xref: /openbmc/linux/kernel/sched/sched.h (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
23 
24 #include <linux/u64_stats_sync.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/binfmts.h>
27 #include <linux/mutex.h>
28 #include <linux/spinlock.h>
29 #include <linux/stop_machine.h>
30 #include <linux/irq_work.h>
31 #include <linux/tick.h>
32 #include <linux/slab.h>
33 #include <linux/cgroup.h>
34 
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
37 #endif
38 
39 #include "cpupri.h"
40 #include "cpudeadline.h"
41 
42 #ifdef CONFIG_SCHED_DEBUG
43 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
44 #else
45 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
46 #endif
47 
48 struct rq;
49 struct cpuidle_state;
50 
51 /* task_struct::on_rq states: */
52 #define TASK_ON_RQ_QUEUED	1
53 #define TASK_ON_RQ_MIGRATING	2
54 
55 extern __read_mostly int scheduler_running;
56 
57 extern unsigned long calc_load_update;
58 extern atomic_long_t calc_load_tasks;
59 
60 extern void calc_global_load_tick(struct rq *this_rq);
61 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
62 
63 #ifdef CONFIG_SMP
64 extern void cpu_load_update_active(struct rq *this_rq);
65 #else
66 static inline void cpu_load_update_active(struct rq *this_rq) { }
67 #endif
68 
69 /*
70  * Helpers for converting nanosecond timing to jiffy resolution
71  */
72 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
73 
74 /*
75  * Increase resolution of nice-level calculations for 64-bit architectures.
76  * The extra resolution improves shares distribution and load balancing of
77  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78  * hierarchies, especially on larger systems. This is not a user-visible change
79  * and does not change the user-interface for setting shares/weights.
80  *
81  * We increase resolution only if we have enough bits to allow this increased
82  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83  * pretty high and the returns do not justify the increased costs.
84  *
85  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86  * increase coverage and consistency always enable it on 64bit platforms.
87  */
88 #ifdef CONFIG_64BIT
89 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
91 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
92 #else
93 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
94 # define scale_load(w)		(w)
95 # define scale_load_down(w)	(w)
96 #endif
97 
98 /*
99  * Task weight (visible to users) and its load (invisible to users) have
100  * independent resolution, but they should be well calibrated. We use
101  * scale_load() and scale_load_down(w) to convert between them. The
102  * following must be true:
103  *
104  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
105  *
106  */
107 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
108 
109 /*
110  * Single value that decides SCHED_DEADLINE internal math precision.
111  * 10 -> just above 1us
112  * 9  -> just above 0.5us
113  */
114 #define DL_SCALE (10)
115 
116 /*
117  * These are the 'tuning knobs' of the scheduler:
118  */
119 
120 /*
121  * single value that denotes runtime == period, ie unlimited time.
122  */
123 #define RUNTIME_INF	((u64)~0ULL)
124 
125 static inline int idle_policy(int policy)
126 {
127 	return policy == SCHED_IDLE;
128 }
129 static inline int fair_policy(int policy)
130 {
131 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
132 }
133 
134 static inline int rt_policy(int policy)
135 {
136 	return policy == SCHED_FIFO || policy == SCHED_RR;
137 }
138 
139 static inline int dl_policy(int policy)
140 {
141 	return policy == SCHED_DEADLINE;
142 }
143 static inline bool valid_policy(int policy)
144 {
145 	return idle_policy(policy) || fair_policy(policy) ||
146 		rt_policy(policy) || dl_policy(policy);
147 }
148 
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 	return rt_policy(p->policy);
152 }
153 
154 static inline int task_has_dl_policy(struct task_struct *p)
155 {
156 	return dl_policy(p->policy);
157 }
158 
159 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
160 
161 /*
162  * !! For sched_setattr_nocheck() (kernel) only !!
163  *
164  * This is actually gross. :(
165  *
166  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
167  * tasks, but still be able to sleep. We need this on platforms that cannot
168  * atomically change clock frequency. Remove once fast switching will be
169  * available on such platforms.
170  *
171  * SUGOV stands for SchedUtil GOVernor.
172  */
173 #define SCHED_FLAG_SUGOV	0x10000000
174 
175 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
176 {
177 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
178 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
179 #else
180 	return false;
181 #endif
182 }
183 
184 /*
185  * Tells if entity @a should preempt entity @b.
186  */
187 static inline bool
188 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
189 {
190 	return dl_entity_is_special(a) ||
191 	       dl_time_before(a->deadline, b->deadline);
192 }
193 
194 /*
195  * This is the priority-queue data structure of the RT scheduling class:
196  */
197 struct rt_prio_array {
198 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
199 	struct list_head queue[MAX_RT_PRIO];
200 };
201 
202 struct rt_bandwidth {
203 	/* nests inside the rq lock: */
204 	raw_spinlock_t		rt_runtime_lock;
205 	ktime_t			rt_period;
206 	u64			rt_runtime;
207 	struct hrtimer		rt_period_timer;
208 	unsigned int		rt_period_active;
209 };
210 
211 void __dl_clear_params(struct task_struct *p);
212 
213 /*
214  * To keep the bandwidth of -deadline tasks and groups under control
215  * we need some place where:
216  *  - store the maximum -deadline bandwidth of the system (the group);
217  *  - cache the fraction of that bandwidth that is currently allocated.
218  *
219  * This is all done in the data structure below. It is similar to the
220  * one used for RT-throttling (rt_bandwidth), with the main difference
221  * that, since here we are only interested in admission control, we
222  * do not decrease any runtime while the group "executes", neither we
223  * need a timer to replenish it.
224  *
225  * With respect to SMP, the bandwidth is given on a per-CPU basis,
226  * meaning that:
227  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
228  *  - dl_total_bw array contains, in the i-eth element, the currently
229  *    allocated bandwidth on the i-eth CPU.
230  * Moreover, groups consume bandwidth on each CPU, while tasks only
231  * consume bandwidth on the CPU they're running on.
232  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
233  * that will be shown the next time the proc or cgroup controls will
234  * be red. It on its turn can be changed by writing on its own
235  * control.
236  */
237 struct dl_bandwidth {
238 	raw_spinlock_t dl_runtime_lock;
239 	u64 dl_runtime;
240 	u64 dl_period;
241 };
242 
243 static inline int dl_bandwidth_enabled(void)
244 {
245 	return sysctl_sched_rt_runtime >= 0;
246 }
247 
248 struct dl_bw {
249 	raw_spinlock_t lock;
250 	u64 bw, total_bw;
251 };
252 
253 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
254 
255 static inline
256 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
257 {
258 	dl_b->total_bw -= tsk_bw;
259 	__dl_update(dl_b, (s32)tsk_bw / cpus);
260 }
261 
262 static inline
263 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
264 {
265 	dl_b->total_bw += tsk_bw;
266 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
267 }
268 
269 static inline
270 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
271 {
272 	return dl_b->bw != -1 &&
273 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
274 }
275 
276 void dl_change_utilization(struct task_struct *p, u64 new_bw);
277 extern void init_dl_bw(struct dl_bw *dl_b);
278 extern int sched_dl_global_validate(void);
279 extern void sched_dl_do_global(void);
280 extern int sched_dl_overflow(struct task_struct *p, int policy,
281 			     const struct sched_attr *attr);
282 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
283 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
284 extern bool __checkparam_dl(const struct sched_attr *attr);
285 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
286 extern int dl_task_can_attach(struct task_struct *p,
287 			      const struct cpumask *cs_cpus_allowed);
288 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
289 					const struct cpumask *trial);
290 extern bool dl_cpu_busy(unsigned int cpu);
291 
292 #ifdef CONFIG_CGROUP_SCHED
293 
294 #include <linux/cgroup.h>
295 
296 struct cfs_rq;
297 struct rt_rq;
298 
299 extern struct list_head task_groups;
300 
301 struct cfs_bandwidth {
302 #ifdef CONFIG_CFS_BANDWIDTH
303 	raw_spinlock_t lock;
304 	ktime_t period;
305 	u64 quota, runtime;
306 	s64 hierarchical_quota;
307 	u64 runtime_expires;
308 
309 	int idle, period_active;
310 	struct hrtimer period_timer, slack_timer;
311 	struct list_head throttled_cfs_rq;
312 
313 	/* statistics */
314 	int nr_periods, nr_throttled;
315 	u64 throttled_time;
316 #endif
317 };
318 
319 /* task group related information */
320 struct task_group {
321 	struct cgroup_subsys_state css;
322 
323 #ifdef CONFIG_FAIR_GROUP_SCHED
324 	/* schedulable entities of this group on each cpu */
325 	struct sched_entity **se;
326 	/* runqueue "owned" by this group on each cpu */
327 	struct cfs_rq **cfs_rq;
328 	unsigned long shares;
329 
330 #ifdef	CONFIG_SMP
331 	/*
332 	 * load_avg can be heavily contended at clock tick time, so put
333 	 * it in its own cacheline separated from the fields above which
334 	 * will also be accessed at each tick.
