xref: /openbmc/linux/kernel/sched/sched.h (revision 77a87824)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13 
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17 
18 struct rq;
19 struct cpuidle_state;
20 
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED	1
23 #define TASK_ON_RQ_MIGRATING	2
24 
25 extern __read_mostly int scheduler_running;
26 
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29 
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
32 
33 #ifdef CONFIG_SMP
34 extern void cpu_load_update_active(struct rq *this_rq);
35 #else
36 static inline void cpu_load_update_active(struct rq *this_rq) { }
37 #endif
38 
39 /*
40  * Helpers for converting nanosecond timing to jiffy resolution
41  */
42 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43 
44 /*
45  * Increase resolution of nice-level calculations for 64-bit architectures.
46  * The extra resolution improves shares distribution and load balancing of
47  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48  * hierarchies, especially on larger systems. This is not a user-visible change
49  * and does not change the user-interface for setting shares/weights.
50  *
51  * We increase resolution only if we have enough bits to allow this increased
52  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53  * pretty high and the returns do not justify the increased costs.
54  *
55  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56  * increase coverage and consistency always enable it on 64bit platforms.
57  */
58 #ifdef CONFIG_64BIT
59 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
62 #else
63 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w)		(w)
65 # define scale_load_down(w)	(w)
66 #endif
67 
68 /*
69  * Task weight (visible to users) and its load (invisible to users) have
70  * independent resolution, but they should be well calibrated. We use
71  * scale_load() and scale_load_down(w) to convert between them. The
72  * following must be true:
73  *
74  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75  *
76  */
77 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
78 
79 /*
80  * Single value that decides SCHED_DEADLINE internal math precision.
81  * 10 -> just above 1us
82  * 9  -> just above 0.5us
83  */
84 #define DL_SCALE (10)
85 
86 /*
87  * These are the 'tuning knobs' of the scheduler:
88  */
89 
90 /*
91  * single value that denotes runtime == period, ie unlimited time.
92  */
93 #define RUNTIME_INF	((u64)~0ULL)
94 
95 static inline int idle_policy(int policy)
96 {
97 	return policy == SCHED_IDLE;
98 }
99 static inline int fair_policy(int policy)
100 {
101 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102 }
103 
104 static inline int rt_policy(int policy)
105 {
106 	return policy == SCHED_FIFO || policy == SCHED_RR;
107 }
108 
109 static inline int dl_policy(int policy)
110 {
111 	return policy == SCHED_DEADLINE;
112 }
113 static inline bool valid_policy(int policy)
114 {
115 	return idle_policy(policy) || fair_policy(policy) ||
116 		rt_policy(policy) || dl_policy(policy);
117 }
118 
119 static inline int task_has_rt_policy(struct task_struct *p)
120 {
121 	return rt_policy(p->policy);
122 }
123 
124 static inline int task_has_dl_policy(struct task_struct *p)
125 {
126 	return dl_policy(p->policy);
127 }
128 
129 /*
130  * Tells if entity @a should preempt entity @b.
131  */
132 static inline bool
133 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
134 {
135 	return dl_time_before(a->deadline, b->deadline);
136 }
137 
138 /*
139  * This is the priority-queue data structure of the RT scheduling class:
140  */
141 struct rt_prio_array {
142 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 	struct list_head queue[MAX_RT_PRIO];
144 };
145 
146 struct rt_bandwidth {
147 	/* nests inside the rq lock: */
148 	raw_spinlock_t		rt_runtime_lock;
149 	ktime_t			rt_period;
150 	u64			rt_runtime;
151 	struct hrtimer		rt_period_timer;
152 	unsigned int		rt_period_active;
153 };
154 
155 void __dl_clear_params(struct task_struct *p);
156 
157 /*
158  * To keep the bandwidth of -deadline tasks and groups under control
159  * we need some place where:
160  *  - store the maximum -deadline bandwidth of the system (the group);
161  *  - cache the fraction of that bandwidth that is currently allocated.
162  *
163  * This is all done in the data structure below. It is similar to the
164  * one used for RT-throttling (rt_bandwidth), with the main difference
165  * that, since here we are only interested in admission control, we
166  * do not decrease any runtime while the group "executes", neither we
167  * need a timer to replenish it.
168  *
169  * With respect to SMP, the bandwidth is given on a per-CPU basis,
170  * meaning that:
171  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172  *  - dl_total_bw array contains, in the i-eth element, the currently
173  *    allocated bandwidth on the i-eth CPU.
174  * Moreover, groups consume bandwidth on each CPU, while tasks only
175  * consume bandwidth on the CPU they're running on.
176  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177  * that will be shown the next time the proc or cgroup controls will
178  * be red. It on its turn can be changed by writing on its own
179  * control.
180  */
181 struct dl_bandwidth {
182 	raw_spinlock_t dl_runtime_lock;
183 	u64 dl_runtime;
184 	u64 dl_period;
185 };
186 
187 static inline int dl_bandwidth_enabled(void)
188 {
189 	return sysctl_sched_rt_runtime >= 0;
190 }
191 
192 extern struct dl_bw *dl_bw_of(int i);
193 
194 struct dl_bw {
195 	raw_spinlock_t lock;
196 	u64 bw, total_bw;
197 };
198 
199 static inline
200 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201 {
202 	dl_b->total_bw -= tsk_bw;
203 }
204 
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207 {
208 	dl_b->total_bw += tsk_bw;
209 }
210 
211 static inline
212 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213 {
214 	return dl_b->bw != -1 &&
215 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216 }
217 
218 extern struct mutex sched_domains_mutex;
219 
220 #ifdef CONFIG_CGROUP_SCHED
221 
222 #include <linux/cgroup.h>
223 
224 struct cfs_rq;
225 struct rt_rq;
226 
227 extern struct list_head task_groups;
228 
229 struct cfs_bandwidth {
230 #ifdef CONFIG_CFS_BANDWIDTH
231 	raw_spinlock_t lock;
232 	ktime_t period;
233 	u64 quota, runtime;
234 	s64 hierarchical_quota;
235 	u64 runtime_expires;
236 
237 	int idle, period_active;
238 	struct hrtimer period_timer, slack_timer;
239 	struct list_head throttled_cfs_rq;
240 
241 	/* statistics */
242 	int nr_periods, nr_throttled;
243 	u64 throttled_time;
244 #endif
245 };
246 
247 /* task group related information */
248 struct task_group {
249 	struct cgroup_subsys_state css;
250 
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 	/* schedulable entities of this group on each cpu */
253 	struct sched_entity **se;
254 	/* runqueue "owned" by this group on each cpu */
255 	struct cfs_rq **cfs_rq;
256 	unsigned long shares;
257 
258 #ifdef	CONFIG_SMP
259 	/*
260 	 * load_avg can be heavily contended at clock tick time, so put
261 	 * it in its own cacheline separated from the fields above which
262 	 * will also be accessed at each tick.
