xref: /openbmc/linux/kernel/sched/sched.h (revision 8c0b9ee8)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11 
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15 
16 struct rq;
17 struct cpuidle_state;
18 
19 /* task_struct::on_rq states: */
20 #define TASK_ON_RQ_QUEUED	1
21 #define TASK_ON_RQ_MIGRATING	2
22 
23 extern __read_mostly int scheduler_running;
24 
25 extern unsigned long calc_load_update;
26 extern atomic_long_t calc_load_tasks;
27 
28 extern long calc_load_fold_active(struct rq *this_rq);
29 extern void update_cpu_load_active(struct rq *this_rq);
30 
31 /*
32  * Helpers for converting nanosecond timing to jiffy resolution
33  */
34 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35 
36 /*
37  * Increase resolution of nice-level calculations for 64-bit architectures.
38  * The extra resolution improves shares distribution and load balancing of
39  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40  * hierarchies, especially on larger systems. This is not a user-visible change
41  * and does not change the user-interface for setting shares/weights.
42  *
43  * We increase resolution only if we have enough bits to allow this increased
44  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46  * increased costs.
47  */
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
49 # define SCHED_LOAD_RESOLUTION	10
50 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
52 #else
53 # define SCHED_LOAD_RESOLUTION	0
54 # define scale_load(w)		(w)
55 # define scale_load_down(w)	(w)
56 #endif
57 
58 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
60 
61 #define NICE_0_LOAD		SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
63 
64 /*
65  * Single value that decides SCHED_DEADLINE internal math precision.
66  * 10 -> just above 1us
67  * 9  -> just above 0.5us
68  */
69 #define DL_SCALE (10)
70 
71 /*
72  * These are the 'tuning knobs' of the scheduler:
73  */
74 
75 /*
76  * single value that denotes runtime == period, ie unlimited time.
77  */
78 #define RUNTIME_INF	((u64)~0ULL)
79 
80 static inline int fair_policy(int policy)
81 {
82 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83 }
84 
85 static inline int rt_policy(int policy)
86 {
87 	return policy == SCHED_FIFO || policy == SCHED_RR;
88 }
89 
90 static inline int dl_policy(int policy)
91 {
92 	return policy == SCHED_DEADLINE;
93 }
94 
95 static inline int task_has_rt_policy(struct task_struct *p)
96 {
97 	return rt_policy(p->policy);
98 }
99 
100 static inline int task_has_dl_policy(struct task_struct *p)
101 {
102 	return dl_policy(p->policy);
103 }
104 
105 static inline bool dl_time_before(u64 a, u64 b)
106 {
107 	return (s64)(a - b) < 0;
108 }
109 
110 /*
111  * Tells if entity @a should preempt entity @b.
112  */
113 static inline bool
114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
115 {
116 	return dl_time_before(a->deadline, b->deadline);
117 }
118 
119 /*
120  * This is the priority-queue data structure of the RT scheduling class:
121  */
122 struct rt_prio_array {
123 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 	struct list_head queue[MAX_RT_PRIO];
125 };
126 
127 struct rt_bandwidth {
128 	/* nests inside the rq lock: */
129 	raw_spinlock_t		rt_runtime_lock;
130 	ktime_t			rt_period;
131 	u64			rt_runtime;
132 	struct hrtimer		rt_period_timer;
133 };
134 
135 void __dl_clear_params(struct task_struct *p);
136 
137 /*
138  * To keep the bandwidth of -deadline tasks and groups under control
139  * we need some place where:
140  *  - store the maximum -deadline bandwidth of the system (the group);
141  *  - cache the fraction of that bandwidth that is currently allocated.
142  *
143  * This is all done in the data structure below. It is similar to the
144  * one used for RT-throttling (rt_bandwidth), with the main difference
145  * that, since here we are only interested in admission control, we
146  * do not decrease any runtime while the group "executes", neither we
147  * need a timer to replenish it.
148  *
149  * With respect to SMP, the bandwidth is given on a per-CPU basis,
150  * meaning that:
151  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152  *  - dl_total_bw array contains, in the i-eth element, the currently
153  *    allocated bandwidth on the i-eth CPU.
154  * Moreover, groups consume bandwidth on each CPU, while tasks only
155  * consume bandwidth on the CPU they're running on.
156  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157  * that will be shown the next time the proc or cgroup controls will
158  * be red. It on its turn can be changed by writing on its own
159  * control.
160  */
161 struct dl_bandwidth {
162 	raw_spinlock_t dl_runtime_lock;
163 	u64 dl_runtime;
164 	u64 dl_period;
165 };
166 
167 static inline int dl_bandwidth_enabled(void)
168 {
169 	return sysctl_sched_rt_runtime >= 0;
170 }
171 
172 extern struct dl_bw *dl_bw_of(int i);
173 
174 struct dl_bw {
175 	raw_spinlock_t lock;
176 	u64 bw, total_bw;
177 };
178 
179 static inline
180 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
181 {
182 	dl_b->total_bw -= tsk_bw;
183 }
184 
185 static inline
186 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
187 {
188 	dl_b->total_bw += tsk_bw;
189 }
190 
191 static inline
192 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
193 {
194 	return dl_b->bw != -1 &&
195 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
196 }
197 
198 extern struct mutex sched_domains_mutex;
199 
200 #ifdef CONFIG_CGROUP_SCHED
201 
202 #include <linux/cgroup.h>
203 
204 struct cfs_rq;
205 struct rt_rq;
206 
207 extern struct list_head task_groups;
208 
209 struct cfs_bandwidth {
210 #ifdef CONFIG_CFS_BANDWIDTH
211 	raw_spinlock_t lock;
212 	ktime_t period;
213 	u64 quota, runtime;
214 	s64 hierarchical_quota;
215 	u64 runtime_expires;
216 
217 	int idle, timer_active;
218 	struct hrtimer period_timer, slack_timer;
219 	struct list_head throttled_cfs_rq;
220 
221 	/* statistics */
222 	int nr_periods, nr_throttled;
223 	u64 throttled_time;
224 #endif
225 };
226 
227 /* task group related information */
228 struct task_group {
229 	struct cgroup_subsys_state css;
230 
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 	/* schedulable entities of this group on each cpu */
233 	struct sched_entity **se;
234 	/* runqueue "owned" by this group on each cpu */
235 	struct cfs_rq **cfs_rq;
236 	unsigned long shares;
237 
238 #ifdef	CONFIG_SMP
239 	atomic_long_t load_avg;
240 	atomic_t runnable_avg;
241 #endif
242 #endif
243 
244 #ifdef CONFIG_RT_GROUP_SCHED
245 	struct sched_rt_entity **rt_se;
246 	struct rt_rq **rt_rq;
247 
248 	struct rt_bandwidth rt_bandwidth;
249 #endif
250 
251 	struct rcu_head rcu;
252 	struct list_head list;
253 
254 	struct task_group *parent;
255 	struct list_head siblings;
256 	struct list_head children;
257 
258 #ifdef CONFIG_SCHED_AUTOGROUP
259 	struct autogroup *autogroup;
260 #endif
261 
262 	struct cfs_bandwidth cfs_bandwidth;
263 };
264 
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
267 
268 /*
269  * A weight of 0 or 1 can cause arithmetics problems.