335 	 */
336 	atomic_long_t load_avg ____cacheline_aligned;
337 #endif
338 #endif
339 
340 #ifdef CONFIG_RT_GROUP_SCHED
341 	struct sched_rt_entity **rt_se;
342 	struct rt_rq **rt_rq;
343 
344 	struct rt_bandwidth rt_bandwidth;
345 #endif
346 
347 	struct rcu_head rcu;
348 	struct list_head list;
349 
350 	struct task_group *parent;
351 	struct list_head siblings;
352 	struct list_head children;
353 
354 #ifdef CONFIG_SCHED_AUTOGROUP
355 	struct autogroup *autogroup;
356 #endif
357 
358 	struct cfs_bandwidth cfs_bandwidth;
359 };
360 
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
363 
364 /*
365  * A weight of 0 or 1 can cause arithmetics problems.
366  * A weight of a cfs_rq is the sum of weights of which entities
367  * are queued on this cfs_rq, so a weight of a entity should not be
368  * too large, so as the shares value of a task group.
369  * (The default weight is 1024 - so there's no practical
370  *  limitation from this.)
371  */
372 #define MIN_SHARES	(1UL <<  1)
373 #define MAX_SHARES	(1UL << 18)
374 #endif
375 
376 typedef int (*tg_visitor)(struct task_group *, void *);
377 
378 extern int walk_tg_tree_from(struct task_group *from,
379 			     tg_visitor down, tg_visitor up, void *data);
380 
381 /*
382  * Iterate the full tree, calling @down when first entering a node and @up when
383  * leaving it for the final time.
384  *
385  * Caller must hold rcu_lock or sufficient equivalent.
386  */
387 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
388 {
389 	return walk_tg_tree_from(&root_task_group, down, up, data);
390 }
391 
392 extern int tg_nop(struct task_group *tg, void *data);
393 
394 extern void free_fair_sched_group(struct task_group *tg);
395 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
396 extern void online_fair_sched_group(struct task_group *tg);
397 extern void unregister_fair_sched_group(struct task_group *tg);
398 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
399 			struct sched_entity *se, int cpu,
400 			struct sched_entity *parent);
401 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
402 
403 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
404 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
405 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
406 
407 extern void free_rt_sched_group(struct task_group *tg);
408 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
409 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
410 		struct sched_rt_entity *rt_se, int cpu,
411 		struct sched_rt_entity *parent);
412 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
413 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
414 extern long sched_group_rt_runtime(struct task_group *tg);
415 extern long sched_group_rt_period(struct task_group *tg);
416 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
417 
418 extern struct task_group *sched_create_group(struct task_group *parent);
419 extern void sched_online_group(struct task_group *tg,
420 			       struct task_group *parent);
421 extern void sched_destroy_group(struct task_group *tg);
422 extern void sched_offline_group(struct task_group *tg);
423 
424 extern void sched_move_task(struct task_struct *tsk);
425 
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
428 
429 #ifdef CONFIG_SMP
430 extern void set_task_rq_fair(struct sched_entity *se,
431 			     struct cfs_rq *prev, struct cfs_rq *next);
432 #else /* !CONFIG_SMP */
433 static inline void set_task_rq_fair(struct sched_entity *se,
434 			     struct cfs_rq *prev, struct cfs_rq *next) { }
435 #endif /* CONFIG_SMP */
436 #endif /* CONFIG_FAIR_GROUP_SCHED */
437 
438 #else /* CONFIG_CGROUP_SCHED */
439 
440 struct cfs_bandwidth { };
441 
442 #endif	/* CONFIG_CGROUP_SCHED */
443 
444 /* CFS-related fields in a runqueue */
445 struct cfs_rq {
446 	struct load_weight load;
447 	unsigned long runnable_weight;
448 	unsigned int nr_running, h_nr_running;
449 
450 	u64 exec_clock;
451 	u64 min_vruntime;
452 #ifndef CONFIG_64BIT
453 	u64 min_vruntime_copy;
454 #endif
455 
456 	struct rb_root_cached tasks_timeline;
457 
458 	/*
459 	 * 'curr' points to currently running entity on this cfs_rq.
460 	 * It is set to NULL otherwise (i.e when none are currently running).
461 	 */
462 	struct sched_entity *curr, *next, *last, *skip;
463 
464 #ifdef	CONFIG_SCHED_DEBUG
465 	unsigned int nr_spread_over;
466 #endif
467 
468 #ifdef CONFIG_SMP
469 	/*
470 	 * CFS load tracking
471 	 */
472 	struct sched_avg avg;
473 #ifndef CONFIG_64BIT
474 	u64 load_last_update_time_copy;
475 #endif
476 	struct {
477 		raw_spinlock_t	lock ____cacheline_aligned;
478 		int		nr;
479 		unsigned long	load_avg;
480 		unsigned long	util_avg;
481 		unsigned long	runnable_sum;
482 	} removed;
483 
484 #ifdef CONFIG_FAIR_GROUP_SCHED
485 	unsigned long tg_load_avg_contrib;
486 	long propagate;
487 	long prop_runnable_sum;
488 
489 	/*
490 	 *   h_load = weight * f(tg)
491 	 *
492 	 * Where f(tg) is the recursive weight fraction assigned to
493 	 * this group.
494 	 */
495 	unsigned long h_load;
496 	u64 last_h_load_update;
497 	struct sched_entity *h_load_next;
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499 #endif /* CONFIG_SMP */
500 
501 #ifdef CONFIG_FAIR_GROUP_SCHED
502 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
503 
504 	/*
505 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
506 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
507 	 * (like users, containers etc.)
508 	 *
509 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
510 	 * list is used during load balance.
511 	 */
512 	int on_list;
513 	struct list_head leaf_cfs_rq_list;
514 	struct task_group *tg;	/* group that "owns" this runqueue */
515 
516 #ifdef CONFIG_CFS_BANDWIDTH
517 	int runtime_enabled;
518 	u64 runtime_expires;
519 	s64 runtime_remaining;
520 
521 	u64 throttled_clock, throttled_clock_task;
522 	u64 throttled_clock_task_time;
523 	int throttled, throttle_count;
524 	struct list_head throttled_list;
525 #endif /* CONFIG_CFS_BANDWIDTH */
526 #endif /* CONFIG_FAIR_GROUP_SCHED */
527 };
528 
529 static inline int rt_bandwidth_enabled(void)
530 {
531 	return sysctl_sched_rt_runtime >= 0;
532 }
533 
534 /* RT IPI pull logic requires IRQ_WORK */
535 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
536 # define HAVE_RT_PUSH_IPI
537 #endif
538 
539 /* Real-Time classes' related field in a runqueue: */
540 struct rt_rq {
541 	struct rt_prio_array active;
542 	unsigned int rt_nr_running;
543 	unsigned int rr_nr_running;
544 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
545 	struct {
546 		int curr; /* highest queued rt task prio */
547 #ifdef CONFIG_SMP
548 		int next; /* next highest */
549 #endif
550 	} highest_prio;
551 #endif
552 #ifdef CONFIG_SMP
553 	unsigned long rt_nr_migratory;
554 	unsigned long rt_nr_total;
555 	int overloaded;
556 	struct plist_head pushable_tasks;
557 #endif /* CONFIG_SMP */
558 	int rt_queued;
559 
560 	int rt_throttled;
561 	u64 rt_time;
562 	u64 rt_runtime;
563 	/* Nests inside the rq lock: */
564 	raw_spinlock_t rt_runtime_lock;
565 
566 #ifdef CONFIG_RT_GROUP_SCHED
567 	unsigned long rt_nr_boosted;
568 
569 	struct rq *rq;
570 	struct task_group *tg;
571 #endif
572 };
573 
574 /* Deadline class' related fields in a runqueue */
575 struct dl_rq {
576 	/* runqueue is an rbtree, ordered by deadline */
577 	struct rb_root_cached root;
578 
579 	unsigned long dl_nr_running;
580 
581 #ifdef CONFIG_SMP
582 	/*
583 	 * Deadline values of the currently executing and the
584 	 * earliest ready task on this rq. Caching these facilitates
585 	 * the decision wether or not a ready but not running task
586 	 * should migrate somewhere else.
