 extern void print_rt_stats(struct seq_file *m, int cpu);
2852 extern void print_dl_stats(struct seq_file *m, int cpu);
2853 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2854 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2855 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2856 
2857 extern void resched_latency_warn(int cpu, u64 latency);
2858 #ifdef CONFIG_NUMA_BALANCING
2859 extern void
2860 show_numa_stats(struct task_struct *p, struct seq_file *m);
2861 extern void
2862 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2863 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2864 #endif /* CONFIG_NUMA_BALANCING */
2865 #else
2866 static inline void resched_latency_warn(int cpu, u64 latency) {}
2867 #endif /* CONFIG_SCHED_DEBUG */
2868 
2869 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2870 extern void init_rt_rq(struct rt_rq *rt_rq);
2871 extern void init_dl_rq(struct dl_rq *dl_rq);
2872 
2873 extern void cfs_bandwidth_usage_inc(void);
2874 extern void cfs_bandwidth_usage_dec(void);
2875 
2876 #ifdef CONFIG_NO_HZ_COMMON
2877 #define NOHZ_BALANCE_KICK_BIT	0
2878 #define NOHZ_STATS_KICK_BIT	1
2879 #define NOHZ_NEWILB_KICK_BIT	2
2880 #define NOHZ_NEXT_KICK_BIT	3
2881 
2882 /* Run rebalance_domains() */
2883 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2884 /* Update blocked load */
2885 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2886 /* Update blocked load when entering idle */
2887 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2888 /* Update nohz.next_balance */
2889 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2890 
2891 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2892 
2893 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2894 
2895 extern void nohz_balance_exit_idle(struct rq *rq);
2896 #else
2897 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2898 #endif
2899 
2900 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2901 extern void nohz_run_idle_balance(int cpu);
2902 #else
2903 static inline void nohz_run_idle_balance(int cpu) { }
2904 #endif
2905 
2906 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2907 struct irqtime {
2908 	u64			total;
2909 	u64			tick_delta;
2910 	u64			irq_start_time;
2911 	struct u64_stats_sync	sync;
2912 };
2913 
2914 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2915 
2916 /*
2917  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2918  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2919  * and never move forward.
2920  */
2921 static inline u64 irq_time_read(int cpu)
2922 {
2923 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2924 	unsigned int seq;
2925 	u64 total;
2926 
2927 	do {
2928 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2929 		total = irqtime->total;
2930 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2931 
2932 	return total;
2933 }
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935 
2936 #ifdef CONFIG_CPU_FREQ
2937 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2938 
2939 /**
2940  * cpufreq_update_util - Take a note about CPU utilization changes.
2941  * @rq: Runqueue to carry out the update for.
2942  * @flags: Update reason flags.
2943  *
2944  * This function is called by the scheduler on the CPU whose utilization is
2945  * being updated.
2946  *
2947  * It can only be called from RCU-sched read-side critical sections.
2948  *
2949  * The way cpufreq is currently arranged requires it to evaluate the CPU
2950  * performance state (frequency/voltage) on a regular basis to prevent it from
2951  * being stuck in a completely inadequate performance level for too long.
2952  * That is not guaranteed to happen if the updates are only triggered from CFS
2953  * and DL, though, because they may not be coming in if only RT tasks are
2954  * active all the time (or there are RT tasks only).
2955  *
2956  * As a workaround for that issue, this function is called periodically by the
2957  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2958  * but that really is a band-aid.  Going forward it should be replaced with
2959  * solutions targeted more specifically at RT tasks.