270  * A weight of a cfs_rq is the sum of weights of which entities
271  * are queued on this cfs_rq, so a weight of a entity should not be
272  * too large, so as the shares value of a task group.
273  * (The default weight is 1024 - so there's no practical
274  *  limitation from this.)
275  */
276 #define MIN_SHARES	(1UL <<  1)
277 #define MAX_SHARES	(1UL << 18)
278 #endif
279 
280 typedef int (*tg_visitor)(struct task_group *, void *);
281 
282 extern int walk_tg_tree_from(struct task_group *from,
283 			     tg_visitor down, tg_visitor up, void *data);
284 
285 /*
286  * Iterate the full tree, calling @down when first entering a node and @up when
287  * leaving it for the final time.
288  *
289  * Caller must hold rcu_lock or sufficient equivalent.
290  */
291 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
292 {
293 	return walk_tg_tree_from(&root_task_group, down, up, data);
294 }
295 
296 extern int tg_nop(struct task_group *tg, void *data);
297 
298 extern void free_fair_sched_group(struct task_group *tg);
299 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 			struct sched_entity *se, int cpu,
303 			struct sched_entity *parent);
304 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
306 
307 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
308 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
309 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
310 
311 extern void free_rt_sched_group(struct task_group *tg);
312 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 		struct sched_rt_entity *rt_se, int cpu,
315 		struct sched_rt_entity *parent);
316 
317 extern struct task_group *sched_create_group(struct task_group *parent);
318 extern void sched_online_group(struct task_group *tg,
319 			       struct task_group *parent);
320 extern void sched_destroy_group(struct task_group *tg);
321 extern void sched_offline_group(struct task_group *tg);
322 
323 extern void sched_move_task(struct task_struct *tsk);
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327 #endif
328 
329 #else /* CONFIG_CGROUP_SCHED */
330 
331 struct cfs_bandwidth { };
332 
333 #endif	/* CONFIG_CGROUP_SCHED */
334 
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 	struct load_weight load;
338 	unsigned int nr_running, h_nr_running;
339 
340 	u64 exec_clock;
341 	u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 	u64 min_vruntime_copy;
344 #endif
345 
346 	struct rb_root tasks_timeline;
347 	struct rb_node *rb_leftmost;
348 
349 	/*
350 	 * 'curr' points to currently running entity on this cfs_rq.
351 	 * It is set to NULL otherwise (i.e when none are currently running).
352 	 */
353 	struct sched_entity *curr, *next, *last, *skip;
354 
355 #ifdef	CONFIG_SCHED_DEBUG
356 	unsigned int nr_spread_over;
357 #endif
358 
359 #ifdef CONFIG_SMP
360 	/*
361 	 * CFS Load tracking
362 	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 	 * This allows for the description of both thread and group usage (in
364 	 * the FAIR_GROUP_SCHED case).
365 	 */
366 	unsigned long runnable_load_avg, blocked_load_avg;
367 	atomic64_t decay_counter;
368 	u64 last_decay;
369 	atomic_long_t removed_load;
370 
371 #ifdef CONFIG_FAIR_GROUP_SCHED
372 	/* Required to track per-cpu representation of a task_group */
373 	u32 tg_runnable_contrib;
374 	unsigned long tg_load_contrib;
375 
376 	/*
377 	 *   h_load = weight * f(tg)
378 	 *
379 	 * Where f(tg) is the recursive weight fraction assigned to
380 	 * this group.
381 	 */
382 	unsigned long h_load;
383 	u64 last_h_load_update;
384 	struct sched_entity *h_load_next;
385 #endif /* CONFIG_FAIR_GROUP_SCHED */
386 #endif /* CONFIG_SMP */
387 
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
390 
391 	/*
392 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 	 * (like users, containers etc.)
395 	 *
396 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 	 * list is used during load balance.
398 	 */
399 	int on_list;
400 	struct list_head leaf_cfs_rq_list;
401 	struct task_group *tg;	/* group that "owns" this runqueue */
402 
403 #ifdef CONFIG_CFS_BANDWIDTH
404 	int runtime_enabled;
405 	u64 runtime_expires;
406 	s64 runtime_remaining;
407 
408 	u64 throttled_clock, throttled_clock_task;
409 	u64 throttled_clock_task_time;
410 	int throttled, throttle_count;
411 	struct list_head throttled_list;
412 #endif /* CONFIG_CFS_BANDWIDTH */
413 #endif /* CONFIG_FAIR_GROUP_SCHED */
414 };
415 
416 static inline int rt_bandwidth_enabled(void)
417 {
418 	return sysctl_sched_rt_runtime >= 0;
419 }
420 
421 /* Real-Time classes' related field in a runqueue: */
422 struct rt_rq {
423 	struct rt_prio_array active;
424 	unsigned int rt_nr_running;
425 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 	struct {
427 		int curr; /* highest queued rt task prio */
428 #ifdef CONFIG_SMP
429 		int next; /* next highest */
430 #endif
431 	} highest_prio;
432 #endif
433 #ifdef CONFIG_SMP
434 	unsigned long rt_nr_migratory;
435 	unsigned long rt_nr_total;
436 	int overloaded;
437 	struct plist_head pushable_tasks;
438 #endif
439 	int rt_queued;
440 
441 	int rt_throttled;
442 	u64 rt_time;
443 	u64 rt_runtime;
444 	/* Nests inside the rq lock: */
445 	raw_spinlock_t rt_runtime_lock;
446 
447 #ifdef CONFIG_RT_GROUP_SCHED
448 	unsigned long rt_nr_boosted;
449 
450 	struct rq *rq;
451 	struct task_group *tg;
452 #endif
453 };
454 
455 /* Deadline class' related fields in a runqueue */
456 struct dl_rq {
457 	/* runqueue is an rbtree, ordered by deadline */
458 	struct rb_root rb_root;
459 	struct rb_node *rb_leftmost;
460 
461 	unsigned long dl_nr_running;
462 
463 #ifdef CONFIG_SMP
464 	/*
465 	 * Deadline values of the currently executing and the
466 	 * earliest ready task on this rq. Caching these facilitates
467 	 * the decision wether or not a ready but not running task
468 	 * should migrate somewhere else.
