xref: /openbmc/linux/kernel/sched/sched.h (revision 867a0e05)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11 
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15 
16 struct rq;
17 struct cpuidle_state;
18 
19 /* task_struct::on_rq states: */
20 #define TASK_ON_RQ_QUEUED	1
21 #define TASK_ON_RQ_MIGRATING	2
22 
23 extern __read_mostly int scheduler_running;
24 
25 extern unsigned long calc_load_update;
26 extern atomic_long_t calc_load_tasks;
27 
28 extern long calc_load_fold_active(struct rq *this_rq);
29 extern void update_cpu_load_active(struct rq *this_rq);
30 
31 /*
32  * Helpers for converting nanosecond timing to jiffy resolution
33  */
34 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35 
36 /*
37  * Increase resolution of nice-level calculations for 64-bit architectures.
38  * The extra resolution improves shares distribution and load balancing of
39  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40  * hierarchies, especially on larger systems. This is not a user-visible change
41  * and does not change the user-interface for setting shares/weights.
42  *
43  * We increase resolution only if we have enough bits to allow this increased
44  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46  * increased costs.
47  */
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
49 # define SCHED_LOAD_RESOLUTION	10
50 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
52 #else
53 # define SCHED_LOAD_RESOLUTION	0
54 # define scale_load(w)		(w)
55 # define scale_load_down(w)	(w)
56 #endif
57 
58 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
60 
61 #define NICE_0_LOAD		SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
63 
64 /*
65  * Single value that decides SCHED_DEADLINE internal math precision.
66  * 10 -> just above 1us
67  * 9  -> just above 0.5us
68  */
69 #define DL_SCALE (10)
70 
71 /*
72  * These are the 'tuning knobs' of the scheduler:
73  */
74 
75 /*
76  * single value that denotes runtime == period, ie unlimited time.
77  */
78 #define RUNTIME_INF	((u64)~0ULL)
79 
80 static inline int fair_policy(int policy)
81 {
82 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83 }
84 
85 static inline int rt_policy(int policy)
86 {
87 	return policy == SCHED_FIFO || policy == SCHED_RR;
88 }
89 
90 static inline int dl_policy(int policy)
91 {
92 	return policy == SCHED_DEADLINE;
93 }
94 
95 static inline int task_has_rt_policy(struct task_struct *p)
96 {
97 	return rt_policy(p->policy);
98 }
99 
100 static inline int task_has_dl_policy(struct task_struct *p)
101 {
102 	return dl_policy(p->policy);
103 }
104 
105 static inline bool dl_time_before(u64 a, u64 b)
106 {
107 	return (s64)(a - b) < 0;
108 }
109 
110 /*
111  * Tells if entity @a should preempt entity @b.
112  */
113 static inline bool
114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
115 {
116 	return dl_time_before(a->deadline, b->deadline);
117 }
118 
119 /*
120  * This is the priority-queue data structure of the RT scheduling class:
121  */
122 struct rt_prio_array {
123 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 	struct list_head queue[MAX_RT_PRIO];
125 };
126 
127 struct rt_bandwidth {
128 	/* nests inside the rq lock: */
129 	raw_spinlock_t		rt_runtime_lock;
130 	ktime_t			rt_period;
131 	u64			rt_runtime;
132 	struct hrtimer		rt_period_timer;
133 };
134 
135 void __dl_clear_params(struct task_struct *p);
136 
137 /*
138  * To keep the bandwidth of -deadline tasks and groups under control
139  * we need some place where:
140  *  - store the maximum -deadline bandwidth of the system (the group);
141  *  - cache the fraction of that bandwidth that is currently allocated.
142  *
143  * This is all done in the data structure below. It is similar to the
144  * one used for RT-throttling (rt_bandwidth), with the main difference
145  * that, since here we are only interested in admission control, we
146  * do not decrease any runtime while the group "executes", neither we
147  * need a timer to replenish it.
148  *
149  * With respect to SMP, the bandwidth is given on a per-CPU basis,
150  * meaning that:
151  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152  *  - dl_total_bw array contains, in the i-eth element, the currently
153  *    allocated bandwidth on the i-eth CPU.
154  * Moreover, groups consume bandwidth on each CPU, while tasks only
155  * consume bandwidth on the CPU they're running on.
156  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157  * that will be shown the next time the proc or cgroup controls will
158  * be red. It on its turn can be changed by writing on its own
159  * control.
160  */
161 struct dl_bandwidth {
162 	raw_spinlock_t dl_runtime_lock;
163 	u64 dl_runtime;
164 	u64 dl_period;
165 };
166 
167 static inline int dl_bandwidth_enabled(void)
168 {
169 	return sysctl_sched_rt_runtime >= 0;
170 }
171 
172 extern struct dl_bw *dl_bw_of(int i);
173 
174 struct dl_bw {
175 	raw_spinlock_t lock;
176 	u64 bw, total_bw;
177 };
178 
179 static inline
180 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
181 {
182 	dl_b->total_bw -= tsk_bw;
183 }
184 
185 static inline
186 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
187 {
188 	dl_b->total_bw += tsk_bw;
189 }
190 
191 static inline
192 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
193 {
194 	return dl_b->bw != -1 &&
195 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
196 }
197 
198 extern struct mutex sched_domains_mutex;
199 
200 #ifdef CONFIG_CGROUP_SCHED
201 
202 #include <linux/cgroup.h>
203 
204 struct cfs_rq;
205 struct rt_rq;
206 
207 extern struct list_head task_groups;
208 
209 struct cfs_bandwidth {
210 #ifdef CONFIG_CFS_BANDWIDTH
211 	raw_spinlock_t lock;
212 	ktime_t period;
213 	u64 quota, runtime;
214 	s64 hierarchical_quota;
215 	u64 runtime_expires;
216 
217 	int idle, timer_active;
218 	struct hrtimer period_timer, slack_timer;
219 	struct list_head throttled_cfs_rq;
220 
221 	/* statistics */
222 	int nr_periods, nr_throttled;
223 	u64 throttled_time;
224 #endif
225 };
226 
227 /* task group related information */
228 struct task_group {
229 	struct cgroup_subsys_state css;
230 
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 	/* schedulable entities of this group on each cpu */
233 	struct sched_entity **se;
234 	/* runqueue "owned" by this group on each cpu */
235 	struct cfs_rq **cfs_rq;
236 	unsigned long shares;
237 
238 #ifdef	CONFIG_SMP
239 	atomic_long_t load_avg;
240 	atomic_t runnable_avg;
241 #endif
242 #endif
243 
244 #ifdef CONFIG_RT_GROUP_SCHED
245 	struct sched_rt_entity **rt_se;
246 	struct rt_rq **rt_rq;
247 
248 	struct rt_bandwidth rt_bandwidth;
249 #endif
250 
251 	struct rcu_head rcu;
252 	struct list_head list;
253 
254 	struct task_group *parent;
255 	struct list_head siblings;
256 	struct list_head children;
257 
258 #ifdef CONFIG_SCHED_AUTOGROUP
259 	struct autogroup *autogroup;
260 #endif
261 
262 	struct cfs_bandwidth cfs_bandwidth;
263 };
264 
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
267 
268 /*
269  * A weight of 0 or 1 can cause arithmetics problems.