263 	 */
264 	atomic_long_t load_avg ____cacheline_aligned;
265 #endif
266 #endif
267 
268 #ifdef CONFIG_RT_GROUP_SCHED
269 	struct sched_rt_entity **rt_se;
270 	struct rt_rq **rt_rq;
271 
272 	struct rt_bandwidth rt_bandwidth;
273 #endif
274 
275 	struct rcu_head rcu;
276 	struct list_head list;
277 
278 	struct task_group *parent;
279 	struct list_head siblings;
280 	struct list_head children;
281 
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 	struct autogroup *autogroup;
284 #endif
285 
286 	struct cfs_bandwidth cfs_bandwidth;
287 };
288 
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
291 
292 /*
293  * A weight of 0 or 1 can cause arithmetics problems.
294  * A weight of a cfs_rq is the sum of weights of which entities
295  * are queued on this cfs_rq, so a weight of a entity should not be
296  * too large, so as the shares value of a task group.
297  * (The default weight is 1024 - so there's no practical
298  *  limitation from this.)
299  */
300 #define MIN_SHARES	(1UL <<  1)
301 #define MAX_SHARES	(1UL << 18)
302 #endif
303 
304 typedef int (*tg_visitor)(struct task_group *, void *);
305 
306 extern int walk_tg_tree_from(struct task_group *from,
307 			     tg_visitor down, tg_visitor up, void *data);
308 
309 /*
310  * Iterate the full tree, calling @down when first entering a node and @up when
311  * leaving it for the final time.
312  *
313  * Caller must hold rcu_lock or sufficient equivalent.
314  */
315 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316 {
317 	return walk_tg_tree_from(&root_task_group, down, up, data);
318 }
319 
320 extern int tg_nop(struct task_group *tg, void *data);
321 
322 extern void free_fair_sched_group(struct task_group *tg);
323 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void online_fair_sched_group(struct task_group *tg);
325 extern void unregister_fair_sched_group(struct task_group *tg);
326 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 			struct sched_entity *se, int cpu,
328 			struct sched_entity *parent);
329 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
330 
331 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
332 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
333 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334 
335 extern void free_rt_sched_group(struct task_group *tg);
336 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 		struct sched_rt_entity *rt_se, int cpu,
339 		struct sched_rt_entity *parent);
340 
341 extern struct task_group *sched_create_group(struct task_group *parent);
342 extern void sched_online_group(struct task_group *tg,
343 			       struct task_group *parent);
344 extern void sched_destroy_group(struct task_group *tg);
345 extern void sched_offline_group(struct task_group *tg);
346 
347 extern void sched_move_task(struct task_struct *tsk);
348 
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
351 
352 #ifdef CONFIG_SMP
353 extern void set_task_rq_fair(struct sched_entity *se,
354 			     struct cfs_rq *prev, struct cfs_rq *next);
355 #else /* !CONFIG_SMP */
356 static inline void set_task_rq_fair(struct sched_entity *se,
357 			     struct cfs_rq *prev, struct cfs_rq *next) { }
358 #endif /* CONFIG_SMP */
359 #endif /* CONFIG_FAIR_GROUP_SCHED */
360 
361 #else /* CONFIG_CGROUP_SCHED */
362 
363 struct cfs_bandwidth { };
364 
365 #endif	/* CONFIG_CGROUP_SCHED */
366 
367 /* CFS-related fields in a runqueue */
368 struct cfs_rq {
369 	struct load_weight load;
370 	unsigned int nr_running, h_nr_running;
371 
372 	u64 exec_clock;
373 	u64 min_vruntime;
374 #ifndef CONFIG_64BIT
375 	u64 min_vruntime_copy;
376 #endif
377 
378 	struct rb_root tasks_timeline;
379 	struct rb_node *rb_leftmost;
380 
381 	/*
382 	 * 'curr' points to currently running entity on this cfs_rq.
383 	 * It is set to NULL otherwise (i.e when none are currently running).
384 	 */
385 	struct sched_entity *curr, *next, *last, *skip;
386 
387 #ifdef	CONFIG_SCHED_DEBUG
388 	unsigned int nr_spread_over;
389 #endif
390 
391 #ifdef CONFIG_SMP
392 	/*
393 	 * CFS load tracking
394 	 */
395 	struct sched_avg avg;
396 	u64 runnable_load_sum;
397 	unsigned long runnable_load_avg;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 	unsigned long tg_load_avg_contrib;
400 #endif
401 	atomic_long_t removed_load_avg, removed_util_avg;
402 #ifndef CONFIG_64BIT
403 	u64 load_last_update_time_copy;
404 #endif
405 
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 	/*
408 	 *   h_load = weight * f(tg)
409 	 *
410 	 * Where f(tg) is the recursive weight fraction assigned to
411 	 * this group.
412 	 */
413 	unsigned long h_load;
414 	u64 last_h_load_update;
415 	struct sched_entity *h_load_next;
416 #endif /* CONFIG_FAIR_GROUP_SCHED */
417 #endif /* CONFIG_SMP */
418 
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
421 
422 	/*
423 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 	 * (like users, containers etc.)
426 	 *
427 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 	 * list is used during load balance.
429 	 */
430 	int on_list;
431 	struct list_head leaf_cfs_rq_list;
432 	struct task_group *tg;	/* group that "owns" this runqueue */
433 
434 #ifdef CONFIG_CFS_BANDWIDTH
435 	int runtime_enabled;
436 	u64 runtime_expires;
437 	s64 runtime_remaining;
438 
439 	u64 throttled_clock, throttled_clock_task;
440 	u64 throttled_clock_task_time;
441 	int throttled, throttle_count;
442 	struct list_head throttled_list;
443 #endif /* CONFIG_CFS_BANDWIDTH */
444 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 };
446 
447 static inline int rt_bandwidth_enabled(void)
448 {
449 	return sysctl_sched_rt_runtime >= 0;
450 }
451 
452 /* RT IPI pull logic requires IRQ_WORK */
453 #ifdef CONFIG_IRQ_WORK
454 # define HAVE_RT_PUSH_IPI
455 #endif
456 
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 	struct rt_prio_array active;
460 	unsigned int rt_nr_running;
461 	unsigned int rr_nr_running;
462 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 	struct {
464 		int curr; /* highest queued rt task prio */
465 #ifdef CONFIG_SMP
466 		int next; /* next highest */
467 #endif
468 	} highest_prio;
469 #endif
470 #ifdef CONFIG_SMP
471 	unsigned long rt_nr_migratory;
472 	unsigned long rt_nr_total;
473 	int overloaded;
474 	struct plist_head pushable_tasks;
475 #ifdef HAVE_RT_PUSH_IPI
476 	int push_flags;
477 	int push_cpu;
478 	struct irq_work push_work;
479 	raw_spinlock_t push_lock;
480 #endif
481 #endif /* CONFIG_SMP */
482 	int rt_queued;
483 
484 	int rt_throttled;
485 	u64 rt_time;
486 	u64 rt_runtime;
487 	/* Nests inside the rq lock: */
488 	raw_spinlock_t rt_runtime_lock;
489 
490 #ifdef CONFIG_RT_GROUP_SCHED
491 	unsigned long rt_nr_boosted;
492 
493 	struct rq *rq;
494 	struct task_group *tg;
495 #endif
496 };
497 
498 /* Deadline class' related fields in a runqueue */
499 struct dl_rq {
500 	/* runqueue is an rbtree, ordered by deadline */
501 	struct rb_root rb_root;
502 	struct rb_node *rb_leftmost;
503 
504 	unsigned long dl_nr_running;
505 
506 #ifdef CONFIG_SMP
507 	/*
508 	 * Deadline values of the currently executing and the
509 	 * earliest ready task on this rq. Caching these facilitates
510 	 * the decision wether or not a ready but not running task
511 	 * should migrate somewhere else.