469 	 */
470 	struct {
471 		u64 curr;
472 		u64 next;
473 	} earliest_dl;
474 
475 	unsigned long dl_nr_migratory;
476 	int overloaded;
477 
478 	/*
479 	 * Tasks on this rq that can be pushed away. They are kept in
480 	 * an rb-tree, ordered by tasks' deadlines, with caching
481 	 * of the leftmost (earliest deadline) element.
482 	 */
483 	struct rb_root pushable_dl_tasks_root;
484 	struct rb_node *pushable_dl_tasks_leftmost;
485 #else
486 	struct dl_bw dl_bw;
487 #endif
488 };
489 
490 #ifdef CONFIG_SMP
491 
492 /*
493  * We add the notion of a root-domain which will be used to define per-domain
494  * variables. Each exclusive cpuset essentially defines an island domain by
495  * fully partitioning the member cpus from any other cpuset. Whenever a new
496  * exclusive cpuset is created, we also create and attach a new root-domain
497  * object.
498  *
499  */
500 struct root_domain {
501 	atomic_t refcount;
502 	atomic_t rto_count;
503 	struct rcu_head rcu;
504 	cpumask_var_t span;
505 	cpumask_var_t online;
506 
507 	/* Indicate more than one runnable task for any CPU */
508 	bool overload;
509 
510 	/*
511 	 * The bit corresponding to a CPU gets set here if such CPU has more
512 	 * than one runnable -deadline task (as it is below for RT tasks).
513 	 */
514 	cpumask_var_t dlo_mask;
515 	atomic_t dlo_count;
516 	struct dl_bw dl_bw;
517 	struct cpudl cpudl;
518 
519 	/*
520 	 * The "RT overload" flag: it gets set if a CPU has more than
521 	 * one runnable RT task.
522 	 */
523 	cpumask_var_t rto_mask;
524 	struct cpupri cpupri;
525 };
526 
527 extern struct root_domain def_root_domain;
528 
529 #endif /* CONFIG_SMP */
530 
531 /*
532  * This is the main, per-CPU runqueue data structure.
533  *
534  * Locking rule: those places that want to lock multiple runqueues
535  * (such as the load balancing or the thread migration code), lock
536  * acquire operations must be ordered by ascending &runqueue.
537  */
538 struct rq {
539 	/* runqueue lock: */
540 	raw_spinlock_t lock;
541 
542 	/*
543 	 * nr_running and cpu_load should be in the same cacheline because
544 	 * remote CPUs use both these fields when doing load calculation.
545 	 */
546 	unsigned int nr_running;
547 #ifdef CONFIG_NUMA_BALANCING
548 	unsigned int nr_numa_running;
549 	unsigned int nr_preferred_running;
550 #endif
551 	#define CPU_LOAD_IDX_MAX 5
552 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 	unsigned long last_load_update_tick;
554 #ifdef CONFIG_NO_HZ_COMMON
555 	u64 nohz_stamp;
556 	unsigned long nohz_flags;
557 #endif
558 #ifdef CONFIG_NO_HZ_FULL
559 	unsigned long last_sched_tick;
560 #endif
561 	/* capture load from *all* tasks on this cpu: */
562 	struct load_weight load;
563 	unsigned long nr_load_updates;
564 	u64 nr_switches;
565 
566 	struct cfs_rq cfs;
567 	struct rt_rq rt;
568 	struct dl_rq dl;
569 
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 	/* list of leaf cfs_rq on this cpu: */
572 	struct list_head leaf_cfs_rq_list;
573 
574 	struct sched_avg avg;
575 #endif /* CONFIG_FAIR_GROUP_SCHED */
576 
577 	/*
578 	 * This is part of a global counter where only the total sum
579 	 * over all CPUs matters. A task can increase this counter on
580 	 * one CPU and if it got migrated afterwards it may decrease
581 	 * it on another CPU. Always updated under the runqueue lock:
582 	 */
583 	unsigned long nr_uninterruptible;
584 
585 	struct task_struct *curr, *idle, *stop;
586 	unsigned long next_balance;
587 	struct mm_struct *prev_mm;
588 
589 	unsigned int clock_skip_update;
590 	u64 clock;
591 	u64 clock_task;
592 
593 	atomic_t nr_iowait;
594 
595 #ifdef CONFIG_SMP
596 	struct root_domain *rd;
597 	struct sched_domain *sd;
598 
599 	unsigned long cpu_capacity;
600 
601 	unsigned char idle_balance;
602 	/* For active balancing */
603 	int post_schedule;
604 	int active_balance;
605 	int push_cpu;
606 	struct cpu_stop_work active_balance_work;
607 	/* cpu of this runqueue: */
608 	int cpu;
609 	int online;
610 
611 	struct list_head cfs_tasks;
612 
613 	u64 rt_avg;
614 	u64 age_stamp;
615 	u64 idle_stamp;
616 	u64 avg_idle;
617 
618 	/* This is used to determine avg_idle's max value */
619 	u64 max_idle_balance_cost;
620 #endif
621 
622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 	u64 prev_irq_time;
624 #endif
625 #ifdef CONFIG_PARAVIRT
626 	u64 prev_steal_time;
627 #endif
628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 	u64 prev_steal_time_rq;
630 #endif
631 
632 	/* calc_load related fields */
633 	unsigned long calc_load_update;
634 	long calc_load_active;
635 
636 #ifdef CONFIG_SCHED_HRTICK
637 #ifdef CONFIG_SMP
638 	int hrtick_csd_pending;
639 	struct call_single_data hrtick_csd;
640 #endif
641 	struct hrtimer hrtick_timer;
642 #endif
643 
644 #ifdef CONFIG_SCHEDSTATS
645 	/* latency stats */
646 	struct sched_info rq_sched_info;
647 	unsigned long long rq_cpu_time;
648 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649 
650 	/* sys_sched_yield() stats */
651 	unsigned int yld_count;
652 
653 	/* schedule() stats */
654 	unsigned int sched_count;
655 	unsigned int sched_goidle;
656 
657 	/* try_to_wake_up() stats */
658 	unsigned int ttwu_count;
659 	unsigned int ttwu_local;
660 #endif
661 
662 #ifdef CONFIG_SMP
663 	struct llist_head wake_list;
664 #endif
665 
666 #ifdef CONFIG_CPU_IDLE
667 	/* Must be inspected within a rcu lock section */
668 	struct cpuidle_state *idle_state;
669 #endif
670 };
671 