270  * A weight of a cfs_rq is the sum of weights of which entities
271  * are queued on this cfs_rq, so a weight of a entity should not be
272  * too large, so as the shares value of a task group.
273  * (The default weight is 1024 - so there's no practical
274  *  limitation from this.)
275  */
276 #define MIN_SHARES	(1UL <<  1)
277 #define MAX_SHARES	(1UL << 18)
278 #endif
279 
280 typedef int (*tg_visitor)(struct task_group *, void *);
281 
282 extern int walk_tg_tree_from(struct task_group *from,
283 			     tg_visitor down, tg_visitor up, void *data);
284 
285 /*
286  * Iterate the full tree, calling @down when first entering a node and @up when
287  * leaving it for the final time.
288  *
289  * Caller must hold rcu_lock or sufficient equivalent.
290  */
291 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
292 {
293 	return walk_tg_tree_from(&root_task_group, down, up, data);
294 }
295 
296 extern int tg_nop(struct task_group *tg, void *data);
297 
298 extern void free_fair_sched_group(struct task_group *tg);
299 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 			struct sched_entity *se, int cpu,
303 			struct sched_entity *parent);
304 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
306 
307 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
308 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
309 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
310 
311 extern void free_rt_sched_group(struct task_group *tg);
312 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 		struct sched_rt_entity *rt_se, int cpu,
315 		struct sched_rt_entity *parent);
316 
317 extern struct task_group *sched_create_group(struct task_group *parent);
318 extern void sched_online_group(struct task_group *tg,
319 			       struct task_group *parent);
320 extern void sched_destroy_group(struct task_group *tg);
321 extern void sched_offline_group(struct task_group *tg);
322 
323 extern void sched_move_task(struct task_struct *tsk);
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327 #endif
328 
329 #else /* CONFIG_CGROUP_SCHED */
330 
331 struct cfs_bandwidth { };
332 
333 #endif	/* CONFIG_CGROUP_SCHED */
334 
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 	struct load_weight load;
338 	unsigned int nr_running, h_nr_running;
339 
340 	u64 exec_clock;
341 	u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 	u64 min_vruntime_copy;
344 #endif
345 
346 	struct rb_root tasks_timeline;
347 	struct rb_node *rb_leftmost;
348 
349 	/*
350 	 * 'curr' points to currently running entity on this cfs_rq.
351 	 * It is set to NULL otherwise (i.e when none are currently running).
352 	 */
353 	struct sched_entity *curr, *next, *last, *skip;
354 
355 #ifdef	CONFIG_SCHED_DEBUG
356 	unsigned int nr_spread_over;
357 #endif
358 
359 #ifdef CONFIG_SMP
360 	/*
361 	 * CFS Load tracking
362 	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 	 * This allows for the description of both thread and group usage (in
364 	 * the FAIR_GROUP_SCHED case).
365 	 */
366 	unsigned long runnable_load_avg, blocked_load_avg;
367 	atomic64_t decay_counter;
368 	u64 last_decay;
369 	atomic_long_t removed_load;
370 
371 #ifdef CONFIG_FAIR_GROUP_SCHED
372 	/* Required to track per-cpu representation of a task_group */
373 	u32 tg_runnable_contrib;
374 	unsigned long tg_load_contrib;
375 
376 	/*
377 	 *   h_load = weight * f(tg)
378 	 *
379 	 * Where f(tg) is the recursive weight fraction assigned to
380 	 * this group.
381 	 */
382 	unsigned long h_load;
383 	u64 last_h_load_update;
384 	struct sched_entity *h_load_next;
385 #endif /* CONFIG_FAIR_GROUP_SCHED */
386 #endif /* CONFIG_SMP */
387 
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
390 
391 	/*
392 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 	 * (like users, containers etc.)
395 	 *
396 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 	 * list is used during load balance.