512 	 */
513 	struct {
514 		u64 curr;
515 		u64 next;
516 	} earliest_dl;
517 
518 	unsigned long dl_nr_migratory;
519 	int overloaded;
520 
521 	/*
522 	 * Tasks on this rq that can be pushed away. They are kept in
523 	 * an rb-tree, ordered by tasks' deadlines, with caching
524 	 * of the leftmost (earliest deadline) element.
525 	 */
526 	struct rb_root pushable_dl_tasks_root;
527 	struct rb_node *pushable_dl_tasks_leftmost;
528 #else
529 	struct dl_bw dl_bw;
530 #endif
531 };
532 
533 #ifdef CONFIG_SMP
534 
535 /*
536  * We add the notion of a root-domain which will be used to define per-domain
537  * variables. Each exclusive cpuset essentially defines an island domain by
538  * fully partitioning the member cpus from any other cpuset. Whenever a new
539  * exclusive cpuset is created, we also create and attach a new root-domain
540  * object.
541  *
542  */
543 struct root_domain {
544 	atomic_t refcount;
545 	atomic_t rto_count;
546 	struct rcu_head rcu;
547 	cpumask_var_t span;
548 	cpumask_var_t online;
549 
550 	/* Indicate more than one runnable task for any CPU */
551 	bool overload;
552 
553 	/*
554 	 * The bit corresponding to a CPU gets set here if such CPU has more
555 	 * than one runnable -deadline task (as it is below for RT tasks).
556 	 */
557 	cpumask_var_t dlo_mask;
558 	atomic_t dlo_count;
559 	struct dl_bw dl_bw;
560 	struct cpudl cpudl;
561 
562 	/*
563 	 * The "RT overload" flag: it gets set if a CPU has more than
564 	 * one runnable RT task.
565 	 */
566 	cpumask_var_t rto_mask;
567 	struct cpupri cpupri;
568 };
569 
570 extern struct root_domain def_root_domain;
571 
572 #endif /* CONFIG_SMP */
573 
574 /*
575  * This is the main, per-CPU runqueue data structure.
576  *
577  * Locking rule: those places that want to lock multiple runqueues
578  * (such as the load balancing or the thread migration code), lock
579  * acquire operations must be ordered by ascending &runqueue.
580  */
581 struct rq {
582 	/* runqueue lock: */
583 	raw_spinlock_t lock;
584 
585 	/*
586 	 * nr_running and cpu_load should be in the same cacheline because
587 	 * remote CPUs use both these fields when doing load calculation.
588 	 */
589 	unsigned int nr_running;
590 #ifdef CONFIG_NUMA_BALANCING
591 	unsigned int nr_numa_running;
592 	unsigned int nr_preferred_running;
593 #endif
594 	#define CPU_LOAD_IDX_MAX 5
595 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
596 #ifdef CONFIG_NO_HZ_COMMON
597 #ifdef CONFIG_SMP
598 	unsigned long last_load_update_tick;
599 #endif /* CONFIG_SMP */
600 	u64 nohz_stamp;
601 	unsigned long nohz_flags;
602 #endif /* CONFIG_NO_HZ_COMMON */
603 #ifdef CONFIG_NO_HZ_FULL
604 	unsigned long last_sched_tick;
605 #endif
606 	/* capture load from *all* tasks on this cpu: */
607 	struct load_weight load;
608 	unsigned long nr_load_updates;
609 	u64 nr_switches;
610 
611 	struct cfs_rq cfs;
612 	struct rt_rq rt;
613 	struct dl_rq dl;
614 
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 	/* list of leaf cfs_rq on this cpu: */
617 	struct list_head leaf_cfs_rq_list;
618 #endif /* CONFIG_FAIR_GROUP_SCHED */
619 
620 	/*
621 	 * This is part of a global counter where only the total sum
622 	 * over all CPUs matters. A task can increase this counter on
623 	 * one CPU and if it got migrated afterwards it may decrease
624 	 * it on another CPU. Always updated under the runqueue lock:
625 	 */
626 	unsigned long nr_uninterruptible;
627 
628 	struct task_struct *curr, *idle, *stop;
629 	unsigned long next_balance;
630 	struct mm_struct *prev_mm;
631 
632 	unsigned int clock_skip_update;
633 	u64 clock;
634 	u64 clock_task;
635 
636 	atomic_t nr_iowait;
637 
638 #ifdef CONFIG_SMP
639 	struct root_domain *rd;
640 	struct sched_domain *sd;
641 
642 	unsigned long cpu_capacity;
643 	unsigned long cpu_capacity_orig;
644 
645 	struct callback_head *balance_callback;
646 
647 	unsigned char idle_balance;
648 	/* For active balancing */
649 	int active_balance;
650 	int push_cpu;
651 	struct cpu_stop_work active_balance_work;
652 	/* cpu of this runqueue: */
653 	int cpu;
654 	int online;
655 
656 	struct list_head cfs_tasks;
657 
658 	u64 rt_avg;
659 	u64 age_stamp;
660 	u64 idle_stamp;
661 	u64 avg_idle;
662 
663 	/* This is used to determine avg_idle's max value */
664 	u64 max_idle_balance_cost;
665 #endif
666 
667 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
668 	u64 prev_irq_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT
671 	u64 prev_steal_time;
672 #endif
673 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
674 	u64 prev_steal_time_rq;
675 #endif
676 
677 	/* calc_load related fields */
678 	unsigned long calc_load_update;
679 	long calc_load_active;
680 
681 #ifdef CONFIG_SCHED_HRTICK
682 #ifdef CONFIG_SMP
683 	int hrtick_csd_pending;
684 	struct call_single_data hrtick_csd;
685 #endif
686 	struct hrtimer hrtick_timer;
687 #endif
688 
689 #ifdef CONFIG_SCHEDSTATS
690 	/* latency stats */
691 	struct sched_info rq_sched_info;
692 	unsigned long long rq_cpu_time;
693 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
694 
695 	/* sys_sched_yield() stats */
696 	unsigned int yld_count;
697 
698 	/* schedule() stats */
699 	unsigned int sched_count;
700 	unsigned int sched_goidle;
701 
702 	/* try_to_wake_up() stats */
703 	unsigned int ttwu_count;
704 	unsigned int ttwu_local;
705 #endif
706 
707 #ifdef CONFIG_SMP