2960  */
2961 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2962 {
2963 	struct update_util_data *data;
2964 
2965 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2966 						  cpu_of(rq)));
2967 	if (data)
2968 		data->func(data, rq_clock(rq), flags);
2969 }
2970 #else
2971 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2972 #endif /* CONFIG_CPU_FREQ */
2973 
2974 #ifdef arch_scale_freq_capacity
2975 # ifndef arch_scale_freq_invariant
2976 #  define arch_scale_freq_invariant()	true
2977 # endif
2978 #else
2979 # define arch_scale_freq_invariant()	false
2980 #endif
2981 
2982 #ifdef CONFIG_SMP
2983 static inline unsigned long capacity_orig_of(int cpu)
2984 {
2985 	return cpu_rq(cpu)->cpu_capacity_orig;
2986 }
2987 
2988 /**
2989  * enum cpu_util_type - CPU utilization type
2990  * @FREQUENCY_UTIL:	Utilization used to select frequency
2991  * @ENERGY_UTIL:	Utilization used during energy calculation
2992  *
2993  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2994  * need to be aggregated differently depending on the usage made of them. This
2995  * enum is used within effective_cpu_util() to differentiate the types of
2996  * utilization expected by the callers, and adjust the aggregation accordingly.
2997  */
2998 enum cpu_util_type {
2999 	FREQUENCY_UTIL,
3000 	ENERGY_UTIL,
3001 };
3002 
3003 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3004 				 enum cpu_util_type type,
3005 				 struct task_struct *p);
3006 
3007 /*
3008  * Verify the fitness of task @p to run on @cpu taking into account the
3009  * CPU original capacity and the runtime/deadline ratio of the task.
3010  *
3011  * The function will return true if the original capacity of @cpu is
3012  * greater than or equal to task's deadline density right shifted by
3013  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3014  */
3015 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3016 {
3017 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3018 
3019 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3020 }
3021 
3022 static inline unsigned long cpu_bw_dl(struct rq *rq)
3023 {
3024 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3025 }
3026 
3027 static inline unsigned long cpu_util_dl(struct rq *rq)
3028 {
3029 	return READ_ONCE(rq->avg_dl.util_avg);
3030 }
3031 
3032 
3033 extern unsigned long cpu_util_cfs(int cpu);
3034 extern unsigned long cpu_util_cfs_boost(int cpu);
3035 
3036 static inline unsigned long cpu_util_rt(struct rq *rq)
3037 {
3038 	return READ_ONCE(rq->avg_rt.util_avg);
3039 }
3040 #endif
3041 
3042 #ifdef CONFIG_UCLAMP_TASK
3043 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3044 
3045 static inline unsigned long uclamp_rq_get(struct rq *rq,
3046 					  enum uclamp_id clamp_id)
3047 {
3048 	return READ_ONCE(rq->uclamp[clamp_id].value);
3049 }
3050 
3051 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3052 				 unsigned int value)
3053 {
3054 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3055 }
3056 
3057 static inline bool uclamp_rq_is_idle(struct rq *rq)
3058 {
3059 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3060 }
3061 
3062 /**
3063  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3064  * @rq:		The rq to clamp against. Must not be NULL.
3065  * @util:	The util value to clamp.
3066  * @p:		The task to clamp against. Can be NULL if you want to clamp
3067  *		against @rq only.
3068  *
3069  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3070  *
3071  * If sched_uclamp_used static key is disabled, then just return the util
3072  * without any clamping since uclamp aggregation at the rq level in the fast
3073  * path is disabled, rendering this operation a NOP.
3074  *
3075  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3076  * will return the correct effective uclamp value of the task even if the
3077  * static key is disabled.
3078  */
3079 static __always_inline
3080 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3081 				  struct task_struct *p)
3082 {
3083 	unsigned long min_util = 0;
3084 	unsigned long max_util = 0;
3085 
3086 	if (!static_branch_likely(&sched_uclamp_used))
3087 		return util;
3088 
3089 	if (p) {
3090 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3091 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3092 
3093 		/*
3094 		 * Ignore last runnable task's max clamp, as this task will
3095 		 * reset it. Similarly, no need to read the rq's min clamp.
3096 		 */
3097 		if (uclamp_rq_is_idle(rq))
3098 			goto out;
3099 	}
3100 
3101 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3102 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3103 out:
3104 	/*
3105 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3106 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3107 	 * inversion. Fix it now when the clamps are applied.
