1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/tick.h> 10 #include <linux/slab.h> 11 12 #include "cpupri.h" 13 #include "cpudeadline.h" 14 #include "cpuacct.h" 15 16 struct rq; 17 18 extern __read_mostly int scheduler_running; 19 20 extern unsigned long calc_load_update; 21 extern atomic_long_t calc_load_tasks; 22 23 extern long calc_load_fold_active(struct rq *this_rq); 24 extern void update_cpu_load_active(struct rq *this_rq); 25 26 /* 27 * Helpers for converting nanosecond timing to jiffy resolution 28 */ 29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 30 31 /* 32 * Increase resolution of nice-level calculations for 64-bit architectures. 33 * The extra resolution improves shares distribution and load balancing of 34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 35 * hierarchies, especially on larger systems. This is not a user-visible change 36 * and does not change the user-interface for setting shares/weights. 37 * 38 * We increase resolution only if we have enough bits to allow this increased 39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 41 * increased costs. 42 */ 43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 44 # define SCHED_LOAD_RESOLUTION 10 45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 47 #else 48 # define SCHED_LOAD_RESOLUTION 0 49 # define scale_load(w) (w) 50 # define scale_load_down(w) (w) 51 #endif 52 53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 55 56 #define NICE_0_LOAD SCHED_LOAD_SCALE 57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 58 59 /* 60 * Single value that decides SCHED_DEADLINE internal math precision. 61 * 10 -> just above 1us 62 * 9 -> just above 0.5us 63 */ 64 #define DL_SCALE (10) 65 66 /* 67 * These are the 'tuning knobs' of the scheduler: 68 */ 69 70 /* 71 * single value that denotes runtime == period, ie unlimited time. 72 */ 73 #define RUNTIME_INF ((u64)~0ULL) 74 75 static inline int fair_policy(int policy) 76 { 77 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 78 } 79 80 static inline int rt_policy(int policy) 81 { 82 return policy == SCHED_FIFO || policy == SCHED_RR; 83 } 84 85 static inline int dl_policy(int policy) 86 { 87 return policy == SCHED_DEADLINE; 88 } 89 90 static inline int task_has_rt_policy(struct task_struct *p) 91 { 92 return rt_policy(p->policy); 93 } 94 95 static inline int task_has_dl_policy(struct task_struct *p) 96 { 97 return dl_policy(p->policy); 98 } 99 100 static inline bool dl_time_before(u64 a, u64 b) 101 { 102 return (s64)(a - b) < 0; 103 } 104 105 /* 106 * Tells if entity @a should preempt entity @b. 107 */ 108 static inline bool 109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 110 { 111 return dl_time_before(a->deadline, b->deadline); 112 } 113 114 /* 115 * This is the priority-queue data structure of the RT scheduling class: 116 */ 117 struct rt_prio_array { 118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 119 struct list_head queue[MAX_RT_PRIO]; 120 }; 121 122 struct rt_bandwidth { 123 /* nests inside the rq lock: */ 124 raw_spinlock_t rt_runtime_lock; 125 ktime_t rt_period; 126 u64 rt_runtime; 127 struct hrtimer rt_period_timer; 128 }; 129 /* 130 * To keep the bandwidth of -deadline tasks and groups under control 131 * we need some place where: 132 * - store the maximum -deadline bandwidth of the system (the group); 133 * - cache the fraction of that bandwidth that is currently allocated. 134 * 135 * This is all done in the data structure below. It is similar to the 136 * one used for RT-throttling (rt_bandwidth), with the main difference 137 * that, since here we are only interested in admission control, we 138 * do not decrease any runtime while the group "executes", neither we 139 * need a timer to replenish it. 140 * 141 * With respect to SMP, the bandwidth is given on a per-CPU basis, 142 * meaning that: 143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 144 * - dl_total_bw array contains, in the i-eth element, the currently 145 * allocated bandwidth on the i-eth CPU. 146 * Moreover, groups consume bandwidth on each CPU, while tasks only 147 * consume bandwidth on the CPU they're running on. 148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 149 * that will be shown the next time the proc or cgroup controls will 150 * be red. It on its turn can be changed by writing on its own 151 * control. 152 */ 153 struct dl_bandwidth { 154 raw_spinlock_t dl_runtime_lock; 155 u64 dl_runtime; 156 u64 dl_period; 157 }; 158 159 static inline int dl_bandwidth_enabled(void) 160 { 161 return sysctl_sched_rt_runtime >= 0; 162 } 163 164 extern struct dl_bw *dl_bw_of(int i); 165 166 struct dl_bw { 167 raw_spinlock_t lock; 168 u64 bw, total_bw; 169 }; 170 171 extern struct mutex sched_domains_mutex; 172 173 #ifdef CONFIG_CGROUP_SCHED 174 175 #include <linux/cgroup.h> 176 177 struct cfs_rq; 178 struct rt_rq; 179 180 extern struct list_head task_groups; 181 182 struct cfs_bandwidth { 183 #ifdef CONFIG_CFS_BANDWIDTH 184 raw_spinlock_t lock; 185 ktime_t period; 186 u64 quota, runtime; 187 s64 hierarchal_quota; 188 u64 runtime_expires; 189 190 int idle, timer_active; 191 struct hrtimer period_timer, slack_timer; 192 struct list_head throttled_cfs_rq; 193 194 /* statistics */ 195 int nr_periods, nr_throttled; 196 u64 throttled_time; 197 #endif 198 }; 199 200 /* task group related information */ 201 struct task_group { 202 struct cgroup_subsys_state css; 203 204 #ifdef