xref: /openbmc/linux/kernel/sched/sched.h (revision 747f7a29)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 struct rq;
101 struct cpuidle_state;
102 
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED	1
105 #define TASK_ON_RQ_MIGRATING	2
106 
107 extern __read_mostly int scheduler_running;
108 
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111 
112 extern unsigned int sysctl_sched_child_runs_first;
113 
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116 
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118 
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122 
123 /*
124  * Helpers for converting nanosecond timing to jiffy resolution
125  */
126 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127 
128 /*
129  * Increase resolution of nice-level calculations for 64-bit architectures.
130  * The extra resolution improves shares distribution and load balancing of
131  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132  * hierarchies, especially on larger systems. This is not a user-visible change
133  * and does not change the user-interface for setting shares/weights.
134  *
135  * We increase resolution only if we have enough bits to allow this increased
136  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137  * are pretty high and the returns do not justify the increased costs.
138  *
139  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140  * increase coverage and consistency always enable it on 64-bit platforms.
141  */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 	unsigned long __w = (w); \
148 	if (__w) \
149 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 	__w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w)		(w)
155 # define scale_load_down(w)	(w)
156 #endif
157 
158 /*
159  * Task weight (visible to users) and its load (invisible to users) have
160  * independent resolution, but they should be well calibrated. We use
161  * scale_load() and scale_load_down(w) to convert between them. The
162  * following must be true:
163  *
164  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165  *
166  */
167 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
168 
169 /*
170  * Single value that decides SCHED_DEADLINE internal math precision.
171  * 10 -> just above 1us
172  * 9  -> just above 0.5us
173  */
174 #define DL_SCALE		10
175 
176 /*
177  * Single value that denotes runtime == period, ie unlimited time.
178  */
179 #define RUNTIME_INF		((u64)~0ULL)
180 
181 static inline int idle_policy(int policy)
182 {
183 	return policy == SCHED_IDLE;
184 }
185 static inline int fair_policy(int policy)
186 {
187 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189 
190 static inline int rt_policy(int policy)
191 {
192 	return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194 
195 static inline int dl_policy(int policy)
196 {
197 	return policy == SCHED_DEADLINE;
198 }
199 static inline bool valid_policy(int policy)
200 {
201 	return idle_policy(policy) || fair_policy(policy) ||
202 		rt_policy(policy) || dl_policy(policy);
203 }
204 
205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 	return idle_policy(p->policy);
208 }
209 
210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 	return rt_policy(p->policy);
213 }
214 
215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 	return dl_policy(p->policy);
218 }
219 
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221 
222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 	s64 diff = sample - *avg;
225 	*avg += diff / 8;
226 }
227 
228 /*
229  * Shifting a value by an exponent greater *or equal* to the size of said value
230  * is UB; cap at size-1.
231  */
232 #define shr_bound(val, shift)							\
233 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234 
235 /*
236  * !! For sched_setattr_nocheck() (kernel) only !!
237  *
238  * This is actually gross. :(
239  *
240  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241  * tasks, but still be able to sleep. We need this on platforms that cannot
242  * atomically change clock frequency. Remove once fast switching will be
243  * available on such platforms.
244  *
245  * SUGOV stands for SchedUtil GOVernor.
246  */
247 #define SCHED_FLAG_SUGOV	0x10000000
248 
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250 
251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 	return false;
257 #endif
258 }
259 
260 /*
261  * Tells if entity @a should preempt entity @b.
262  */
263 static inline bool
264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
265 {
266 	return dl_entity_is_special(a) ||
267 	       dl_time_before(a->deadline, b->deadline);
268 }
269 
270 /*
271  * This is the priority-queue data structure of the RT scheduling class:
272  */
273 struct rt_prio_array {
274 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 	struct list_head queue[MAX_RT_PRIO];
276 };
277 
278 struct rt_bandwidth {
279 	/* nests inside the rq lock: */
280 	raw_spinlock_t		rt_runtime_lock;
281 	ktime_t			rt_period;
282 	u64			rt_runtime;
283 	struct hrtimer		rt_period_timer;
284 	unsigned int		rt_period_active;
285 };
286 
287 void __dl_clear_params(struct task_struct *p);
288 
289 struct dl_bandwidth {
290 	raw_spinlock_t		dl_runtime_lock;
291 	u64			dl_runtime;
292 	u64			dl_period;
293 };
294 
295 static inline int dl_bandwidth_enabled(void)
296 {
297 	return sysctl_sched_rt_runtime >= 0;
298 }
299 
300 /*
301  * To keep the bandwidth of -deadline tasks under control
302  * we need some place where:
303  *  - store the maximum -deadline bandwidth of each cpu;
304  *  - cache the fraction of bandwidth that is currently allocated in
305  *    each root domain;
306  *
307  * This is all done in the data structure below. It is similar to the
308  * one used for RT-throttling (rt_bandwidth), with the main difference
309  * that, since here we are only interested in admission control, we
310  * do not decrease any runtime while the group "executes", neither we
311  * need a timer to replenish it.