3108 	 */
3109 	if (unlikely(min_util >= max_util))
3110 		return min_util;
3111 
3112 	return clamp(util, min_util, max_util);
3113 }
3114 
3115 /* Is the rq being capped/throttled by uclamp_max? */
3116 static inline bool uclamp_rq_is_capped(struct rq *rq)
3117 {
3118 	unsigned long rq_util;
3119 	unsigned long max_util;
3120 
3121 	if (!static_branch_likely(&sched_uclamp_used))
3122 		return false;
3123 
3124 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3125 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3126 
3127 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3128 }
3129 
3130 /*
3131  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3132  * by default in the fast path and only gets turned on once userspace performs
3133  * an operation that requires it.
3134  *
3135  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3136  * hence is active.
3137  */
3138 static inline bool uclamp_is_used(void)
3139 {
3140 	return static_branch_likely(&sched_uclamp_used);
3141 }
3142 #else /* CONFIG_UCLAMP_TASK */
3143 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3144 					     enum uclamp_id clamp_id)
3145 {
3146 	if (clamp_id == UCLAMP_MIN)
3147 		return 0;
3148 
3149 	return SCHED_CAPACITY_SCALE;
3150 }
3151 
3152 static inline
3153 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3154 				  struct task_struct *p)
3155 {
3156 	return util;
3157 }
3158 
3159 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3160 
3161 static inline bool uclamp_is_used(void)
3162 {
3163 	return false;
3164 }
3165 
3166 static inline unsigned long uclamp_rq_get(struct rq *rq,
3167 					  enum uclamp_id clamp_id)
3168 {
3169 	if (clamp_id == UCLAMP_MIN)
3170 		return 0;
3171 
3172 	return SCHED_CAPACITY_SCALE;
3173 }
3174 
3175 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3176 				 unsigned int value)
3177 {
3178 }
3179 
3180 static inline bool uclamp_rq_is_idle(struct rq *rq)
3181 {
3182 	return false;
3183 }
3184 #endif /* CONFIG_UCLAMP_TASK */
3185 
3186 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3187 static inline unsigned long cpu_util_irq(struct rq *rq)
3188 {
3189 	return rq->avg_irq.util_avg;
3190 }
3191 
3192 static inline
3193 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3194 {
3195 	util *= (max - irq);
3196 	util /= max;
3197 
3198 	return util;
3199 
3200 }
3201 #else
3202 static inline unsigned long cpu_util_irq(struct rq *rq)
3203 {
3204 	return 0;
3205 }
3206 
3207 static inline
3208 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3209 {
3210 	return util;
3211 }
3212 #endif
3213 
3214 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3215 
3216 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3217 
3218 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3219 
3220 static inline bool sched_energy_enabled(void)
3221 {
3222 	return static_branch_unlikely(&sched_energy_present);
3223 }
3224 
3225 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3226 
3227 #define perf_domain_span(pd) NULL
3228 static inline bool sched_energy_enabled(void) { return false; }
3229 
3230 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3231 
3232 #ifdef CONFIG_MEMBARRIER
3233 /*
3234  * The scheduler provides memory barriers required by membarrier between:
3235  * - prior user-space memory accesses and store to rq->membarrier_state,
3236  * - store to rq->membarrier_state and following user-space memory accesses.
3237  * In the same way it provides those guarantees around store to rq->curr.