CONFIG_FAIR_GROUP_SCHED 205 /* schedulable entities of this group on each cpu */ 206 struct sched_entity **se; 207 /* runqueue "owned" by this group on each cpu */ 208 struct cfs_rq **cfs_rq; 209 unsigned long shares; 210 211 #ifdef CONFIG_SMP 212 atomic_long_t load_avg; 213 atomic_t runnable_avg; 214 #endif 215 #endif 216 217 #ifdef CONFIG_RT_GROUP_SCHED 218 struct sched_rt_entity **rt_se; 219 struct rt_rq **rt_rq; 220 221 struct rt_bandwidth rt_bandwidth; 222 #endif 223 224 struct rcu_head rcu; 225 struct list_head list; 226 227 struct task_group *parent; 228 struct list_head siblings; 229 struct list_head children; 230 231 #ifdef CONFIG_SCHED_AUTOGROUP 232 struct autogroup *autogroup; 233 #endif 234 235 struct cfs_bandwidth cfs_bandwidth; 236 }; 237 238 #ifdef CONFIG_FAIR_GROUP_SCHED 239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 240 241 /* 242 * A weight of 0 or 1 can cause arithmetics problems. 243 * A weight of a cfs_rq is the sum of weights of which entities 244 * are queued on this cfs_rq, so a weight of a entity should not be 245 * too large, so as the shares value of a task group. 246 * (The default weight is 1024 - so there's no practical 247 * limitation from this.) 248 */ 249 #define MIN_SHARES (1UL << 1) 250 #define MAX_SHARES (1UL << 18) 251 #endif 252 253 typedef int (*tg_visitor)(struct task_group *, void *); 254 255 extern int walk_tg_tree_from(struct task_group *from, 256 tg_visitor down, tg_visitor up, void *data); 257 258 /* 259 * Iterate the full tree, calling @down when first entering a node and @up when 260 * leaving it for the final time. 261 * 262 * Caller must hold rcu_lock or sufficient equivalent. 263 */ 264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 265 { 266 return walk_tg_tree_from(&root_task_group, down, up, data); 267 } 268 269 extern int tg_nop(struct task_group *tg, void *data); 270 271 extern void free_fair_sched_group(struct task_group *tg); 272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 275 struct sched_entity *se, int cpu, 276 struct sched_entity *parent); 277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 279 280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 283 284 extern void free_rt_sched_group(struct task_group *tg); 285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 287 struct sched_rt_entity *rt_se, int cpu, 288 struct sched_rt_entity *parent); 289 290 extern struct task_group *sched_create_group(struct task_group *parent); 291 extern void sched_online_group(struct task_group *tg, 292 struct task_group *parent); 293 extern void sched_destroy_group(struct task_group *tg); 294 extern void sched_offline_group(struct task_group *tg); 295 296 extern void sched_move_task(struct task_struct *tsk); 297 298 #ifdef CONFIG_FAIR_GROUP_SCHED 299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 300 #endif 301 302 #else /* CONFIG_CGROUP_SCHED */ 303 304 struct cfs_bandwidth { }; 305 306 #endif /* CONFIG_CGROUP_SCHED */ 307 308 /* CFS-related fields in a runqueue */ 309 struct cfs_rq { 310 struct load_weight load; 311 unsigned int nr_running, h_nr_running; 312 313 u64 exec_clock; 314 u64 min_vruntime; 315 #ifndef CONFIG_64BIT 316 u64 min_vruntime_copy; 317 #endif 318 319 struct rb_root tasks_timeline; 320 struct rb_node *rb_leftmost; 321 322 /* 323 * 'curr' points to currently running entity on this cfs_rq. 324 * It is set to NULL otherwise (i.e when none are currently running). 325 */ 326 struct sched_entity *curr, *next, *last, *skip; 327 328 #ifdef CONFIG_SCHED_DEBUG 329 unsigned int nr_spread_over; 330 #endif 331 332 #ifdef CONFIG_SMP 333 /* 334 * CFS Load tracking 335 * Under CFS, load is tracked on a per-entity basis and aggregated up. 336 * This allows for the description of both thread and group usage (in 337 * the FAIR_GROUP_SCHED case). 338 */ 339 unsigned long runnable_load_avg, blocked_load_avg; 340 atomic64_t decay_counter; 341 u64 last_decay; 342 atomic_long_t removed_load; 343 344 #ifdef CONFIG_FAIR_GROUP_SCHED 345 /* Required to track per-cpu representation of a task_group */ 346 u32 tg_runnable_contrib; 347 unsigned long tg_load_contrib; 348 349 /* 350 * h_load = weight * f(tg) 351 * 352 * Where f(tg) is the recursive weight fraction assigned to 353 * this group. 354 */ 355 unsigned long h_load; 356 u64 last_h_load_update; 357 struct sched_entity *h_load_next; 358 #endif /* CONFIG_FAIR_GROUP_SCHED */ 359 #endif /* CONFIG_SMP */ 360 361 #ifdef CONFIG_FAIR_GROUP_SCHED 362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 363 364 /* 365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 367 * (like users, containers etc.) 368 * 369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 370 * list is used during load balance. 