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 	return rq->cpu;
676 #else
677 	return 0;
678 #endif
679 }
680 
681 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
682 
683 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
684 #define this_rq()		this_cpu_ptr(&runqueues)
685 #define task_rq(p)		cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
687 #define raw_rq()		raw_cpu_ptr(&runqueues)
688 
689 static inline u64 __rq_clock_broken(struct rq *rq)
690 {
691 	return ACCESS_ONCE(rq->clock);
692 }
693 
694 static inline u64 rq_clock(struct rq *rq)
695 {
696 	lockdep_assert_held(&rq->lock);
697 	return rq->clock;
698 }
699 
700 static inline u64 rq_clock_task(struct rq *rq)
701 {
702 	lockdep_assert_held(&rq->lock);
703 	return rq->clock_task;
704 }
705 
706 #define RQCF_REQ_SKIP	0x01
707 #define RQCF_ACT_SKIP	0x02
708 
709 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
710 {
711 	lockdep_assert_held(&rq->lock);
712 	if (skip)
713 		rq->clock_skip_update |= RQCF_REQ_SKIP;
714 	else
715 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
716 }
717 
718 #ifdef CONFIG_NUMA
719 enum numa_topology_type {
720 	NUMA_DIRECT,
721 	NUMA_GLUELESS_MESH,
722 	NUMA_BACKPLANE,
723 };
724 extern enum numa_topology_type sched_numa_topology_type;
725 extern int sched_max_numa_distance;
726 extern bool find_numa_distance(int distance);
727 #endif
728 
729 #ifdef CONFIG_NUMA_BALANCING
730 /* The regions in numa_faults array from task_struct */
731 enum numa_faults_stats {
732 	NUMA_MEM = 0,
733 	NUMA_CPU,
734 	NUMA_MEMBUF,
735 	NUMA_CPUBUF
736 };
737 extern void sched_setnuma(struct task_struct *p, int node);
738 extern int migrate_task_to(struct task_struct *p, int cpu);
739 extern int migrate_swap(struct task_struct *, struct task_struct *);
740 #endif /* CONFIG_NUMA_BALANCING */
741 
742 #ifdef CONFIG_SMP
743 
744 extern void sched_ttwu_pending(void);
745 
746 #define rcu_dereference_check_sched_domain(p) \
747 	rcu_dereference_check((p), \
748 			      lockdep_is_held(&sched_domains_mutex))
749 
750 /*
751  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
752  * See detach_destroy_domains: synchronize_sched for details.
753  *
754  * The domain tree of any CPU may only be accessed from within
755  * preempt-disabled sections.
756  */
757 #define for_each_domain(cpu, __sd) \
758 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
759 			__sd; __sd = __sd->parent)
760 
761 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
762 
763 /**
764  * highest_flag_domain - Return highest sched_domain containing flag.
765  * @cpu:	The cpu whose highest level of sched domain is to
766  *		be returned.
767  * @flag:	The flag to check for the highest sched_domain
768  *		for the given cpu.
769  *
770  * Returns the highest sched_domain of a cpu which contains the given flag.
771  */
772 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
773 {
774 	struct sched_domain *sd, *hsd = NULL;
775 
776 	for_each_domain(cpu, sd) {
777 		if (!(sd->flags & flag))
778 			break;
779 		hsd = sd;
780 	}
781 
782 	return hsd;
783 }
784 
785 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
786 {
787 	struct sched_domain *sd;
788 
789 	for_each_domain(cpu, sd) {
790 		if (sd->flags & flag)
791 			break;
792 	}
793 
794 	return sd;
795 }
796 
797 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
798 DECLARE_PER_CPU(int, sd_llc_size);
799 DECLARE_PER_CPU(int, sd_llc_id);
800 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
801 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
802 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
803 
804 struct sched_group_capacity {
805 	atomic_t ref;
806 	/*
807 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
808 	 * for a single CPU.
809 	 */
810 	unsigned int capacity, capacity_orig;
811 	unsigned long next_update;
812 	int imbalance; /* XXX unrelated to capacity but shared group state */
813 	/*
814 	 * Number of busy cpus in this group.
815 	 */
816 	atomic_t nr_busy_cpus;
817 
818 	unsigned long cpumask[0]; /* iteration mask */
819 };
820 
821 struct sched_group {
822 	struct sched_group *next;	/* Must be a circular list */
823 	atomic_t ref;
824 
825 	unsigned int group_weight;
826 	struct sched_group_capacity *sgc;
827 
828 	/*
829 	 * The CPUs this group covers.
830 	 *
831 	 * NOTE: this field is variable length. (Allocated dynamically
832 	 * by attaching extra space to the end of the structure,
833 	 * depending on how many CPUs the kernel has booted up with)
834 	 */
835 	unsigned long cpumask[0];
836 };
837 
838 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
839 {
840 	return to_cpumask(sg->cpumask);
841 }
842 
843 /*
844  * cpumask masking which cpus in the group are allowed to iterate up the domain
845  * tree.
846  */
847 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
848 {
849 	return to_cpumask(sg->sgc->cpumask);
850 }
851 
852 /**
853  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
854  * @group: The group whose first cpu is to be returned.
855  */
856 static inline unsigned int group_first_cpu(struct sched_group *group)
857 {
858 	return cpumask_first(sched_group_cpus(group));
859 }
860 
861 extern int group_balance_cpu(struct sched_group *sg);
862 
863 #else
864 
865 static inline void sched_ttwu_pending(void) { }
866 
867 #endif /* CONFIG_SMP */
868 
869 #include "stats.h"
870 #include "auto_group.h"
871 
872 #ifdef CONFIG_CGROUP_SCHED
873 
874 /*
875  * Return the group to which this tasks belongs.