708 	struct llist_head wake_list;
709 #endif
710 
711 #ifdef CONFIG_CPU_IDLE
712 	/* Must be inspected within a rcu lock section */
713 	struct cpuidle_state *idle_state;
714 #endif
715 };
716 
717 static inline int cpu_of(struct rq *rq)
718 {
719 #ifdef CONFIG_SMP
720 	return rq->cpu;
721 #else
722 	return 0;
723 #endif
724 }
725 
726 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
727 
728 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
729 #define this_rq()		this_cpu_ptr(&runqueues)
730 #define task_rq(p)		cpu_rq(task_cpu(p))
731 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
732 #define raw_rq()		raw_cpu_ptr(&runqueues)
733 
734 static inline u64 __rq_clock_broken(struct rq *rq)
735 {
736 	return READ_ONCE(rq->clock);
737 }
738 
739 static inline u64 rq_clock(struct rq *rq)
740 {
741 	lockdep_assert_held(&rq->lock);
742 	return rq->clock;
743 }
744 
745 static inline u64 rq_clock_task(struct rq *rq)
746 {
747 	lockdep_assert_held(&rq->lock);
748 	return rq->clock_task;
749 }
750 
751 #define RQCF_REQ_SKIP	0x01
752 #define RQCF_ACT_SKIP	0x02
753 
754 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
755 {
756 	lockdep_assert_held(&rq->lock);
757 	if (skip)
758 		rq->clock_skip_update |= RQCF_REQ_SKIP;
759 	else
760 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
761 }
762 
763 #ifdef CONFIG_NUMA
764 enum numa_topology_type {
765 	NUMA_DIRECT,
766 	NUMA_GLUELESS_MESH,
767 	NUMA_BACKPLANE,
768 };
769 extern enum numa_topology_type sched_numa_topology_type;
770 extern int sched_max_numa_distance;
771 extern bool find_numa_distance(int distance);
772 #endif
773 
774 #ifdef CONFIG_NUMA_BALANCING
775 /* The regions in numa_faults array from task_struct */
776 enum numa_faults_stats {
777 	NUMA_MEM = 0,
778 	NUMA_CPU,
779 	NUMA_MEMBUF,
780 	NUMA_CPUBUF
781 };
782 extern void sched_setnuma(struct task_struct *p, int node);
783 extern int migrate_task_to(struct task_struct *p, int cpu);
784 extern int migrate_swap(struct task_struct *, struct task_struct *);
785 #endif /* CONFIG_NUMA_BALANCING */
786 
787 #ifdef CONFIG_SMP
788 
789 static inline void
790 queue_balance_callback(struct rq *rq,
791 		       struct callback_head *head,
792 		       void (*func)(struct rq *rq))
793 {
794 	lockdep_assert_held(&rq->lock);
795 
796 	if (unlikely(head->next))
797 		return;
798 
799 	head->func = (void (*)(struct callback_head *))func;
800 	head->next = rq->balance_callback;
801 	rq->balance_callback = head;
802 }
803 
804 extern void sched_ttwu_pending(void);
805 
806 #define rcu_dereference_check_sched_domain(p) \
807 	rcu_dereference_check((p), \
808 			      lockdep_is_held(&sched_domains_mutex))
809 
810 /*
811  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
812  * See detach_destroy_domains: synchronize_sched for details.
813  *
814  * The domain tree of any CPU may only be accessed from within
815  * preempt-disabled sections.
816  */
817 #define for_each_domain(cpu, __sd) \
818 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
819 			__sd; __sd = __sd->parent)
820 
821 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
822 
823 /**
824  * highest_flag_domain - Return highest sched_domain containing flag.
825  * @cpu:	The cpu whose highest level of sched domain is to
826  *		be returned.
827  * @flag:	The flag to check for the highest sched_domain
828  *		for the given cpu.
829  *
830  * Returns the highest sched_domain of a cpu which contains the given flag.
831  */
832 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
833 {
834 	struct sched_domain *sd, *hsd = NULL;
835 
836 	for_each_domain(cpu, sd) {
837 		if (!(sd->flags & flag))
838 			break;
839 		hsd = sd;
840 	}
841 
842 	return hsd;
843 }
844 
845 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
846 {
847 	struct sched_domain *sd;
848 
849 	for_each_domain(cpu, sd) {
850 		if (sd->flags & flag)
851 			break;
852 	}
853 
854 	return sd;
855 }
856 
857 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
858 DECLARE_PER_CPU(int, sd_llc_size);
859 DECLARE_PER_CPU(int, sd_llc_id);
860 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
861 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
862 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
863 
864 struct sched_group_capacity {
865 	atomic_t ref;
866 	/*
867 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
868 	 * for a single CPU.
869 	 */
870 	unsigned int capacity;
871 	unsigned long next_update;
872 	int imbalance; /* XXX unrelated to capacity but shared group state */
873 	/*
874 	 * Number of busy cpus in this group.
875 	 */
876 	atomic_t nr_busy_cpus;
877 
878 	unsigned long cpumask[0]; /* iteration mask */
879 };
880 
881 struct sched_group {
882 	struct sched_group *next;	/* Must be a circular list */
883 	atomic_t ref;
884 
885 	unsigned int group_weight;
886 	struct sched_group_capacity *sgc;
887 
888 	/*
889 	 * The CPUs this group covers.
890 	 *
891 	 * NOTE: this field is variable length. (Allocated dynamically
892 	 * by attaching extra space to the end of the structure,
893 	 * depending on how many CPUs the kernel has booted up with)
894 	 */
895 	unsigned long cpumask[0];
896 };
897 
898 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
899 {
900 	return to_cpumask(sg->cpumask);
901 }
902 
903 /*
904  * cpumask masking which cpus in the group are allowed to iterate up the domain
905  * tree.