371 */ 372 int on_list; 373 struct list_head leaf_cfs_rq_list; 374 struct task_group *tg; /* group that "owns" this runqueue */ 375 376 #ifdef CONFIG_CFS_BANDWIDTH 377 int runtime_enabled; 378 u64 runtime_expires; 379 s64 runtime_remaining; 380 381 u64 throttled_clock, throttled_clock_task; 382 u64 throttled_clock_task_time; 383 int throttled, throttle_count; 384 struct list_head throttled_list; 385 #endif /* CONFIG_CFS_BANDWIDTH */ 386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 387 }; 388 389 static inline int rt_bandwidth_enabled(void) 390 { 391 return sysctl_sched_rt_runtime >= 0; 392 } 393 394 /* Real-Time classes' related field in a runqueue: */ 395 struct rt_rq { 396 struct rt_prio_array active; 397 unsigned int rt_nr_running; 398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 399 struct { 400 int curr; /* highest queued rt task prio */ 401 #ifdef CONFIG_SMP 402 int next; /* next highest */ 403 #endif 404 } highest_prio; 405 #endif 406 #ifdef CONFIG_SMP 407 unsigned long rt_nr_migratory; 408 unsigned long rt_nr_total; 409 int overloaded; 410 struct plist_head pushable_tasks; 411 #endif 412 int rt_queued; 413 414 int rt_throttled; 415 u64 rt_time; 416 u64 rt_runtime; 417 /* Nests inside the rq lock: */ 418 raw_spinlock_t rt_runtime_lock; 419 420 #ifdef CONFIG_RT_GROUP_SCHED 421 unsigned long rt_nr_boosted; 422 423 struct rq *rq; 424 struct task_group *tg; 425 #endif 426 }; 427 428 /* Deadline class' related fields in a runqueue */ 429 struct dl_rq { 430 /* runqueue is an rbtree, ordered by deadline */ 431 struct rb_root rb_root; 432 struct rb_node *rb_leftmost; 433 434 unsigned long dl_nr_running; 435 436 #ifdef CONFIG_SMP 437 /* 438 * Deadline values of the currently executing and the 439 * earliest ready task on this rq. Caching these facilitates 440 * the decision wether or not a ready but not running task 441 * should migrate somewhere else. 442 */ 443 struct { 444 u64 curr; 445 u64 next; 446 } earliest_dl; 447 448 unsigned long dl_nr_migratory; 449 int overloaded; 450 451 /* 452 * Tasks on this rq that can be pushed away. They are kept in 453 * an rb-tree, ordered by tasks' deadlines, with caching 454 * of the leftmost (earliest deadline) element. 455 */ 456 struct rb_root pushable_dl_tasks_root; 457 struct rb_node *pushable_dl_tasks_leftmost; 458 #else 459 struct dl_bw dl_bw; 460 #endif 461 }; 462 463 #ifdef CONFIG_SMP 464 465 /* 466 * We add the notion of a root-domain which will be used to define per-domain 467 * variables. Each exclusive cpuset essentially defines an island domain by 468 * fully partitioning the member cpus from any other cpuset. Whenever a new 469 * exclusive cpuset is created, we also create and attach a new root-domain 470 * object. 471 * 472 */ 473 struct root_domain { 474 atomic_t refcount; 475 atomic_t rto_count; 476 struct rcu_head rcu; 477 cpumask_var_t span; 478 cpumask_var_t online; 479 480 /* 481 * The bit corresponding to a CPU gets set here if such CPU has more 482 * than one runnable -deadline task (as it is below for RT tasks). 483 */ 484 cpumask_var_t dlo_mask; 485 atomic_t dlo_count; 486 struct dl_bw dl_bw; 487 struct cpudl cpudl; 488 489 /* 490 * The "RT overload" flag: it gets set if a CPU has more than 491 * one runnable RT task. 492 */ 493 cpumask_var_t rto_mask; 494 struct cpupri cpupri; 495 }; 496 497 extern struct root_domain def_root_domain; 498 499 #endif /* CONFIG_SMP */ 500 501 /* 502 * This is the main, per-CPU runqueue data structure. 503 * 504 * Locking rule: those places that want to lock multiple runqueues 505 * (such as the load balancing or the thread migration code), lock 506 * acquire operations must be ordered by ascending &runqueue. 507 */ 508 struct rq { 509 /* runqueue lock: */ 510 raw_spinlock_t lock; 511 512 /* 513 * nr_running and cpu_load should be in the same cacheline because 514 * remote CPUs use both these fields when doing load calculation. 515 */ 516 unsigned int nr_running; 517 #ifdef CONFIG_NUMA_BALANCING 518 unsigned int nr_numa_running; 519 unsigned int nr_preferred_running; 520 #endif 521 #define CPU_LOAD_IDX_MAX 5 522 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 523 unsigned long last_load_update_tick; 524 #ifdef CONFIG_NO_HZ_COMMON 525 u64 nohz_stamp; 526 unsigned long nohz_flags; 527 #endif 528 #ifdef CONFIG_NO_HZ_FULL 529 unsigned long last_sched_tick; 530 #endif 531 int skip_clock_update; 532 533 /* capture load from *all* tasks on this cpu: */ 534 struct load_weight load; 535 unsigned long nr_load_updates; 536 u64 nr_switches; 537 538 struct cfs_rq cfs; 539 struct rt_rq rt; 540 struct dl_rq dl; 541 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 /* list of leaf cfs_rq on this cpu: */ 544 struct list_head leaf_cfs_rq_list; 545 546 struct sched_avg avg; 547 #endif /* CONFIG_FAIR_GROUP_SCHED */ 548 549 /* 550 * This is part of a global counter where only the total sum 551 * over all CPUs matters. A task can increase this counter on 552 * one CPU and if it got migrated afterwards it may decrease 553 * it on another CPU. Always updated under the runqueue lock: 554 */ 555 unsigned long nr_uninterruptible; 556 557 struct task_struct *curr, *idle, *stop; 558 unsigned long next_balance; 559 struct mm_struct *prev_mm; 560 561 u64 clock; 562 u64 clock_task; 563 564 atomic_t nr_iowait; 565 566 #ifdef CONFIG_SMP 567 struct root_domain *rd; 568 struct sched_domain *sd; 569 570 unsigned long cpu_power; 571 572 unsigned char idle_balance; 573 /* For active balancing */ 574 int post_schedule; 575 int active_balance; 576 int push_cpu; 577 struct cpu_stop_work active_balance_work; 578 /* cpu of this runqueue: */ 579 int cpu; 580 int online; 581 582 struct list_head cfs_tasks; 583 584 u64 rt_avg; 585 u64 age_stamp; 586 u64 idle_stamp; 587 u64 avg_idle; 588 589 /* This is used to determine avg_idle's max value */ 590 u64 max_idle_balance_cost; 591 #endif 592 593 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 594 u64 prev_irq_time; 595 #endif 596 #ifdef CONFIG_PARAVIRT 597 u64 prev_steal_time; 598 #endif 599 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 600 u64 prev_steal_time_rq; 601 #endif 602 603 /* calc_load