1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool 264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 struct dl_bandwidth { 290 raw_spinlock_t dl_runtime_lock; 291 u64 dl_runtime; 292 u64 dl_period; 293 }; 294 295 static inline int dl_bandwidth_enabled(void) 296 { 297 return sysctl_sched_rt_runtime >= 0; 298 } 299 300 /* 301 * To keep the bandwidth of -deadline tasks under control 302 * we need some place where: 303 * - store the maximum -deadline bandwidth of each cpu; 304 * - cache the fraction of bandwidth that is currently allocated in 305 * each root domain; 306 * 307 * This is all done in the data structure below. It is similar to the 308 * one used for RT-throttling (rt_bandwidth), with the main difference 309 * that, since here we are only interested in admission control, we 310 * do not decrease any runtime while the group "executes", neither we 311 * need a timer to replenish it. 312 * 313 * With respect to SMP, bandwidth is given on a per root domain basis, 314 * meaning that: 315 * - bw (< 100%) is the deadline bandwidth of each CPU; 316 * - total_bw is the currently allocated bandwidth in each root domain; 317 */ 318 struct dl_bw { 319 raw_spinlock_t lock; 320 u64 bw; 321 u64 total_bw; 322 }; 323 324 /* 325 * Verify the fitness of task @p to run on @cpu taking into account the 326 * CPU original capacity and the runtime/deadline ratio of the task. 327 * 328 * The function will return true if the CPU original capacity of the 329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 330 * task and false otherwise. 331 */ 332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 333 { 334 unsigned long cap = arch_scale_cpu_capacity(cpu); 335 336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 337 } 338 339 extern void init_dl_bw(struct dl_bw *dl_b); 340 extern int sched_dl_global_validate(void); 341 extern void sched_dl_do_global(void); 342 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 343 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 344 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 345 extern bool __checkparam_dl(const struct sched_attr *attr); 346 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 347 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 348 extern int dl_cpu_busy(int cpu, struct task_struct *p); 349 350 #ifdef CONFIG_CGROUP_SCHED 351 352 struct cfs_rq; 353 struct rt_rq; 354 355 extern struct list_head task_groups; 356 357 struct cfs_bandwidth { 358 #ifdef CONFIG_CFS_BANDWIDTH 359 raw_spinlock_t lock; 360 ktime_t period; 361 u64 quota; 362 u64 runtime; 363 u64 burst; 364 u64 runtime_snap; 365 s64 hierarchical_quota; 366 367 u8 idle; 368 u8 period_active; 369 u8 slack_started; 370 struct hrtimer period_timer; 371 struct hrtimer slack_timer; 372 struct list_head throttled_cfs_rq; 373 374 /* Statistics: */ 375 int nr_periods; 376 int nr_throttled; 377 int nr_burst; 378 u64 throttled_time; 379 u64 burst_time; 380 #endif 381 }; 382 383 /* Task group related information */ 384 struct task_group { 385 struct cgroup_subsys_state css; 386 387 #ifdef CONFIG_FAIR_GROUP_SCHED 388 /* schedulable entities of this group on each CPU */ 389 struct sched_entity **se; 390 /* runqueue "owned" by this group on each CPU */ 391 struct cfs_rq **cfs_rq; 392 unsigned long shares; 393 394 /* A positive value indicates that this is a SCHED_IDLE group. */ 395 int idle; 396 397 #ifdef CONFIG_SMP 398 /* 399 * load_avg can be heavily contended at clock tick time, so put 400 * it in its own cacheline separated from the fields above which 401 * will also be accessed at each tick. 402 */ 403 atomic_long_t load_avg ____cacheline_aligned; 404 #endif 405 #endif 406 407 #ifdef CONFIG_RT_GROUP_SCHED 408 struct sched_rt_entity **rt_se; 409 struct rt_rq **rt_rq; 410 411 struct rt_bandwidth rt_bandwidth; 412 #endif 413 414 struct rcu_head rcu; 415 struct list_head list; 416 417 struct task_group *parent; 418 struct list_head siblings; 419 struct list_head children; 420 421 #ifdef CONFIG_SCHED_AUTOGROUP 422 struct autogroup *autogroup; 423 #endif 424 425 struct cfs_bandwidth cfs_bandwidth; 426 427 #ifdef CONFIG_UCLAMP_TASK_GROUP 428 /* The two decimal precision [%] value requested from user-space */ 429 unsigned int uclamp_pct[UCLAMP_CNT]; 430 /* Clamp values requested for a task group */ 431 struct uclamp_se uclamp_req[UCLAMP_CNT]; 432 /* Effective clamp values used for a task group */ 433 struct uclamp_se uclamp[UCLAMP_CNT]; 434 #endif 435 436 }; 437 438 #ifdef CONFIG_FAIR_GROUP_SCHED 439 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 440 441 /* 442 * A weight of 0 or 1 can cause arithmetics problems. 443 * A weight of a cfs_rq is the sum of weights of which entities 444 * are queued on this cfs_rq, so a weight of a entity should not be 445 * too large, so as the shares value of a task group. 446 * (The default weight is 1024 - so there's no practical 447 * limitation from this.) 448 */ 449 #define MIN_SHARES (1UL << 1) 450 #define MAX_SHARES (1UL << 18) 451 #endif 452 453 typedef int (*tg_visitor)(struct task_group *, void *); 454 455 extern int walk_tg_tree_from(struct task_group *from, 456 tg_visitor down, tg_visitor up, void *data); 457 458 /* 459 * Iterate the full tree, calling @down when first entering a node and @up when 460 * leaving it for the final time. 461 * 462 * Caller must hold rcu_lock or sufficient equivalent. 463 */ 464 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 465 { 466 return walk_tg_tree_from(&root_task_group, down, up, data); 467 } 468 469 extern int tg_nop(struct task_group *tg, void *data); 470 471 extern void free_fair_sched_group(struct task_group *tg); 472 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 473 extern void online_fair_sched_group(struct task_group *tg); 474 extern void unregister_fair_sched_group(struct task_group *tg); 475 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 476 struct sched_entity *se, int cpu, 477 struct sched_entity *parent); 478 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 479 480 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 481 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 482 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 483 484 extern void unregister_rt_sched_group(struct task_group *tg); 485 extern void free_rt_sched_group(struct task_group *tg); 486 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 487 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 488 struct sched_rt_entity *rt_se, int cpu, 489 struct sched_rt_entity *parent); 490 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 491 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 492 extern long sched_group_rt_runtime(struct task_group *tg); 493 extern long sched_group_rt_period(struct task_group *tg); 494 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 495 496 extern struct task_group *sched_create_group(struct task_group *parent); 497 extern void sched_online_group(struct task_group *tg, 498 struct task_group *parent); 499 extern void sched_destroy_group(struct task_group *tg); 500 extern void sched_release_group(struct task_group *tg); 501 502 extern void sched_move_task(struct task_struct *tsk); 503 504 #ifdef CONFIG_FAIR_GROUP_SCHED 505 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 506 507 extern int sched_group_set_idle(struct task_group *tg, long idle); 508 509 #ifdef CONFIG_SMP 510 extern void set_task_rq_fair(struct sched_entity *se, 511 struct cfs_rq *prev, struct cfs_rq *next); 512 #else /* !CONFIG_SMP */ 513 static inline void set_task_rq_fair(struct sched_entity *se, 514 struct cfs_rq *prev, struct cfs_rq *next) { } 515 #endif /* CONFIG_SMP */ 516 #endif /* CONFIG_FAIR_GROUP_SCHED */ 517 518 #else /* CONFIG_CGROUP_SCHED */ 519 520 struct cfs_bandwidth { }; 521 522 #endif /* CONFIG_CGROUP_SCHED */ 523 524 /* 525 * u64_u32_load/u64_u32_store 526 * 527 * Use a copy of a u64 value to protect against data race. This is only 528 * applicable for 32-bits architectures. 529 */ 530 #ifdef CONFIG_64BIT 531 # define u64_u32_load_copy(var, copy) var 532 # define u64_u32_store_copy(var, copy, val) (var = val) 533 #else 534 # define u64_u32_load_copy(var, copy) \ 535 ({ \ 536 u64 __val, __val_copy; \ 537 do { \ 538 __val_copy = copy; \ 539 /* \ 540 * paired with u64_u32_store_copy(), ordering access \ 541 * to var and copy. \ 542 */ \ 543 smp_rmb(); \ 544 __val = var; \ 545 } while (__val != __val_copy); \ 546 __val; \ 547 }) 548 # define u64_u32_store_copy(var, copy, val) \ 549 do { \ 550 typeof(val) __val = (val); \ 551 var = __val; \ 552 /* \ 553 * paired with u64_u32_load_copy(), ordering access to var and \ 554 * copy. \ 555 */ \ 556 smp_wmb(); \ 557 copy = __val; \ 558 } while (0) 559 #endif 560 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 561 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 562 563 /* CFS-related fields in a runqueue */ 564 struct cfs_rq { 565 struct load_weight load; 566 unsigned int nr_running; 567 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 568 unsigned int idle_nr_running; /* SCHED_IDLE */ 569 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 570 571 u64 exec_clock; 572 u64 min_vruntime; 573 #ifdef CONFIG_SCHED_CORE 574 unsigned int forceidle_seq; 575 u64 min_vruntime_fi; 576 #endif 577 578 #ifndef CONFIG_64BIT 579 u64 min_vruntime_copy; 580 #endif 581 582 struct rb_root_cached tasks_timeline; 583 584 /* 585 * 'curr' points to currently running entity on this cfs_rq. 586 * It is set to NULL otherwise (i.e when none are currently running). 587 */ 588 struct sched_entity *curr; 589 struct sched_entity *next; 590 struct sched_entity *last; 591 struct sched_entity *skip; 592 593 #ifdef CONFIG_SCHED_DEBUG 594 unsigned int nr_spread_over; 595 #endif 596 597 #ifdef CONFIG_SMP 598 /* 599 * CFS load tracking 600 */ 601 struct sched_avg avg; 602 #ifndef CONFIG_64BIT 603 u64 last_update_time_copy; 604 #endif 605 struct { 606 raw_spinlock_t lock ____cacheline_aligned; 607 int nr; 608 unsigned long load_avg; 609 unsigned long util_avg; 610 unsigned long runnable_avg; 611 } removed; 612 613 #ifdef CONFIG_FAIR_GROUP_SCHED 614 unsigned long tg_load_avg_contrib; 615 long propagate; 616 long prop_runnable_sum; 617 618 /* 619 * h_load = weight * f(tg) 620 * 621 * Where f(tg) is the recursive weight fraction assigned to 622 * this group. 