587 	 */
588 	struct {
589 		u64 curr;
590 		u64 next;
591 	} earliest_dl;
592 
593 	unsigned long dl_nr_migratory;
594 	int overloaded;
595 
596 	/*
597 	 * Tasks on this rq that can be pushed away. They are kept in
598 	 * an rb-tree, ordered by tasks' deadlines, with caching
599 	 * of the leftmost (earliest deadline) element.
600 	 */
601 	struct rb_root_cached pushable_dl_tasks_root;
602 #else
603 	struct dl_bw dl_bw;
604 #endif
605 	/*
606 	 * "Active utilization" for this runqueue: increased when a
607 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
608 	 * task blocks
609 	 */
610 	u64 running_bw;
611 
612 	/*
613 	 * Utilization of the tasks "assigned" to this runqueue (including
614 	 * the tasks that are in runqueue and the tasks that executed on this
615 	 * CPU and blocked). Increased when a task moves to this runqueue, and
616 	 * decreased when the task moves away (migrates, changes scheduling
617 	 * policy, or terminates).
618 	 * This is needed to compute the "inactive utilization" for the
619 	 * runqueue (inactive utilization = this_bw - running_bw).
620 	 */
621 	u64 this_bw;
622 	u64 extra_bw;
623 
624 	/*
625 	 * Inverse of the fraction of CPU utilization that can be reclaimed
626 	 * by the GRUB algorithm.
627 	 */
628 	u64 bw_ratio;
629 };
630 
631 #ifdef CONFIG_SMP
632 
633 static inline bool sched_asym_prefer(int a, int b)
634 {
635 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
636 }
637 
638 /*
639  * We add the notion of a root-domain which will be used to define per-domain
640  * variables. Each exclusive cpuset essentially defines an island domain by
641  * fully partitioning the member cpus from any other cpuset. Whenever a new
642  * exclusive cpuset is created, we also create and attach a new root-domain
643  * object.
644  *
645  */
646 struct root_domain {
647 	atomic_t refcount;
648 	atomic_t rto_count;
649 	struct rcu_head rcu;
650 	cpumask_var_t span;
651 	cpumask_var_t online;
652 
653 	/* Indicate more than one runnable task for any CPU */
654 	bool overload;
655 
656 	/*
657 	 * The bit corresponding to a CPU gets set here if such CPU has more
658 	 * than one runnable -deadline task (as it is below for RT tasks).
659 	 */
660 	cpumask_var_t dlo_mask;
661 	atomic_t dlo_count;
662 	struct dl_bw dl_bw;
663 	struct cpudl cpudl;
664 
665 #ifdef HAVE_RT_PUSH_IPI
666 	/*
667 	 * For IPI pull requests, loop across the rto_mask.
668 	 */
669 	struct irq_work rto_push_work;
670 	raw_spinlock_t rto_lock;
671 	/* These are only updated and read within rto_lock */
672 	int rto_loop;
673 	int rto_cpu;
674 	/* These atomics are updated outside of a lock */
675 	atomic_t rto_loop_next;
676 	atomic_t rto_loop_start;
677 #endif
678 	/*
679 	 * The "RT overload" flag: it gets set if a CPU has more than
680 	 * one runnable RT task.
681 	 */
682 	cpumask_var_t rto_mask;
683 	struct cpupri cpupri;
684 
685 	unsigned long max_cpu_capacity;
686 };
687 
688 extern struct root_domain def_root_domain;
689 extern struct mutex sched_domains_mutex;
690 
691 extern void init_defrootdomain(void);
692 extern int sched_init_domains(const struct cpumask *cpu_map);
693 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
694 extern void sched_get_rd(struct root_domain *rd);
695 extern void sched_put_rd(struct root_domain *rd);
696 
697 #ifdef HAVE_RT_PUSH_IPI
698 extern void rto_push_irq_work_func(struct irq_work *work);
699 #endif
700 #endif /* CONFIG_SMP */
701 
702 /*
703  * This is the main, per-CPU runqueue data structure.
704  *
705  * Locking rule: those places that want to lock multiple runqueues
706  * (such as the load balancing or the thread migration code), lock
707  * acquire operations must be ordered by ascending &runqueue.
708  */
709 struct rq {
710 	/* runqueue lock: */
711 	raw_spinlock_t lock;
712 
713 	/*
714 	 * nr_running and cpu_load should be in the same cacheline because
715 	 * remote CPUs use both these fields when doing load calculation.