related fields */ 604 unsigned long calc_load_update; 605 long calc_load_active; 606 607 #ifdef CONFIG_SCHED_HRTICK 608 #ifdef CONFIG_SMP 609 int hrtick_csd_pending; 610 struct call_single_data hrtick_csd; 611 #endif 612 struct hrtimer hrtick_timer; 613 #endif 614 615 #ifdef CONFIG_SCHEDSTATS 616 /* latency stats */ 617 struct sched_info rq_sched_info; 618 unsigned long long rq_cpu_time; 619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 620 621 /* sys_sched_yield() stats */ 622 unsigned int yld_count; 623 624 /* schedule() stats */ 625 unsigned int sched_count; 626 unsigned int sched_goidle; 627 628 /* try_to_wake_up() stats */ 629 unsigned int ttwu_count; 630 unsigned int ttwu_local; 631 #endif 632 633 #ifdef CONFIG_SMP 634 struct llist_head wake_list; 635 #endif 636 }; 637 638 static inline int cpu_of(struct rq *rq) 639 { 640 #ifdef CONFIG_SMP 641 return rq->cpu; 642 #else 643 return 0; 644 #endif 645 } 646 647 DECLARE_PER_CPU(struct rq, runqueues); 648 649 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 650 #define this_rq() (&__get_cpu_var(runqueues)) 651 #define task_rq(p) cpu_rq(task_cpu(p)) 652 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 653 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 654 655 static inline u64 rq_clock(struct rq *rq) 656 { 657 return rq->clock; 658 } 659 660 static inline u64 rq_clock_task(struct rq *rq) 661 { 662 return rq->clock_task; 663 } 664 665 #ifdef CONFIG_NUMA_BALANCING 666 extern void sched_setnuma(struct task_struct *p, int node); 667 extern int migrate_task_to(struct task_struct *p, int cpu); 668 extern int migrate_swap(struct task_struct *, struct task_struct *); 669 #endif /* CONFIG_NUMA_BALANCING */ 670 671 #ifdef CONFIG_SMP 672 673 #define rcu_dereference_check_sched_domain(p) \ 674 rcu_dereference_check((p), \ 675 lockdep_is_held(&sched_domains_mutex)) 676 677 /* 678 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 679 * See detach_destroy_domains: synchronize_sched for details. 680 * 681 * The domain tree of any CPU may only be accessed from within 682 * preempt-disabled sections. 683 */ 684 #define for_each_domain(cpu, __sd) \ 685 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 686 __sd; __sd = __sd->parent) 687 688 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 689 690 /** 691 * highest_flag_domain - Return highest sched_domain containing flag. 692 * @cpu: The cpu whose highest level of sched domain is to 693 * be returned. 694 * @flag: The flag to check for the highest sched_domain 695 * for the given cpu. 696 * 697 * Returns the highest sched_domain of a cpu which contains the given flag. 698 */ 699 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 700 { 701 struct sched_domain *sd, *hsd = NULL; 702 703 for_each_domain(cpu, sd) { 704 if (!(sd->flags & flag)) 705 break; 706 hsd = sd; 707 } 708 709 return hsd; 710 } 711 712 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 713 { 714 struct sched_domain *sd; 715 716 for_each_domain(cpu, sd) { 717 if (sd->flags & flag) 718 break; 719 } 720 721 return sd; 722 } 723 724 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 725 DECLARE_PER_CPU(int, sd_llc_size); 726 DECLARE_PER_CPU(int, sd_llc_id); 727 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 728 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 729 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 730 731 struct sched_group_power { 732 atomic_t ref; 733 /* 734 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 735 * single CPU. 736 */ 737 unsigned int power, power_orig; 738 unsigned long next_update; 739 int imbalance; /* XXX unrelated to power but shared group state */ 740 /* 741 * Number of busy cpus in this group. 742 */ 743 atomic_t nr_busy_cpus; 744 745 unsigned long cpumask[0]; /* iteration mask */ 746 }; 747 748 struct sched_group { 749 struct sched_group *next; /* Must be a circular list */ 750 atomic_t ref; 751 752 unsigned int group_weight; 753 struct sched_group_power *sgp; 754 755 /* 756 * The CPUs this group covers. 757 * 758 * NOTE: this field is variable length. (Allocated dynamically 759 * by attaching extra space to the end of the structure, 760 * depending on how many CPUs the kernel has booted up with) 761 */ 762 unsigned long cpumask[0]; 763 }; 764 765 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 766 { 767 return to_cpumask(sg->cpumask); 768 } 769 770 /* 771 * cpumask masking which cpus in the group are allowed to iterate up the domain 772 * tree. 773 */ 774 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 775 { 776 return to_cpumask(sg->sgp->cpumask); 777 } 778 779 /** 780 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 781 * @group: The group whose first cpu is to be returned. 782 */ 783 static inline unsigned int group_first_cpu(struct sched_group *group) 784 { 785 return cpumask_first(sched_group_cpus(group)); 786 } 787 788 extern int group_balance_cpu(struct sched_group *sg); 789 790 #endif /* CONFIG_SMP */ 791 792 #include "stats.h" 793 #include "auto_group.h" 794 795 #ifdef CONFIG_CGROUP_SCHED 796 797 /* 798 * Return the group to which this tasks belongs. 799 * 800 * We cannot use task_css() and friends because the cgroup subsystem 801 * changes that value before the cgroup_subsys::attach() method is called, 802 * therefore we cannot pin it and might observe the wrong value. 803 * 804 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 805 * core changes this before calling sched_move_task(). 