876  *
877  * We cannot use task_css() and friends because the cgroup subsystem
878  * changes that value before the cgroup_subsys::attach() method is called,
879  * therefore we cannot pin it and might observe the wrong value.
880  *
881  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
882  * core changes this before calling sched_move_task().
883  *
884  * Instead we use a 'copy' which is updated from sched_move_task() while
885  * holding both task_struct::pi_lock and rq::lock.
886  */
887 static inline struct task_group *task_group(struct task_struct *p)
888 {
889 	return p->sched_task_group;
890 }
891 
892 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
893 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
894 {
895 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
896 	struct task_group *tg = task_group(p);
897 #endif
898 
899 #ifdef CONFIG_FAIR_GROUP_SCHED
900 	p->se.cfs_rq = tg->cfs_rq[cpu];
901 	p->se.parent = tg->se[cpu];
902 #endif
903 
904 #ifdef CONFIG_RT_GROUP_SCHED
905 	p->rt.rt_rq  = tg->rt_rq[cpu];
906 	p->rt.parent = tg->rt_se[cpu];
907 #endif
908 }
909 
910 #else /* CONFIG_CGROUP_SCHED */
911 
912 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
913 static inline struct task_group *task_group(struct task_struct *p)
914 {
915 	return NULL;
916 }
917 
918 #endif /* CONFIG_CGROUP_SCHED */
919 
920 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
921 {
922 	set_task_rq(p, cpu);
923 #ifdef CONFIG_SMP
924 	/*
925 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
926 	 * successfuly executed on another CPU. We must ensure that updates of
927 	 * per-task data have been completed by this moment.
928 	 */
929 	smp_wmb();
930 	task_thread_info(p)->cpu = cpu;
931 	p->wake_cpu = cpu;
932 #endif
933 }
934 
935 /*
936  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
937  */
938 #ifdef CONFIG_SCHED_DEBUG
939 # include <linux/static_key.h>
940 # define const_debug __read_mostly
941 #else
942 # define const_debug const
943 #endif
944 
945 extern const_debug unsigned int sysctl_sched_features;
946 
947 #define SCHED_FEAT(name, enabled)	\
948 	__SCHED_FEAT_##name ,
949 
950 enum {
951 #include "features.h"
952 	__SCHED_FEAT_NR,
953 };
954 
955 #undef SCHED_FEAT
956 
957 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
958 #define SCHED_FEAT(name, enabled)					\
959 static __always_inline bool static_branch_##name(struct static_key *key) \
960 {									\
961 	return static_key_##enabled(key);				\
962 }
963 
964 #include "features.h"
965 
966 #undef SCHED_FEAT
967 
968 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
969 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
970 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
971 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
972 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
973 
974 #ifdef CONFIG_NUMA_BALANCING
975 #define sched_feat_numa(x) sched_feat(x)
976 #ifdef CONFIG_SCHED_DEBUG
977 #define numabalancing_enabled sched_feat_numa(NUMA)
978 #else
979 extern bool numabalancing_enabled;
980 #endif /* CONFIG_SCHED_DEBUG */
981 #else
982 #define sched_feat_numa(x) (0)
983 #define numabalancing_enabled (0)
984 #endif /* CONFIG_NUMA_BALANCING */
985 
986 static inline u64 global_rt_period(void)
987 {
988 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
989 }
990 
991 static inline u64 global_rt_runtime(void)
992 {
993 	if (sysctl_sched_rt_runtime < 0)
994 		return RUNTIME_INF;
995 
996 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
997 }
998 
999 static inline int task_current(struct rq *rq, struct task_struct *p)
1000 {
1001 	return rq->curr == p;
1002 }
1003 
1004 static inline int task_running(struct rq *rq, struct task_struct *p)
1005 {
1006 #ifdef CONFIG_SMP
1007 	return p->on_cpu;
1008 #else
1009 	return task_current(rq, p);
1010 #endif
1011 }
1012 
1013 static inline int task_on_rq_queued(struct task_struct *p)
1014 {
1015 	return p->on_rq == TASK_ON_RQ_QUEUED;
1016 }
1017 
1018 static inline int task_on_rq_migrating(struct task_struct *p)
1019 {
1020 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1021 }
1022 
1023 #ifndef prepare_arch_switch
1024 # define prepare_arch_switch(next)	do { } while (0)
1025 #endif
1026 #ifndef finish_arch_switch
1027 # define finish_arch_switch(prev)	do { } while (0)
1028 #endif
1029 #ifndef finish_arch_post_lock_switch
1030 # define finish_arch_post_lock_switch()	do { } while (0)
1031 #endif
1032 
1033 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1034 {
1035 #ifdef CONFIG_SMP
1036 	/*
1037 	 * We can optimise this out completely for !SMP, because the
1038 	 * SMP rebalancing from interrupt is the only thing that cares
1039 	 * here.
1040 	 */
1041 	next->on_cpu = 1;
1042 #endif
1043 }
1044 
1045 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1046 {
1047 #ifdef CONFIG_SMP
1048 	/*
1049 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1050 	 * We must ensure this doesn't happen until the switch is completely
1051 	 * finished.
1052 	 */
1053 	smp_wmb();
1054 	prev->on_cpu = 0;
1055 #endif
1056 #ifdef CONFIG_DEBUG_SPINLOCK
1057 	/* this is a valid case when another task releases the spinlock */
1058 	rq->lock.owner = current;
1059 #endif
1060 	/*
1061 	 * If we are tracking spinlock dependencies then we have to
1062 	 * fix up the runqueue lock - which gets 'carried over' from
1063 	 * prev into current:
1064 	 */
1065 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1066 
1067 	raw_spin_unlock_irq(&rq->lock);
1068 }
1069 
1070 /*
1071  * wake flags
1072  */
1073 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1074 #define WF_FORK		0x02		/* child wakeup after fork */
1075 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1076 
1077 /*
1078  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1079  * of tasks with abnormal "nice" values across CPUs the contribution that
1080  * each task makes to its run queue's load is weighted according to its
1081  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1082  * scaled version of the new time slice allocation that they receive on time
1083  * slice expiry etc.