906  */
907 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
908 {
909 	return to_cpumask(sg->sgc->cpumask);
910 }
911 
912 /**
913  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
914  * @group: The group whose first cpu is to be returned.
915  */
916 static inline unsigned int group_first_cpu(struct sched_group *group)
917 {
918 	return cpumask_first(sched_group_cpus(group));
919 }
920 
921 extern int group_balance_cpu(struct sched_group *sg);
922 
923 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
924 void register_sched_domain_sysctl(void);
925 void unregister_sched_domain_sysctl(void);
926 #else
927 static inline void register_sched_domain_sysctl(void)
928 {
929 }
930 static inline void unregister_sched_domain_sysctl(void)
931 {
932 }
933 #endif
934 
935 #else
936 
937 static inline void sched_ttwu_pending(void) { }
938 
939 #endif /* CONFIG_SMP */
940 
941 #include "stats.h"
942 #include "auto_group.h"
943 
944 #ifdef CONFIG_CGROUP_SCHED
945 
946 /*
947  * Return the group to which this tasks belongs.
948  *
949  * We cannot use task_css() and friends because the cgroup subsystem
950  * changes that value before the cgroup_subsys::attach() method is called,
951  * therefore we cannot pin it and might observe the wrong value.
952  *
953  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
954  * core changes this before calling sched_move_task().
955  *
956  * Instead we use a 'copy' which is updated from sched_move_task() while
957  * holding both task_struct::pi_lock and rq::lock.
958  */
959 static inline struct task_group *task_group(struct task_struct *p)
960 {
961 	return p->sched_task_group;
962 }
963 
964 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
965 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
966 {
967 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
968 	struct task_group *tg = task_group(p);
969 #endif
970 
971 #ifdef CONFIG_FAIR_GROUP_SCHED
972 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
973 	p->se.cfs_rq = tg->cfs_rq[cpu];
974 	p->se.parent = tg->se[cpu];
975 #endif
976 
977 #ifdef CONFIG_RT_GROUP_SCHED
978 	p->rt.rt_rq  = tg->rt_rq[cpu];
979 	p->rt.parent = tg->rt_se[cpu];
980 #endif
981 }
982 
983 #else /* CONFIG_CGROUP_SCHED */
984 
985 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
986 static inline struct task_group *task_group(struct task_struct *p)
987 {
988 	return NULL;
989 }
990 
991 #endif /* CONFIG_CGROUP_SCHED */
992 
993 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
994 {
995 	set_task_rq(p, cpu);
996 #ifdef CONFIG_SMP
997 	/*
998 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
999 	 * successfuly executed on another CPU. We must ensure that updates of
1000 	 * per-task data have been completed by this moment.
1001 	 */
1002 	smp_wmb();
1003 	task_thread_info(p)->cpu = cpu;
1004 	p->wake_cpu = cpu;
1005 #endif
1006 }
1007 
1008 /*
1009  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1010  */
1011 #ifdef CONFIG_SCHED_DEBUG
1012 # include <linux/static_key.h>
1013 # define const_debug __read_mostly
1014 #else
1015 # define const_debug const
1016 #endif
1017 
1018 extern const_debug unsigned int sysctl_sched_features;
1019 
1020 #define SCHED_FEAT(name, enabled)	\
1021 	__SCHED_FEAT_##name ,
1022 
1023 enum {
1024 #include "features.h"
1025 	__SCHED_FEAT_NR,
1026 };
1027 
1028 #undef SCHED_FEAT
1029 
1030 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1031 #define SCHED_FEAT(name, enabled)					\
1032 static __always_inline bool static_branch_##name(struct static_key *key) \
1033 {									\
1034 	return static_key_##enabled(key);				\
1035 }
1036 
1037 #include "features.h"
1038 
1039 #undef SCHED_FEAT
1040 
1041 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1042 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1043 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1044 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1045 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1046 
1047 extern struct static_key_false sched_numa_balancing;
1048 extern struct static_key_false sched_schedstats;
1049 
1050 static inline u64 global_rt_period(void)
1051 {
1052 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1053 }
1054 
1055 static inline u64 global_rt_runtime(void)
1056 {
1057 	if (sysctl_sched_rt_runtime < 0)
1058 		return RUNTIME_INF;
1059 
1060 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1061 }
1062 
1063 static inline int task_current(struct rq *rq, struct task_struct *p)
1064 {
1065 	return rq->curr == p;
1066 }
1067 
1068 static inline int task_running(struct rq *rq, struct task_struct *p)
1069 {
1070 #ifdef CONFIG_SMP
1071 	return p->on_cpu;
1072 #else
1073 	return task_current(rq, p);
1074 #endif
1075 }
1076 
1077 static inline int task_on_rq_queued(struct task_struct *p)
1078 {
1079 	return p->on_rq == TASK_ON_RQ_QUEUED;
1080 }
1081 
1082 static inline int task_on_rq_migrating(struct task_struct *p)
1083 {
1084 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1085 }
1086 
1087 #ifndef prepare_arch_switch
1088 # define prepare_arch_switch(next)	do { } while (0)
1089 #endif
1090 #ifndef finish_arch_post_lock_switch
1091 # define finish_arch_post_lock_switch()	do { } while (0)
1092 #endif
1093 
1094 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1095 {
1096 #ifdef CONFIG_SMP
1097 	/*
1098 	 * We can optimise this out completely for !SMP, because the
1099 	 * SMP rebalancing from interrupt is the only thing that cares
1100 	 * here.
1101 	 */
1102 	next->on_cpu = 1;
1103 #endif
1104 }
1105 
1106 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1107 {
1108 #ifdef CONFIG_SMP
1109 	/*
1110 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1111 	 * We must ensure this doesn't happen until the switch is completely
1112 	 * finished.
1113 	 *
1114 	 * In particular, the load of prev->state in finish_task_switch() must
1115 	 * happen before this.
1116 	 *
1117 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1118 	 */
1119 	smp_store_release(&prev->on_cpu, 0);
1120 #endif
1121 #ifdef CONFIG_DEBUG_SPINLOCK
1122 	/* this is a valid case when another task releases the spinlock */
1123 	rq->lock.owner = current;
1124 #endif
1125 	/*
1126 	 * If we are tracking spinlock dependencies then we have to
1127 	 * fix up the runqueue lock - which gets 'carried over' from
1128 	 * prev into current:
1129 	 */
1130 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1131 
1132 	raw_spin_unlock_irq(&rq->lock);
1133 }
1134 
1135 /*
1136  * wake flags
1137  */
1138 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1139 #define WF_FORK		0x02		/* child wakeup after fork */
1140 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1141 
1142 /*
1143  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1144  * of tasks with abnormal "nice" values across CPUs the contribution that
1145  * each task makes to its run queue's load is weighted according to its
1146  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1147  * scaled version of the new time slice allocation that they receive on time
1148  * slice expiry etc.