623 */ 624 unsigned long h_load; 625 u64 last_h_load_update; 626 struct sched_entity *h_load_next; 627 #endif /* CONFIG_FAIR_GROUP_SCHED */ 628 #endif /* CONFIG_SMP */ 629 630 #ifdef CONFIG_FAIR_GROUP_SCHED 631 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 632 633 /* 634 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 635 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 636 * (like users, containers etc.) 637 * 638 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 639 * This list is used during load balance. 640 */ 641 int on_list; 642 struct list_head leaf_cfs_rq_list; 643 struct task_group *tg; /* group that "owns" this runqueue */ 644 645 /* Locally cached copy of our task_group's idle value */ 646 int idle; 647 648 #ifdef CONFIG_CFS_BANDWIDTH 649 int runtime_enabled; 650 s64 runtime_remaining; 651 652 u64 throttled_pelt_idle; 653 #ifndef CONFIG_64BIT 654 u64 throttled_pelt_idle_copy; 655 #endif 656 u64 throttled_clock; 657 u64 throttled_clock_pelt; 658 u64 throttled_clock_pelt_time; 659 int throttled; 660 int throttle_count; 661 struct list_head throttled_list; 662 #endif /* CONFIG_CFS_BANDWIDTH */ 663 #endif /* CONFIG_FAIR_GROUP_SCHED */ 664 }; 665 666 static inline int rt_bandwidth_enabled(void) 667 { 668 return sysctl_sched_rt_runtime >= 0; 669 } 670 671 /* RT IPI pull logic requires IRQ_WORK */ 672 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 673 # define HAVE_RT_PUSH_IPI 674 #endif 675 676 /* Real-Time classes' related field in a runqueue: */ 677 struct rt_rq { 678 struct rt_prio_array active; 679 unsigned int rt_nr_running; 680 unsigned int rr_nr_running; 681 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 682 struct { 683 int curr; /* highest queued rt task prio */ 684 #ifdef CONFIG_SMP 685 int next; /* next highest */ 686 #endif 687 } highest_prio; 688 #endif 689 #ifdef CONFIG_SMP 690 unsigned int rt_nr_migratory; 691 unsigned int rt_nr_total; 692 int overloaded; 693 struct plist_head pushable_tasks; 694 695 #endif /* CONFIG_SMP */ 696 int rt_queued; 697 698 int rt_throttled; 699 u64 rt_time; 700 u64 rt_runtime; 701 /* Nests inside the rq lock: */ 702 raw_spinlock_t rt_runtime_lock; 703 704 #ifdef CONFIG_RT_GROUP_SCHED 705 unsigned int rt_nr_boosted; 706 707 struct rq *rq; 708 struct task_group *tg; 709 #endif 710 }; 711 712 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 713 { 714 return rt_rq->rt_queued && rt_rq->rt_nr_running; 715 } 716 717 /* Deadline class' related fields in a runqueue */ 718 struct dl_rq { 719 /* runqueue is an rbtree, ordered by deadline */ 720 struct rb_root_cached root; 721 722 unsigned int dl_nr_running; 723 724 #ifdef CONFIG_SMP 725 /* 726 * Deadline values of the currently executing and the 727 * earliest ready task on this rq. Caching these facilitates 728 * the decision whether or not a ready but not running task 729 * should migrate somewhere else. 730 */ 731 struct { 732 u64 curr; 733 u64 next; 734 } earliest_dl; 735 736 unsigned int dl_nr_migratory; 737 int overloaded; 738 739 /* 740 * Tasks on this rq that can be pushed away. They are kept in 741 * an rb-tree, ordered by tasks' deadlines, with caching 742 * of the leftmost (earliest deadline) element. 743 */ 744 struct rb_root_cached pushable_dl_tasks_root; 745 #else 746 struct dl_bw dl_bw; 747 #endif 748 /* 749 * "Active utilization" for this runqueue: increased when a 750 * task wakes up (becomes TASK_RUNNING) and decreased when a 751 * task blocks 752 */ 753 u64 running_bw; 754 755 /* 756 * Utilization of the tasks "assigned" to this runqueue (including 757 * the tasks that are in runqueue and the tasks that executed on this 758 * CPU and blocked). Increased when a task moves to this runqueue, and 759 * decreased when the task moves away (migrates, changes scheduling 760 * policy, or terminates). 761 * This is needed to compute the "inactive utilization" for the 762 * runqueue (inactive utilization = this_bw - running_bw). 763 */ 764 u64 this_bw; 765 u64 extra_bw; 766 767 /* 768 * Inverse of the fraction of CPU utilization that can be reclaimed 769 * by the GRUB algorithm. 770 */ 771 u64 bw_ratio; 772 }; 773 774 #ifdef CONFIG_FAIR_GROUP_SCHED 775 /* An entity is a task if it doesn't "own" a runqueue */ 776 #define entity_is_task(se) (!se->my_q) 777 778 static inline void se_update_runnable(struct sched_entity *se) 779 { 780 if (!entity_is_task(se)) 781 se->runnable_weight = se->my_q->h_nr_running; 782 } 783 784 static inline long se_runnable(struct sched_entity *se) 785 { 786 if (entity_is_task(se)) 787 return !!se->on_rq; 788 else 789 return se->runnable_weight; 790 } 791 792 #else 793 #define entity_is_task(se) 1 794 795 static inline void se_update_runnable(struct sched_entity *se) {} 796 797 static inline long se_runnable(struct sched_entity *se) 798 { 799 return !!se->on_rq; 800 } 801 #endif 802 803 #ifdef CONFIG_SMP 804 /* 805 * XXX we want to get rid of these helpers and use the full load resolution. 806 */ 807 static inline long se_weight(struct sched_entity *se) 808 { 809 return scale_load_down(se->load.weight); 810 } 811 812 813 static inline bool sched_asym_prefer(int a, int b) 814 { 815 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 816 } 817 818 struct perf_domain { 819 struct em_perf_domain *em_pd; 820 struct perf_domain *next; 821 struct rcu_head rcu; 822 }; 823 824 /* Scheduling group status flags */ 825 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 826 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 827 828 /* 829 * We add the notion of a root-domain which will be used to define per-domain 830 * variables. Each exclusive cpuset essentially defines an island domain by 831 * fully partitioning the member CPUs from any other cpuset. Whenever a new 832 * exclusive cpuset is created, we also create and attach a new root-domain 833 * object. 834 * 835 */ 836 struct root_domain { 837 atomic_t refcount; 838 atomic_t rto_count; 839 struct rcu_head rcu; 840 cpumask_var_t span; 841 cpumask_var_t online; 842 843 /* 844 * Indicate pullable load on at least one CPU, e.g: 845 * - More than one runnable task 846 * - Running task is misfit 847 */ 848 int overload; 849 850 /* Indicate one or more cpus over-utilized (tipping point) */ 851 int overutilized; 852 853 /* 854 * The bit corresponding to a CPU gets set here if such CPU has more 855 * than one runnable -deadline task (as it is below for RT tasks). 856 */ 857 cpumask_var_t dlo_mask; 858 atomic_t dlo_count; 859 struct dl_bw dl_bw; 860 struct cpudl cpudl; 861 862 /* 863 * Indicate whether a root_domain's dl_bw has been checked or 864 * updated. It's monotonously increasing value. 865 * 866 * Also, some corner cases, like 'wrap around' is dangerous, but given 867 * that u64 is 'big enough'. So that shouldn't be a concern. 868 */ 869 u64 visit_gen; 870 871 #ifdef HAVE_RT_PUSH_IPI 872 /* 873 * For IPI pull requests, loop across the rto_mask. 874 */ 875 struct irq_work rto_push_work; 876 raw_spinlock_t rto_lock; 877 /* These are only updated and read within rto_lock */ 878 int rto_loop; 879 int rto_cpu; 880 /* These atomics are updated outside of a lock */ 881 atomic_t rto_loop_next; 882 atomic_t rto_loop_start; 883 #endif 884 /* 885 * The "RT overload" flag: it gets set if a CPU has more than 886 * one runnable RT task. 887 */ 888 cpumask_var_t rto_mask; 889 struct cpupri cpupri; 890 891 unsigned long max_cpu_capacity; 892 893 /* 894 * NULL-terminated list of performance domains intersecting with the 895 * CPUs of the rd. Protected by RCU. 896 */ 897 struct perf_domain __rcu *pd; 898 }; 899 900 extern void init_defrootdomain(void); 901 extern int sched_init_domains(const struct cpumask *cpu_map); 902 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 903 extern void sched_get_rd(struct root_domain *rd); 904 extern void sched_put_rd(struct root_domain *rd); 905 906 #ifdef HAVE_RT_PUSH_IPI 907 extern void rto_push_irq_work_func(struct irq_work *work); 908 #endif 909 #endif /* CONFIG_SMP */ 910 911 #ifdef CONFIG_UCLAMP_TASK 912 /* 913 * struct uclamp_bucket - Utilization clamp bucket 914 * @value: utilization clamp value for tasks on this clamp bucket 915 * @tasks: number of RUNNABLE tasks on this clamp bucket 916 * 917 * Keep track of how many tasks are RUNNABLE for a given utilization 918 * clamp value. 919 */ 920 struct uclamp_bucket { 921 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 922 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 923 }; 924 925 /* 926 * struct uclamp_rq - rq's utilization clamp 927 * @value: currently active clamp values for a rq 928 * @bucket: utilization clamp buckets affecting a rq 929 * 930 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 931 * A clamp value is affecting a rq when there is at least one task RUNNABLE 932 * (or actually running) with that value. 933 * 934 * There are up to UCLAMP_CNT possible different clamp values, currently there 935 * are only two: minimum utilization and maximum utilization. 936 * 937 * All utilization clamping values are MAX aggregated, since: 938 * - for util_min: we want to run the CPU at least at the max of the minimum 939 * utilization required by its currently RUNNABLE tasks. 940 * - for util_max: we want to allow the CPU to run up to the max of the 941 * maximum utilization allowed by its currently RUNNABLE tasks. 942 * 943 * Since on each system we expect only a limited number of different 944 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 945 * the metrics required to compute all the per-rq utilization clamp values. 946 */ 947 struct uclamp_rq { 948 unsigned int value; 949 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 950 }; 951 952 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 953 #endif /* CONFIG_UCLAMP_TASK */ 954 955 /* 956 * This is the main, per-CPU runqueue data structure. 957 * 958 * Locking rule: those places that want to lock multiple runqueues 959 * (such as the load balancing or the thread migration code), lock 960 * acquire operations must be ordered by ascending &runqueue. 961 */ 962 struct rq { 963 /* runqueue lock: */ 964 raw_spinlock_t __lock; 965 966 /* 967 * nr_running and cpu_load should be in the same cacheline because 968 * remote CPUs use both these fields when doing load calculation. 