312  *
313  * With respect to SMP, bandwidth is given on a per root domain basis,
314  * meaning that:
315  *  - bw (< 100%) is the deadline bandwidth of each CPU;
316  *  - total_bw is the currently allocated bandwidth in each root domain;
317  */
318 struct dl_bw {
319 	raw_spinlock_t		lock;
320 	u64			bw;
321 	u64			total_bw;
322 };
323 
324 /*
325  * Verify the fitness of task @p to run on @cpu taking into account the
326  * CPU original capacity and the runtime/deadline ratio of the task.
327  *
328  * The function will return true if the CPU original capacity of the
329  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330  * task and false otherwise.
331  */
332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333 {
334 	unsigned long cap = arch_scale_cpu_capacity(cpu);
335 
336 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337 }
338 
339 extern void init_dl_bw(struct dl_bw *dl_b);
340 extern int  sched_dl_global_validate(void);
341 extern void sched_dl_do_global(void);
342 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
343 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345 extern bool __checkparam_dl(const struct sched_attr *attr);
346 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
347 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
348 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
349 
350 #ifdef CONFIG_CGROUP_SCHED
351 
352 struct cfs_rq;
353 struct rt_rq;
354 
355 extern struct list_head task_groups;
356 
357 struct cfs_bandwidth {
358 #ifdef CONFIG_CFS_BANDWIDTH
359 	raw_spinlock_t		lock;
360 	ktime_t			period;
361 	u64			quota;
362 	u64			runtime;
363 	u64			burst;
364 	u64			runtime_snap;
365 	s64			hierarchical_quota;
366 
367 	u8			idle;
368 	u8			period_active;
369 	u8			slack_started;
370 	struct hrtimer		period_timer;
371 	struct hrtimer		slack_timer;
372 	struct list_head	throttled_cfs_rq;
373 
374 	/* Statistics: */
375 	int			nr_periods;
376 	int			nr_throttled;
377 	int			nr_burst;
378 	u64			throttled_time;
379 	u64			burst_time;
380 #endif
381 };
382 
383 /* Task group related information */
384 struct task_group {
385 	struct cgroup_subsys_state css;
386 
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388 	/* schedulable entities of this group on each CPU */
389 	struct sched_entity	**se;
390 	/* runqueue "owned" by this group on each CPU */
391 	struct cfs_rq		**cfs_rq;
392 	unsigned long		shares;
393 
394 	/* A positive value indicates that this is a SCHED_IDLE group. */
395 	int			idle;
396 
397 #ifdef	CONFIG_SMP
398 	/*
399 	 * load_avg can be heavily contended at clock tick time, so put
400 	 * it in its own cacheline separated from the fields above which
401 	 * will also be accessed at each tick.
402 	 */
403 	atomic_long_t		load_avg ____cacheline_aligned;
404 #endif
405 #endif
406 
407 #ifdef CONFIG_RT_GROUP_SCHED
408 	struct sched_rt_entity	**rt_se;
409 	struct rt_rq		**rt_rq;
410 
411 	struct rt_bandwidth	rt_bandwidth;
412 #endif
413 
414 	struct rcu_head		rcu;
415 	struct list_head	list;
416 
417 	struct task_group	*parent;
418 	struct list_head	siblings;
419 	struct list_head	children;
420 
421 #ifdef CONFIG_SCHED_AUTOGROUP
422 	struct autogroup	*autogroup;
423 #endif
424 
425 	struct cfs_bandwidth	cfs_bandwidth;
426 
427 #ifdef CONFIG_UCLAMP_TASK_GROUP
428 	/* The two decimal precision [%] value requested from user-space */
429 	unsigned int		uclamp_pct[UCLAMP_CNT];
430 	/* Clamp values requested for a task group */
431 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
432 	/* Effective clamp values used for a task group */
433 	struct uclamp_se	uclamp[UCLAMP_CNT];
434 #endif
435 
436 };
437 
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
440 
441 /*
442  * A weight of 0 or 1 can cause arithmetics problems.