1149  */
1150 
1151 #define WEIGHT_IDLEPRIO                3
1152 #define WMULT_IDLEPRIO         1431655765
1153 
1154 extern const int sched_prio_to_weight[40];
1155 extern const u32 sched_prio_to_wmult[40];
1156 
1157 /*
1158  * {de,en}queue flags:
1159  *
1160  * DEQUEUE_SLEEP  - task is no longer runnable
1161  * ENQUEUE_WAKEUP - task just became runnable
1162  *
1163  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1164  *                are in a known state which allows modification. Such pairs
1165  *                should preserve as much state as possible.
1166  *
1167  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1168  *        in the runqueue.
1169  *
1170  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1171  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1172  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1173  *
1174  */
1175 
1176 #define DEQUEUE_SLEEP		0x01
1177 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1178 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1179 
1180 #define ENQUEUE_WAKEUP		0x01
1181 #define ENQUEUE_RESTORE		0x02
1182 #define ENQUEUE_MOVE		0x04
1183 
1184 #define ENQUEUE_HEAD		0x08
1185 #define ENQUEUE_REPLENISH	0x10
1186 #ifdef CONFIG_SMP
1187 #define ENQUEUE_MIGRATED	0x20
1188 #else
1189 #define ENQUEUE_MIGRATED	0x00
1190 #endif
1191 
1192 #define RETRY_TASK		((void *)-1UL)
1193 
1194 struct sched_class {
1195 	const struct sched_class *next;
1196 
1197 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1198 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1199 	void (*yield_task) (struct rq *rq);
1200 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1201 
1202 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1203 
1204 	/*
1205 	 * It is the responsibility of the pick_next_task() method that will
1206 	 * return the next task to call put_prev_task() on the @prev task or
1207 	 * something equivalent.
1208 	 *
1209 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1210 	 * tasks.
1211 	 */
1212 	struct task_struct * (*pick_next_task) (struct rq *rq,
1213 						struct task_struct *prev,
1214 						struct pin_cookie cookie);
1215 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1216 
1217 #ifdef CONFIG_SMP
1218 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1219 	void (*migrate_task_rq)(struct task_struct *p);
1220 
1221 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1222 
1223 	void (*set_cpus_allowed)(struct task_struct *p,
1224 				 const struct cpumask *newmask);
1225 
1226 	void (*rq_online)(struct rq *rq);
1227 	void (*rq_offline)(struct rq *rq);
1228 #endif
1229 
1230 	void (*set_curr_task) (struct rq *rq);
1231 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1232 	void (*task_fork) (struct task_struct *p);
1233 	void (*task_dead) (struct task_struct *p);
1234 
1235 	/*
1236 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1237 	 * cannot assume the switched_from/switched_to pair is serliazed by
1238 	 * rq->lock. They are however serialized by p->pi_lock.
1239 	 */
1240 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1241 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1242 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1243 			     int oldprio);
1244 
1245 	unsigned int (*get_rr_interval) (struct rq *rq,
1246 					 struct task_struct *task);
1247 
1248 	void (*update_curr) (struct rq *rq);
1249 
1250 #define TASK_SET_GROUP  0
1251 #define TASK_MOVE_GROUP	1
1252 
1253 #ifdef CONFIG_FAIR_GROUP_SCHED
1254 	void (*task_change_group) (struct task_struct *p, int type);
1255 #endif
1256 };
1257 
1258 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1259 {
1260 	prev->sched_class->put_prev_task(rq, prev);
1261 }
1262 
1263 #define sched_class_highest (&stop_sched_class)
1264 #define for_each_class(class) \
1265    for (class = sched_class_highest; class; class = class->next)
1266 
1267 extern const struct sched_class stop_sched_class;
1268 extern const struct sched_class dl_sched_class;
1269 extern const struct sched_class rt_sched_class;
1270 extern const struct sched_class fair_sched_class;
1271 extern const struct sched_class idle_sched_class;
1272 
1273 
1274 #ifdef CONFIG_SMP
1275 
1276 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1277 
1278 extern void trigger_load_balance(struct rq *rq);
1279 
1280 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1281 
1282 #endif
1283 
1284 #ifdef CONFIG_CPU_IDLE
1285 static inline void idle_set_state(struct rq *rq,
1286 				  struct cpuidle_state *idle_state)
1287 {
1288 	rq->idle_state = idle_state;
1289 }
1290 
1291 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1292 {
1293 	WARN_ON(!rcu_read_lock_held());
1294 	return rq->idle_state;
1295 }
1296 #else
1297 static inline void idle_set_state(struct rq *rq,
1298 				  struct cpuidle_state *idle_state)
1299 {
1300 }
1301 
1302 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1303 {
1304 	return NULL;
1305 }
1306 #endif
1307 
1308 extern void sysrq_sched_debug_show(void);
1309 extern void sched_init_granularity(void);
1310 extern void update_max_interval(void);
1311 
1312 extern void init_sched_dl_class(void);
1313 extern void init_sched_rt_class(void);
1314 extern void init_sched_fair_class(void);
1315 
1316 extern void resched_curr(struct rq *rq);
1317 extern void resched_cpu(int cpu);
1318 
1319 extern struct rt_bandwidth def_rt_bandwidth;
1320 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1321 
1322 extern struct dl_bandwidth def_dl_bandwidth;
1323 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1324 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1325 
1326 unsigned long to_ratio(u64 period, u64 runtime);
1327 
1328 extern void init_entity_runnable_average(struct sched_entity *se);
1329 extern void post_init_entity_util_avg(struct sched_entity *se);
1330 
1331 #ifdef CONFIG_NO_HZ_FULL
1332 extern bool sched_can_stop_tick(struct rq *rq);
1333 
1334 /*
1335  * Tick may be needed by tasks in the runqueue depending on their policy and
1336  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1337  * nohz mode if necessary.