969 */ 970 unsigned int nr_running; 971 #ifdef CONFIG_NUMA_BALANCING 972 unsigned int nr_numa_running; 973 unsigned int nr_preferred_running; 974 unsigned int numa_migrate_on; 975 #endif 976 #ifdef CONFIG_NO_HZ_COMMON 977 #ifdef CONFIG_SMP 978 unsigned long last_blocked_load_update_tick; 979 unsigned int has_blocked_load; 980 call_single_data_t nohz_csd; 981 #endif /* CONFIG_SMP */ 982 unsigned int nohz_tick_stopped; 983 atomic_t nohz_flags; 984 #endif /* CONFIG_NO_HZ_COMMON */ 985 986 #ifdef CONFIG_SMP 987 unsigned int ttwu_pending; 988 #endif 989 u64 nr_switches; 990 991 #ifdef CONFIG_UCLAMP_TASK 992 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 993 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 994 unsigned int uclamp_flags; 995 #define UCLAMP_FLAG_IDLE 0x01 996 #endif 997 998 struct cfs_rq cfs; 999 struct rt_rq rt; 1000 struct dl_rq dl; 1001 1002 #ifdef CONFIG_FAIR_GROUP_SCHED 1003 /* list of leaf cfs_rq on this CPU: */ 1004 struct list_head leaf_cfs_rq_list; 1005 struct list_head *tmp_alone_branch; 1006 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1007 1008 /* 1009 * This is part of a global counter where only the total sum 1010 * over all CPUs matters. A task can increase this counter on 1011 * one CPU and if it got migrated afterwards it may decrease 1012 * it on another CPU. Always updated under the runqueue lock: 1013 */ 1014 unsigned int nr_uninterruptible; 1015 1016 struct task_struct __rcu *curr; 1017 struct task_struct *idle; 1018 struct task_struct *stop; 1019 unsigned long next_balance; 1020 struct mm_struct *prev_mm; 1021 1022 unsigned int clock_update_flags; 1023 u64 clock; 1024 /* Ensure that all clocks are in the same cache line */ 1025 u64 clock_task ____cacheline_aligned; 1026 u64 clock_pelt; 1027 unsigned long lost_idle_time; 1028 u64 clock_pelt_idle; 1029 u64 clock_idle; 1030 #ifndef CONFIG_64BIT 1031 u64 clock_pelt_idle_copy; 1032 u64 clock_idle_copy; 1033 #endif 1034 1035 atomic_t nr_iowait; 1036 1037 #ifdef CONFIG_SCHED_DEBUG 1038 u64 last_seen_need_resched_ns; 1039 int ticks_without_resched; 1040 #endif 1041 1042 #ifdef CONFIG_MEMBARRIER 1043 int membarrier_state; 1044 #endif 1045 1046 #ifdef CONFIG_SMP 1047 struct root_domain *rd; 1048 struct sched_domain __rcu *sd; 1049 1050 unsigned long cpu_capacity; 1051 unsigned long cpu_capacity_orig; 1052 1053 struct callback_head *balance_callback; 1054 1055 unsigned char nohz_idle_balance; 1056 unsigned char idle_balance; 1057 1058 unsigned long misfit_task_load; 1059 1060 /* For active balancing */ 1061 int active_balance; 1062 int push_cpu; 1063 struct cpu_stop_work active_balance_work; 1064 1065 /* CPU of this runqueue: */ 1066 int cpu; 1067 int online; 1068 1069 struct list_head cfs_tasks; 1070 1071 struct sched_avg avg_rt; 1072 struct sched_avg avg_dl; 1073 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1074 struct sched_avg avg_irq; 1075 #endif 1076 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1077 struct sched_avg avg_thermal; 1078 #endif 1079 u64 idle_stamp; 1080 u64 avg_idle; 1081 1082 unsigned long wake_stamp; 1083 u64 wake_avg_idle; 1084 1085 /* This is used to determine avg_idle's max value */ 1086 u64 max_idle_balance_cost; 1087 1088 #ifdef CONFIG_HOTPLUG_CPU 1089 struct rcuwait hotplug_wait; 1090 #endif 1091 #endif /* CONFIG_SMP */ 1092 1093 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1094 u64 prev_irq_time; 1095 #endif 1096 #ifdef CONFIG_PARAVIRT 1097 u64 prev_steal_time; 1098 #endif 1099 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1100 u64 prev_steal_time_rq; 1101 #endif 1102 1103 /* calc_load related fields */ 1104 unsigned long calc_load_update; 1105 long calc_load_active; 1106 1107 #ifdef CONFIG_SCHED_HRTICK 1108 #ifdef CONFIG_SMP 1109 call_single_data_t hrtick_csd; 1110 #endif 1111 struct hrtimer hrtick_timer; 1112 ktime_t hrtick_time; 1113 #endif 1114 1115 #ifdef CONFIG_SCHEDSTATS 1116 /* latency stats */ 1117 struct sched_info rq_sched_info; 1118 unsigned long long rq_cpu_time; 1119 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1120 1121 /* sys_sched_yield() stats */ 1122 unsigned int yld_count; 1123 1124 /* schedule() stats */ 1125 unsigned int sched_count; 1126 unsigned int sched_goidle; 1127 1128 /* try_to_wake_up() stats */ 1129 unsigned int ttwu_count; 1130 unsigned int ttwu_local; 1131 #endif 1132 1133 #ifdef CONFIG_CPU_IDLE 1134 /* Must be inspected within a rcu lock section */ 1135 struct cpuidle_state *idle_state; 1136 #endif 1137 1138 #ifdef CONFIG_SMP 1139 unsigned int nr_pinned; 1140 #endif 1141 unsigned int push_busy; 1142 struct cpu_stop_work push_work; 1143 1144 #ifdef CONFIG_SCHED_CORE 1145 /* per rq */ 1146 struct rq *core; 1147 struct task_struct *core_pick; 1148 unsigned int core_enabled; 1149 unsigned int core_sched_seq; 1150 struct rb_root core_tree; 1151 1152 /* shared state -- careful with sched_core_cpu_deactivate() */ 1153 unsigned int core_task_seq; 1154 unsigned int core_pick_seq; 1155 unsigned long core_cookie; 1156 unsigned int core_forceidle_count; 1157 unsigned int core_forceidle_seq; 1158 unsigned int core_forceidle_occupation; 1159 u64 core_forceidle_start; 1160 #endif 1161 }; 1162 1163 #ifdef CONFIG_FAIR_GROUP_SCHED 1164 1165 /* CPU runqueue to which this cfs_rq is attached */ 1166 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1167 { 1168 return cfs_rq->rq; 1169 } 1170 1171 #else 1172 1173 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1174 { 1175 return container_of(cfs_rq, struct rq, cfs); 1176 } 1177 #endif 1178 1179 static inline int cpu_of(struct rq *rq) 1180 { 1181 #ifdef CONFIG_SMP 1182 return rq->cpu; 1183 #else 1184 return 0; 1185 #endif 1186 } 1187 1188 #define MDF_PUSH 0x01 1189 1190 static inline bool is_migration_disabled(struct task_struct *p) 1191 { 1192 #ifdef CONFIG_SMP 1193 return p->migration_disabled; 1194 #else 1195 return false; 1196 #endif 1197 } 1198 1199 struct sched_group; 1200 #ifdef CONFIG_SCHED_CORE 1201 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1202 1203 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1204 1205 static inline bool sched_core_enabled(struct rq *rq) 1206 { 1207 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1208 } 1209 1210 static inline bool sched_core_disabled(void) 1211 { 1212 return !static_branch_unlikely(&__sched_core_enabled); 1213 } 1214 1215 /* 1216 * Be careful with this function; not for general use. The return value isn't 1217 * stable unless you actually hold a relevant rq->__lock. 1218 */ 1219 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1220 { 1221 if (sched_core_enabled(rq)) 1222 return &rq->core->__lock; 1223 1224 return &rq->__lock; 1225 } 1226 1227 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1228 { 1229 if (rq->core_enabled) 1230 return &rq->core->__lock; 1231 1232 return &rq->__lock; 1233 } 1234 1235 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1236 1237 /* 1238 * Helpers to check if the CPU's core cookie matches with the task's cookie 1239 * when core scheduling is enabled. 1240 * A special case is that the task's cookie always matches with CPU's core 1241 * cookie if the CPU is in an idle core. 1242 */ 1243 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1244 { 1245 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1246 if (!sched_core_enabled(rq)) 1247 return true; 1248 1249 return rq->core->core_cookie == p->core_cookie; 1250 } 1251 1252 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1253 { 1254 bool idle_core = true; 1255 int cpu; 1256 1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1258 if (!sched_core_enabled(rq)) 1259 return true; 1260 1261 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1262 if (!available_idle_cpu(cpu)) { 1263 idle_core = false; 1264 break; 1265 } 1266 } 1267 1268 /* 1269 * A CPU in an idle core is always the best choice for tasks with 1270 * cookies. 1271 */ 1272 return idle_core || rq->core->core_cookie == p->core_cookie; 1273 } 1274 1275 static inline bool sched_group_cookie_match(struct rq *rq, 1276 struct task_struct *p, 1277 struct sched_group *group) 1278 { 1279 int cpu; 1280 1281 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1282 if (!sched_core_enabled(rq)) 1283 return true; 1284 1285 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1286 if (sched_core_cookie_match(rq, p)) 1287 return true; 1288 } 1289 return false; 1290 } 1291 1292 static inline bool sched_core_enqueued(struct task_struct *p) 1293 { 1294 return !RB_EMPTY_NODE(&p->core_node); 1295 } 1296 1297 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1298 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1299 1300 extern void sched_core_get(void); 1301 extern void sched_core_put(void); 1302 1303 #else /* !CONFIG_SCHED_CORE */ 1304 1305 static inline bool sched_core_enabled(struct rq *rq) 1306 { 1307 return false; 1308 } 1309 1310 static inline bool sched_core_disabled(void) 1311 { 1312 return true; 1313 } 1314 1315 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1316 { 1317 return &rq->__lock; 1318 } 1319 1320 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1321 { 1322 return &rq->__lock; 1323 } 1324 1325 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1326 { 1327 return true; 1328 } 1329 1330 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1331 { 1332 return true; 1333 } 1334 1335 static inline bool sched_group_cookie_match(struct rq *rq, 1336 struct task_struct *p, 1337 struct sched_group *group) 1338 { 1339 return true; 1340 } 1341 #endif /* CONFIG_SCHED_CORE */ 1342 1343 static inline void lockdep_assert_rq_held(struct rq *rq) 1344 { 1345 lockdep_assert_held(__rq_lockp(rq)); 1346 } 1347 1348 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1349 extern bool raw_spin_rq_trylock(struct rq *rq); 1350 extern void raw_spin_rq_unlock(struct rq *rq); 1351 1352 static inline void raw_spin_rq_lock(struct rq *rq) 1353 { 1354 raw_spin_rq_lock_nested(rq, 0); 1355 } 1356 1357 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1358 { 1359 local_irq_disable(); 1360 raw_spin_rq_lock(rq); 1361 } 1362 1363 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1364 { 1365 raw_spin_rq_unlock(rq); 1366 local_irq_enable(); 1367 } 1368 1369 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1370 { 1371 unsigned long flags; 1372 local_irq_save(flags); 1373 raw_spin_rq_lock(rq); 1374 return flags; 1375 } 1376 1377 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1378 { 1379 raw_spin_rq_unlock(rq); 1380 local_irq_restore(flags); 1381 } 1382 1383 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1384 do { \ 1385 flags = _raw_spin_rq_lock_irqsave(rq); \ 1386 } while (0) 1387 1388 #ifdef CONFIG_SCHED_SMT 1389 extern void __update_idle_core(struct rq *rq); 1390 1391 static inline void update_idle_core(struct rq *rq) 1392 { 1393 if (static_branch_unlikely(&sched_smt_present)) 1394 __update_idle_core(rq); 1395 } 1396 1397 #else 