1084  */
1085 
1086 #define WEIGHT_IDLEPRIO                3
1087 #define WMULT_IDLEPRIO         1431655765
1088 
1089 /*
1090  * Nice levels are multiplicative, with a gentle 10% change for every
1091  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1092  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1093  * that remained on nice 0.
1094  *
1095  * The "10% effect" is relative and cumulative: from _any_ nice level,
1096  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1097  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1098  * If a task goes up by ~10% and another task goes down by ~10% then
1099  * the relative distance between them is ~25%.)
1100  */
1101 static const int prio_to_weight[40] = {
1102  /* -20 */     88761,     71755,     56483,     46273,     36291,
1103  /* -15 */     29154,     23254,     18705,     14949,     11916,
1104  /* -10 */      9548,      7620,      6100,      4904,      3906,
1105  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1106  /*   0 */      1024,       820,       655,       526,       423,
1107  /*   5 */       335,       272,       215,       172,       137,
1108  /*  10 */       110,        87,        70,        56,        45,
1109  /*  15 */        36,        29,        23,        18,        15,
1110 };
1111 
1112 /*
1113  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1114  *
1115  * In cases where the weight does not change often, we can use the
1116  * precalculated inverse to speed up arithmetics by turning divisions
1117  * into multiplications:
1118  */
1119 static const u32 prio_to_wmult[40] = {
1120  /* -20 */     48388,     59856,     76040,     92818,    118348,
1121  /* -15 */    147320,    184698,    229616,    287308,    360437,
1122  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1123  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1124  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1125  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1126  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1127  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1128 };
1129 
1130 #define ENQUEUE_WAKEUP		1
1131 #define ENQUEUE_HEAD		2
1132 #ifdef CONFIG_SMP
1133 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1134 #else
1135 #define ENQUEUE_WAKING		0
1136 #endif
1137 #define ENQUEUE_REPLENISH	8
1138 
1139 #define DEQUEUE_SLEEP		1
1140 
1141 #define RETRY_TASK		((void *)-1UL)
1142 
1143 struct sched_class {
1144 	const struct sched_class *next;
1145 
1146 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1147 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1148 	void (*yield_task) (struct rq *rq);
1149 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1150 
1151 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1152 
1153 	/*
1154 	 * It is the responsibility of the pick_next_task() method that will
1155 	 * return the next task to call put_prev_task() on the @prev task or
1156 	 * something equivalent.
1157 	 *
1158 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1159 	 * tasks.
1160 	 */
1161 	struct task_struct * (*pick_next_task) (struct rq *rq,
1162 						struct task_struct *prev);
1163 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1164 
1165 #ifdef CONFIG_SMP
1166 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1167 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1168 
1169 	void (*post_schedule) (struct rq *this_rq);
1170 	void (*task_waking) (struct task_struct *task);
1171 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1172 
1173 	void (*set_cpus_allowed)(struct task_struct *p,
1174 				 const struct cpumask *newmask);
1175 
1176 	void (*rq_online)(struct rq *rq);
1177 	void (*rq_offline)(struct rq *rq);
1178 #endif
1179 
1180 	void (*set_curr_task) (struct rq *rq);
1181 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1182 	void (*task_fork) (struct task_struct *p);
1183 	void (*task_dead) (struct task_struct *p);
1184 
1185 	/*
1186 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1187 	 * cannot assume the switched_from/switched_to pair is serliazed by
1188 	 * rq->lock. They are however serialized by p->pi_lock.
1189 	 */
1190 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1191 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1192 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1193 			     int oldprio);
1194 
1195 	unsigned int (*get_rr_interval) (struct rq *rq,
1196 					 struct task_struct *task);
1197 
1198 	void (*update_curr) (struct rq *rq);
1199 
1200 #ifdef CONFIG_FAIR_GROUP_SCHED
1201 	void (*task_move_group) (struct task_struct *p, int on_rq);
1202 #endif
1203 };
1204 
1205 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1206 {
1207 	prev->sched_class->put_prev_task(rq, prev);
1208 }
1209 
1210 #define sched_class_highest (&stop_sched_class)
1211 #define for_each_class(class) \
1212    for (class = sched_class_highest; class; class = class->next)
1213 
1214 extern const struct sched_class stop_sched_class;
1215 extern const struct sched_class dl_sched_class;
1216 extern const struct sched_class rt_sched_class;
1217 extern const struct sched_class fair_sched_class;
1218 extern const struct sched_class idle_sched_class;
1219 
1220 
1221 #ifdef CONFIG_SMP
1222 
1223 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1224 
1225 extern void trigger_load_balance(struct rq *rq);
1226 
1227 extern void idle_enter_fair(struct rq *this_rq);
1228 extern void idle_exit_fair(struct rq *this_rq);
1229 
1230 #else
1231 
1232 static inline void idle_enter_fair(struct rq *rq) { }
1233 static inline void idle_exit_fair(struct rq *rq) { }
1234 
1235 #endif
1236 
1237 #ifdef CONFIG_CPU_IDLE
1238 static inline void idle_set_state(struct rq *rq,
1239 				  struct cpuidle_state *idle_state)
1240 {
1241 	rq->idle_state = idle_state;
1242 }
1243 
1244 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1245 {
1246 	WARN_ON(!rcu_read_lock_held());
1247 	return rq->idle_state;
1248 }
1249 #else
1250 static inline void idle_set_state(struct rq *rq,
1251 				  struct cpuidle_state *idle_state)
1252 {
1253 }
1254 
1255 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1256 {
1257 	return NULL;
1258 }
1259 #endif
1260 
1261 extern void sysrq_sched_debug_show(void);
1262 extern void sched_init_granularity(void);
1263 extern void update_max_interval(void);
1264 
1265 extern void init_sched_dl_class(void);
1266 extern void init_sched_rt_class(void);
1267 extern void init_sched_fair_class(void);
1268 extern void init_sched_dl_class(void);
1269 
1270 extern void resched_curr(struct rq *rq);
1271 extern void resched_cpu(int cpu);
1272 
1273 extern struct rt_bandwidth def_rt_bandwidth;
1274 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1275 
1276 extern struct dl_bandwidth def_dl_bandwidth;
1277 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1278 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1279 
1280 unsigned long to_ratio(u64 period, u64 runtime);
1281 
1282 extern void update_idle_cpu_load(struct rq *this_rq);
1283 
1284 extern void init_task_runnable_average(struct task_struct *p);
1285 
1286 static inline void add_nr_running(struct rq *rq, unsigned count)
1287 {
1288 	unsigned prev_nr = rq->nr_running;
1289 
1290 	rq->nr_running = prev_nr + count;
1291 
1292 	if (prev_nr < 2 && rq->nr_running >= 2) {
1293 #ifdef CONFIG_SMP
1294 		if (!rq->rd->overload)
1295 			rq->rd->overload = true;
1296 #endif
1297 
1298 #ifdef CONFIG_NO_HZ_FULL
1299 		if (tick_nohz_full_cpu(rq->cpu)) {
1300 			/*
1301 			 * Tick is needed if more than one task runs on a CPU.