398 	 */
399 	int on_list;
400 	struct list_head leaf_cfs_rq_list;
401 	struct task_group *tg;	/* group that "owns" this runqueue */
402 
403 #ifdef CONFIG_CFS_BANDWIDTH
404 	int runtime_enabled;
405 	u64 runtime_expires;
406 	s64 runtime_remaining;
407 
408 	u64 throttled_clock, throttled_clock_task;
409 	u64 throttled_clock_task_time;
410 	int throttled, throttle_count;
411 	struct list_head throttled_list;
412 #endif /* CONFIG_CFS_BANDWIDTH */
413 #endif /* CONFIG_FAIR_GROUP_SCHED */
414 };
415 
416 static inline int rt_bandwidth_enabled(void)
417 {
418 	return sysctl_sched_rt_runtime >= 0;
419 }
420 
421 /* Real-Time classes' related field in a runqueue: */
422 struct rt_rq {
423 	struct rt_prio_array active;
424 	unsigned int rt_nr_running;
425 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 	struct {
427 		int curr; /* highest queued rt task prio */
428 #ifdef CONFIG_SMP
429 		int next; /* next highest */
430 #endif
431 	} highest_prio;
432 #endif
433 #ifdef CONFIG_SMP
434 	unsigned long rt_nr_migratory;
435 	unsigned long rt_nr_total;
436 	int overloaded;
437 	struct plist_head pushable_tasks;
438 #endif
439 	int rt_queued;
440 
441 	int rt_throttled;
442 	u64 rt_time;
443 	u64 rt_runtime;
444 	/* Nests inside the rq lock: */
445 	raw_spinlock_t rt_runtime_lock;
446 
447 #ifdef CONFIG_RT_GROUP_SCHED
448 	unsigned long rt_nr_boosted;
449 
450 	struct rq *rq;
451 	struct task_group *tg;
452 #endif
453 };
454 
455 /* Deadline class' related fields in a runqueue */
456 struct dl_rq {
457 	/* runqueue is an rbtree, ordered by deadline */
458 	struct rb_root rb_root;
459 	struct rb_node *rb_leftmost;
460 
461 	unsigned long dl_nr_running;
462 
463 #ifdef CONFIG_SMP
464 	/*
465 	 * Deadline values of the currently executing and the
466 	 * earliest ready task on this rq. Caching these facilitates
467 	 * the decision wether or not a ready but not running task
468 	 * should migrate somewhere else.
469 	 */
470 	struct {
471 		u64 curr;
472 		u64 next;
473 	} earliest_dl;
474 
475 	unsigned long dl_nr_migratory;
476 	int overloaded;
477 
478 	/*
479 	 * Tasks on this rq that can be pushed away. They are kept in
480 	 * an rb-tree, ordered by tasks' deadlines, with caching
481 	 * of the leftmost (earliest deadline) element.
482 	 */
483 	struct rb_root pushable_dl_tasks_root;
484 	struct rb_node *pushable_dl_tasks_leftmost;
485 #else
486 	struct dl_bw dl_bw;
487 #endif
488 };
489 
490 #ifdef CONFIG_SMP
491 
492 /*
493  * We add the notion of a root-domain which will be used to define per-domain
494  * variables. Each exclusive cpuset essentially defines an island domain by
495  * fully partitioning the member cpus from any other cpuset. Whenever a new
496  * exclusive cpuset is created, we also create and attach a new root-domain
497  * object.
498  *
499  */
500 struct root_domain {
501 	atomic_t refcount;
502 	atomic_t rto_count;
503 	struct rcu_head rcu;
504 	cpumask_var_t span;
505 	cpumask_var_t online;
506 
507 	/* Indicate more than one runnable task for any CPU */
508 	bool overload;
509 
510 	/*
511 	 * The bit corresponding to a CPU gets set here if such CPU has more
512 	 * than one runnable -deadline task (as it is below for RT tasks).
513 	 */
514 	cpumask_var_t dlo_mask;
515 	atomic_t dlo_count;
516 	struct dl_bw dl_bw;
517 	struct cpudl cpudl;
518 
519 	/*
520 	 * The "RT overload" flag: it gets set if a CPU has more than
521 	 * one runnable RT task.
522 	 */
523 	cpumask_var_t rto_mask;
524 	struct cpupri cpupri;
525 };
526 
527 extern struct root_domain def_root_domain;
528 
529 #endif /* CONFIG_SMP */
530 
531 /*
532  * This is the main, per-CPU runqueue data structure.
533  *
534  * Locking rule: those places that want to lock multiple runqueues
535  * (such as the load balancing or the thread migration code), lock
536  * acquire operations must be ordered by ascending &runqueue.
537  */
538 struct rq {
539 	/* runqueue lock: */
540 	raw_spinlock_t lock;
541 
542 	/*
543 	 * nr_running and cpu_load should be in the same cacheline because
544 	 * remote CPUs use both these fields when doing load calculation.
545 	 */
546 	unsigned int nr_running;
547 #ifdef CONFIG_NUMA_BALANCING
548 	unsigned int nr_numa_running;
549 	unsigned int nr_preferred_running;
550 #endif
551 	#define CPU_LOAD_IDX_MAX 5
552 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 	unsigned long last_load_update_tick;
554 #ifdef CONFIG_NO_HZ_COMMON
555 	u64 nohz_stamp;
556 	unsigned long nohz_flags;
557 #endif
558 #ifdef CONFIG_NO_HZ_FULL
559 	unsigned long last_sched_tick;
560 #endif
561 	int skip_clock_update;
562 
563 	/* capture load from *all* tasks on this cpu: */
564 	struct load_weight load;
565 	unsigned long nr_load_updates;
566 	u64 nr_switches;
567 
568 	struct cfs_rq cfs;
569 	struct rt_rq rt;
570 	struct dl_rq dl;
571 
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 	/* list of leaf cfs_rq on this cpu: */
574 	struct list_head leaf_cfs_rq_list;
575 
576 	struct sched_avg avg;
577 #endif /* CONFIG_FAIR_GROUP_SCHED */
578 
579 	/*
580 	 * This is part of a global counter where only the total sum
581 	 * over all CPUs matters. A task can increase this counter on
582 	 * one CPU and if it got migrated afterwards it may decrease
583 	 * it on another CPU. Always updated under the runqueue lock:
584 	 */
585 	unsigned long nr_uninterruptible;
586 
587 	struct task_struct *curr, *idle, *stop;
588 	unsigned long next_balance;
589 	struct mm_struct *prev_mm;
590 
591 	u64 clock;
592 	u64 clock_task;
593 
594 	atomic_t nr_iowait;
595 
596 #ifdef CONFIG_SMP
597 	struct root_domain *rd;
598 	struct sched_domain *sd;