1398 static inline void update_idle_core(struct rq *rq) { } 1399 #endif 1400 1401 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1402 1403 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1404 #define this_rq() this_cpu_ptr(&runqueues) 1405 #define task_rq(p) cpu_rq(task_cpu(p)) 1406 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1407 #define raw_rq() raw_cpu_ptr(&runqueues) 1408 1409 #ifdef CONFIG_FAIR_GROUP_SCHED 1410 static inline struct task_struct *task_of(struct sched_entity *se) 1411 { 1412 SCHED_WARN_ON(!entity_is_task(se)); 1413 return container_of(se, struct task_struct, se); 1414 } 1415 1416 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1417 { 1418 return p->se.cfs_rq; 1419 } 1420 1421 /* runqueue on which this entity is (to be) queued */ 1422 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1423 { 1424 return se->cfs_rq; 1425 } 1426 1427 /* runqueue "owned" by this group */ 1428 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1429 { 1430 return grp->my_q; 1431 } 1432 1433 #else 1434 1435 static inline struct task_struct *task_of(struct sched_entity *se) 1436 { 1437 return container_of(se, struct task_struct, se); 1438 } 1439 1440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1441 { 1442 return &task_rq(p)->cfs; 1443 } 1444 1445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1446 { 1447 struct task_struct *p = task_of(se); 1448 struct rq *rq = task_rq(p); 1449 1450 return &rq->cfs; 1451 } 1452 1453 /* runqueue "owned" by this group */ 1454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1455 { 1456 return NULL; 1457 } 1458 #endif 1459 1460 extern void update_rq_clock(struct rq *rq); 1461 1462 /* 1463 * rq::clock_update_flags bits 1464 * 1465 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1466 * call to __schedule(). This is an optimisation to avoid 1467 * neighbouring rq clock updates. 1468 * 1469 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1470 * in effect and calls to update_rq_clock() are being ignored. 1471 * 1472 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1473 * made to update_rq_clock() since the last time rq::lock was pinned. 1474 * 1475 * If inside of __schedule(), clock_update_flags will have been 1476 * shifted left (a left shift is a cheap operation for the fast path 1477 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1478 * 1479 * if (rq-clock_update_flags >= RQCF_UPDATED) 1480 * 1481 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1482 * one position though, because the next rq_unpin_lock() will shift it 1483 * back. 1484 */ 1485 #define RQCF_REQ_SKIP 0x01 1486 #define RQCF_ACT_SKIP 0x02 1487 #define RQCF_UPDATED 0x04 1488 1489 static inline void assert_clock_updated(struct rq *rq) 1490 { 1491 /* 1492 * The only reason for not seeing a clock update since the 1493 * last rq_pin_lock() is if we're currently skipping updates. 1494 */ 1495 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1496 } 1497 1498 static inline u64 rq_clock(struct rq *rq) 1499 { 1500 lockdep_assert_rq_held(rq); 1501 assert_clock_updated(rq); 1502 1503 return rq->clock; 1504 } 1505 1506 static inline u64 rq_clock_task(struct rq *rq) 1507 { 1508 lockdep_assert_rq_held(rq); 1509 assert_clock_updated(rq); 1510 1511 return rq->clock_task; 1512 } 1513 1514 /** 1515 * By default the decay is the default pelt decay period. 1516 * The decay shift can change the decay period in 1517 * multiples of 32. 1518 * Decay shift Decay period(ms) 1519 * 0 32 1520 * 1 64 1521 * 2 128 1522 * 3 256 1523 * 4 512 1524 */ 1525 extern int sched_thermal_decay_shift; 1526 1527 static inline u64 rq_clock_thermal(struct rq *rq) 1528 { 1529 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1530 } 1531 1532 static inline void rq_clock_skip_update(struct rq *rq) 1533 { 1534 lockdep_assert_rq_held(rq); 1535 rq->clock_update_flags |= RQCF_REQ_SKIP; 1536 } 1537 1538 /* 1539 * See rt task throttling, which is the only time a skip 1540 * request is canceled. 1541 */ 1542 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1543 { 1544 lockdep_assert_rq_held(rq); 1545 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1546 } 1547 1548 struct rq_flags { 1549 unsigned long flags; 1550 struct pin_cookie cookie; 1551 #ifdef CONFIG_SCHED_DEBUG 1552 /* 1553 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1554 * current pin context is stashed here in case it needs to be 1555 * restored in rq_repin_lock(). 1556 */ 1557 unsigned int clock_update_flags; 1558 #endif 1559 }; 1560 1561 extern struct callback_head balance_push_callback; 1562 1563 /* 1564 * Lockdep annotation that avoids accidental unlocks; it's like a 1565 * sticky/continuous lockdep_assert_held(). 1566 * 1567 * This avoids code that has access to 'struct rq *rq' (basically everything in 1568 * the scheduler) from accidentally unlocking the rq if they do not also have a 1569 * copy of the (on-stack) 'struct rq_flags rf'. 1570 * 1571 * Also see Documentation/locking/lockdep-design.rst. 1572 */ 1573 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1574 { 1575 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1576 1577 #ifdef CONFIG_SCHED_DEBUG 1578 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1579 rf->clock_update_flags = 0; 1580 #ifdef CONFIG_SMP 1581 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1582 #endif 1583 #endif 1584 } 1585 1586 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1587 { 1588 #ifdef CONFIG_SCHED_DEBUG 1589 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1590 rf->clock_update_flags = RQCF_UPDATED; 1591 #endif 1592 1593 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1594 } 1595 1596 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1597 { 1598 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1599 1600 #ifdef CONFIG_SCHED_DEBUG 1601 /* 1602 * Restore the value we stashed in @rf for this pin context. 1603 */ 1604 rq->clock_update_flags |= rf->clock_update_flags; 1605 #endif 1606 } 1607 1608 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1609 __acquires(rq->lock); 1610 1611 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1612 __acquires(p->pi_lock) 1613 __acquires(rq->lock); 1614 1615 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1616 __releases(rq->lock) 1617 { 1618 rq_unpin_lock(rq, rf); 1619 raw_spin_rq_unlock(rq); 1620 } 1621 1622 static inline void 1623 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1624 __releases(rq->lock) 1625 __releases(p->pi_lock) 1626 { 1627 rq_unpin_lock(rq, rf); 1628 raw_spin_rq_unlock(rq); 1629 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1630 } 1631 1632 static inline void 1633 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1634 __acquires(rq->lock) 1635 { 1636 raw_spin_rq_lock_irqsave(rq, rf->flags); 1637 rq_pin_lock(rq, rf); 1638 } 1639 1640 static inline void 1641 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1642 __acquires(rq->lock) 1643 { 1644 raw_spin_rq_lock_irq(rq); 1645 rq_pin_lock(rq, rf); 1646 } 1647 1648 static inline void 1649 rq_lock(struct rq *rq, struct rq_flags *rf) 1650 __acquires(rq->lock) 1651 { 1652 raw_spin_rq_lock(rq); 1653 rq_pin_lock(rq, rf); 1654 } 1655 1656 static inline void 1657 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1658 __releases(rq->lock) 1659 { 1660 rq_unpin_lock(rq, rf); 1661 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1662 } 1663 1664 static inline void 1665 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1666 __releases(rq->lock) 1667 { 1668 rq_unpin_lock(rq, rf); 1669 raw_spin_rq_unlock_irq(rq); 1670 } 1671 1672 static inline void 1673 rq_unlock(struct rq *rq, struct rq_flags *rf) 1674 __releases(rq->lock) 1675 { 1676 rq_unpin_lock(rq, rf); 1677 raw_spin_rq_unlock(rq); 1678 } 1679 1680 static inline struct rq * 1681 this_rq_lock_irq(struct rq_flags *rf) 1682 __acquires(rq->lock) 1683 { 1684 struct rq *rq; 1685 1686 local_irq_disable(); 1687 rq = this_rq(); 1688 rq_lock(rq, rf); 1689 return rq; 1690 } 1691 1692 #ifdef CONFIG_NUMA 1693 enum numa_topology_type { 1694 NUMA_DIRECT, 1695 NUMA_GLUELESS_MESH, 1696 NUMA_BACKPLANE, 1697 }; 1698 extern enum numa_topology_type sched_numa_topology_type; 1699 extern int sched_max_numa_distance; 1700 extern bool find_numa_distance(int distance); 1701 extern void sched_init_numa(int offline_node); 1702 extern void sched_update_numa(int cpu, bool online); 1703 extern void sched_domains_numa_masks_set(unsigned int cpu); 1704 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1705 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1706 #else 1707 static inline void sched_init_numa(int offline_node) { } 1708 static inline void sched_update_numa(int cpu, bool online) { } 1709 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1710 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1711 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1712 { 1713 return nr_cpu_ids; 1714 } 1715 #endif 1716 1717 #ifdef CONFIG_NUMA_BALANCING 1718 /* The regions in numa_faults array from task_struct */ 1719 enum numa_faults_stats { 1720 NUMA_MEM = 0, 1721 NUMA_CPU, 1722 NUMA_MEMBUF, 1723 NUMA_CPUBUF 1724 }; 1725 extern void sched_setnuma(struct task_struct *p, int node); 1726 extern int migrate_task_to(struct task_struct *p, int cpu); 1727 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1728 int cpu, int scpu); 1729 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1730 #else 1731 static inline void 1732 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1733 { 1734 } 1735 #endif /* CONFIG_NUMA_BALANCING */ 1736 1737 #ifdef CONFIG_SMP 1738 1739 static inline void 1740 queue_balance_callback(struct rq *rq, 1741 struct callback_head *head, 1742 void (*func)(struct rq *rq)) 1743 { 1744 lockdep_assert_rq_held(rq); 1745 1746 /* 1747 * Don't (re)queue an already queued item; nor queue anything when 1748 * balance_push() is active, see the comment with 1749 * balance_push_callback. 1750 */ 1751 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1752 return; 1753 1754 head->func = (void (*)(struct callback_head *))func; 1755 head->next = rq->balance_callback; 1756 rq->balance_callback = head; 1757 } 1758 1759 #define rcu_dereference_check_sched_domain(p) \ 1760 rcu_dereference_check((p), \ 1761 lockdep_is_held(&sched_domains_mutex)) 1762 1763 /* 1764 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1765 * See destroy_sched_domains: call_rcu for details. 1766 * 1767 * The domain tree of any CPU may only be accessed from within 1768 * preempt-disabled sections. 