716 	 */
717 	unsigned int nr_running;
718 #ifdef CONFIG_NUMA_BALANCING
719 	unsigned int nr_numa_running;
720 	unsigned int nr_preferred_running;
721 #endif
722 	#define CPU_LOAD_IDX_MAX 5
723 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
724 #ifdef CONFIG_NO_HZ_COMMON
725 #ifdef CONFIG_SMP
726 	unsigned long last_load_update_tick;
727 #endif /* CONFIG_SMP */
728 	unsigned long nohz_flags;
729 #endif /* CONFIG_NO_HZ_COMMON */
730 #ifdef CONFIG_NO_HZ_FULL
731 	unsigned long last_sched_tick;
732 #endif
733 	/* capture load from *all* tasks on this cpu: */
734 	struct load_weight load;
735 	unsigned long nr_load_updates;
736 	u64 nr_switches;
737 
738 	struct cfs_rq cfs;
739 	struct rt_rq rt;
740 	struct dl_rq dl;
741 
742 #ifdef CONFIG_FAIR_GROUP_SCHED
743 	/* list of leaf cfs_rq on this cpu: */
744 	struct list_head leaf_cfs_rq_list;
745 	struct list_head *tmp_alone_branch;
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
747 
748 	/*
749 	 * This is part of a global counter where only the total sum
750 	 * over all CPUs matters. A task can increase this counter on
751 	 * one CPU and if it got migrated afterwards it may decrease
752 	 * it on another CPU. Always updated under the runqueue lock:
753 	 */
754 	unsigned long nr_uninterruptible;
755 
756 	struct task_struct *curr, *idle, *stop;
757 	unsigned long next_balance;
758 	struct mm_struct *prev_mm;
759 
760 	unsigned int clock_update_flags;
761 	u64 clock;
762 	u64 clock_task;
763 
764 	atomic_t nr_iowait;
765 
766 #ifdef CONFIG_SMP
767 	struct root_domain *rd;
768 	struct sched_domain *sd;
769 
770 	unsigned long cpu_capacity;
771 	unsigned long cpu_capacity_orig;
772 
773 	struct callback_head *balance_callback;
774 
775 	unsigned char idle_balance;
776 	/* For active balancing */
777 	int active_balance;
778 	int push_cpu;
779 	struct cpu_stop_work active_balance_work;
780 	/* cpu of this runqueue: */
781 	int cpu;
782 	int online;
783 
784 	struct list_head cfs_tasks;
785 
786 	u64 rt_avg;
787 	u64 age_stamp;
788 	u64 idle_stamp;
789 	u64 avg_idle;
790 
791 	/* This is used to determine avg_idle's max value */
792 	u64 max_idle_balance_cost;
793 #endif
794 
795 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
796 	u64 prev_irq_time;
797 #endif
798 #ifdef CONFIG_PARAVIRT
799 	u64 prev_steal_time;
800 #endif
801 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
802 	u64 prev_steal_time_rq;
803 #endif
804 
805 	/* calc_load related fields */
806 	unsigned long calc_load_update;
807 	long calc_load_active;
808 
809 #ifdef CONFIG_SCHED_HRTICK
810 #ifdef CONFIG_SMP
811 	int hrtick_csd_pending;
812 	call_single_data_t hrtick_csd;
813 #endif
814 	struct hrtimer hrtick_timer;
815 #endif
816 
817 #ifdef CONFIG_SCHEDSTATS
818 	/* latency stats */
819 	struct sched_info rq_sched_info;
820 	unsigned long long rq_cpu_time;
821 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
822 
823 	/* sys_sched_yield() stats */
824 	unsigned int yld_count;
825 
826 	/* schedule() stats */
827 	unsigned int sched_count;
828 	unsigned int sched_goidle;
829 
830 	/* try_to_wake_up() stats */
831 	unsigned int ttwu_count;
832 	unsigned int ttwu_local;
833 #endif
834 
835 #ifdef CONFIG_SMP
836 	struct llist_head wake_list;
837 #endif
838 
839 #ifdef CONFIG_CPU_IDLE
840 	/* Must be inspected within a rcu lock section */
841 	struct cpuidle_state *idle_state;
842 #endif
843 };
844 
845 static inline int cpu_of(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	return rq->cpu;
849 #else
850 	return 0;
851 #endif
852 }
853 
854 
855 #ifdef CONFIG_SCHED_SMT
856 
857 extern struct static_key_false sched_smt_present;
858 
859 extern void __update_idle_core(struct rq *rq);
860 
861 static inline void update_idle_core(struct rq *rq)
862 {
863 	if (static_branch_unlikely(&sched_smt_present))
864 		__update_idle_core(rq);
865 }
866 
867 #else
868 static inline void update_idle_core(struct rq *rq) { }
869 #endif
870 
871 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
872 
873 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
874 #define this_rq()		this_cpu_ptr(&runqueues)
875 #define task_rq(p)		cpu_rq(task_cpu(p))
876 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
877 #define raw_rq()		raw_cpu_ptr(&runqueues)
878 
879 static inline u64 __rq_clock_broken(struct rq *rq)
880 {
881 	return READ_ONCE(rq->clock);
882 }
883 
884 /*
885  * rq::clock_update_flags bits
886  *
887  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
888  *  call to __schedule(). This is an optimisation to avoid
889  *  neighbouring rq clock updates.
890  *
891  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
892  *  in effect and calls to update_rq_clock() are being ignored.
893  *
894  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
895  *  made to update_rq_clock() since the last time rq::lock was pinned.
896  *
897  * If inside of __schedule(), clock_update_flags will have been
898  * shifted left (a left shift is a cheap operation for the fast path
899  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
900  *
901  *	if (rq-clock_update_flags >= RQCF_UPDATED)
902  *
903  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
904  * one position though, because the next rq_unpin_lock() will shift it
905  * back.
906  */
907 #define RQCF_REQ_SKIP	0x01
908 #define RQCF_ACT_SKIP	0x02
909 #define RQCF_UPDATED	0x04
910 
911 static inline void assert_clock_updated(struct rq *rq)
912 {
913 	/*
914 	 * The only reason for not seeing a clock update since the
915 	 * last rq_pin_lock() is if we're currently skipping updates.
916 	 */
917 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
918 }
919 
920 static inline u64 rq_clock(struct rq *rq)
921 {
922 	lockdep_assert_held(&rq->lock);
923 	assert_clock_updated(rq);
924 
925 	return rq->clock;
926 }
927 
928 static inline u64 rq_clock_task(struct rq *rq)
929 {
930 	lockdep_assert_held(&rq->lock);
931 	assert_clock_updated(rq);
932 
933 	return rq->clock_task;
934 }
935 
936 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
937 {
938 	lockdep_assert_held(&rq->lock);
939 	if (skip)
940 		rq->clock_update_flags |= RQCF_REQ_SKIP;
941 	else
942 		rq->clock_update_flags &= ~RQCF_REQ_SKIP;
943 }
944 
945 struct rq_flags {
946 	unsigned long flags;
947 	struct pin_cookie cookie;
948 #ifdef CONFIG_SCHED_DEBUG
949 	/*
950 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
951 	 * current pin context is stashed here in case it needs to be
952 	 * restored in rq_repin_lock().
953 	 */
954 	unsigned int clock_update_flags;
955 #endif
956 };
957 
958 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
959 {
960 	rf->cookie = lockdep_pin_lock(&rq->lock);
961 
962 #ifdef CONFIG_SCHED_DEBUG
963 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
964 	rf->clock_update_flags = 0;
965 #endif
966 }
967 
968 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
969 {
970 #ifdef CONFIG_SCHED_DEBUG
971 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
972 		rf->clock_update_flags = RQCF_UPDATED;
973 #endif
974 
975 	lockdep_unpin_lock(&rq->lock, rf->cookie);
976 }
977 
978 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
979 {
980 	lockdep_repin_lock(&rq->lock, rf->cookie);
981 
982 #ifdef CONFIG_SCHED_DEBUG
983 	/*
984 	 * Restore the value we stashed in @rf for this pin context.
985 	 */
986 	rq->clock_update_flags |= rf->clock_update_flags;
987 #endif
988 }
989 
990 #ifdef CONFIG_NUMA
991 enum numa_topology_type {
992 	NUMA_DIRECT,
993 	NUMA_GLUELESS_MESH,
994 	NUMA_BACKPLANE,
995 };
996 extern enum numa_topology_type sched_numa_topology_type;
997 extern int sched_max_numa_distance;
998 extern bool find_numa_distance(int distance);
999 #endif
1000 
1001 #ifdef CONFIG_NUMA
1002 extern void sched_init_numa(void);
1003 extern void sched_domains_numa_masks_set(unsigned int cpu);
1004 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1005 #else
1006 static inline void sched_init_numa(void) { }
1007 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1008 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1009 #endif
1010 
1011 #ifdef CONFIG_NUMA_BALANCING
1012 /* The regions in numa_faults array from task_struct */
1013 enum numa_faults_stats {
1014 	NUMA_MEM = 0,
1015 	NUMA_CPU,
1016 	NUMA_MEMBUF,
1017 	NUMA_CPUBUF
1018 };
1019 extern void sched_setnuma(struct task_struct *p, int node);
1020 extern int migrate_task_to(struct task_struct *p, int cpu);
1021 extern int migrate_swap(struct task_struct *, struct task_struct *);
1022 #endif /* CONFIG_NUMA_BALANCING */
1023 
1024 #ifdef CONFIG_SMP
1025 
1026 static inline void
1027 queue_balance_callback(struct rq *rq,
1028 		       struct callback_head *head,
1029 		       void (*func)(struct rq *rq))
1030 {
1031 	lockdep_assert_held(&rq->lock);
1032 
1033 	if (unlikely(head->next))
1034 		return;
1035 
1036 	head->func = (void (*)(struct callback_head *))func;
1037 	head->next = rq->balance_callback;
1038 	rq->balance_callback = head;
1039 }
1040 
1041 extern void sched_ttwu_pending(void);
1042 
1043 #define rcu_dereference_check_sched_domain(p) \
1044 	rcu_dereference_check((p), \
1045 			      lockdep_is_held(&sched_domains_mutex))
1046 
1047 /*
1048  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1049  * See detach_destroy_domains: synchronize_sched for details.
1050  *
1051  * The domain tree of any CPU may only be accessed from within
1052  * preempt-disabled sections.