806 * 807 * Instead we use a 'copy' which is updated from sched_move_task() while 808 * holding both task_struct::pi_lock and rq::lock. 809 */ 810 static inline struct task_group *task_group(struct task_struct *p) 811 { 812 return p->sched_task_group; 813 } 814 815 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 816 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 817 { 818 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 819 struct task_group *tg = task_group(p); 820 #endif 821 822 #ifdef CONFIG_FAIR_GROUP_SCHED 823 p->se.cfs_rq = tg->cfs_rq[cpu]; 824 p->se.parent = tg->se[cpu]; 825 #endif 826 827 #ifdef CONFIG_RT_GROUP_SCHED 828 p->rt.rt_rq = tg->rt_rq[cpu]; 829 p->rt.parent = tg->rt_se[cpu]; 830 #endif 831 } 832 833 #else /* CONFIG_CGROUP_SCHED */ 834 835 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 836 static inline struct task_group *task_group(struct task_struct *p) 837 { 838 return NULL; 839 } 840 841 #endif /* CONFIG_CGROUP_SCHED */ 842 843 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 844 { 845 set_task_rq(p, cpu); 846 #ifdef CONFIG_SMP 847 /* 848 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 849 * successfuly executed on another CPU. We must ensure that updates of 850 * per-task data have been completed by this moment. 851 */ 852 smp_wmb(); 853 task_thread_info(p)->cpu = cpu; 854 p->wake_cpu = cpu; 855 #endif 856 } 857 858 /* 859 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 860 */ 861 #ifdef CONFIG_SCHED_DEBUG 862 # include <linux/static_key.h> 863 # define const_debug __read_mostly 864 #else 865 # define const_debug const 866 #endif 867 868 extern const_debug unsigned int sysctl_sched_features; 869 870 #define SCHED_FEAT(name, enabled) \ 871 __SCHED_FEAT_##name , 872 873 enum { 874 #include "features.h" 875 __SCHED_FEAT_NR, 876 }; 877 878 #undef SCHED_FEAT 879 880 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 881 static __always_inline bool static_branch__true(struct static_key *key) 882 { 883 return static_key_true(key); /* Not out of line branch. */ 884 } 885 886 static __always_inline bool static_branch__false(struct static_key *key) 887 { 888 return static_key_false(key); /* Out of line branch. */ 889 } 890 891 #define SCHED_FEAT(name, enabled) \ 892 static __always_inline bool static_branch_##name(struct static_key *key) \ 893 { \ 894 return static_branch__##enabled(key); \ 895 } 896 897 #include "features.h" 898 899 #undef SCHED_FEAT 900 901 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 902 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 903 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 904 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 905 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 906 907 #ifdef CONFIG_NUMA_BALANCING 908 #define sched_feat_numa(x) sched_feat(x) 909 #ifdef CONFIG_SCHED_DEBUG 910 #define numabalancing_enabled sched_feat_numa(NUMA) 911 #else 912 extern bool numabalancing_enabled; 913 #endif /* CONFIG_SCHED_DEBUG */ 914 #else 915 #define sched_feat_numa(x) (0) 916 #define numabalancing_enabled (0) 917 #endif /* CONFIG_NUMA_BALANCING */ 918 919 static inline u64 global_rt_period(void) 920 { 921 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 922 } 923 924 static inline u64 global_rt_runtime(void) 925 { 926 if (sysctl_sched_rt_runtime < 0) 927 return RUNTIME_INF; 928 929 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 930 } 931 932 static inline int task_current(struct rq *rq, struct task_struct *p) 933 { 934 return rq->curr == p; 935 } 936 937 static inline int task_running(struct rq *rq, struct task_struct *p) 938 { 939 #ifdef CONFIG_SMP 940 return p->on_cpu; 941 #else 942 return task_current(rq, p); 943 #endif 944 } 945 946 947 #ifndef prepare_arch_switch 948 # define prepare_arch_switch(next) do { } while (0) 949 #endif 950 #ifndef finish_arch_switch 951 # define finish_arch_switch(prev) do { } while (0) 952 #endif 953 #ifndef finish_arch_post_lock_switch 954 # define finish_arch_post_lock_switch() do { } while (0) 955 #endif 956 957 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 958 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 959 { 960 #ifdef CONFIG_SMP 961 /* 962 * We can optimise this out completely for !SMP, because the 963 * SMP rebalancing from interrupt is the only thing that cares 964 * here. 965 */ 966 next->on_cpu = 1; 967 #endif 968 } 969 970 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 971 { 972 #ifdef CONFIG_SMP 973 /* 974 * After ->on_cpu is cleared, the task can be moved to a different CPU. 975 * We must ensure this doesn't happen until the switch is completely 976 * finished. 977 */ 978 smp_wmb(); 979 prev->on_cpu = 0; 980 #endif 981 #ifdef CONFIG_DEBUG_SPINLOCK 982 /* this is a valid case when another task releases the spinlock */ 983 rq->lock.owner = current; 984 #endif 985 /* 986 * If we are tracking spinlock dependencies then we have to 987 * fix up the runqueue lock - which gets 'carried over' from 988 * prev into current: 989 */ 990 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 991 992 raw_spin_unlock_irq(&rq->lock); 993 } 994 995 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 996 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 997 { 998 #ifdef CONFIG_SMP 999 /* 1000 * We can optimise this out completely for !SMP, because the 1001 * SMP rebalancing from interrupt is the only thing that cares 1002 * here. 1003 */ 1004 next->on_cpu = 1; 1005 #endif 1006 raw_spin_unlock(&rq->lock); 1007 } 1008 1009 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1010 { 1011 #ifdef CONFIG_SMP 1012 /* 1013 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1014 * We must ensure this doesn't happen until the switch is completely 1015 * finished. 