1769 */ 1770 #define for_each_domain(cpu, __sd) \ 1771 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1772 __sd; __sd = __sd->parent) 1773 1774 /** 1775 * highest_flag_domain - Return highest sched_domain containing flag. 1776 * @cpu: The CPU whose highest level of sched domain is to 1777 * be returned. 1778 * @flag: The flag to check for the highest sched_domain 1779 * for the given CPU. 1780 * 1781 * Returns the highest sched_domain of a CPU which contains the given flag. 1782 */ 1783 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1784 { 1785 struct sched_domain *sd, *hsd = NULL; 1786 1787 for_each_domain(cpu, sd) { 1788 if (!(sd->flags & flag)) 1789 break; 1790 hsd = sd; 1791 } 1792 1793 return hsd; 1794 } 1795 1796 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1797 { 1798 struct sched_domain *sd; 1799 1800 for_each_domain(cpu, sd) { 1801 if (sd->flags & flag) 1802 break; 1803 } 1804 1805 return sd; 1806 } 1807 1808 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1809 DECLARE_PER_CPU(int, sd_llc_size); 1810 DECLARE_PER_CPU(int, sd_llc_id); 1811 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1812 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1813 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1814 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1815 extern struct static_key_false sched_asym_cpucapacity; 1816 1817 struct sched_group_capacity { 1818 atomic_t ref; 1819 /* 1820 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1821 * for a single CPU. 1822 */ 1823 unsigned long capacity; 1824 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1825 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1826 unsigned long next_update; 1827 int imbalance; /* XXX unrelated to capacity but shared group state */ 1828 1829 #ifdef CONFIG_SCHED_DEBUG 1830 int id; 1831 #endif 1832 1833 unsigned long cpumask[]; /* Balance mask */ 1834 }; 1835 1836 struct sched_group { 1837 struct sched_group *next; /* Must be a circular list */ 1838 atomic_t ref; 1839 1840 unsigned int group_weight; 1841 struct sched_group_capacity *sgc; 1842 int asym_prefer_cpu; /* CPU of highest priority in group */ 1843 int flags; 1844 1845 /* 1846 * The CPUs this group covers. 1847 * 1848 * NOTE: this field is variable length. (Allocated dynamically 1849 * by attaching extra space to the end of the structure, 1850 * depending on how many CPUs the kernel has booted up with) 1851 */ 1852 unsigned long cpumask[]; 1853 }; 1854 1855 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1856 { 1857 return to_cpumask(sg->cpumask); 1858 } 1859 1860 /* 1861 * See build_balance_mask(). 1862 */ 1863 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1864 { 1865 return to_cpumask(sg->sgc->cpumask); 1866 } 1867 1868 extern int group_balance_cpu(struct sched_group *sg); 1869 1870 #ifdef CONFIG_SCHED_DEBUG 1871 void update_sched_domain_debugfs(void); 1872 void dirty_sched_domain_sysctl(int cpu); 1873 #else 1874 static inline void update_sched_domain_debugfs(void) 1875 { 1876 } 1877 static inline void dirty_sched_domain_sysctl(int cpu) 1878 { 1879 } 1880 #endif 1881 1882 extern int sched_update_scaling(void); 1883 #endif /* CONFIG_SMP */ 1884 1885 #include "stats.h" 1886 1887 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1888 1889 extern void __sched_core_account_forceidle(struct rq *rq); 1890 1891 static inline void sched_core_account_forceidle(struct rq *rq) 1892 { 1893 if (schedstat_enabled()) 1894 __sched_core_account_forceidle(rq); 1895 } 1896 1897 extern void __sched_core_tick(struct rq *rq); 1898 1899 static inline void sched_core_tick(struct rq *rq) 1900 { 1901 if (sched_core_enabled(rq) && schedstat_enabled()) 1902 __sched_core_tick(rq); 1903 } 1904 1905 #else 1906 1907 static inline void sched_core_account_forceidle(struct rq *rq) {} 1908 1909 static inline void sched_core_tick(struct rq *rq) {} 1910 1911 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1912 1913 #ifdef CONFIG_CGROUP_SCHED 1914 1915 /* 1916 * Return the group to which this tasks belongs. 1917 * 1918 * We cannot use task_css() and friends because the cgroup subsystem 1919 * changes that value before the cgroup_subsys::attach() method is called, 1920 * therefore we cannot pin it and might observe the wrong value. 1921 * 1922 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1923 * core changes this before calling sched_move_task(). 1924 * 1925 * Instead we use a 'copy' which is updated from sched_move_task() while 1926 * holding both task_struct::pi_lock and rq::lock. 1927 */ 1928 static inline struct task_group *task_group(struct task_struct *p) 1929 { 1930 return p->sched_task_group; 1931 } 1932 1933 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1934 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1935 { 1936 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1937 struct task_group *tg = task_group(p); 1938 #endif 1939 1940 #ifdef CONFIG_FAIR_GROUP_SCHED 1941 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1942 p->se.cfs_rq = tg->cfs_rq[cpu]; 1943 p->se.parent = tg->se[cpu]; 1944 #endif 1945 1946 #ifdef CONFIG_RT_GROUP_SCHED 1947 p->rt.rt_rq = tg->rt_rq[cpu]; 1948 p->rt.parent = tg->rt_se[cpu]; 1949 #endif 1950 } 1951 1952 #else /* CONFIG_CGROUP_SCHED */ 1953 1954 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1955 static inline struct task_group *task_group(struct task_struct *p) 1956 { 1957 return NULL; 1958 } 1959 1960 #endif /* CONFIG_CGROUP_SCHED */ 1961 1962 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1963 { 1964 set_task_rq(p, cpu); 1965 #ifdef CONFIG_SMP 1966 /* 1967 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1968 * successfully executed on another CPU. We must ensure that updates of 1969 * per-task data have been completed by this moment. 1970 */ 1971 smp_wmb(); 1972 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1973 p->wake_cpu = cpu; 1974 #endif 1975 } 1976 1977 /* 1978 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1979 */ 1980 #ifdef CONFIG_SCHED_DEBUG 1981 # define const_debug __read_mostly 1982 #else 1983 # define const_debug const 1984 #endif 1985 1986 #define SCHED_FEAT(name, enabled) \ 1987 __SCHED_FEAT_##name , 1988 1989 enum { 1990 #include "features.h" 1991 __SCHED_FEAT_NR, 1992 }; 1993 1994 #undef SCHED_FEAT 1995 1996 #ifdef CONFIG_SCHED_DEBUG 1997 1998 /* 1999 * To support run-time toggling of sched features, all the translation units 2000 * (but core.c) reference the sysctl_sched_features defined in core.c. 2001 */ 2002 extern const_debug unsigned int sysctl_sched_features; 2003 2004 #ifdef CONFIG_JUMP_LABEL 2005 #define SCHED_FEAT(name, enabled) \ 2006 static __always_inline bool static_branch_##name(struct static_key *key) \ 2007 { \ 2008 return static_key_##enabled(key); \ 2009 } 2010 2011 #include "features.h" 2012 #undef SCHED_FEAT 2013 2014 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2015 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2016 2017 #else /* !CONFIG_JUMP_LABEL */ 2018 2019 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2020 2021 #endif /* CONFIG_JUMP_LABEL */ 2022 2023 #else /* !SCHED_DEBUG */ 2024 2025 /* 2026 * Each translation unit has its own copy of sysctl_sched_features to allow 2027 * constants propagation at compile time and compiler optimization based on 2028 * features default. 2029 */ 2030 #define SCHED_FEAT(name, enabled) \ 2031 (1UL << __SCHED_FEAT_##name) * enabled | 2032 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2033 #include "features.h" 2034 0; 2035 #undef SCHED_FEAT 2036 2037 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2038 2039 #endif /* SCHED_DEBUG */ 2040 2041 extern struct static_key_false sched_numa_balancing; 2042 extern struct static_key_false sched_schedstats; 2043 2044 static inline u64 global_rt_period(void) 2045 { 2046 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2047 } 2048 2049 static inline u64 global_rt_runtime(void) 2050 { 2051 if (sysctl_sched_rt_runtime < 0) 2052 return RUNTIME_INF; 2053 2054 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2055 } 2056 2057 static inline int task_current(struct rq *rq, struct task_struct *p) 2058 { 2059 return rq->curr == p; 2060 } 2061 2062 static inline int task_running(struct rq *rq, struct task_struct *p) 2063 { 2064 #ifdef CONFIG_SMP 2065 return p->on_cpu; 2066 #else 2067 return task_current(rq, p); 2068 #endif 2069 } 2070 2071 static inline int task_on_rq_queued(struct task_struct *p) 2072 { 2073 return p->on_rq == TASK_ON_RQ_QUEUED; 2074 } 2075 2076 static inline int task_on_rq_migrating(struct task_struct *p) 2077 { 2078 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2079 } 2080 2081 /* Wake flags. The first three directly map to some SD flag value */ 2082 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2083 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2084 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2085 2086 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2087 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2088 2089 #ifdef CONFIG_SMP 2090 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2091 static_assert(WF_FORK == SD_BALANCE_FORK); 2092 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2093 #endif 2094 2095 /* 2096 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2097 * of tasks with abnormal "nice" values across CPUs the contribution that 2098 * each task makes to its run queue's load is weighted according to its 2099 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2100 * scaled version of the new time slice allocation that they receive on time 2101 * slice expiry etc. 2102 */ 2103 2104 #define WEIGHT_IDLEPRIO 3 2105 #define WMULT_IDLEPRIO 1431655765 2106 2107 extern const int sched_prio_to_weight[40]; 2108 extern const u32 sched_prio_to_wmult[40]; 2109 2110 /* 2111 * {de,en}queue flags: 2112 * 2113 * DEQUEUE_SLEEP - task is no longer runnable 2114 * ENQUEUE_WAKEUP - task just became runnable 2115 * 2116 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2117 * are in a known state which allows modification. Such pairs 2118 * should preserve as much state as possible. 2119 * 2120 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2121 * in the runqueue. 