1338  */
1339 static inline void sched_update_tick_dependency(struct rq *rq)
1340 {
1341 	int cpu;
1342 
1343 	if (!tick_nohz_full_enabled())
1344 		return;
1345 
1346 	cpu = cpu_of(rq);
1347 
1348 	if (!tick_nohz_full_cpu(cpu))
1349 		return;
1350 
1351 	if (sched_can_stop_tick(rq))
1352 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1353 	else
1354 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1355 }
1356 #else
1357 static inline void sched_update_tick_dependency(struct rq *rq) { }
1358 #endif
1359 
1360 static inline void add_nr_running(struct rq *rq, unsigned count)
1361 {
1362 	unsigned prev_nr = rq->nr_running;
1363 
1364 	rq->nr_running = prev_nr + count;
1365 
1366 	if (prev_nr < 2 && rq->nr_running >= 2) {
1367 #ifdef CONFIG_SMP
1368 		if (!rq->rd->overload)
1369 			rq->rd->overload = true;
1370 #endif
1371 	}
1372 
1373 	sched_update_tick_dependency(rq);
1374 }
1375 
1376 static inline void sub_nr_running(struct rq *rq, unsigned count)
1377 {
1378 	rq->nr_running -= count;
1379 	/* Check if we still need preemption */
1380 	sched_update_tick_dependency(rq);
1381 }
1382 
1383 static inline void rq_last_tick_reset(struct rq *rq)
1384 {
1385 #ifdef CONFIG_NO_HZ_FULL
1386 	rq->last_sched_tick = jiffies;
1387 #endif
1388 }
1389 
1390 extern void update_rq_clock(struct rq *rq);
1391 
1392 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1393 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1394 
1395 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1396 
1397 extern const_debug unsigned int sysctl_sched_time_avg;
1398 extern const_debug unsigned int sysctl_sched_nr_migrate;
1399 extern const_debug unsigned int sysctl_sched_migration_cost;
1400 
1401 static inline u64 sched_avg_period(void)
1402 {
1403 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1404 }
1405 
1406 #ifdef CONFIG_SCHED_HRTICK
1407 
1408 /*
1409  * Use hrtick when:
1410  *  - enabled by features
1411  *  - hrtimer is actually high res
1412  */
1413 static inline int hrtick_enabled(struct rq *rq)
1414 {
1415 	if (!sched_feat(HRTICK))
1416 		return 0;
1417 	if (!cpu_active(cpu_of(rq)))
1418 		return 0;
1419 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1420 }
1421 
1422 void hrtick_start(struct rq *rq, u64 delay);
1423 
1424 #else
1425 
1426 static inline int hrtick_enabled(struct rq *rq)
1427 {
1428 	return 0;
1429 }
1430 
1431 #endif /* CONFIG_SCHED_HRTICK */
1432 
1433 #ifdef CONFIG_SMP
1434 extern void sched_avg_update(struct rq *rq);
1435 
1436 #ifndef arch_scale_freq_capacity
1437 static __always_inline
1438 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1439 {
1440 	return SCHED_CAPACITY_SCALE;
1441 }
1442 #endif
1443 
1444 #ifndef arch_scale_cpu_capacity
1445 static __always_inline
1446 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1447 {
1448 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1449 		return sd->smt_gain / sd->span_weight;
1450 
1451 	return SCHED_CAPACITY_SCALE;
1452 }
1453 #endif
1454 
1455 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456 {
1457 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1458 	sched_avg_update(rq);
1459 }
1460 #else
1461 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1462 static inline void sched_avg_update(struct rq *rq) { }
1463 #endif
1464 
1465 struct rq_flags {
1466 	unsigned long flags;
1467 	struct pin_cookie cookie;
1468 };
1469 
1470 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1471 	__acquires(rq->lock);
1472 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1473 	__acquires(p->pi_lock)
1474 	__acquires(rq->lock);
1475 
1476 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1477 	__releases(rq->lock)
1478 {
1479 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1480 	raw_spin_unlock(&rq->lock);
1481 }
1482 
1483 static inline void
1484 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1485 	__releases(rq->lock)
1486 	__releases(p->pi_lock)
1487 {
1488 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1489 	raw_spin_unlock(&rq->lock);
1490 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1491 }
1492 
1493 #ifdef CONFIG_SMP
1494 #ifdef CONFIG_PREEMPT
1495 
1496 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1497 
1498 /*
1499  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1500  * way at the expense of forcing extra atomic operations in all
1501  * invocations.  This assures that the double_lock is acquired using the
1502  * same underlying policy as the spinlock_t on this architecture, which
1503  * reduces latency compared to the unfair variant below.  However, it
1504  * also adds more overhead and therefore may reduce throughput.
1505  */
1506 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1507 	__releases(this_rq->lock)
1508 	__acquires(busiest->lock)
1509 	__acquires(this_rq->lock)
1510 {
1511 	raw_spin_unlock(&this_rq->lock);
1512 	double_rq_lock(this_rq, busiest);
1513 
1514 	return 1;
1515 }
1516 
1517 #else
1518 /*
1519  * Unfair double_lock_balance: Optimizes throughput at the expense of
1520  * latency by eliminating extra atomic operations when the locks are
1521  * already in proper order on entry.  This favors lower cpu-ids and will
1522  * grant the double lock to lower cpus over higher ids under contention,
1523  * regardless of entry order into the function.
1524  */
1525 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1526 	__releases(this_rq->lock)
1527 	__acquires(busiest->lock)
1528 	__acquires(this_rq->lock)
1529 {
1530 	int ret = 0;
1531 
1532 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1533 		if (busiest < this_rq) {
1534 			raw_spin_unlock(&this_rq->lock);
1535 			raw_spin_lock(&busiest->lock);
1536 			raw_spin_lock_nested(&this_rq->lock,
1537 					      SINGLE_DEPTH_NESTING);
1538 			ret = 1;
1539 		} else
1540 			raw_spin_lock_nested(&busiest->lock,
1541 					      SINGLE_DEPTH_NESTING);
1542 	}
1543 	return ret;
1544 }
1545 
1546 #endif /* CONFIG_PREEMPT */
1547 
1548 /*
1549  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1550  */
1551 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1552 {
1553 	if (unlikely(!irqs_disabled())) {
1554 		/* printk() doesn't work good under rq->lock */
1555 		raw_spin_unlock(&this_rq->lock);
1556 		BUG_ON(1);
1557 	}
1558 
1559 	return _double_lock_balance(this_rq, busiest);
1560 }
1561 
1562 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1563 	__releases(busiest->lock)
1564 {
1565 	raw_spin_unlock(&busiest->lock);
1566 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1567 }
1568 
1569 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1570 {
1571 	if (l1 > l2)
1572 		swap(l1, l2);
1573 
1574 	spin_lock(l1);
1575 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1576 }
1577 
1578 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1579 {
1580 	if (l1 > l2)
1581 		swap(l1, l2);
1582 
1583 	spin_lock_irq(l1);
1584 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1585 }
1586 
1587 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1588 {
1589 	if (l1 > l2)
1590 		swap(l1, l2);
1591 
1592 	raw_spin_lock(l1);
1593 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1594 }
1595 
1596 /*
1597  * double_rq_lock - safely lock two runqueues
1598  *
1599  * Note this does not disable interrupts like task_rq_lock,
1600  * you need to do so manually before calling.