3238  */
3239 static inline void membarrier_switch_mm(struct rq *rq,
3240 					struct mm_struct *prev_mm,
3241 					struct mm_struct *next_mm)
3242 {
3243 	int membarrier_state;
3244 
3245 	if (prev_mm == next_mm)
3246 		return;
3247 
3248 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3249 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3250 		return;
3251 
3252 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3253 }
3254 #else
3255 static inline void membarrier_switch_mm(struct rq *rq,
3256 					struct mm_struct *prev_mm,
3257 					struct mm_struct *next_mm)
3258 {
3259 }
3260 #endif
3261 
3262 #ifdef CONFIG_SMP
3263 static inline bool is_per_cpu_kthread(struct task_struct *p)
3264 {
3265 	if (!(p->flags & PF_KTHREAD))
3266 		return false;
3267 
3268 	if (p->nr_cpus_allowed != 1)
3269 		return false;
3270 
3271 	return true;
3272 }
3273 #endif
3274 
3275 extern void swake_up_all_locked(struct swait_queue_head *q);
3276 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3277 
3278 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3279 
3280 #ifdef CONFIG_PREEMPT_DYNAMIC
3281 extern int preempt_dynamic_mode;
3282 extern int sched_dynamic_mode(const char *str);
3283 extern void sched_dynamic_update(int mode);
3284 #endif
3285 
3286 static inline void update_current_exec_runtime(struct task_struct *curr,
3287 						u64 now, u64 delta_exec)
3288 {
3289 	curr->se.sum_exec_runtime += delta_exec;
3290 	account_group_exec_runtime(curr, delta_exec);
3291 
3292 	curr->se.exec_start = now;
3293 	cgroup_account_cputime(curr, delta_exec);
3294 }
3295 
3296 #ifdef CONFIG_SCHED_MM_CID
3297 
3298 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3299 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3300 
3301 extern raw_spinlock_t cid_lock;
3302 extern int use_cid_lock;
3303 
3304 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3305 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3306 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3307 extern void init_sched_mm_cid(struct task_struct *t);
3308 
3309 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3310 {
3311 	if (cid < 0)
3312 		return;
3313 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3314 }
3315 
3316 /*
3317  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3318  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3319  * be held to transition to other states.
3320  *
3321  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3322  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3323  */
3324 static inline void mm_cid_put_lazy(struct task_struct *t)
3325 {
3326 	struct mm_struct *mm = t->mm;
3327 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3328 	int cid;
3329 
3330 	lockdep_assert_irqs_disabled();
3331 	cid = __this_cpu_read(pcpu_cid->cid);
3332 	if (!mm_cid_is_lazy_put(cid) ||
3333 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3334 		return;
3335 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3336 }
3337 
3338 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3339 {
3340 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3341 	int cid, res;
3342 
3343 	lockdep_assert_irqs_disabled();
3344 	cid = __this_cpu_read(pcpu_cid->cid);
3345 	for (;;) {
3346 		if (mm_cid_is_unset(cid))
3347 			return MM_CID_UNSET;
3348 		/*
3349 		 * Attempt transition from valid or lazy-put to unset.
3350 		 */
3351 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3352 		if (res == cid)
3353 			break;
3354 		cid = res;
3355 	}
3356 	return cid;
3357 }
3358 
3359 static inline void mm_cid_put(struct mm_struct *mm)
3360 {
3361 	int cid;
3362 
3363 	lockdep_assert_irqs_disabled();
3364 	cid = mm_cid_pcpu_unset(mm);
3365 	if (cid == MM_CID_UNSET)
3366 		return;
3367 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3368 }
3369 
3370 static inline int __mm_cid_try_get(struct mm_struct *mm)
3371 {
3372 	struct cpumask *cpumask;
3373 	int cid;
3374 
3375 	cpumask = mm_cidmask(mm);
3376 	/*
3377 	 * Retry finding first zero bit if the mask is temporarily
3378 	 * filled. This only happens during concurrent remote-clear
3379 	 * which owns a cid without holding a rq lock.
3380 	 */
3381 	for (;;) {
3382 		cid = cpumask_first_zero(cpumask);
3383 		if (cid < nr_cpu_ids)
3384 			break;
3385 		cpu_relax();
3386 	}
3387 	if (cpumask_test_and_set_cpu(cid, cpumask))
3388 		return -1;
3389 	return cid;
3390 }
3391 
3392 /*
3393  * Save a snapshot of the current runqueue time of this cpu
3394  * with the per-cpu cid value, allowing to estimate how recently it was used.
3395  */
3396 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3397 {
3398 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3399 
3400 	lockdep_assert_rq_held(rq);
3401 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3402 }
3403 
3404 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3405 {
3406 	int cid;
3407 
3408 	/*
3409 	 * All allocations (even those using the cid_lock) are lock-free. If
3410 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3411 	 * guarantee forward progress.