2122 * 2123 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2124 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2125 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2126 * 2127 */ 2128 2129 #define DEQUEUE_SLEEP 0x01 2130 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2131 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2132 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2133 2134 #define ENQUEUE_WAKEUP 0x01 2135 #define ENQUEUE_RESTORE 0x02 2136 #define ENQUEUE_MOVE 0x04 2137 #define ENQUEUE_NOCLOCK 0x08 2138 2139 #define ENQUEUE_HEAD 0x10 2140 #define ENQUEUE_REPLENISH 0x20 2141 #ifdef CONFIG_SMP 2142 #define ENQUEUE_MIGRATED 0x40 2143 #else 2144 #define ENQUEUE_MIGRATED 0x00 2145 #endif 2146 2147 #define RETRY_TASK ((void *)-1UL) 2148 2149 struct sched_class { 2150 2151 #ifdef CONFIG_UCLAMP_TASK 2152 int uclamp_enabled; 2153 #endif 2154 2155 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2156 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2157 void (*yield_task) (struct rq *rq); 2158 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2159 2160 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2161 2162 struct task_struct *(*pick_next_task)(struct rq *rq); 2163 2164 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2165 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2166 2167 #ifdef CONFIG_SMP 2168 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2169 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2170 2171 struct task_struct * (*pick_task)(struct rq *rq); 2172 2173 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2174 2175 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2176 2177 void (*set_cpus_allowed)(struct task_struct *p, 2178 const struct cpumask *newmask, 2179 u32 flags); 2180 2181 void (*rq_online)(struct rq *rq); 2182 void (*rq_offline)(struct rq *rq); 2183 2184 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2185 #endif 2186 2187 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2188 void (*task_fork)(struct task_struct *p); 2189 void (*task_dead)(struct task_struct *p); 2190 2191 /* 2192 * The switched_from() call is allowed to drop rq->lock, therefore we 2193 * cannot assume the switched_from/switched_to pair is serialized by 2194 * rq->lock. They are however serialized by p->pi_lock. 2195 */ 2196 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2197 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2198 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2199 int oldprio); 2200 2201 unsigned int (*get_rr_interval)(struct rq *rq, 2202 struct task_struct *task); 2203 2204 void (*update_curr)(struct rq *rq); 2205 2206 #define TASK_SET_GROUP 0 2207 #define TASK_MOVE_GROUP 1 2208 2209 #ifdef CONFIG_FAIR_GROUP_SCHED 2210 void (*task_change_group)(struct task_struct *p, int type); 2211 #endif 2212 }; 2213 2214 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2215 { 2216 WARN_ON_ONCE(rq->curr != prev); 2217 prev->sched_class->put_prev_task(rq, prev); 2218 } 2219 2220 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2221 { 2222 next->sched_class->set_next_task(rq, next, false); 2223 } 2224 2225 2226 /* 2227 * Helper to define a sched_class instance; each one is placed in a separate 2228 * section which is ordered by the linker script: 2229 * 2230 * include/asm-generic/vmlinux.lds.h 2231 * 2232 * *CAREFUL* they are laid out in *REVERSE* order!!! 2233 * 2234 * Also enforce alignment on the instance, not the type, to guarantee layout. 2235 */ 2236 #define DEFINE_SCHED_CLASS(name) \ 2237 const struct sched_class name##_sched_class \ 2238 __aligned(__alignof__(struct sched_class)) \ 2239 __section("__" #name "_sched_class") 2240 2241 /* Defined in include/asm-generic/vmlinux.lds.h */ 2242 extern struct sched_class __sched_class_highest[]; 2243 extern struct sched_class __sched_class_lowest[]; 2244 2245 #define for_class_range(class, _from, _to) \ 2246 for (class = (_from); class < (_to); class++) 2247 2248 #define for_each_class(class) \ 2249 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2250 2251 #define sched_class_above(_a, _b) ((_a) < (_b)) 2252 2253 extern const struct sched_class stop_sched_class; 2254 extern const struct sched_class dl_sched_class; 2255 extern const struct sched_class rt_sched_class; 2256 extern const struct sched_class fair_sched_class; 2257 extern const struct sched_class idle_sched_class; 2258 2259 static inline bool sched_stop_runnable(struct rq *rq) 2260 { 2261 return rq->stop && task_on_rq_queued(rq->stop); 2262 } 2263 2264 static inline bool sched_dl_runnable(struct rq *rq) 2265 { 2266 return rq->dl.dl_nr_running > 0; 2267 } 2268 2269 static inline bool sched_rt_runnable(struct rq *rq) 2270 { 2271 return rq->rt.rt_queued > 0; 2272 } 2273 2274 static inline bool sched_fair_runnable(struct rq *rq) 2275 { 2276 return rq->cfs.nr_running > 0; 2277 } 2278 2279 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2280 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2281 2282 #define SCA_CHECK 0x01 2283 #define SCA_MIGRATE_DISABLE 0x02 2284 #define SCA_MIGRATE_ENABLE 0x04 2285 #define SCA_USER 0x08 2286 2287 #ifdef CONFIG_SMP 2288 2289 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2290 2291 extern void trigger_load_balance(struct rq *rq); 2292 2293 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2294 2295 static inline struct task_struct *get_push_task(struct rq *rq) 2296 { 2297 struct task_struct *p = rq->curr; 2298 2299 lockdep_assert_rq_held(rq); 2300 2301 if (rq->push_busy) 2302 return NULL; 2303 2304 if (p->nr_cpus_allowed == 1) 2305 return NULL; 2306 2307 if (p->migration_disabled) 2308 return NULL; 2309 2310 rq->push_busy = true; 2311 return get_task_struct(p); 2312 } 2313 2314 extern int push_cpu_stop(void *arg); 2315 2316 #endif 2317 2318 #ifdef CONFIG_CPU_IDLE 2319 static inline void idle_set_state(struct rq *rq, 2320 struct cpuidle_state *idle_state) 2321 { 2322 rq->idle_state = idle_state; 2323 } 2324 2325 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2326 { 2327 SCHED_WARN_ON(!rcu_read_lock_held()); 2328 2329 return rq->idle_state; 2330 } 2331 #else 2332 static inline void idle_set_state(struct rq *rq, 2333 struct cpuidle_state *idle_state) 2334 { 2335 } 2336 2337 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2338 { 2339 return NULL; 2340 } 2341 #endif 2342 2343 extern void schedule_idle(void); 2344 2345 extern void sysrq_sched_debug_show(void); 2346 extern void sched_init_granularity(void); 2347 extern void update_max_interval(void); 2348 2349 extern void init_sched_dl_class(void); 2350 extern void init_sched_rt_class(void); 2351 extern void init_sched_fair_class(void); 2352 2353 extern void reweight_task(struct task_struct *p, int prio); 2354 2355 extern void resched_curr(struct rq *rq); 2356 extern void resched_cpu(int cpu); 2357 2358 extern struct rt_bandwidth def_rt_bandwidth; 2359 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2360 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2361 2362 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2363 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2364 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2365 2366 #define BW_SHIFT 20 2367 #define BW_UNIT (1 << BW_SHIFT) 2368 #define RATIO_SHIFT 8 2369 #define MAX_BW_BITS (64 - BW_SHIFT) 2370 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2371 unsigned long to_ratio(u64 period, u64 runtime); 2372 2373 extern void init_entity_runnable_average(struct sched_entity *se); 2374 extern void post_init_entity_util_avg(struct task_struct *p); 2375 2376 #ifdef CONFIG_NO_HZ_FULL 2377 extern bool sched_can_stop_tick(struct rq *rq); 2378 extern int __init sched_tick_offload_init(void); 2379 2380 /* 2381 * Tick may be needed by tasks in the runqueue depending on their policy and 2382 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2383 * nohz mode if necessary. 2384 */ 2385 static inline void sched_update_tick_dependency(struct rq *rq) 2386 { 2387 int cpu = cpu_of(rq); 2388 2389 if (!tick_nohz_full_cpu(cpu)) 2390 return; 2391 2392 if (sched_can_stop_tick(rq)) 2393 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2394 else 2395 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2396 } 2397 #else 2398 static inline int sched_tick_offload_init(void) { return 0; } 2399 static inline void sched_update_tick_dependency(struct rq *rq) { } 2400 #endif 2401 2402 static inline void add_nr_running(struct rq *rq, unsigned count) 2403 { 2404 unsigned prev_nr = rq->nr_running; 2405 2406 rq->nr_running = prev_nr + count; 2407 if (trace_sched_update_nr_running_tp_enabled()) { 2408 call_trace_sched_update_nr_running(rq, count); 2409 } 2410 2411 #ifdef CONFIG_SMP 2412 if (prev_nr < 2 && rq->nr_running >= 2) { 2413 if (!READ_ONCE(rq->rd->overload)) 2414 WRITE_ONCE(rq->rd->overload, 1); 2415 } 2416 #endif 2417 2418 sched_update_tick_dependency(rq); 2419 } 2420 2421 static inline void sub_nr_running(struct rq *rq, unsigned count) 2422 { 2423 rq->nr_running -= count; 2424 if (trace_sched_update_nr_running_tp_enabled()) { 2425 call_trace_sched_update_nr_running(rq, -count); 2426 } 2427 2428 /* Check if we still need preemption */ 2429 sched_update_tick_dependency(rq); 2430 } 2431 2432 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2433 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2434 2435 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2436 2437 extern const_debug unsigned int sysctl_sched_nr_migrate; 2438 extern const_debug unsigned int sysctl_sched_migration_cost; 2439 2440 #ifdef CONFIG_SCHED_DEBUG 2441 extern unsigned int sysctl_sched_latency; 2442 extern unsigned int sysctl_sched_min_granularity; 2443 extern unsigned int sysctl_sched_idle_min_granularity; 2444 extern unsigned int sysctl_sched_wakeup_granularity; 2445 extern int sysctl_resched_latency_warn_ms; 2446 extern int sysctl_resched_latency_warn_once; 2447 2448 extern unsigned int sysctl_sched_tunable_scaling; 2449 2450 extern unsigned int sysctl_numa_balancing_scan_delay; 2451 extern unsigned int sysctl_numa_balancing_scan_period_min; 2452 extern unsigned int sysctl_numa_balancing_scan_period_max; 2453 extern unsigned int sysctl_numa_balancing_scan_size; 2454 #endif 2455 2456 #ifdef CONFIG_SCHED_HRTICK 2457 2458 /* 2459 * Use hrtick when: 2460 * - enabled by features 2461 * - hrtimer is actually high res 2462 */ 2463 static inline int hrtick_enabled(struct rq *rq) 2464 { 2465 if (!cpu_active(cpu_of(rq))) 2466 return 0; 2467 return hrtimer_is_hres_active(&rq->hrtick_timer); 2468 } 2469 2470 static inline int hrtick_enabled_fair(struct rq *rq) 2471 { 2472 if (!sched_feat(HRTICK)) 2473 return 0; 2474 return hrtick_enabled(rq); 2475 } 2476 2477 static inline int hrtick_enabled_dl(struct rq *rq) 2478 { 2479 if (!sched_feat(HRTICK_DL)) 2480 return 0; 2481 return hrtick_enabled(rq); 2482 } 2483 2484 void hrtick_start(struct rq *rq, u64 delay); 2485 2486 #else 2487 2488 static inline int hrtick_enabled_fair(struct rq *rq) 2489 { 2490 return 0; 2491 } 2492 2493 static inline int hrtick_enabled_dl(struct rq *rq) 2494 { 2495 return 0; 2496 } 2497 2498 static inline int hrtick_enabled(struct rq *rq) 2499 { 2500 return 0; 2501 } 2502 2503 #endif /* CONFIG_SCHED_HRTICK */ 2504 2505 #ifndef arch_scale_freq_tick 2506 static __always_inline 2507 void arch_scale_freq_tick(void) 2508 { 2509 } 2510 #endif 2511 2512 #ifndef arch_scale_freq_capacity 2513 /** 2514 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2515 * @cpu: the CPU in question. 