1053  */
1054 #define for_each_domain(cpu, __sd) \
1055 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1056 			__sd; __sd = __sd->parent)
1057 
1058 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1059 
1060 /**
1061  * highest_flag_domain - Return highest sched_domain containing flag.
1062  * @cpu:	The cpu whose highest level of sched domain is to
1063  *		be returned.
1064  * @flag:	The flag to check for the highest sched_domain
1065  *		for the given cpu.
1066  *
1067  * Returns the highest sched_domain of a cpu which contains the given flag.
1068  */
1069 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1070 {
1071 	struct sched_domain *sd, *hsd = NULL;
1072 
1073 	for_each_domain(cpu, sd) {
1074 		if (!(sd->flags & flag))
1075 			break;
1076 		hsd = sd;
1077 	}
1078 
1079 	return hsd;
1080 }
1081 
1082 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1083 {
1084 	struct sched_domain *sd;
1085 
1086 	for_each_domain(cpu, sd) {
1087 		if (sd->flags & flag)
1088 			break;
1089 	}
1090 
1091 	return sd;
1092 }
1093 
1094 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1095 DECLARE_PER_CPU(int, sd_llc_size);
1096 DECLARE_PER_CPU(int, sd_llc_id);
1097 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1098 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1099 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1100 
1101 struct sched_group_capacity {
1102 	atomic_t ref;
1103 	/*
1104 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1105 	 * for a single CPU.
1106 	 */
1107 	unsigned long capacity;
1108 	unsigned long min_capacity; /* Min per-CPU capacity in group */
1109 	unsigned long next_update;
1110 	int imbalance; /* XXX unrelated to capacity but shared group state */
1111 
1112 #ifdef CONFIG_SCHED_DEBUG
1113 	int id;
1114 #endif
1115 
1116 	unsigned long cpumask[0]; /* balance mask */
1117 };
1118 
1119 struct sched_group {
1120 	struct sched_group *next;	/* Must be a circular list */
1121 	atomic_t ref;
1122 
1123 	unsigned int group_weight;
1124 	struct sched_group_capacity *sgc;
1125 	int asym_prefer_cpu;		/* cpu of highest priority in group */
1126 
1127 	/*
1128 	 * The CPUs this group covers.
1129 	 *
1130 	 * NOTE: this field is variable length. (Allocated dynamically
1131 	 * by attaching extra space to the end of the structure,
1132 	 * depending on how many CPUs the kernel has booted up with)
1133 	 */
1134 	unsigned long cpumask[0];
1135 };
1136 
1137 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1138 {
1139 	return to_cpumask(sg->cpumask);
1140 }
1141 
1142 /*
1143  * See build_balance_mask().
1144  */
1145 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1146 {
1147 	return to_cpumask(sg->sgc->cpumask);
1148 }
1149 
1150 /**
1151  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1152  * @group: The group whose first cpu is to be returned.
1153  */
1154 static inline unsigned int group_first_cpu(struct sched_group *group)
1155 {
1156 	return cpumask_first(sched_group_span(group));
1157 }
1158 
1159 extern int group_balance_cpu(struct sched_group *sg);
1160 
1161 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1162 void register_sched_domain_sysctl(void);
1163 void dirty_sched_domain_sysctl(int cpu);
1164 void unregister_sched_domain_sysctl(void);
1165 #else
1166 static inline void register_sched_domain_sysctl(void)
1167 {
1168 }
1169 static inline void dirty_sched_domain_sysctl(int cpu)
1170 {
1171 }
1172 static inline void unregister_sched_domain_sysctl(void)
1173 {
1174 }
1175 #endif
1176 
1177 #else
1178 
1179 static inline void sched_ttwu_pending(void) { }
1180 
1181 #endif /* CONFIG_SMP */
1182 
1183 #include "stats.h"
1184 #include "autogroup.h"
1185 
1186 #ifdef CONFIG_CGROUP_SCHED
1187 
1188 /*
1189  * Return the group to which this tasks belongs.
1190  *
1191  * We cannot use task_css() and friends because the cgroup subsystem
1192  * changes that value before the cgroup_subsys::attach() method is called,
1193  * therefore we cannot pin it and might observe the wrong value.
1194  *
1195  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1196  * core changes this before calling sched_move_task().
1197  *
1198  * Instead we use a 'copy' which is updated from sched_move_task() while
1199  * holding both task_struct::pi_lock and rq::lock.
1200  */
1201 static inline struct task_group *task_group(struct task_struct *p)
1202 {
1203 	return p->sched_task_group;
1204 }
1205 
1206 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1207 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1208 {
1209 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1210 	struct task_group *tg = task_group(p);
1211 #endif
1212 
1213 #ifdef CONFIG_FAIR_GROUP_SCHED
1214 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1215 	p->se.cfs_rq = tg->cfs_rq[cpu];
1216 	p->se.parent = tg->se[cpu];
1217 #endif
1218 
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220 	p->rt.rt_rq  = tg->rt_rq[cpu];
1221 	p->rt.parent = tg->rt_se[cpu];
1222 #endif
1223 }
1224 
1225 #else /* CONFIG_CGROUP_SCHED */
1226 
1227 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1228 static inline struct task_group *task_group(struct task_struct *p)
1229 {
1230 	return NULL;
1231 }
1232 
1233 #endif /* CONFIG_CGROUP_SCHED */
1234 
1235 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1236 {
1237 	set_task_rq(p, cpu);
1238 #ifdef CONFIG_SMP
1239 	/*
1240 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1241 	 * successfuly executed on another CPU. We must ensure that updates of
1242 	 * per-task data have been completed by this moment.
1243 	 */
1244 	smp_wmb();
1245 #ifdef CONFIG_THREAD_INFO_IN_TASK
1246 	p->cpu = cpu;
1247 #else
1248 	task_thread_info(p)->cpu = cpu;
1249 #endif
1250 	p->wake_cpu = cpu;
1251 #endif
1252 }
1253 
1254 /*
1255  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1256  */
1257 #ifdef CONFIG_SCHED_DEBUG
1258 # include <linux/static_key.h>
1259 # define const_debug __read_mostly
1260 #else
1261 # define const_debug const
1262 #endif
1263 
1264 #define SCHED_FEAT(name, enabled)	\
1265 	__SCHED_FEAT_##name ,
1266 
1267 enum {
1268 #include "features.h"
1269 	__SCHED_FEAT_NR,
1270 };
1271 
1272 #undef SCHED_FEAT
1273 
1274 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1275 
1276 /*
1277  * To support run-time toggling of sched features, all the translation units
1278  * (but core.c) reference the sysctl_sched_features defined in core.c.
1279  */
1280 extern const_debug unsigned int sysctl_sched_features;
1281 
1282 #define SCHED_FEAT(name, enabled)					\
1283 static __always_inline bool static_branch_##name(struct static_key *key) \
1284 {									\
1285 	return static_key_##enabled(key);				\
1286 }
1287 
1288 #include "features.h"
1289 #undef SCHED_FEAT
1290 
1291 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1292 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1293 
1294 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1295 
1296 /*
1297  * Each translation unit has its own copy of sysctl_sched_features to allow
1298  * constants propagation at compile time and compiler optimization based on
1299  * features default.