599 
600 	unsigned long cpu_capacity;
601 
602 	unsigned char idle_balance;
603 	/* For active balancing */
604 	int post_schedule;
605 	int active_balance;
606 	int push_cpu;
607 	struct cpu_stop_work active_balance_work;
608 	/* cpu of this runqueue: */
609 	int cpu;
610 	int online;
611 
612 	struct list_head cfs_tasks;
613 
614 	u64 rt_avg;
615 	u64 age_stamp;
616 	u64 idle_stamp;
617 	u64 avg_idle;
618 
619 	/* This is used to determine avg_idle's max value */
620 	u64 max_idle_balance_cost;
621 #endif
622 
623 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
624 	u64 prev_irq_time;
625 #endif
626 #ifdef CONFIG_PARAVIRT
627 	u64 prev_steal_time;
628 #endif
629 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
630 	u64 prev_steal_time_rq;
631 #endif
632 
633 	/* calc_load related fields */
634 	unsigned long calc_load_update;
635 	long calc_load_active;
636 
637 #ifdef CONFIG_SCHED_HRTICK
638 #ifdef CONFIG_SMP
639 	int hrtick_csd_pending;
640 	struct call_single_data hrtick_csd;
641 #endif
642 	struct hrtimer hrtick_timer;
643 #endif
644 
645 #ifdef CONFIG_SCHEDSTATS
646 	/* latency stats */
647 	struct sched_info rq_sched_info;
648 	unsigned long long rq_cpu_time;
649 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
650 
651 	/* sys_sched_yield() stats */
652 	unsigned int yld_count;
653 
654 	/* schedule() stats */
655 	unsigned int sched_count;
656 	unsigned int sched_goidle;
657 
658 	/* try_to_wake_up() stats */
659 	unsigned int ttwu_count;
660 	unsigned int ttwu_local;
661 #endif
662 
663 #ifdef CONFIG_SMP
664 	struct llist_head wake_list;
665 #endif
666 
667 #ifdef CONFIG_CPU_IDLE
668 	/* Must be inspected within a rcu lock section */
669 	struct cpuidle_state *idle_state;
670 #endif
671 };
672 
673 static inline int cpu_of(struct rq *rq)
674 {
675 #ifdef CONFIG_SMP
676 	return rq->cpu;
677 #else
678 	return 0;
679 #endif
680 }
681 
682 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
683 
684 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
685 #define this_rq()		this_cpu_ptr(&runqueues)
686 #define task_rq(p)		cpu_rq(task_cpu(p))
687 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
688 #define raw_rq()		raw_cpu_ptr(&runqueues)
689 
690 static inline u64 rq_clock(struct rq *rq)
691 {
692 	return rq->clock;
693 }
694 
695 static inline u64 rq_clock_task(struct rq *rq)
696 {
697 	return rq->clock_task;
698 }
699 
700 #ifdef CONFIG_NUMA
701 enum numa_topology_type {
702 	NUMA_DIRECT,
703 	NUMA_GLUELESS_MESH,
704 	NUMA_BACKPLANE,
705 };
706 extern enum numa_topology_type sched_numa_topology_type;
707 extern int sched_max_numa_distance;
708 extern bool find_numa_distance(int distance);
709 #endif
710 
711 #ifdef CONFIG_NUMA_BALANCING
712 /* The regions in numa_faults array from task_struct */
713 enum numa_faults_stats {
714 	NUMA_MEM = 0,
715 	NUMA_CPU,
716 	NUMA_MEMBUF,
717 	NUMA_CPUBUF
718 };
719 extern void sched_setnuma(struct task_struct *p, int node);
720 extern int migrate_task_to(struct task_struct *p, int cpu);
721 extern int migrate_swap(struct task_struct *, struct task_struct *);
722 #endif /* CONFIG_NUMA_BALANCING */
723 
724 #ifdef CONFIG_SMP
725 
726 extern void sched_ttwu_pending(void);
727 
728 #define rcu_dereference_check_sched_domain(p) \
729 	rcu_dereference_check((p), \
730 			      lockdep_is_held(&sched_domains_mutex))
731 
732 /*
733  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
734  * See detach_destroy_domains: synchronize_sched for details.
735  *
736  * The domain tree of any CPU may only be accessed from within
737  * preempt-disabled sections.
738  */
739 #define for_each_domain(cpu, __sd) \
740 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
741 			__sd; __sd = __sd->parent)
742 
743 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
744 
745 /**
746  * highest_flag_domain - Return highest sched_domain containing flag.
747  * @cpu:	The cpu whose highest level of sched domain is to
748  *		be returned.
749  * @flag:	The flag to check for the highest sched_domain
750  *		for the given cpu.
751  *
752  * Returns the highest sched_domain of a cpu which contains the given flag.
753  */
754 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
755 {
756 	struct sched_domain *sd, *hsd = NULL;
757 
758 	for_each_domain(cpu, sd) {
759 		if (!(sd->flags & flag))
760 			break;
761 		hsd = sd;
762 	}
763 
764 	return hsd;
765 }
766 
767 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
768 {
769 	struct sched_domain *sd;
770 
771 	for_each_domain(cpu, sd) {
772 		if (sd->flags & flag)
773 			break;
774 	}
775 
776 	return sd;
777 }
778 
779 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
780 DECLARE_PER_CPU(int, sd_llc_size);
781 DECLARE_PER_CPU(int, sd_llc_id);
782 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
783 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
784 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
785 
786 struct sched_group_capacity {
787 	atomic_t ref;
788 	/*
789 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
790 	 * for a single CPU.
791 	 */
792 	unsigned int capacity, capacity_orig;
793 	unsigned long next_update;
794 	int imbalance; /* XXX unrelated to capacity but shared group state */
795 	/*
796 	 * Number of busy cpus in this group.
797 	 */
798 	atomic_t nr_busy_cpus;
799 
800 	unsigned long cpumask[0]; /* iteration mask */
801 };
802 
803 struct sched_group {
804 	struct sched_group *next;	/* Must be a circular list */
805 	atomic_t ref;
806 
807 	unsigned int group_weight;
808 	struct sched_group_capacity *sgc;
809 
810 	/*
811 	 * The CPUs this group covers.