1016 */ 1017 smp_wmb(); 1018 prev->on_cpu = 0; 1019 #endif 1020 local_irq_enable(); 1021 } 1022 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 1023 1024 /* 1025 * wake flags 1026 */ 1027 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1028 #define WF_FORK 0x02 /* child wakeup after fork */ 1029 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1030 1031 /* 1032 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1033 * of tasks with abnormal "nice" values across CPUs the contribution that 1034 * each task makes to its run queue's load is weighted according to its 1035 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1036 * scaled version of the new time slice allocation that they receive on time 1037 * slice expiry etc. 1038 */ 1039 1040 #define WEIGHT_IDLEPRIO 3 1041 #define WMULT_IDLEPRIO 1431655765 1042 1043 /* 1044 * Nice levels are multiplicative, with a gentle 10% change for every 1045 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1046 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1047 * that remained on nice 0. 1048 * 1049 * The "10% effect" is relative and cumulative: from _any_ nice level, 1050 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1051 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1052 * If a task goes up by ~10% and another task goes down by ~10% then 1053 * the relative distance between them is ~25%.) 1054 */ 1055 static const int prio_to_weight[40] = { 1056 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1057 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1058 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1059 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1060 /* 0 */ 1024, 820, 655, 526, 423, 1061 /* 5 */ 335, 272, 215, 172, 137, 1062 /* 10 */ 110, 87, 70, 56, 45, 1063 /* 15 */ 36, 29, 23, 18, 15, 1064 }; 1065 1066 /* 1067 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1068 * 1069 * In cases where the weight does not change often, we can use the 1070 * precalculated inverse to speed up arithmetics by turning divisions 1071 * into multiplications: 1072 */ 1073 static const u32 prio_to_wmult[40] = { 1074 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1075 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1076 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1077 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1078 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1079 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1080 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1081 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1082 }; 1083 1084 #define ENQUEUE_WAKEUP 1 1085 #define ENQUEUE_HEAD 2 1086 #ifdef CONFIG_SMP 1087 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1088 #else 1089 #define ENQUEUE_WAKING 0 1090 #endif 1091 #define ENQUEUE_REPLENISH 8 1092 1093 #define DEQUEUE_SLEEP 1 1094 1095 #define RETRY_TASK ((void *)-1UL) 1096 1097 struct sched_class { 1098 const struct sched_class *next; 1099 1100 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1101 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1102 void (*yield_task) (struct rq *rq); 1103 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1104 1105 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1106 1107 /* 1108 * It is the responsibility of the pick_next_task() method that will 1109 * return the next task to call put_prev_task() on the @prev task or 1110 * something equivalent. 1111 * 1112 * May return RETRY_TASK when it finds a higher prio class has runnable 1113 * tasks. 1114 */ 1115 struct task_struct * (*pick_next_task) (struct rq *rq, 1116 struct task_struct *prev); 1117 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1118 1119 #ifdef CONFIG_SMP 1120 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1121 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1122 1123 void (*post_schedule) (struct rq *this_rq); 1124 void (*task_waking) (struct task_struct *task); 1125 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1126 1127 void (*set_cpus_allowed)(struct task_struct *p, 1128 const struct cpumask *newmask); 1129 1130 void (*rq_online)(struct rq *rq); 1131 void (*rq_offline)(struct rq *rq); 1132 #endif 1133 1134 void (*set_curr_task) (struct rq *rq); 1135 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1136 void (*task_fork) (struct task_struct *p); 1137 void (*task_dead) (struct task_struct *p); 1138 1139 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1140 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1141 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1142 int oldprio); 1143 1144 unsigned int (*get_rr_interval) (struct rq *rq, 1145 struct task_struct *task); 1146 1147 #ifdef CONFIG_FAIR_GROUP_SCHED 1148 void (*task_move_group) (struct task_struct *p, int on_rq); 1149 #endif 1150 }; 1151 1152 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1153 { 1154 prev->sched_class->put_prev_task(rq, prev); 1155 } 1156 1157 #define sched_class_highest (&stop_sched_class) 1158 #define for_each_class(class) \ 1159 for (class = sched_class_highest; class; class = class->next) 1160 1161 extern const struct sched_class stop_sched_class; 1162 extern const struct sched_class dl_sched_class; 1163 extern const struct sched_class rt_sched_class; 1164 extern const struct sched_class fair_sched_class; 1165 extern const struct sched_class idle_sched_class; 1166 1167 1168 #ifdef CONFIG_SMP 1169 1170 extern void update_group_power(struct sched_domain *sd, int cpu); 1171 1172 extern void trigger_load_balance(struct rq *rq); 1173 1174 extern void idle_enter_fair(struct rq *this_rq); 1175 extern void idle_exit_fair(struct rq *this_rq); 1176 1177 #else 1178 1179 static inline void idle_enter_fair(struct rq *rq) { } 1180 static inline void idle_exit_fair(struct rq *rq) { } 1181 1182 #endif 1183 1184 extern void sysrq_sched_debug_show(void); 1185 extern void sched_init_granularity(void); 1186 extern void update_max_interval(void); 1187 1188 extern void init_sched_dl_class(void); 1189 extern void init_sched_rt_class(void); 1190 extern void init_sched_fair_class(void); 1191 extern void init_sched_dl_class(void); 1192 1193 extern void resched_task(struct task_struct *p); 1194 extern void resched_cpu(int cpu); 1195 1196 extern struct rt_bandwidth def_rt_bandwidth; 1197 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1198 1199 extern struct dl_bandwidth def_dl_bandwidth; 1200 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1201 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1202 1203 unsigned long to_ratio(u64 period, u64 runtime); 1204 1205 extern void update_idle_cpu_load(struct rq *this_rq); 1206 1207 extern void init_task_runnable_average(struct task_struct *p); 1208 1209 static inline void add_nr_running(struct rq *rq, unsigned count) 1210 { 1211 unsigned prev_nr = rq->nr_running; 1212 1213 rq->nr_running = prev_nr + count; 1214 1215 #ifdef CONFIG_NO_HZ_FULL 1216 if (prev_nr < 2 && rq->nr_running >= 2) { 1217 if (tick_nohz_full_cpu(rq->cpu)) { 1218 /* Order rq->nr_running write against the IPI */ 1219 smp_wmb(); 1220 smp_send_reschedule(rq->cpu); 1221 } 1222 } 1223 #endif 1224 } 1225 1226 static inline void sub_nr_running(struct rq *rq, unsigned count) 1227 { 1228 rq->nr_running -= count; 1229 } 1230 1231 static inline void rq_last_tick_reset(struct rq *rq) 1232 { 1233 #ifdef CONFIG_NO_HZ_FULL 1234 rq->last_sched_tick = jiffies; 1235 #endif 1236 } 1237 1238 extern void update_rq_clock(struct rq *rq); 1239 1240 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1241 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1242 1243 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1244 1245 extern const_debug unsigned int sysctl_sched_time_avg; 1246 extern const_debug unsigned int sysctl_sched_nr_migrate; 1247 extern const_debug unsigned int sysctl_sched_migration_cost; 1248 1249 static inline u64 sched_avg_period(void) 1250 { 1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1252 } 1253 1254 #ifdef CONFIG_SCHED_HRTICK 1255 1256 /* 1257 * Use hrtick when: 1258 * - enabled by features 1259 * - hrtimer is actually high res 1260 */ 1261 static inline int hrtick_enabled(struct rq *rq) 1262 { 1263 if (!sched_feat(HRTICK)) 1264 return 0; 1265 if (!cpu_active(cpu_of(rq))) 1266 return 0; 1267 return hrtimer_is_hres_active(&rq->hrtick_timer); 1268 } 1269 1270 void hrtick_start(struct rq *rq, u64 delay); 1271 1272 #else 1273 1274 static inline int hrtick_enabled(struct rq *rq) 1275 { 1276 return 0; 1277 } 1278 1279 #endif /* CONFIG_SCHED_HRTICK */ 1280 1281 #ifdef CONFIG_SMP 1282 extern void sched_avg_update(struct rq *rq); 1283 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1284 { 1285 rq->rt_avg += rt_delta; 1286 sched_avg_update(rq); 1287 } 1288 #else 1289 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1290 static inline void sched_avg_update(struct rq *rq) { } 1291 #endif 1292 1293 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1294 1295 #ifdef CONFIG_SMP 1296 #ifdef CONFIG_PREEMPT 1297 1298 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1299 1300 /* 1301 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1302 * way at the expense of forcing extra atomic operations in all 1303 * invocations. This assures that the double_lock is acquired using the 1304 * same underlying policy as the spinlock_t on this architecture, which 1305 * reduces latency compared to the unfair variant below. However, it 1306 * also adds more overhead and therefore may reduce throughput. 1307 */ 1308 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1309 __releases(this_rq->lock) 1310 __acquires(busiest->lock) 1311 __acquires(this_rq->lock) 1312 { 1313 raw_spin_unlock(&this_rq->lock); 1314 double_rq_lock(this_rq, busiest); 1315 1316 return 1; 1317 } 1318 1319 #else 1320 /* 1321 * Unfair double_lock_balance: Optimizes throughput at the expense of 1322 * latency by eliminating extra atomic operations when the locks are 1323 * already in proper order on entry. This favors lower cpu-ids and will 1324 * grant the double lock to lower cpus over higher ids under contention, 1325 * regardless of entry order into the function. 