1300  */
1301 #define SCHED_FEAT(name, enabled)	\
1302 	(1UL << __SCHED_FEAT_##name) * enabled |
1303 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1304 #include "features.h"
1305 	0;
1306 #undef SCHED_FEAT
1307 
1308 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1309 
1310 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1311 
1312 extern struct static_key_false sched_numa_balancing;
1313 extern struct static_key_false sched_schedstats;
1314 
1315 static inline u64 global_rt_period(void)
1316 {
1317 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1318 }
1319 
1320 static inline u64 global_rt_runtime(void)
1321 {
1322 	if (sysctl_sched_rt_runtime < 0)
1323 		return RUNTIME_INF;
1324 
1325 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1326 }
1327 
1328 static inline int task_current(struct rq *rq, struct task_struct *p)
1329 {
1330 	return rq->curr == p;
1331 }
1332 
1333 static inline int task_running(struct rq *rq, struct task_struct *p)
1334 {
1335 #ifdef CONFIG_SMP
1336 	return p->on_cpu;
1337 #else
1338 	return task_current(rq, p);
1339 #endif
1340 }
1341 
1342 static inline int task_on_rq_queued(struct task_struct *p)
1343 {
1344 	return p->on_rq == TASK_ON_RQ_QUEUED;
1345 }
1346 
1347 static inline int task_on_rq_migrating(struct task_struct *p)
1348 {
1349 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1350 }
1351 
1352 #ifndef prepare_arch_switch
1353 # define prepare_arch_switch(next)	do { } while (0)
1354 #endif
1355 #ifndef finish_arch_post_lock_switch
1356 # define finish_arch_post_lock_switch()	do { } while (0)
1357 #endif
1358 
1359 /*
1360  * wake flags
1361  */
1362 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1363 #define WF_FORK		0x02		/* child wakeup after fork */
1364 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1365 
1366 /*
1367  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1368  * of tasks with abnormal "nice" values across CPUs the contribution that
1369  * each task makes to its run queue's load is weighted according to its
1370  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1371  * scaled version of the new time slice allocation that they receive on time
1372  * slice expiry etc.
1373  */
1374 
1375 #define WEIGHT_IDLEPRIO                3
1376 #define WMULT_IDLEPRIO         1431655765
1377 
1378 extern const int sched_prio_to_weight[40];
1379 extern const u32 sched_prio_to_wmult[40];
1380 
1381 /*
1382  * {de,en}queue flags:
1383  *
1384  * DEQUEUE_SLEEP  - task is no longer runnable
1385  * ENQUEUE_WAKEUP - task just became runnable
1386  *
1387  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1388  *                are in a known state which allows modification. Such pairs
1389  *                should preserve as much state as possible.
1390  *
1391  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1392  *        in the runqueue.
1393  *
1394  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1395  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1396  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1397  *
1398  */
1399 
1400 #define DEQUEUE_SLEEP		0x01
1401 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1402 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1403 #define DEQUEUE_NOCLOCK		0x08 /* matches ENQUEUE_NOCLOCK */
1404 
1405 #define ENQUEUE_WAKEUP		0x01
1406 #define ENQUEUE_RESTORE		0x02
1407 #define ENQUEUE_MOVE		0x04
1408 #define ENQUEUE_NOCLOCK		0x08
1409 
1410 #define ENQUEUE_HEAD		0x10
1411 #define ENQUEUE_REPLENISH	0x20
1412 #ifdef CONFIG_SMP
1413 #define ENQUEUE_MIGRATED	0x40
1414 #else
1415 #define ENQUEUE_MIGRATED	0x00
1416 #endif
1417 
1418 #define RETRY_TASK		((void *)-1UL)
1419 
1420 struct sched_class {
1421 	const struct sched_class *next;
1422 
1423 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1424 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1425 	void (*yield_task) (struct rq *rq);
1426 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1427 
1428 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1429 
1430 	/*
1431 	 * It is the responsibility of the pick_next_task() method that will
1432 	 * return the next task to call put_prev_task() on the @prev task or
1433 	 * something equivalent.
1434 	 *
1435 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1436 	 * tasks.
1437 	 */
1438 	struct task_struct * (*pick_next_task) (struct rq *rq,
1439 						struct task_struct *prev,
1440 						struct rq_flags *rf);
1441 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1442 
1443 #ifdef CONFIG_SMP
1444 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1445 	void (*migrate_task_rq)(struct task_struct *p);
1446 
1447 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1448 
1449 	void (*set_cpus_allowed)(struct task_struct *p,
1450 				 const struct cpumask *newmask);
1451 
1452 	void (*rq_online)(struct rq *rq);
1453 	void (*rq_offline)(struct rq *rq);
1454 #endif
1455 
1456 	void (*set_curr_task) (struct rq *rq);
1457 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1458 	void (*task_fork) (struct task_struct *p);
1459 	void (*task_dead) (struct task_struct *p);
1460 
1461 	/*
1462 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1463 	 * cannot assume the switched_from/switched_to pair is serliazed by
1464 	 * rq->lock. They are however serialized by p->pi_lock.
1465 	 */
1466 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1467 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1468 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1469 			     int oldprio);
1470 
1471 	unsigned int (*get_rr_interval) (struct rq *rq,
1472 					 struct task_struct *task);
1473 
1474 	void (*update_curr) (struct rq *rq);
1475 
1476 #define TASK_SET_GROUP  0
1477 #define TASK_MOVE_GROUP	1
1478 
1479 #ifdef CONFIG_FAIR_GROUP_SCHED
1480 	void (*task_change_group) (struct task_struct *p, int type);
1481 #endif
1482 };
1483 
1484 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1485 {
1486 	prev->sched_class->put_prev_task(rq, prev);
1487 }
1488 
1489 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1490 {
1491 	curr->sched_class->set_curr_task(rq);
1492 }
1493 
1494 #ifdef CONFIG_SMP
1495 #define sched_class_highest (&stop_sched_class)
1496 #else
1497 #define sched_class_highest (&dl_sched_class)
1498 #endif
1499 #define for_each_class(class) \
1500    for (class = sched_class_highest; class; class = class->next)
1501 
1502 extern const struct sched_class stop_sched_class;
1503 extern const struct sched_class dl_sched_class;
1504 extern const struct sched_class rt_sched_class;
1505 extern const struct sched_class fair_sched_class;
1506 extern const struct sched_class idle_sched_class;
1507 
1508 
1509 #ifdef CONFIG_SMP
1510 
1511 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1512 
1513 extern void trigger_load_balance(struct rq *rq);
1514 
1515 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1516 
1517 #endif
1518 
1519 #ifdef CONFIG_CPU_IDLE
1520 static inline void idle_set_state(struct rq *rq,
1521 				  struct cpuidle_state *idle_state)
1522 {
1523 	rq->idle_state = idle_state;
1524 }
1525 
1526 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1527 {
1528 	SCHED_WARN_ON(!rcu_read_lock_held());
1529 	return rq->idle_state;
1530 }
1531 #else
1532 static inline void idle_set_state(struct rq *rq,
1533 				  struct cpuidle_state *idle_state)
1534 {
1535 }
1536 
1537 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1538 {
1539 	return NULL;
1540 }
1541 #endif
1542 
1543 extern void schedule_idle(void);
1544 
1545 extern void sysrq_sched_debug_show(void);
1546 extern void sched_init_granularity(void);
1547 extern void update_max_interval(void);
1548 
1549 extern void init_sched_dl_class(void);
1550 extern void init_sched_rt_class(void);
1551 extern void init_sched_fair_class(void);
1552 
1553 extern void reweight_task(struct task_struct *p, int prio);
1554 
1555 extern void resched_curr(struct rq *rq);
1556 extern void resched_cpu(int cpu);
1557 
1558 extern struct rt_bandwidth def_rt_bandwidth;
1559 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1560 
1561 extern struct dl_bandwidth def_dl_bandwidth;
1562 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1563 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1564 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1565 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1566 
1567 #define BW_SHIFT	20
1568 #define BW_UNIT		(1 << BW_SHIFT)
1569 #define RATIO_SHIFT	8
1570 unsigned long to_ratio(u64 period, u64 runtime);
1571 
1572 extern void init_entity_runnable_average(struct sched_entity *se);
1573 extern void post_init_entity_util_avg(struct sched_entity *se);
1574 
1575 #ifdef CONFIG_NO_HZ_FULL
1576 extern bool sched_can_stop_tick(struct rq *rq);
1577 
1578 /*
1579  * Tick may be needed by tasks in the runqueue depending on their policy and
1580  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1581  * nohz mode if necessary.