812 	 *
813 	 * NOTE: this field is variable length. (Allocated dynamically
814 	 * by attaching extra space to the end of the structure,
815 	 * depending on how many CPUs the kernel has booted up with)
816 	 */
817 	unsigned long cpumask[0];
818 };
819 
820 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
821 {
822 	return to_cpumask(sg->cpumask);
823 }
824 
825 /*
826  * cpumask masking which cpus in the group are allowed to iterate up the domain
827  * tree.
828  */
829 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
830 {
831 	return to_cpumask(sg->sgc->cpumask);
832 }
833 
834 /**
835  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
836  * @group: The group whose first cpu is to be returned.
837  */
838 static inline unsigned int group_first_cpu(struct sched_group *group)
839 {
840 	return cpumask_first(sched_group_cpus(group));
841 }
842 
843 extern int group_balance_cpu(struct sched_group *sg);
844 
845 #else
846 
847 static inline void sched_ttwu_pending(void) { }
848 
849 #endif /* CONFIG_SMP */
850 
851 #include "stats.h"
852 #include "auto_group.h"
853 
854 #ifdef CONFIG_CGROUP_SCHED
855 
856 /*
857  * Return the group to which this tasks belongs.
858  *
859  * We cannot use task_css() and friends because the cgroup subsystem
860  * changes that value before the cgroup_subsys::attach() method is called,
861  * therefore we cannot pin it and might observe the wrong value.
862  *
863  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
864  * core changes this before calling sched_move_task().
865  *
866  * Instead we use a 'copy' which is updated from sched_move_task() while
867  * holding both task_struct::pi_lock and rq::lock.
868  */
869 static inline struct task_group *task_group(struct task_struct *p)
870 {
871 	return p->sched_task_group;
872 }
873 
874 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
875 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
876 {
877 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
878 	struct task_group *tg = task_group(p);
879 #endif
880 
881 #ifdef CONFIG_FAIR_GROUP_SCHED
882 	p->se.cfs_rq = tg->cfs_rq[cpu];
883 	p->se.parent = tg->se[cpu];
884 #endif
885 
886 #ifdef CONFIG_RT_GROUP_SCHED
887 	p->rt.rt_rq  = tg->rt_rq[cpu];
888 	p->rt.parent = tg->rt_se[cpu];
889 #endif
890 }
891 
892 #else /* CONFIG_CGROUP_SCHED */
893 
894 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
895 static inline struct task_group *task_group(struct task_struct *p)
896 {
897 	return NULL;
898 }
899 
900 #endif /* CONFIG_CGROUP_SCHED */
901 
902 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
903 {
904 	set_task_rq(p, cpu);
905 #ifdef CONFIG_SMP
906 	/*
907 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
908 	 * successfuly executed on another CPU. We must ensure that updates of
909 	 * per-task data have been completed by this moment.
910 	 */
911 	smp_wmb();
912 	task_thread_info(p)->cpu = cpu;
913 	p->wake_cpu = cpu;
914 #endif
915 }
916 
917 /*
918  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
919  */
920 #ifdef CONFIG_SCHED_DEBUG
921 # include <linux/static_key.h>
922 # define const_debug __read_mostly
923 #else
924 # define const_debug const
925 #endif
926 
927 extern const_debug unsigned int sysctl_sched_features;
928 
929 #define SCHED_FEAT(name, enabled)	\
930 	__SCHED_FEAT_##name ,
931 
932 enum {
933 #include "features.h"
934 	__SCHED_FEAT_NR,
935 };
936 
937 #undef SCHED_FEAT
938 
939 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
940 #define SCHED_FEAT(name, enabled)					\
941 static __always_inline bool static_branch_##name(struct static_key *key) \
942 {									\
943 	return static_key_##enabled(key);				\
944 }
945 
946 #include "features.h"
947 
948 #undef SCHED_FEAT
949 
950 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
951 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
952 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
953 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
954 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
955 
956 #ifdef CONFIG_NUMA_BALANCING
957 #define sched_feat_numa(x) sched_feat(x)
958 #ifdef CONFIG_SCHED_DEBUG
959 #define numabalancing_enabled sched_feat_numa(NUMA)
960 #else
961 extern bool numabalancing_enabled;
962 #endif /* CONFIG_SCHED_DEBUG */
963 #else
964 #define sched_feat_numa(x) (0)
965 #define numabalancing_enabled (0)
966 #endif /* CONFIG_NUMA_BALANCING */
967 
968 static inline u64 global_rt_period(void)
969 {
970 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
971 }
972 
973 static inline u64 global_rt_runtime(void)
974 {
975 	if (sysctl_sched_rt_runtime < 0)
976 		return RUNTIME_INF;
977 
978 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
979 }
980 
981 static inline int task_current(struct rq *rq, struct task_struct *p)
982 {
983 	return rq->curr == p;
984 }
985 
986 static inline int task_running(struct rq *rq, struct task_struct *p)
987 {
988 #ifdef CONFIG_SMP
989 	return p->on_cpu;
990 #else
991 	return task_current(rq, p);
992 #endif
993 }
994 
995 static inline int task_on_rq_queued(struct task_struct *p)
996 {
997 	return p->on_rq == TASK_ON_RQ_QUEUED;
998 }
999 
1000 static inline int task_on_rq_migrating(struct task_struct *p)
1001 {
1002 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1003 }
1004 
1005 #ifndef prepare_arch_switch
1006 # define prepare_arch_switch(next)	do { } while (0)
1007 #endif
1008 #ifndef finish_arch_switch
1009 # define finish_arch_switch(prev)	do { } while (0)
1010 #endif
1011 #ifndef finish_arch_post_lock_switch
1012 # define finish_arch_post_lock_switch()	do { } while (0)
1013 #endif
1014 
1015 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1016 {
1017 #ifdef CONFIG_SMP
1018 	/*
1019 	 * We can optimise this out completely for !SMP, because the
1020 	 * SMP rebalancing from interrupt is the only thing that cares
1021 	 * here.