3412 	 */
3413 	if (!READ_ONCE(use_cid_lock)) {
3414 		cid = __mm_cid_try_get(mm);
3415 		if (cid >= 0)
3416 			goto end;
3417 		raw_spin_lock(&cid_lock);
3418 	} else {
3419 		raw_spin_lock(&cid_lock);
3420 		cid = __mm_cid_try_get(mm);
3421 		if (cid >= 0)
3422 			goto unlock;
3423 	}
3424 
3425 	/*
3426 	 * cid concurrently allocated. Retry while forcing following
3427 	 * allocations to use the cid_lock to ensure forward progress.
3428 	 */
3429 	WRITE_ONCE(use_cid_lock, 1);
3430 	/*
3431 	 * Set use_cid_lock before allocation. Only care about program order
3432 	 * because this is only required for forward progress.
3433 	 */
3434 	barrier();
3435 	/*
3436 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3437 	 * all newcoming allocations observe the use_cid_lock flag set.
3438 	 */
3439 	do {
3440 		cid = __mm_cid_try_get(mm);
3441 		cpu_relax();
3442 	} while (cid < 0);
3443 	/*
3444 	 * Allocate before clearing use_cid_lock. Only care about
3445 	 * program order because this is for forward progress.
3446 	 */
3447 	barrier();
3448 	WRITE_ONCE(use_cid_lock, 0);
3449 unlock:
3450 	raw_spin_unlock(&cid_lock);
3451 end:
3452 	mm_cid_snapshot_time(rq, mm);
3453 	return cid;
3454 }
3455 
3456 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3457 {
3458 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3459 	struct cpumask *cpumask;
3460 	int cid;
3461 
3462 	lockdep_assert_rq_held(rq);
3463 	cpumask = mm_cidmask(mm);
3464 	cid = __this_cpu_read(pcpu_cid->cid);
3465 	if (mm_cid_is_valid(cid)) {
3466 		mm_cid_snapshot_time(rq, mm);
3467 		return cid;
3468 	}
3469 	if (mm_cid_is_lazy_put(cid)) {
3470 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3471 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3472 	}
3473 	cid = __mm_cid_get(rq, mm);
3474 	__this_cpu_write(pcpu_cid->cid, cid);
3475 	return cid;
3476 }
3477 
3478 static inline void switch_mm_cid(struct rq *rq,
3479 				 struct task_struct *prev,
3480 				 struct task_struct *next)
3481 {
3482 	/*
3483 	 * Provide a memory barrier between rq->curr store and load of
3484 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3485 	 *
3486 	 * Should be adapted if context_switch() is modified.
3487 	 */
3488 	if (!next->mm) {                                // to kernel
3489 		/*
3490 		 * user -> kernel transition does not guarantee a barrier, but
3491 		 * we can use the fact that it performs an atomic operation in
3492 		 * mmgrab().
3493 		 */
3494 		if (prev->mm)                           // from user
3495 			smp_mb__after_mmgrab();
3496 		/*
3497 		 * kernel -> kernel transition does not change rq->curr->mm
3498 		 * state. It stays NULL.
3499 		 */
3500 	} else {                                        // to user
3501 		/*
3502 		 * kernel -> user transition does not provide a barrier
3503 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3504 		 * Provide it here.
3505 		 */
3506 		if (!prev->mm) {                        // from kernel
3507 			smp_mb();
3508 		} else {				// from user
3509 			/*
3510 			 * user->user transition relies on an implicit
3511 			 * memory barrier in switch_mm() when
3512 			 * current->mm changes. If the architecture
3513 			 * switch_mm() does not have an implicit memory
3514 			 * barrier, it is emitted here.  If current->mm
3515 			 * is unchanged, no barrier is needed.
3516 			 */
3517 			smp_mb__after_switch_mm();
3518 		}
3519 	}
3520 	if (prev->mm_cid_active) {
3521 		mm_cid_snapshot_time(rq, prev->mm);
3522 		mm_cid_put_lazy(prev);
3523 		prev->mm_cid = -1;
3524 	}
3525 	if (next->mm_cid_active)
3526 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3527 }
3528 
3529 #else
3530 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3531 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3532 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3533 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3534 static inline void init_sched_mm_cid(struct task_struct *t) { }
3535 #endif
3536 
3537 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3538 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3539 
3540 #endif /* _KERNEL_SCHED_SCHED_H */
3541