1302 			 * Send the target an IPI to kick it out of nohz mode.
1303 			 *
1304 			 * We assume that IPI implies full memory barrier and the
1305 			 * new value of rq->nr_running is visible on reception
1306 			 * from the target.
1307 			 */
1308 			tick_nohz_full_kick_cpu(rq->cpu);
1309 		}
1310 #endif
1311 	}
1312 }
1313 
1314 static inline void sub_nr_running(struct rq *rq, unsigned count)
1315 {
1316 	rq->nr_running -= count;
1317 }
1318 
1319 static inline void rq_last_tick_reset(struct rq *rq)
1320 {
1321 #ifdef CONFIG_NO_HZ_FULL
1322 	rq->last_sched_tick = jiffies;
1323 #endif
1324 }
1325 
1326 extern void update_rq_clock(struct rq *rq);
1327 
1328 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1329 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1330 
1331 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1332 
1333 extern const_debug unsigned int sysctl_sched_time_avg;
1334 extern const_debug unsigned int sysctl_sched_nr_migrate;
1335 extern const_debug unsigned int sysctl_sched_migration_cost;
1336 
1337 static inline u64 sched_avg_period(void)
1338 {
1339 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1340 }
1341 
1342 #ifdef CONFIG_SCHED_HRTICK
1343 
1344 /*
1345  * Use hrtick when:
1346  *  - enabled by features
1347  *  - hrtimer is actually high res
1348  */
1349 static inline int hrtick_enabled(struct rq *rq)
1350 {
1351 	if (!sched_feat(HRTICK))
1352 		return 0;
1353 	if (!cpu_active(cpu_of(rq)))
1354 		return 0;
1355 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1356 }
1357 
1358 void hrtick_start(struct rq *rq, u64 delay);
1359 
1360 #else
1361 
1362 static inline int hrtick_enabled(struct rq *rq)
1363 {
1364 	return 0;
1365 }
1366 
1367 #endif /* CONFIG_SCHED_HRTICK */
1368 
1369 #ifdef CONFIG_SMP
1370 extern void sched_avg_update(struct rq *rq);
1371 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1372 {
1373 	rq->rt_avg += rt_delta;
1374 	sched_avg_update(rq);
1375 }
1376 #else
1377 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1378 static inline void sched_avg_update(struct rq *rq) { }
1379 #endif
1380 
1381 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1382 
1383 /*
1384  * __task_rq_lock - lock the rq @p resides on.
1385  */
1386 static inline struct rq *__task_rq_lock(struct task_struct *p)
1387 	__acquires(rq->lock)
1388 {
1389 	struct rq *rq;
1390 
1391 	lockdep_assert_held(&p->pi_lock);
1392 
1393 	for (;;) {
1394 		rq = task_rq(p);
1395 		raw_spin_lock(&rq->lock);
1396 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1397 			return rq;
1398 		raw_spin_unlock(&rq->lock);
1399 
1400 		while (unlikely(task_on_rq_migrating(p)))
1401 			cpu_relax();
1402 	}
1403 }
1404 
1405 /*
1406  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1407  */
1408 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1409 	__acquires(p->pi_lock)
1410 	__acquires(rq->lock)
1411 {
1412 	struct rq *rq;
1413 
1414 	for (;;) {
1415 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1416 		rq = task_rq(p);
1417 		raw_spin_lock(&rq->lock);
1418 		/*
1419 		 *	move_queued_task()		task_rq_lock()
1420 		 *
1421 		 *	ACQUIRE (rq->lock)
1422 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1423 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1424 		 *	[S] ->cpu = new_cpu		[L] task_rq()
1425 		 *					[L] ->on_rq
1426 		 *	RELEASE (rq->lock)
1427 		 *
1428 		 * If we observe the old cpu in task_rq_lock, the acquire of
1429 		 * the old rq->lock will fully serialize against the stores.
1430 		 *
1431 		 * If we observe the new cpu in task_rq_lock, the acquire will
1432 		 * pair with the WMB to ensure we must then also see migrating.
1433 		 */
1434 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1435 			return rq;
1436 		raw_spin_unlock(&rq->lock);
1437 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1438 
1439 		while (unlikely(task_on_rq_migrating(p)))
1440 			cpu_relax();
1441 	}
1442 }
1443 
1444 static inline void __task_rq_unlock(struct rq *rq)
1445 	__releases(rq->lock)
1446 {
1447 	raw_spin_unlock(&rq->lock);
1448 }
1449 
1450 static inline void
1451 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1452 	__releases(rq->lock)
1453 	__releases(p->pi_lock)
1454 {
1455 	raw_spin_unlock(&rq->lock);
1456 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1457 }
1458 
1459 #ifdef CONFIG_SMP
1460 #ifdef CONFIG_PREEMPT
1461 
1462 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1463 
1464 /*
1465  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1466  * way at the expense of forcing extra atomic operations in all
1467  * invocations.  This assures that the double_lock is acquired using the
1468  * same underlying policy as the spinlock_t on this architecture, which
1469  * reduces latency compared to the unfair variant below.  However, it
1470  * also adds more overhead and therefore may reduce throughput.
1471  */
1472 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1473 	__releases(this_rq->lock)
1474 	__acquires(busiest->lock)
1475 	__acquires(this_rq->lock)
1476 {
1477 	raw_spin_unlock(&this_rq->lock);
1478 	double_rq_lock(this_rq, busiest);
1479 
1480 	return 1;
1481 }
1482 
1483 #else
1484 /*
1485  * Unfair double_lock_balance: Optimizes throughput at the expense of
1486  * latency by eliminating extra atomic operations when the locks are
1487  * already in proper order on entry.  This favors lower cpu-ids and will
1488  * grant the double lock to lower cpus over higher ids under contention,
1489  * regardless of entry order into the function.