1022 	 */
1023 	next->on_cpu = 1;
1024 #endif
1025 }
1026 
1027 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1028 {
1029 #ifdef CONFIG_SMP
1030 	/*
1031 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1032 	 * We must ensure this doesn't happen until the switch is completely
1033 	 * finished.
1034 	 */
1035 	smp_wmb();
1036 	prev->on_cpu = 0;
1037 #endif
1038 #ifdef CONFIG_DEBUG_SPINLOCK
1039 	/* this is a valid case when another task releases the spinlock */
1040 	rq->lock.owner = current;
1041 #endif
1042 	/*
1043 	 * If we are tracking spinlock dependencies then we have to
1044 	 * fix up the runqueue lock - which gets 'carried over' from
1045 	 * prev into current:
1046 	 */
1047 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1048 
1049 	raw_spin_unlock_irq(&rq->lock);
1050 }
1051 
1052 /*
1053  * wake flags
1054  */
1055 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1056 #define WF_FORK		0x02		/* child wakeup after fork */
1057 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1058 
1059 /*
1060  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1061  * of tasks with abnormal "nice" values across CPUs the contribution that
1062  * each task makes to its run queue's load is weighted according to its
1063  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1064  * scaled version of the new time slice allocation that they receive on time
1065  * slice expiry etc.
1066  */
1067 
1068 #define WEIGHT_IDLEPRIO                3
1069 #define WMULT_IDLEPRIO         1431655765
1070 
1071 /*
1072  * Nice levels are multiplicative, with a gentle 10% change for every
1073  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1074  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1075  * that remained on nice 0.
1076  *
1077  * The "10% effect" is relative and cumulative: from _any_ nice level,
1078  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1079  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1080  * If a task goes up by ~10% and another task goes down by ~10% then
1081  * the relative distance between them is ~25%.)
1082  */
1083 static const int prio_to_weight[40] = {
1084  /* -20 */     88761,     71755,     56483,     46273,     36291,
1085  /* -15 */     29154,     23254,     18705,     14949,     11916,
1086  /* -10 */      9548,      7620,      6100,      4904,      3906,
1087  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1088  /*   0 */      1024,       820,       655,       526,       423,
1089  /*   5 */       335,       272,       215,       172,       137,
1090  /*  10 */       110,        87,        70,        56,        45,
1091  /*  15 */        36,        29,        23,        18,        15,
1092 };
1093 
1094 /*
1095  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1096  *
1097  * In cases where the weight does not change often, we can use the
1098  * precalculated inverse to speed up arithmetics by turning divisions
1099  * into multiplications:
1100  */
1101 static const u32 prio_to_wmult[40] = {
1102  /* -20 */     48388,     59856,     76040,     92818,    118348,
1103  /* -15 */    147320,    184698,    229616,    287308,    360437,
1104  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1105  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1106  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1107  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1108  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1109  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1110 };
1111 
1112 #define ENQUEUE_WAKEUP		1
1113 #define ENQUEUE_HEAD		2
1114 #ifdef CONFIG_SMP
1115 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1116 #else
1117 #define ENQUEUE_WAKING		0
1118 #endif
1119 #define ENQUEUE_REPLENISH	8
1120 
1121 #define DEQUEUE_SLEEP		1
1122 
1123 #define RETRY_TASK		((void *)-1UL)
1124 
1125 struct sched_class {
1126 	const struct sched_class *next;
1127 
1128 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1129 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1130 	void (*yield_task) (struct rq *rq);
1131 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1132 
1133 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1134 
1135 	/*
1136 	 * It is the responsibility of the pick_next_task() method that will
1137 	 * return the next task to call put_prev_task() on the @prev task or
1138 	 * something equivalent.
1139 	 *
1140 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1141 	 * tasks.
1142 	 */
1143 	struct task_struct * (*pick_next_task) (struct rq *rq,
1144 						struct task_struct *prev);
1145 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1146 
1147 #ifdef CONFIG_SMP
1148 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1149 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1150 
1151 	void (*post_schedule) (struct rq *this_rq);
1152 	void (*task_waking) (struct task_struct *task);
1153 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1154 
1155 	void (*set_cpus_allowed)(struct task_struct *p,
1156 				 const struct cpumask *newmask);
1157 
1158 	void (*rq_online)(struct rq *rq);
1159 	void (*rq_offline)(struct rq *rq);
1160 #endif
1161 
1162 	void (*set_curr_task) (struct rq *rq);
1163 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1164 	void (*task_fork) (struct task_struct *p);
1165 	void (*task_dead) (struct task_struct *p);
1166 
1167 	/*
1168 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1169 	 * cannot assume the switched_from/switched_to pair is serliazed by
1170 	 * rq->lock. They are however serialized by p->pi_lock.