1326 */ 1327 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1328 __releases(this_rq->lock) 1329 __acquires(busiest->lock) 1330 __acquires(this_rq->lock) 1331 { 1332 int ret = 0; 1333 1334 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1335 if (busiest < this_rq) { 1336 raw_spin_unlock(&this_rq->lock); 1337 raw_spin_lock(&busiest->lock); 1338 raw_spin_lock_nested(&this_rq->lock, 1339 SINGLE_DEPTH_NESTING); 1340 ret = 1; 1341 } else 1342 raw_spin_lock_nested(&busiest->lock, 1343 SINGLE_DEPTH_NESTING); 1344 } 1345 return ret; 1346 } 1347 1348 #endif /* CONFIG_PREEMPT */ 1349 1350 /* 1351 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1352 */ 1353 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1354 { 1355 if (unlikely(!irqs_disabled())) { 1356 /* printk() doesn't work good under rq->lock */ 1357 raw_spin_unlock(&this_rq->lock); 1358 BUG_ON(1); 1359 } 1360 1361 return _double_lock_balance(this_rq, busiest); 1362 } 1363 1364 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1365 __releases(busiest->lock) 1366 { 1367 raw_spin_unlock(&busiest->lock); 1368 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1369 } 1370 1371 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1372 { 1373 if (l1 > l2) 1374 swap(l1, l2); 1375 1376 spin_lock(l1); 1377 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1378 } 1379 1380 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1381 { 1382 if (l1 > l2) 1383 swap(l1, l2); 1384 1385 spin_lock_irq(l1); 1386 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1387 } 1388 1389 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1390 { 1391 if (l1 > l2) 1392 swap(l1, l2); 1393 1394 raw_spin_lock(l1); 1395 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1396 } 1397 1398 /* 1399 * double_rq_lock - safely lock two runqueues 1400 * 1401 * Note this does not disable interrupts like task_rq_lock, 1402 * you need to do so manually before calling. 1403 */ 1404 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1405 __acquires(rq1->lock) 1406 __acquires(rq2->lock) 1407 { 1408 BUG_ON(!irqs_disabled()); 1409 if (rq1 == rq2) { 1410 raw_spin_lock(&rq1->lock); 1411 __acquire(rq2->lock); /* Fake it out ;) */ 1412 } else { 1413 if (rq1 < rq2) { 1414 raw_spin_lock(&rq1->lock); 1415 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1416 } else { 1417 raw_spin_lock(&rq2->lock); 1418 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1419 } 1420 } 1421 } 1422 1423 /* 1424 * double_rq_unlock - safely unlock two runqueues 1425 * 1426 * Note this does not restore interrupts like task_rq_unlock, 1427 * you need to do so manually after calling. 1428 */ 1429 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1430 __releases(rq1->lock) 1431 __releases(rq2->lock) 1432 { 1433 raw_spin_unlock(&rq1->lock); 1434 if (rq1 != rq2) 1435 raw_spin_unlock(&rq2->lock); 1436 else 1437 __release(rq2->lock); 1438 } 1439 1440 #else /* CONFIG_SMP */ 1441 1442 /* 1443 * double_rq_lock - safely lock two runqueues 1444 * 1445 * Note this does not disable interrupts like task_rq_lock, 1446 * you need to do so manually before calling. 1447 */ 1448 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1449 __acquires(rq1->lock) 1450 __acquires(rq2->lock) 1451 { 1452 BUG_ON(!irqs_disabled()); 1453 BUG_ON(rq1 != rq2); 1454 raw_spin_lock(&rq1->lock); 1455 __acquire(rq2->lock); /* Fake it out ;) */ 1456 } 1457 1458 /* 1459 * double_rq_unlock - safely unlock two runqueues 1460 * 1461 * Note this does not restore interrupts like task_rq_unlock, 1462 * you need to do so manually after calling. 1463 */ 1464 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1465 __releases(rq1->lock) 1466 __releases(rq2->lock) 1467 { 1468 BUG_ON(rq1 != rq2); 1469 raw_spin_unlock(&rq1->lock); 1470 __release(rq2->lock); 1471 } 1472 1473 #endif 1474 1475 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1476 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1477 extern void print_cfs_stats(struct seq_file *m, int cpu); 1478 extern void print_rt_stats(struct seq_file *m, int cpu); 1479 1480 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1481 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1482 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1483 1484 extern void cfs_bandwidth_usage_inc(void); 1485 extern void cfs_bandwidth_usage_dec(void); 1486 1487 #ifdef CONFIG_NO_HZ_COMMON 1488 enum rq_nohz_flag_bits { 1489 NOHZ_TICK_STOPPED, 1490 NOHZ_BALANCE_KICK, 1491 }; 1492 1493 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1494 #endif 1495 1496 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1497 1498 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1499 DECLARE_PER_CPU(u64, cpu_softirq_time); 1500 1501 #ifndef CONFIG_64BIT 1502 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1503 1504 static inline void irq_time_write_begin(void) 1505 { 1506 __this_cpu_inc(irq_time_seq.sequence); 1507 smp_wmb(); 1508 } 1509 1510 static inline void irq_time_write_end(void) 1511 { 1512 smp_wmb(); 1513 __this_cpu_inc(irq_time_seq.sequence); 1514 } 1515 1516 static inline u64 irq_time_read(int cpu) 1517 { 1518 u64 irq_time; 1519 unsigned seq; 1520 1521 do { 1522 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1523 irq_time = per_cpu(cpu_softirq_time, cpu) + 1524 per_cpu(cpu_hardirq_time, cpu); 1525 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1526 1527 return irq_time; 1528 } 1529 #else /* CONFIG_64BIT */ 1530 static inline void irq_time_write_begin(void) 1531 { 1532 } 1533 1534 static inline void irq_time_write_end(void) 1535 { 1536 } 1537 1538 static inline u64 irq_time_read(int cpu) 1539 { 1540 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1541 } 1542 #endif /* CONFIG_64BIT */ 1543 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1544