2516 * 2517 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2518 * 2519 * f_curr 2520 * ------ * SCHED_CAPACITY_SCALE 2521 * f_max 2522 */ 2523 static __always_inline 2524 unsigned long arch_scale_freq_capacity(int cpu) 2525 { 2526 return SCHED_CAPACITY_SCALE; 2527 } 2528 #endif 2529 2530 #ifdef CONFIG_SCHED_DEBUG 2531 /* 2532 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2533 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2534 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2535 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2536 */ 2537 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2538 { 2539 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2540 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2541 #ifdef CONFIG_SMP 2542 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2543 #endif 2544 } 2545 #else 2546 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2547 #endif 2548 2549 #ifdef CONFIG_SMP 2550 2551 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2552 { 2553 #ifdef CONFIG_SCHED_CORE 2554 /* 2555 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2556 * order by core-id first and cpu-id second. 2557 * 2558 * Notably: 2559 * 2560 * double_rq_lock(0,3); will take core-0, core-1 lock 2561 * double_rq_lock(1,2); will take core-1, core-0 lock 2562 * 2563 * when only cpu-id is considered. 2564 */ 2565 if (rq1->core->cpu < rq2->core->cpu) 2566 return true; 2567 if (rq1->core->cpu > rq2->core->cpu) 2568 return false; 2569 2570 /* 2571 * __sched_core_flip() relies on SMT having cpu-id lock order. 2572 */ 2573 #endif 2574 return rq1->cpu < rq2->cpu; 2575 } 2576 2577 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2578 2579 #ifdef CONFIG_PREEMPTION 2580 2581 /* 2582 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2583 * way at the expense of forcing extra atomic operations in all 2584 * invocations. This assures that the double_lock is acquired using the 2585 * same underlying policy as the spinlock_t on this architecture, which 2586 * reduces latency compared to the unfair variant below. However, it 2587 * also adds more overhead and therefore may reduce throughput. 2588 */ 2589 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2590 __releases(this_rq->lock) 2591 __acquires(busiest->lock) 2592 __acquires(this_rq->lock) 2593 { 2594 raw_spin_rq_unlock(this_rq); 2595 double_rq_lock(this_rq, busiest); 2596 2597 return 1; 2598 } 2599 2600 #else 2601 /* 2602 * Unfair double_lock_balance: Optimizes throughput at the expense of 2603 * latency by eliminating extra atomic operations when the locks are 2604 * already in proper order on entry. This favors lower CPU-ids and will 2605 * grant the double lock to lower CPUs over higher ids under contention, 2606 * regardless of entry order into the function. 2607 */ 2608 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2609 __releases(this_rq->lock) 2610 __acquires(busiest->lock) 2611 __acquires(this_rq->lock) 2612 { 2613 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2614 likely(raw_spin_rq_trylock(busiest))) { 2615 double_rq_clock_clear_update(this_rq, busiest); 2616 return 0; 2617 } 2618 2619 if (rq_order_less(this_rq, busiest)) { 2620 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2621 double_rq_clock_clear_update(this_rq, busiest); 2622 return 0; 2623 } 2624 2625 raw_spin_rq_unlock(this_rq); 2626 double_rq_lock(this_rq, busiest); 2627 2628 return 1; 2629 } 2630 2631 #endif /* CONFIG_PREEMPTION */ 2632 2633 /* 2634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2635 */ 2636 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2637 { 2638 lockdep_assert_irqs_disabled(); 2639 2640 return _double_lock_balance(this_rq, busiest); 2641 } 2642 2643 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2644 __releases(busiest->lock) 2645 { 2646 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2647 raw_spin_rq_unlock(busiest); 2648 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2649 } 2650 2651 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2652 { 2653 if (l1 > l2) 2654 swap(l1, l2); 2655 2656 spin_lock(l1); 2657 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2658 } 2659 2660 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2661 { 2662 if (l1 > l2) 2663 swap(l1, l2); 2664 2665 spin_lock_irq(l1); 2666 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2667 } 2668 2669 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2670 { 2671 if (l1 > l2) 2672 swap(l1, l2); 2673 2674 raw_spin_lock(l1); 2675 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2676 } 2677 2678 /* 2679 * double_rq_unlock - safely unlock two runqueues 2680 * 2681 * Note this does not restore interrupts like task_rq_unlock, 2682 * you need to do so manually after calling. 2683 */ 2684 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2685 __releases(rq1->lock) 2686 __releases(rq2->lock) 2687 { 2688 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2689 raw_spin_rq_unlock(rq2); 2690 else 2691 __release(rq2->lock); 2692 raw_spin_rq_unlock(rq1); 2693 } 2694 2695 extern void set_rq_online (struct rq *rq); 2696 extern void set_rq_offline(struct rq *rq); 2697 extern bool sched_smp_initialized; 2698 2699 #else /* CONFIG_SMP */ 2700 2701 /* 2702 * double_rq_lock - safely lock two runqueues 2703 * 2704 * Note this does not disable interrupts like task_rq_lock, 2705 * you need to do so manually before calling. 2706 */ 2707 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2708 __acquires(rq1->lock) 2709 __acquires(rq2->lock) 2710 { 2711 BUG_ON(!irqs_disabled()); 2712 BUG_ON(rq1 != rq2); 2713 raw_spin_rq_lock(rq1); 2714 __acquire(rq2->lock); /* Fake it out ;) */ 2715 double_rq_clock_clear_update(rq1, rq2); 2716 } 2717 2718 /* 2719 * double_rq_unlock - safely unlock two runqueues 2720 * 2721 * Note this does not restore interrupts like task_rq_unlock, 2722 * you need to do so manually after calling. 2723 */ 2724 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2725 __releases(rq1->lock) 2726 __releases(rq2->lock) 2727 { 2728 BUG_ON(rq1 != rq2); 2729 raw_spin_rq_unlock(rq1); 2730 __release(rq2->lock); 2731 } 2732 2733 #endif 2734 2735 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2736 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2737 2738 #ifdef CONFIG_SCHED_DEBUG 2739 extern bool sched_debug_verbose; 2740 2741 extern void print_cfs_stats(struct seq_file *m, int cpu); 2742 extern void print_rt_stats(struct seq_file *m, int cpu); 2743 extern void print_dl_stats(struct seq_file *m, int cpu); 2744 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2745 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2746 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2747 2748 extern void resched_latency_warn(int cpu, u64 latency); 2749 #ifdef CONFIG_NUMA_BALANCING 2750 extern void 2751 show_numa_stats(struct task_struct *p, struct seq_file *m); 2752 extern void 2753 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2754 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2755 #endif /* CONFIG_NUMA_BALANCING */ 2756 #else 2757 static inline void resched_latency_warn(int cpu, u64 latency) {} 2758 #endif /* CONFIG_SCHED_DEBUG */ 2759 2760 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2761 extern void init_rt_rq(struct rt_rq *rt_rq); 2762 extern void init_dl_rq(struct dl_rq *dl_rq); 2763 2764 extern void cfs_bandwidth_usage_inc(void); 2765 extern void cfs_bandwidth_usage_dec(void); 2766 2767 #ifdef CONFIG_NO_HZ_COMMON 2768 #define NOHZ_BALANCE_KICK_BIT 0 2769 #define NOHZ_STATS_KICK_BIT 1 2770 #define NOHZ_NEWILB_KICK_BIT 2 2771 #define NOHZ_NEXT_KICK_BIT 3 2772 2773 /* Run rebalance_domains() */ 2774 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2775 /* Update blocked load */ 2776 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2777 /* Update blocked load when entering idle */ 2778 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2779 /* Update nohz.next_balance */ 2780 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2781 2782 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2783 2784 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2785 2786 extern void nohz_balance_exit_idle(struct rq *rq); 2787 #else 2788 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2789 #endif 2790 2791 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2792 extern void nohz_run_idle_balance(int cpu); 2793 #else 2794 static inline void nohz_run_idle_balance(int cpu) { } 2795 #endif 2796 2797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2798 struct irqtime { 2799 u64 total; 2800 u64 tick_delta; 2801 u64 irq_start_time; 2802 struct u64_stats_sync sync; 2803 }; 2804 2805 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2806 2807 /* 2808 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2809 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2810 * and never move forward. 2811 */ 2812 static inline u64 irq_time_read(int cpu) 2813 { 2814 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2815 unsigned int seq; 2816 u64 total; 2817 2818 do { 2819 seq = __u64_stats_fetch_begin(&irqtime->sync); 2820 total = irqtime->total; 2821 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2822 2823 return total; 2824 } 2825 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2826 2827 #ifdef CONFIG_CPU_FREQ 2828 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2829 2830 /** 2831 * cpufreq_update_util - Take a note about CPU utilization changes. 2832 * @rq: Runqueue to carry out the update for. 2833 * @flags: Update reason flags. 2834 * 2835 * This function is called by the scheduler on the CPU whose utilization is 2836 * being updated. 