1171 	 */
1172 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1173 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1174 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1175 			     int oldprio);
1176 
1177 	unsigned int (*get_rr_interval) (struct rq *rq,
1178 					 struct task_struct *task);
1179 
1180 	void (*update_curr) (struct rq *rq);
1181 
1182 #ifdef CONFIG_FAIR_GROUP_SCHED
1183 	void (*task_move_group) (struct task_struct *p, int on_rq);
1184 #endif
1185 };
1186 
1187 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1188 {
1189 	prev->sched_class->put_prev_task(rq, prev);
1190 }
1191 
1192 #define sched_class_highest (&stop_sched_class)
1193 #define for_each_class(class) \
1194    for (class = sched_class_highest; class; class = class->next)
1195 
1196 extern const struct sched_class stop_sched_class;
1197 extern const struct sched_class dl_sched_class;
1198 extern const struct sched_class rt_sched_class;
1199 extern const struct sched_class fair_sched_class;
1200 extern const struct sched_class idle_sched_class;
1201 
1202 
1203 #ifdef CONFIG_SMP
1204 
1205 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1206 
1207 extern void trigger_load_balance(struct rq *rq);
1208 
1209 extern void idle_enter_fair(struct rq *this_rq);
1210 extern void idle_exit_fair(struct rq *this_rq);
1211 
1212 #else
1213 
1214 static inline void idle_enter_fair(struct rq *rq) { }
1215 static inline void idle_exit_fair(struct rq *rq) { }
1216 
1217 #endif
1218 
1219 #ifdef CONFIG_CPU_IDLE
1220 static inline void idle_set_state(struct rq *rq,
1221 				  struct cpuidle_state *idle_state)
1222 {
1223 	rq->idle_state = idle_state;
1224 }
1225 
1226 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1227 {
1228 	WARN_ON(!rcu_read_lock_held());
1229 	return rq->idle_state;
1230 }
1231 #else
1232 static inline void idle_set_state(struct rq *rq,
1233 				  struct cpuidle_state *idle_state)
1234 {
1235 }
1236 
1237 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1238 {
1239 	return NULL;
1240 }
1241 #endif
1242 
1243 extern void sysrq_sched_debug_show(void);
1244 extern void sched_init_granularity(void);
1245 extern void update_max_interval(void);
1246 
1247 extern void init_sched_dl_class(void);
1248 extern void init_sched_rt_class(void);
1249 extern void init_sched_fair_class(void);
1250 extern void init_sched_dl_class(void);
1251 
1252 extern void resched_curr(struct rq *rq);
1253 extern void resched_cpu(int cpu);
1254 
1255 extern struct rt_bandwidth def_rt_bandwidth;
1256 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1257 
1258 extern struct dl_bandwidth def_dl_bandwidth;
1259 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1260 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1261 
1262 unsigned long to_ratio(u64 period, u64 runtime);
1263 
1264 extern void update_idle_cpu_load(struct rq *this_rq);
1265 
1266 extern void init_task_runnable_average(struct task_struct *p);
1267 
1268 static inline void add_nr_running(struct rq *rq, unsigned count)
1269 {
1270 	unsigned prev_nr = rq->nr_running;
1271 
1272 	rq->nr_running = prev_nr + count;
1273 
1274 	if (prev_nr < 2 && rq->nr_running >= 2) {
1275 #ifdef CONFIG_SMP
1276 		if (!rq->rd->overload)
1277 			rq->rd->overload = true;
1278 #endif
1279 
1280 #ifdef CONFIG_NO_HZ_FULL
1281 		if (tick_nohz_full_cpu(rq->cpu)) {
1282 			/*
1283 			 * Tick is needed if more than one task runs on a CPU.
1284 			 * Send the target an IPI to kick it out of nohz mode.
1285 			 *
1286 			 * We assume that IPI implies full memory barrier and the
1287 			 * new value of rq->nr_running is visible on reception
1288 			 * from the target.
1289 			 */
1290 			tick_nohz_full_kick_cpu(rq->cpu);
1291 		}
1292 #endif
1293 	}
1294 }
1295 
1296 static inline void sub_nr_running(struct rq *rq, unsigned count)
1297 {
1298 	rq->nr_running -= count;
1299 }
1300 
1301 static inline void rq_last_tick_reset(struct rq *rq)
1302 {
1303 #ifdef CONFIG_NO_HZ_FULL
1304 	rq->last_sched_tick = jiffies;
1305 #endif
1306 }
1307 
1308 extern void update_rq_clock(struct rq *rq);
1309 
1310 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1311 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1312 
1313 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1314 
1315 extern const_debug unsigned int sysctl_sched_time_avg;
1316 extern const_debug unsigned int sysctl_sched_nr_migrate;
1317 extern const_debug unsigned int sysctl_sched_migration_cost;
1318 
1319 static inline u64 sched_avg_period(void)
1320 {
1321 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1322 }
1323 
1324 #ifdef CONFIG_SCHED_HRTICK
1325 
1326 /*
1327  * Use hrtick when:
1328  *  - enabled by features
1329  *  - hrtimer is actually high res
1330  */
1331 static inline int hrtick_enabled(struct rq *rq)
1332 {
1333 	if (!sched_feat(HRTICK))
1334 		return 0;
1335 	if (!cpu_active(cpu_of(rq)))
1336 		return 0;
1337 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1338 }
1339 
1340 void hrtick_start(struct rq *rq, u64 delay);
1341 
1342 #else
1343 
1344 static inline int hrtick_enabled(struct rq *rq)
1345 {
1346 	return 0;
1347 }
1348 
1349 #endif /* CONFIG_SCHED_HRTICK */
1350 
1351 #ifdef CONFIG_SMP
1352 extern void sched_avg_update(struct rq *rq);
1353 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1354 {
1355 	rq->rt_avg += rt_delta;
1356 	sched_avg_update(rq);
1357 }
1358 #else
1359 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1360 static inline void sched_avg_update(struct rq *rq) { }
1361 #endif
1362 
1363 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1364 
1365 #ifdef CONFIG_SMP
1366 #ifdef CONFIG_PREEMPT
1367 
1368 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1369 
1370 /*
1371  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1372  * way at the expense of forcing extra atomic operations in all
1373  * invocations.  This assures that the double_lock is acquired using the
1374  * same underlying policy as the spinlock_t on this architecture, which
1375  * reduces latency compared to the unfair variant below.  However, it
1376  * also adds more overhead and therefore may reduce throughput.
1377  */
1378 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1379 	__releases(this_rq->lock)
1380 	__acquires(busiest->lock)
1381 	__acquires(this_rq->lock)
1382 {
1383 	raw_spin_unlock(&this_rq->lock);
1384 	double_rq_lock(this_rq, busiest);
1385 
1386 	return 1;
1387 }
1388 
1389 #else
1390 /*
1391  * Unfair double_lock_balance: Optimizes throughput at the expense of
1392  * latency by eliminating extra atomic operations when the locks are
1393  * already in proper order on entry.  This favors lower cpu-ids and will
1394  * grant the double lock to lower cpus over higher ids under contention,
1395  * regardless of entry order into the function.