1490  */
1491 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1492 	__releases(this_rq->lock)
1493 	__acquires(busiest->lock)
1494 	__acquires(this_rq->lock)
1495 {
1496 	int ret = 0;
1497 
1498 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1499 		if (busiest < this_rq) {
1500 			raw_spin_unlock(&this_rq->lock);
1501 			raw_spin_lock(&busiest->lock);
1502 			raw_spin_lock_nested(&this_rq->lock,
1503 					      SINGLE_DEPTH_NESTING);
1504 			ret = 1;
1505 		} else
1506 			raw_spin_lock_nested(&busiest->lock,
1507 					      SINGLE_DEPTH_NESTING);
1508 	}
1509 	return ret;
1510 }
1511 
1512 #endif /* CONFIG_PREEMPT */
1513 
1514 /*
1515  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1516  */
1517 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1518 {
1519 	if (unlikely(!irqs_disabled())) {
1520 		/* printk() doesn't work good under rq->lock */
1521 		raw_spin_unlock(&this_rq->lock);
1522 		BUG_ON(1);
1523 	}
1524 
1525 	return _double_lock_balance(this_rq, busiest);
1526 }
1527 
1528 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1529 	__releases(busiest->lock)
1530 {
1531 	raw_spin_unlock(&busiest->lock);
1532 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1533 }
1534 
1535 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1536 {
1537 	if (l1 > l2)
1538 		swap(l1, l2);
1539 
1540 	spin_lock(l1);
1541 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1542 }
1543 
1544 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1545 {
1546 	if (l1 > l2)
1547 		swap(l1, l2);
1548 
1549 	spin_lock_irq(l1);
1550 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1551 }
1552 
1553 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1554 {
1555 	if (l1 > l2)
1556 		swap(l1, l2);
1557 
1558 	raw_spin_lock(l1);
1559 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560 }
1561 
1562 /*
1563  * double_rq_lock - safely lock two runqueues
1564  *
1565  * Note this does not disable interrupts like task_rq_lock,
1566  * you need to do so manually before calling.
1567  */
1568 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1569 	__acquires(rq1->lock)
1570 	__acquires(rq2->lock)
1571 {
1572 	BUG_ON(!irqs_disabled());
1573 	if (rq1 == rq2) {
1574 		raw_spin_lock(&rq1->lock);
1575 		__acquire(rq2->lock);	/* Fake it out ;) */
1576 	} else {
1577 		if (rq1 < rq2) {
1578 			raw_spin_lock(&rq1->lock);
1579 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1580 		} else {
1581 			raw_spin_lock(&rq2->lock);
1582 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1583 		}
1584 	}
1585 }
1586 
1587 /*
1588  * double_rq_unlock - safely unlock two runqueues
1589  *
1590  * Note this does not restore interrupts like task_rq_unlock,
1591  * you need to do so manually after calling.
1592  */
1593 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1594 	__releases(rq1->lock)
1595 	__releases(rq2->lock)
1596 {
1597 	raw_spin_unlock(&rq1->lock);
1598 	if (rq1 != rq2)
1599 		raw_spin_unlock(&rq2->lock);
1600 	else
1601 		__release(rq2->lock);
1602 }
1603 
1604 #else /* CONFIG_SMP */
1605 
1606 /*
1607  * double_rq_lock - safely lock two runqueues
1608  *
1609  * Note this does not disable interrupts like task_rq_lock,
1610  * you need to do so manually before calling.
1611  */
1612 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1613 	__acquires(rq1->lock)
1614 	__acquires(rq2->lock)
1615 {
1616 	BUG_ON(!irqs_disabled());
1617 	BUG_ON(rq1 != rq2);
1618 	raw_spin_lock(&rq1->lock);
1619 	__acquire(rq2->lock);	/* Fake it out ;) */
1620 }
1621 
1622 /*
1623  * double_rq_unlock - safely unlock two runqueues
1624  *
1625  * Note this does not restore interrupts like task_rq_unlock,
1626  * you need to do so manually after calling.
1627  */
1628 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629 	__releases(rq1->lock)
1630 	__releases(rq2->lock)
1631 {
1632 	BUG_ON(rq1 != rq2);
1633 	raw_spin_unlock(&rq1->lock);
1634 	__release(rq2->lock);
1635 }
1636 
1637 #endif
1638 
1639 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1640 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1641 extern void print_cfs_stats(struct seq_file *m, int cpu);
1642 extern void print_rt_stats(struct seq_file *m, int cpu);
1643 extern void print_dl_stats(struct seq_file *m, int cpu);
1644 
1645 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1646 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1647 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1648 
1649 extern void cfs_bandwidth_usage_inc(void);
1650 extern void cfs_bandwidth_usage_dec(void);
1651 
1652 #ifdef CONFIG_NO_HZ_COMMON
1653 enum rq_nohz_flag_bits {
1654 	NOHZ_TICK_STOPPED,
1655 	NOHZ_BALANCE_KICK,
1656 };
1657 
1658 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1659 #endif
1660 
1661 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1662 
1663 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1664 DECLARE_PER_CPU(u64, cpu_softirq_time);
1665 
1666 #ifndef CONFIG_64BIT
1667 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1668 
1669 static inline void irq_time_write_begin(void)
1670 {
1671 	__this_cpu_inc(irq_time_seq.sequence);
1672 	smp_wmb();
1673 }
1674 
1675 static inline void irq_time_write_end(void)
1676 {
1677 	smp_wmb();
1678 	__this_cpu_inc(irq_time_seq.sequence);
1679 }
1680 
1681 static inline u64 irq_time_read(int cpu)
1682 {
1683 	u64 irq_time;
1684 	unsigned seq;
1685 
1686 	do {
1687 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1688 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1689 			   per_cpu(cpu_hardirq_time, cpu);
1690 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1691 
1692 	return irq_time;
1693 }
1694 #else /* CONFIG_64BIT */
1695 static inline void irq_time_write_begin(void)
1696 {
1697 }
1698 
1699 static inline void irq_time_write_end(void)
1700 {
1701 }
1702 
1703 static inline u64 irq_time_read(int cpu)
1704 {
1705 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1706 }
1707 #endif /* CONFIG_64BIT */
1708 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1709