2837 * 2838 * It can only be called from RCU-sched read-side critical sections. 2839 * 2840 * The way cpufreq is currently arranged requires it to evaluate the CPU 2841 * performance state (frequency/voltage) on a regular basis to prevent it from 2842 * being stuck in a completely inadequate performance level for too long. 2843 * That is not guaranteed to happen if the updates are only triggered from CFS 2844 * and DL, though, because they may not be coming in if only RT tasks are 2845 * active all the time (or there are RT tasks only). 2846 * 2847 * As a workaround for that issue, this function is called periodically by the 2848 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2849 * but that really is a band-aid. Going forward it should be replaced with 2850 * solutions targeted more specifically at RT tasks. 2851 */ 2852 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2853 { 2854 struct update_util_data *data; 2855 2856 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2857 cpu_of(rq))); 2858 if (data) 2859 data->func(data, rq_clock(rq), flags); 2860 } 2861 #else 2862 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2863 #endif /* CONFIG_CPU_FREQ */ 2864 2865 #ifdef arch_scale_freq_capacity 2866 # ifndef arch_scale_freq_invariant 2867 # define arch_scale_freq_invariant() true 2868 # endif 2869 #else 2870 # define arch_scale_freq_invariant() false 2871 #endif 2872 2873 #ifdef CONFIG_SMP 2874 static inline unsigned long capacity_orig_of(int cpu) 2875 { 2876 return cpu_rq(cpu)->cpu_capacity_orig; 2877 } 2878 2879 /** 2880 * enum cpu_util_type - CPU utilization type 2881 * @FREQUENCY_UTIL: Utilization used to select frequency 2882 * @ENERGY_UTIL: Utilization used during energy calculation 2883 * 2884 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2885 * need to be aggregated differently depending on the usage made of them. This 2886 * enum is used within effective_cpu_util() to differentiate the types of 2887 * utilization expected by the callers, and adjust the aggregation accordingly. 2888 */ 2889 enum cpu_util_type { 2890 FREQUENCY_UTIL, 2891 ENERGY_UTIL, 2892 }; 2893 2894 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2895 enum cpu_util_type type, 2896 struct task_struct *p); 2897 2898 static inline unsigned long cpu_bw_dl(struct rq *rq) 2899 { 2900 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2901 } 2902 2903 static inline unsigned long cpu_util_dl(struct rq *rq) 2904 { 2905 return READ_ONCE(rq->avg_dl.util_avg); 2906 } 2907 2908 /** 2909 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2910 * @cpu: the CPU to get the utilization for. 2911 * 2912 * The unit of the return value must be the same as the one of CPU capacity 2913 * so that CPU utilization can be compared with CPU capacity. 2914 * 2915 * CPU utilization is the sum of running time of runnable tasks plus the 2916 * recent utilization of currently non-runnable tasks on that CPU. 2917 * It represents the amount of CPU capacity currently used by CFS tasks in 2918 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2919 * capacity at f_max. 2920 * 2921 * The estimated CPU utilization is defined as the maximum between CPU 2922 * utilization and sum of the estimated utilization of the currently 2923 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2924 * previously-executed tasks, which helps better deduce how busy a CPU will 2925 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2926 * of such a task would be significantly decayed at this point of time. 2927 * 2928 * CPU utilization can be higher than the current CPU capacity 2929 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2930 * of rounding errors as well as task migrations or wakeups of new tasks. 2931 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2932 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2933 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2934 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2935 * though since this is useful for predicting the CPU capacity required 2936 * after task migrations (scheduler-driven DVFS). 2937 * 2938 * Return: (Estimated) utilization for the specified CPU. 2939 */ 2940 static inline unsigned long cpu_util_cfs(int cpu) 2941 { 2942 struct cfs_rq *cfs_rq; 2943 unsigned long util; 2944 2945 cfs_rq = &cpu_rq(cpu)->cfs; 2946 util = READ_ONCE(cfs_rq->avg.util_avg); 2947 2948 if (sched_feat(UTIL_EST)) { 2949 util = max_t(unsigned long, util, 2950 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2951 } 2952 2953 return min(util, capacity_orig_of(cpu)); 2954 } 2955 2956 static inline unsigned long cpu_util_rt(struct rq *rq) 2957 { 2958 return READ_ONCE(rq->avg_rt.util_avg); 2959 } 2960 #endif 2961 2962 #ifdef CONFIG_UCLAMP_TASK 2963 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2964 2965 /** 2966 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2967 * @rq: The rq to clamp against. Must not be NULL. 2968 * @util: The util value to clamp. 2969 * @p: The task to clamp against. Can be NULL if you want to clamp 2970 * against @rq only. 2971 * 2972 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2973 * 2974 * If sched_uclamp_used static key is disabled, then just return the util 2975 * without any clamping since uclamp aggregation at the rq level in the fast 2976 * path is disabled, rendering this operation a NOP. 2977 * 2978 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2979 * will return the correct effective uclamp value of the task even if the 2980 * static key is disabled. 2981 */ 2982 static __always_inline 2983 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2984 struct task_struct *p) 2985 { 2986 unsigned long min_util = 0; 2987 unsigned long max_util = 0; 2988 2989 if (!static_branch_likely(&sched_uclamp_used)) 2990 return util; 2991 2992 if (p) { 2993 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2994 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2995 2996 /* 2997 * Ignore last runnable task's max clamp, as this task will 2998 * reset it. Similarly, no need to read the rq's min clamp. 2999 */ 3000 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 3001 goto out; 3002 } 3003 3004 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 3005 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 3006 out: 3007 /* 3008 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3009 * RUNNABLE tasks with _different_ clamps, we can end up with an 3010 * inversion. Fix it now when the clamps are applied. 3011 */ 3012 if (unlikely(min_util >= max_util)) 3013 return min_util; 3014 3015 return clamp(util, min_util, max_util); 3016 } 3017 3018 /* Is the rq being capped/throttled by uclamp_max? */ 3019 static inline bool uclamp_rq_is_capped(struct rq *rq) 3020 { 3021 unsigned long rq_util; 3022 unsigned long max_util; 3023 3024 if (!static_branch_likely(&sched_uclamp_used)) 3025 return false; 3026 3027 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3028 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3029 3030 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3031 } 3032 3033 /* 3034 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3035 * by default in the fast path and only gets turned on once userspace performs 3036 * an operation that requires it. 3037 * 3038 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3039 * hence is active. 3040 */ 3041 static inline bool uclamp_is_used(void) 3042 { 3043 return static_branch_likely(&sched_uclamp_used); 3044 } 3045 #else /* CONFIG_UCLAMP_TASK */ 3046 static inline 3047 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3048 struct task_struct *p) 3049 { 3050 return util; 3051 } 3052 3053 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3054 3055 static inline bool uclamp_is_used(void) 3056 { 3057 return false; 3058 } 3059 #endif /* CONFIG_UCLAMP_TASK */ 3060 3061 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3062 static inline unsigned long cpu_util_irq(struct rq *rq) 3063 { 3064 return rq->avg_irq.util_avg; 3065 } 3066 3067 static inline 3068 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3069 { 3070 util *= (max - irq); 3071 util /= max; 3072 3073 return util; 3074 3075 } 3076 #else 3077 static inline unsigned long cpu_util_irq(struct rq *rq) 3078 { 3079 return 0; 3080 } 3081 3082 static inline 3083 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3084 { 3085 return util; 3086 } 3087 #endif 3088 3089 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3090 3091 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3092 3093 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3094 3095 static inline bool sched_energy_enabled(void) 3096 { 3097 return static_branch_unlikely(&sched_energy_present); 3098 } 3099 3100 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3101 3102 #define perf_domain_span(pd) NULL 3103 static inline bool sched_energy_enabled(void) { return false; } 3104 3105 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3106 3107 #ifdef CONFIG_MEMBARRIER 3108 /* 3109 * The scheduler provides memory barriers required by membarrier between: 3110 * - prior user-space memory accesses and store to rq->membarrier_state, 3111 * - store to rq->membarrier_state and following user-space memory accesses. 3112 * In the same way it provides those guarantees around store to rq->curr. 3113 */ 3114 static inline void membarrier_switch_mm(struct rq *rq, 3115 struct mm_struct *prev_mm, 3116 struct mm_struct *next_mm) 3117 { 3118 int membarrier_state; 3119 3120 if (prev_mm == next_mm) 3121 return; 3122 3123 membarrier_state = atomic_read(&next_mm->membarrier_state); 3124 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3125 return; 3126 3127 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3128 } 3129 #else 3130 static inline void membarrier_switch_mm(struct rq *rq, 3131 struct mm_struct *prev_mm, 3132 struct mm_struct *next_mm) 3133 { 3134 } 3135 #endif 3136 3137 #ifdef CONFIG_SMP 3138 static inline bool is_per_cpu_kthread(struct task_struct *p) 3139 { 3140 if (!(p->flags & PF_KTHREAD)) 3141 return false; 3142 3143 if (p->nr_cpus_allowed != 1) 3144 return false; 3145 3146 return true; 3147 } 3148 #endif 3149 3150 extern void swake_up_all_locked(struct swait_queue_head *q); 3151 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3152 3153 #ifdef CONFIG_PREEMPT_DYNAMIC 3154 extern int preempt_dynamic_mode; 3155 extern int sched_dynamic_mode(const char *str); 3156 extern void sched_dynamic_update(int mode); 3157 #endif 3158 3159 #endif /* _KERNEL_SCHED_SCHED_H */ 3160