1601  */
1602 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1603 	__acquires(rq1->lock)
1604 	__acquires(rq2->lock)
1605 {
1606 	BUG_ON(!irqs_disabled());
1607 	if (rq1 == rq2) {
1608 		raw_spin_lock(&rq1->lock);
1609 		__acquire(rq2->lock);	/* Fake it out ;) */
1610 	} else {
1611 		if (rq1 < rq2) {
1612 			raw_spin_lock(&rq1->lock);
1613 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1614 		} else {
1615 			raw_spin_lock(&rq2->lock);
1616 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1617 		}
1618 	}
1619 }
1620 
1621 /*
1622  * double_rq_unlock - safely unlock two runqueues
1623  *
1624  * Note this does not restore interrupts like task_rq_unlock,
1625  * you need to do so manually after calling.
1626  */
1627 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1628 	__releases(rq1->lock)
1629 	__releases(rq2->lock)
1630 {
1631 	raw_spin_unlock(&rq1->lock);
1632 	if (rq1 != rq2)
1633 		raw_spin_unlock(&rq2->lock);
1634 	else
1635 		__release(rq2->lock);
1636 }
1637 
1638 #else /* CONFIG_SMP */
1639 
1640 /*
1641  * double_rq_lock - safely lock two runqueues
1642  *
1643  * Note this does not disable interrupts like task_rq_lock,
1644  * you need to do so manually before calling.
1645  */
1646 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1647 	__acquires(rq1->lock)
1648 	__acquires(rq2->lock)
1649 {
1650 	BUG_ON(!irqs_disabled());
1651 	BUG_ON(rq1 != rq2);
1652 	raw_spin_lock(&rq1->lock);
1653 	__acquire(rq2->lock);	/* Fake it out ;) */
1654 }
1655 
1656 /*
1657  * double_rq_unlock - safely unlock two runqueues
1658  *
1659  * Note this does not restore interrupts like task_rq_unlock,
1660  * you need to do so manually after calling.
1661  */
1662 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1663 	__releases(rq1->lock)
1664 	__releases(rq2->lock)
1665 {
1666 	BUG_ON(rq1 != rq2);
1667 	raw_spin_unlock(&rq1->lock);
1668 	__release(rq2->lock);
1669 }
1670 
1671 #endif
1672 
1673 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1674 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1675 
1676 #ifdef	CONFIG_SCHED_DEBUG
1677 extern void print_cfs_stats(struct seq_file *m, int cpu);
1678 extern void print_rt_stats(struct seq_file *m, int cpu);
1679 extern void print_dl_stats(struct seq_file *m, int cpu);
1680 extern void
1681 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1682 
1683 #ifdef CONFIG_NUMA_BALANCING
1684 extern void
1685 show_numa_stats(struct task_struct *p, struct seq_file *m);
1686 extern void
1687 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1688 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1689 #endif /* CONFIG_NUMA_BALANCING */
1690 #endif /* CONFIG_SCHED_DEBUG */
1691 
1692 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1693 extern void init_rt_rq(struct rt_rq *rt_rq);
1694 extern void init_dl_rq(struct dl_rq *dl_rq);
1695 
1696 extern void cfs_bandwidth_usage_inc(void);
1697 extern void cfs_bandwidth_usage_dec(void);
1698 
1699 #ifdef CONFIG_NO_HZ_COMMON
1700 enum rq_nohz_flag_bits {
1701 	NOHZ_TICK_STOPPED,
1702 	NOHZ_BALANCE_KICK,
1703 };
1704 
1705 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1706 
1707 extern void nohz_balance_exit_idle(unsigned int cpu);
1708 #else
1709 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1710 #endif
1711 
1712 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1713 
1714 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1715 DECLARE_PER_CPU(u64, cpu_softirq_time);
1716 
1717 #ifndef CONFIG_64BIT
1718 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1719 
1720 static inline void irq_time_write_begin(void)
1721 {
1722 	__this_cpu_inc(irq_time_seq.sequence);
1723 	smp_wmb();
1724 }
1725 
1726 static inline void irq_time_write_end(void)
1727 {
1728 	smp_wmb();
1729 	__this_cpu_inc(irq_time_seq.sequence);
1730 }
1731 
1732 static inline u64 irq_time_read(int cpu)
1733 {
1734 	u64 irq_time;
1735 	unsigned seq;
1736 
1737 	do {
1738 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1739 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1740 			   per_cpu(cpu_hardirq_time, cpu);
1741 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1742 
1743 	return irq_time;
1744 }
1745 #else /* CONFIG_64BIT */
1746 static inline void irq_time_write_begin(void)
1747 {
1748 }
1749 
1750 static inline void irq_time_write_end(void)
1751 {
1752 }
1753 
1754 static inline u64 irq_time_read(int cpu)
1755 {
1756 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1757 }
1758 #endif /* CONFIG_64BIT */
1759 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1760 
1761 #ifdef CONFIG_CPU_FREQ
1762 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1763 
1764 /**
1765  * cpufreq_update_util - Take a note about CPU utilization changes.
1766  * @time: Current time.
1767  * @util: Current utilization.
1768  * @max: Utilization ceiling.
1769  *
1770  * This function is called by the scheduler on every invocation of
1771  * update_load_avg() on the CPU whose utilization is being updated.
1772  *
1773  * It can only be called from RCU-sched read-side critical sections.
1774  */
1775 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1776 {
1777        struct update_util_data *data;
1778 
1779        data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1780        if (data)
1781                data->func(data, time, util, max);
1782 }
1783 
1784 /**
1785  * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1786  * @time: Current time.
1787  *
1788  * The way cpufreq is currently arranged requires it to evaluate the CPU
1789  * performance state (frequency/voltage) on a regular basis to prevent it from
1790  * being stuck in a completely inadequate performance level for too long.
1791  * That is not guaranteed to happen if the updates are only triggered from CFS,
1792  * though, because they may not be coming in if RT or deadline tasks are active
1793  * all the time (or there are RT and DL tasks only).
1794  *
1795  * As a workaround for that issue, this function is called by the RT and DL
1796  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1797  * but that really is a band-aid.  Going forward it should be replaced with
1798  * solutions targeted more specifically at RT and DL tasks.
1799  */
1800 static inline void cpufreq_trigger_update(u64 time)
1801 {
1802 	cpufreq_update_util(time, ULONG_MAX, 0);
1803 }
1804 #else
1805 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1806 static inline void cpufreq_trigger_update(u64 time) {}
1807 #endif /* CONFIG_CPU_FREQ */
1808 
1809 #ifdef arch_scale_freq_capacity
1810 #ifndef arch_scale_freq_invariant
1811 #define arch_scale_freq_invariant()	(true)
1812 #endif
1813 #else /* arch_scale_freq_capacity */
1814 #define arch_scale_freq_invariant()	(false)
1815 #endif
1816