443  * A weight of a cfs_rq is the sum of weights of which entities
444  * are queued on this cfs_rq, so a weight of a entity should not be
445  * too large, so as the shares value of a task group.
446  * (The default weight is 1024 - so there's no practical
447  *  limitation from this.)
448  */
449 #define MIN_SHARES		(1UL <<  1)
450 #define MAX_SHARES		(1UL << 18)
451 #endif
452 
453 typedef int (*tg_visitor)(struct task_group *, void *);
454 
455 extern int walk_tg_tree_from(struct task_group *from,
456 			     tg_visitor down, tg_visitor up, void *data);
457 
458 /*
459  * Iterate the full tree, calling @down when first entering a node and @up when
460  * leaving it for the final time.
461  *
462  * Caller must hold rcu_lock or sufficient equivalent.
463  */
464 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
465 {
466 	return walk_tg_tree_from(&root_task_group, down, up, data);
467 }
468 
469 extern int tg_nop(struct task_group *tg, void *data);
470 
471 extern void free_fair_sched_group(struct task_group *tg);
472 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
473 extern void online_fair_sched_group(struct task_group *tg);
474 extern void unregister_fair_sched_group(struct task_group *tg);
475 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
476 			struct sched_entity *se, int cpu,
477 			struct sched_entity *parent);
478 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
479 
480 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
481 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
482 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
483 
484 extern void unregister_rt_sched_group(struct task_group *tg);
485 extern void free_rt_sched_group(struct task_group *tg);
486 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
487 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
488 		struct sched_rt_entity *rt_se, int cpu,
489 		struct sched_rt_entity *parent);
490 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
491 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
492 extern long sched_group_rt_runtime(struct task_group *tg);
493 extern long sched_group_rt_period(struct task_group *tg);
494 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
495 
496 extern struct task_group *sched_create_group(struct task_group *parent);
497 extern void sched_online_group(struct task_group *tg,
498 			       struct task_group *parent);
499 extern void sched_destroy_group(struct task_group *tg);
500 extern void sched_release_group(struct task_group *tg);
501 
502 extern void sched_move_task(struct task_struct *tsk);
503 
504 #ifdef CONFIG_FAIR_GROUP_SCHED
505 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
506 
507 extern int sched_group_set_idle(struct task_group *tg, long idle);
508 
509 #ifdef CONFIG_SMP
510 extern void set_task_rq_fair(struct sched_entity *se,
511 			     struct cfs_rq *prev, struct cfs_rq *next);
512 #else /* !CONFIG_SMP */
513 static inline void set_task_rq_fair(struct sched_entity *se,
514 			     struct cfs_rq *prev, struct cfs_rq *next) { }
515 #endif /* CONFIG_SMP */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
517 
518 #else /* CONFIG_CGROUP_SCHED */
519 
520 struct cfs_bandwidth { };
521 
522 #endif	/* CONFIG_CGROUP_SCHED */
523 
524 /*
525  * u64_u32_load/u64_u32_store
526  *
527  * Use a copy of a u64 value to protect against data race. This is only
528  * applicable for 32-bits architectures.
529  */
530 #ifdef CONFIG_64BIT
531 # define u64_u32_load_copy(var, copy)       var
532 # define u64_u32_store_copy(var, copy, val) (var = val)
533 #else
534 # define u64_u32_load_copy(var, copy)					\
535 ({									\
536 	u64 __val, __val_copy;						\
537 	do {								\
538 		__val_copy = copy;					\
539 		/*							\
540 		 * paired with u64_u32_store_copy(), ordering access	\
541 		 * to var and copy.					\
542 		 */							\
543 		smp_rmb();						\
544 		__val = var;						\
545 	} while (__val != __val_copy);					\
546 	__val;								\
547 })
548 # define u64_u32_store_copy(var, copy, val)				\
549 do {									\
550 	typeof(val) __val = (val);					\
551 	var = __val;							\
552 	/*								\
553 	 * paired with u64_u32_load_copy(), ordering access to var and	\
554 	 * copy.							\
555 	 */								\
556 	smp_wmb();							\
557 	copy = __val;							\
558 } while (0)
559 #endif
560 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
561 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
562 
563 /* CFS-related fields in a runqueue */
564 struct cfs_rq {
565 	struct load_weight	load;
566 	unsigned int		nr_running;
567 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
568 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
569 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
570 
571 	u64			exec_clock;
572 	u64			min_vruntime;
573 #ifdef CONFIG_SCHED_CORE
574 	unsigned int		forceidle_seq;
575 	u64			min_vruntime_fi;
576 #endif
577 
578 #ifndef CONFIG_64BIT
579 	u64			min_vruntime_copy;
580 #endif
581 
582 	struct rb_root_cached	tasks_timeline;
583 
584 	/*
585 	 * 'curr' points to currently running entity on this cfs_rq.