1582  */
1583 static inline void sched_update_tick_dependency(struct rq *rq)
1584 {
1585 	int cpu;
1586 
1587 	if (!tick_nohz_full_enabled())
1588 		return;
1589 
1590 	cpu = cpu_of(rq);
1591 
1592 	if (!tick_nohz_full_cpu(cpu))
1593 		return;
1594 
1595 	if (sched_can_stop_tick(rq))
1596 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1597 	else
1598 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1599 }
1600 #else
1601 static inline void sched_update_tick_dependency(struct rq *rq) { }
1602 #endif
1603 
1604 static inline void add_nr_running(struct rq *rq, unsigned count)
1605 {
1606 	unsigned prev_nr = rq->nr_running;
1607 
1608 	rq->nr_running = prev_nr + count;
1609 
1610 	if (prev_nr < 2 && rq->nr_running >= 2) {
1611 #ifdef CONFIG_SMP
1612 		if (!rq->rd->overload)
1613 			rq->rd->overload = true;
1614 #endif
1615 	}
1616 
1617 	sched_update_tick_dependency(rq);
1618 }
1619 
1620 static inline void sub_nr_running(struct rq *rq, unsigned count)
1621 {
1622 	rq->nr_running -= count;
1623 	/* Check if we still need preemption */
1624 	sched_update_tick_dependency(rq);
1625 }
1626 
1627 static inline void rq_last_tick_reset(struct rq *rq)
1628 {
1629 #ifdef CONFIG_NO_HZ_FULL
1630 	rq->last_sched_tick = jiffies;
1631 #endif
1632 }
1633 
1634 extern void update_rq_clock(struct rq *rq);
1635 
1636 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1637 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1638 
1639 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1640 
1641 extern const_debug unsigned int sysctl_sched_time_avg;
1642 extern const_debug unsigned int sysctl_sched_nr_migrate;
1643 extern const_debug unsigned int sysctl_sched_migration_cost;
1644 
1645 static inline u64 sched_avg_period(void)
1646 {
1647 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1648 }
1649 
1650 #ifdef CONFIG_SCHED_HRTICK
1651 
1652 /*
1653  * Use hrtick when:
1654  *  - enabled by features
1655  *  - hrtimer is actually high res
1656  */
1657 static inline int hrtick_enabled(struct rq *rq)
1658 {
1659 	if (!sched_feat(HRTICK))
1660 		return 0;
1661 	if (!cpu_active(cpu_of(rq)))
1662 		return 0;
1663 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1664 }
1665 
1666 void hrtick_start(struct rq *rq, u64 delay);
1667 
1668 #else
1669 
1670 static inline int hrtick_enabled(struct rq *rq)
1671 {
1672 	return 0;
1673 }
1674 
1675 #endif /* CONFIG_SCHED_HRTICK */
1676 
1677 #ifndef arch_scale_freq_capacity
1678 static __always_inline
1679 unsigned long arch_scale_freq_capacity(int cpu)
1680 {
1681 	return SCHED_CAPACITY_SCALE;
1682 }
1683 #endif
1684 
1685 #ifdef CONFIG_SMP
1686 extern void sched_avg_update(struct rq *rq);
1687 
1688 #ifndef arch_scale_cpu_capacity
1689 static __always_inline
1690 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1691 {
1692 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1693 		return sd->smt_gain / sd->span_weight;
1694 
1695 	return SCHED_CAPACITY_SCALE;
1696 }
1697 #endif
1698 
1699 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1700 {
1701 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
1702 	sched_avg_update(rq);
1703 }
1704 #else
1705 #ifndef arch_scale_cpu_capacity
1706 static __always_inline
1707 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1708 {
1709 	return SCHED_CAPACITY_SCALE;
1710 }
1711 #endif
1712 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1713 static inline void sched_avg_update(struct rq *rq) { }
1714 #endif
1715 
1716 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1717 	__acquires(rq->lock);
1718 
1719 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1720 	__acquires(p->pi_lock)
1721 	__acquires(rq->lock);
1722 
1723 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1724 	__releases(rq->lock)
1725 {
1726 	rq_unpin_lock(rq, rf);
1727 	raw_spin_unlock(&rq->lock);
1728 }
1729 
1730 static inline void
1731 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1732 	__releases(rq->lock)
1733 	__releases(p->pi_lock)
1734 {
1735 	rq_unpin_lock(rq, rf);
1736 	raw_spin_unlock(&rq->lock);
1737 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1738 }
1739 
1740 static inline void
1741 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1742 	__acquires(rq->lock)
1743 {
1744 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1745 	rq_pin_lock(rq, rf);
1746 }
1747 
1748 static inline void
1749 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1750 	__acquires(rq->lock)
1751 {
1752 	raw_spin_lock_irq(&rq->lock);
1753 	rq_pin_lock(rq, rf);
1754 }
1755 
1756 static inline void
1757 rq_lock(struct rq *rq, struct rq_flags *rf)
1758 	__acquires(rq->lock)
1759 {
1760 	raw_spin_lock(&rq->lock);
1761 	rq_pin_lock(rq, rf);
1762 }
1763 
1764 static inline void
1765 rq_relock(struct rq *rq, struct rq_flags *rf)
1766 	__acquires(rq->lock)
1767 {
1768 	raw_spin_lock(&rq->lock);
1769 	rq_repin_lock(rq, rf);
1770 }
1771 
1772 static inline void
1773 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1774 	__releases(rq->lock)
1775 {
1776 	rq_unpin_lock(rq, rf);
1777 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1778 }
1779 
1780 static inline void
1781 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1782 	__releases(rq->lock)
1783 {
1784 	rq_unpin_lock(rq, rf);
1785 	raw_spin_unlock_irq(&rq->lock);
1786 }
1787 
1788 static inline void
1789 rq_unlock(struct rq *rq, struct rq_flags *rf)
1790 	__releases(rq->lock)
1791 {
1792 	rq_unpin_lock(rq, rf);
1793 	raw_spin_unlock(&rq->lock);
1794 }
1795 
1796 #ifdef CONFIG_SMP
1797 #ifdef CONFIG_PREEMPT
1798 
1799 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1800 
1801 /*
1802  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1803  * way at the expense of forcing extra atomic operations in all
1804  * invocations.  This assures that the double_lock is acquired using the
1805  * same underlying policy as the spinlock_t on this architecture, which
1806  * reduces latency compared to the unfair variant below.  However, it
1807  * also adds more overhead and therefore may reduce throughput.
1808  */
1809 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1810 	__releases(this_rq->lock)
1811 	__acquires(busiest->lock)
1812 	__acquires(this_rq->lock)
1813 {
1814 	raw_spin_unlock(&this_rq->lock);
1815 	double_rq_lock(this_rq, busiest);
1816 
1817 	return 1;
1818 }
1819 
1820 #else
1821 /*
1822  * Unfair double_lock_balance: Optimizes throughput at the expense of
1823  * latency by eliminating extra atomic operations when the locks are
1824  * already in proper order on entry.  This favors lower cpu-ids and will
1825  * grant the double lock to lower cpus over higher ids under contention,
1826  * regardless of entry order into the function.
1827  */
1828 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1829 	__releases(this_rq->lock)
1830 	__acquires(busiest->lock)
1831 	__acquires(this_rq->lock)
1832 {
1833 	int ret = 0;
1834 
1835 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1836 		if (busiest < this_rq) {
1837 			raw_spin_unlock(&this_rq->lock);
1838 			raw_spin_lock(&busiest->lock);
1839 			raw_spin_lock_nested(&this_rq->lock,
1840 					      SINGLE_DEPTH_NESTING);
1841 			ret = 1;
1842 		} else
1843 			raw_spin_lock_nested(&busiest->lock,
1844 					      SINGLE_DEPTH_NESTING);
1845 	}
1846 	return ret;
1847 }
1848 
1849 #endif /* CONFIG_PREEMPT */
1850 
1851 /*
1852  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1853  */
1854 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1855 {
1856 	if (unlikely(!irqs_disabled())) {
1857 		/* printk() doesn't work good under rq->lock */
1858 		raw_spin_unlock(&this_rq->lock);
1859 		BUG_ON(1);
1860 	}
1861 
1862 	return _double_lock_balance(this_rq, busiest);
1863 }
1864 
1865 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1866 	__releases(busiest->lock)
1867 {
1868 	raw_spin_unlock(&busiest->lock);
1869 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1870 }
1871 
1872 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1873 {
1874 	if (l1 > l2)
1875 		swap(l1, l2);
1876 
1877 	spin_lock(l1);
1878 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1879 }
1880 
1881 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1882 {
1883 	if (l1 > l2)
1884 		swap(l1, l2);
1885 
1886 	spin_lock_irq(l1);
1887 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1888 }
1889 
1890 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1891 {
1892 	if (l1 > l2)
1893 		swap(l1, l2);
1894 
1895 	raw_spin_lock(l1);
1896 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1897 }
1898 
1899 /*
1900  * double_rq_lock - safely lock two runqueues
1901  *
1902  * Note this does not disable interrupts like task_rq_lock,
1903  * you need to do so manually before calling.