1396  */
1397 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1398 	__releases(this_rq->lock)
1399 	__acquires(busiest->lock)
1400 	__acquires(this_rq->lock)
1401 {
1402 	int ret = 0;
1403 
1404 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1405 		if (busiest < this_rq) {
1406 			raw_spin_unlock(&this_rq->lock);
1407 			raw_spin_lock(&busiest->lock);
1408 			raw_spin_lock_nested(&this_rq->lock,
1409 					      SINGLE_DEPTH_NESTING);
1410 			ret = 1;
1411 		} else
1412 			raw_spin_lock_nested(&busiest->lock,
1413 					      SINGLE_DEPTH_NESTING);
1414 	}
1415 	return ret;
1416 }
1417 
1418 #endif /* CONFIG_PREEMPT */
1419 
1420 /*
1421  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1422  */
1423 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1424 {
1425 	if (unlikely(!irqs_disabled())) {
1426 		/* printk() doesn't work good under rq->lock */
1427 		raw_spin_unlock(&this_rq->lock);
1428 		BUG_ON(1);
1429 	}
1430 
1431 	return _double_lock_balance(this_rq, busiest);
1432 }
1433 
1434 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1435 	__releases(busiest->lock)
1436 {
1437 	raw_spin_unlock(&busiest->lock);
1438 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1439 }
1440 
1441 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1442 {
1443 	if (l1 > l2)
1444 		swap(l1, l2);
1445 
1446 	spin_lock(l1);
1447 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1448 }
1449 
1450 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1451 {
1452 	if (l1 > l2)
1453 		swap(l1, l2);
1454 
1455 	spin_lock_irq(l1);
1456 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1457 }
1458 
1459 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1460 {
1461 	if (l1 > l2)
1462 		swap(l1, l2);
1463 
1464 	raw_spin_lock(l1);
1465 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1466 }
1467 
1468 /*
1469  * double_rq_lock - safely lock two runqueues
1470  *
1471  * Note this does not disable interrupts like task_rq_lock,
1472  * you need to do so manually before calling.
1473  */
1474 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1475 	__acquires(rq1->lock)
1476 	__acquires(rq2->lock)
1477 {
1478 	BUG_ON(!irqs_disabled());
1479 	if (rq1 == rq2) {
1480 		raw_spin_lock(&rq1->lock);
1481 		__acquire(rq2->lock);	/* Fake it out ;) */
1482 	} else {
1483 		if (rq1 < rq2) {
1484 			raw_spin_lock(&rq1->lock);
1485 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1486 		} else {
1487 			raw_spin_lock(&rq2->lock);
1488 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1489 		}
1490 	}
1491 }
1492 
1493 /*
1494  * double_rq_unlock - safely unlock two runqueues
1495  *
1496  * Note this does not restore interrupts like task_rq_unlock,
1497  * you need to do so manually after calling.
1498  */
1499 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1500 	__releases(rq1->lock)
1501 	__releases(rq2->lock)
1502 {
1503 	raw_spin_unlock(&rq1->lock);
1504 	if (rq1 != rq2)
1505 		raw_spin_unlock(&rq2->lock);
1506 	else
1507 		__release(rq2->lock);
1508 }
1509 
1510 #else /* CONFIG_SMP */
1511 
1512 /*
1513  * double_rq_lock - safely lock two runqueues
1514  *
1515  * Note this does not disable interrupts like task_rq_lock,
1516  * you need to do so manually before calling.
1517  */
1518 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1519 	__acquires(rq1->lock)
1520 	__acquires(rq2->lock)
1521 {
1522 	BUG_ON(!irqs_disabled());
1523 	BUG_ON(rq1 != rq2);
1524 	raw_spin_lock(&rq1->lock);
1525 	__acquire(rq2->lock);	/* Fake it out ;) */
1526 }
1527 
1528 /*
1529  * double_rq_unlock - safely unlock two runqueues
1530  *
1531  * Note this does not restore interrupts like task_rq_unlock,
1532  * you need to do so manually after calling.
1533  */
1534 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1535 	__releases(rq1->lock)
1536 	__releases(rq2->lock)
1537 {
1538 	BUG_ON(rq1 != rq2);
1539 	raw_spin_unlock(&rq1->lock);
1540 	__release(rq2->lock);
1541 }
1542 
1543 #endif
1544 
1545 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1546 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1547 extern void print_cfs_stats(struct seq_file *m, int cpu);
1548 extern void print_rt_stats(struct seq_file *m, int cpu);
1549 extern void print_dl_stats(struct seq_file *m, int cpu);
1550 
1551 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1552 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1553 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1554 
1555 extern void cfs_bandwidth_usage_inc(void);
1556 extern void cfs_bandwidth_usage_dec(void);
1557 
1558 #ifdef CONFIG_NO_HZ_COMMON
1559 enum rq_nohz_flag_bits {
1560 	NOHZ_TICK_STOPPED,
1561 	NOHZ_BALANCE_KICK,
1562 };
1563 
1564 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1565 #endif
1566 
1567 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1568 
1569 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1570 DECLARE_PER_CPU(u64, cpu_softirq_time);
1571 
1572 #ifndef CONFIG_64BIT
1573 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1574 
1575 static inline void irq_time_write_begin(void)
1576 {
1577 	__this_cpu_inc(irq_time_seq.sequence);
1578 	smp_wmb();
1579 }
1580 
1581 static inline void irq_time_write_end(void)
1582 {
1583 	smp_wmb();
1584 	__this_cpu_inc(irq_time_seq.sequence);
1585 }
1586 
1587 static inline u64 irq_time_read(int cpu)
1588 {
1589 	u64 irq_time;
1590 	unsigned seq;
1591 
1592 	do {
1593 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1594 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1595 			   per_cpu(cpu_hardirq_time, cpu);
1596 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1597 
1598 	return irq_time;
1599 }
1600 #else /* CONFIG_64BIT */
1601 static inline void irq_time_write_begin(void)
1602 {
1603 }
1604 
1605 static inline void irq_time_write_end(void)
1606 {
1607 }
1608 
1609 static inline u64 irq_time_read(int cpu)
1610 {
1611 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1612 }
1613 #endif /* CONFIG_64BIT */
1614 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1615