1904  */
1905 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1906 	__acquires(rq1->lock)
1907 	__acquires(rq2->lock)
1908 {
1909 	BUG_ON(!irqs_disabled());
1910 	if (rq1 == rq2) {
1911 		raw_spin_lock(&rq1->lock);
1912 		__acquire(rq2->lock);	/* Fake it out ;) */
1913 	} else {
1914 		if (rq1 < rq2) {
1915 			raw_spin_lock(&rq1->lock);
1916 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1917 		} else {
1918 			raw_spin_lock(&rq2->lock);
1919 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1920 		}
1921 	}
1922 }
1923 
1924 /*
1925  * double_rq_unlock - safely unlock two runqueues
1926  *
1927  * Note this does not restore interrupts like task_rq_unlock,
1928  * you need to do so manually after calling.
1929  */
1930 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1931 	__releases(rq1->lock)
1932 	__releases(rq2->lock)
1933 {
1934 	raw_spin_unlock(&rq1->lock);
1935 	if (rq1 != rq2)
1936 		raw_spin_unlock(&rq2->lock);
1937 	else
1938 		__release(rq2->lock);
1939 }
1940 
1941 extern void set_rq_online (struct rq *rq);
1942 extern void set_rq_offline(struct rq *rq);
1943 extern bool sched_smp_initialized;
1944 
1945 #else /* CONFIG_SMP */
1946 
1947 /*
1948  * double_rq_lock - safely lock two runqueues
1949  *
1950  * Note this does not disable interrupts like task_rq_lock,
1951  * you need to do so manually before calling.
1952  */
1953 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1954 	__acquires(rq1->lock)
1955 	__acquires(rq2->lock)
1956 {
1957 	BUG_ON(!irqs_disabled());
1958 	BUG_ON(rq1 != rq2);
1959 	raw_spin_lock(&rq1->lock);
1960 	__acquire(rq2->lock);	/* Fake it out ;) */
1961 }
1962 
1963 /*
1964  * double_rq_unlock - safely unlock two runqueues
1965  *
1966  * Note this does not restore interrupts like task_rq_unlock,
1967  * you need to do so manually after calling.
1968  */
1969 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1970 	__releases(rq1->lock)
1971 	__releases(rq2->lock)
1972 {
1973 	BUG_ON(rq1 != rq2);
1974 	raw_spin_unlock(&rq1->lock);
1975 	__release(rq2->lock);
1976 }
1977 
1978 #endif
1979 
1980 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1981 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1982 
1983 #ifdef	CONFIG_SCHED_DEBUG
1984 extern bool sched_debug_enabled;
1985 
1986 extern void print_cfs_stats(struct seq_file *m, int cpu);
1987 extern void print_rt_stats(struct seq_file *m, int cpu);
1988 extern void print_dl_stats(struct seq_file *m, int cpu);
1989 extern void
1990 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1991 #ifdef CONFIG_NUMA_BALANCING
1992 extern void
1993 show_numa_stats(struct task_struct *p, struct seq_file *m);
1994 extern void
1995 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1996 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1997 #endif /* CONFIG_NUMA_BALANCING */
1998 #endif /* CONFIG_SCHED_DEBUG */
1999 
2000 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2001 extern void init_rt_rq(struct rt_rq *rt_rq);
2002 extern void init_dl_rq(struct dl_rq *dl_rq);
2003 
2004 extern void cfs_bandwidth_usage_inc(void);
2005 extern void cfs_bandwidth_usage_dec(void);
2006 
2007 #ifdef CONFIG_NO_HZ_COMMON
2008 enum rq_nohz_flag_bits {
2009 	NOHZ_TICK_STOPPED,
2010 	NOHZ_BALANCE_KICK,
2011 };
2012 
2013 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2014 
2015 extern void nohz_balance_exit_idle(unsigned int cpu);
2016 #else
2017 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
2018 #endif
2019 
2020 
2021 #ifdef CONFIG_SMP
2022 static inline
2023 void __dl_update(struct dl_bw *dl_b, s64 bw)
2024 {
2025 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2026 	int i;
2027 
2028 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2029 			 "sched RCU must be held");
2030 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2031 		struct rq *rq = cpu_rq(i);
2032 
2033 		rq->dl.extra_bw += bw;
2034 	}
2035 }
2036 #else
2037 static inline
2038 void __dl_update(struct dl_bw *dl_b, s64 bw)
2039 {
2040 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2041 
2042 	dl->extra_bw += bw;
2043 }
2044 #endif
2045 
2046 
2047 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2048 struct irqtime {
2049 	u64			total;
2050 	u64			tick_delta;
2051 	u64			irq_start_time;
2052 	struct u64_stats_sync	sync;
2053 };
2054 
2055 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2056 
2057 /*
2058  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2059  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2060  * and never move forward.
2061  */
2062 static inline u64 irq_time_read(int cpu)
2063 {
2064 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2065 	unsigned int seq;
2066 	u64 total;
2067 
2068 	do {
2069 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2070 		total = irqtime->total;
2071 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2072 
2073 	return total;
2074 }
2075 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2076 
2077 #ifdef CONFIG_CPU_FREQ
2078 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2079 
2080 /**
2081  * cpufreq_update_util - Take a note about CPU utilization changes.
2082  * @rq: Runqueue to carry out the update for.
2083  * @flags: Update reason flags.
2084  *
2085  * This function is called by the scheduler on the CPU whose utilization is
2086  * being updated.
2087  *
2088  * It can only be called from RCU-sched read-side critical sections.
2089  *
2090  * The way cpufreq is currently arranged requires it to evaluate the CPU
2091  * performance state (frequency/voltage) on a regular basis to prevent it from
2092  * being stuck in a completely inadequate performance level for too long.
2093  * That is not guaranteed to happen if the updates are only triggered from CFS
2094  * and DL, though, because they may not be coming in if only RT tasks are
2095  * active all the time (or there are RT tasks only).
2096  *
2097  * As a workaround for that issue, this function is called periodically by the
2098  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2099  * but that really is a band-aid.  Going forward it should be replaced with
2100  * solutions targeted more specifically at RT tasks.
2101  */
2102 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2103 {
2104 	struct update_util_data *data;
2105 
2106 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2107 						  cpu_of(rq)));
2108 	if (data)
2109 		data->func(data, rq_clock(rq), flags);
2110 }
2111 #else
2112 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2113 #endif /* CONFIG_CPU_FREQ */
2114 
2115 #ifdef arch_scale_freq_capacity
2116 #ifndef arch_scale_freq_invariant
2117 #define arch_scale_freq_invariant()	(true)
2118 #endif
2119 #else /* arch_scale_freq_capacity */
2120 #define arch_scale_freq_invariant()	(false)
2121 #endif
2122 
2123 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2124 
2125 static inline unsigned long cpu_util_dl(struct rq *rq)
2126 {
2127 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2128 }
2129 
2130 static inline unsigned long cpu_util_cfs(struct rq *rq)
2131 {
2132 	return rq->cfs.avg.util_avg;
2133 }
2134 
2135 #endif
2136