586 	 * It is set to NULL otherwise (i.e when none are currently running).
587 	 */
588 	struct sched_entity	*curr;
589 	struct sched_entity	*next;
590 	struct sched_entity	*last;
591 	struct sched_entity	*skip;
592 
593 #ifdef	CONFIG_SCHED_DEBUG
594 	unsigned int		nr_spread_over;
595 #endif
596 
597 #ifdef CONFIG_SMP
598 	/*
599 	 * CFS load tracking
600 	 */
601 	struct sched_avg	avg;
602 #ifndef CONFIG_64BIT
603 	u64			last_update_time_copy;
604 #endif
605 	struct {
606 		raw_spinlock_t	lock ____cacheline_aligned;
607 		int		nr;
608 		unsigned long	load_avg;
609 		unsigned long	util_avg;
610 		unsigned long	runnable_avg;
611 	} removed;
612 
613 #ifdef CONFIG_FAIR_GROUP_SCHED
614 	unsigned long		tg_load_avg_contrib;
615 	long			propagate;
616 	long			prop_runnable_sum;
617 
618 	/*
619 	 *   h_load = weight * f(tg)
620 	 *
621 	 * Where f(tg) is the recursive weight fraction assigned to
622 	 * this group.
623 	 */
624 	unsigned long		h_load;
625 	u64			last_h_load_update;
626 	struct sched_entity	*h_load_next;
627 #endif /* CONFIG_FAIR_GROUP_SCHED */
628 #endif /* CONFIG_SMP */
629 
630 #ifdef CONFIG_FAIR_GROUP_SCHED
631 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
632 
633 	/*
634 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
635 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
636 	 * (like users, containers etc.)
637 	 *
638 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
639 	 * This list is used during load balance.
640 	 */
641 	int			on_list;
642 	struct list_head	leaf_cfs_rq_list;
643 	struct task_group	*tg;	/* group that "owns" this runqueue */
644 
645 	/* Locally cached copy of our task_group's idle value */
646 	int			idle;
647 
648 #ifdef CONFIG_CFS_BANDWIDTH
649 	int			runtime_enabled;
650 	s64			runtime_remaining;
651 
652 	u64			throttled_pelt_idle;
653 #ifndef CONFIG_64BIT
654 	u64                     throttled_pelt_idle_copy;
655 #endif
656 	u64			throttled_clock;
657 	u64			throttled_clock_pelt;
658 	u64			throttled_clock_pelt_time;
659 	int			throttled;
660 	int			throttle_count;
661 	struct list_head	throttled_list;
662 #endif /* CONFIG_CFS_BANDWIDTH */
663 #endif /* CONFIG_FAIR_GROUP_SCHED */
664 };
665 
666 static inline int rt_bandwidth_enabled(void)
667 {
668 	return sysctl_sched_rt_runtime >= 0;
669 }
670 
671 /* RT IPI pull logic requires IRQ_WORK */
672 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
673 # define HAVE_RT_PUSH_IPI
674 #endif
675 
676 /* Real-Time classes' related field in a runqueue: */
677 struct rt_rq {
678 	struct rt_prio_array	active;
679 	unsigned int		rt_nr_running;
680 	unsigned int		rr_nr_running;
681 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
682 	struct {
683 		int		curr; /* highest queued rt task prio */
684 #ifdef CONFIG_SMP
685 		int		next; /* next highest */
686 #endif
687 	} highest_prio;
688 #endif
689 #ifdef CONFIG_SMP
690 	unsigned int		rt_nr_migratory;
691 	unsigned int		rt_nr_total;
692 	int			overloaded;
693 	struct plist_head	pushable_tasks;
694 
695 #endif /* CONFIG_SMP */
696 	int			rt_queued;
697 
698 	int			rt_throttled;
699 	u64			rt_time;
700 	u64			rt_runtime;
701 	/* Nests inside the rq lock: */
702 	raw_spinlock_t		rt_runtime_lock;
703 
704 #ifdef CONFIG_RT_GROUP_SCHED
705 	unsigned int		rt_nr_boosted;
706 
707 	struct rq		*rq;
708 	struct task_group	*tg;
709 #endif
710 };
711 
712 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
713 {
714 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
715 }
716 
717 /* Deadline class' related fields in a runqueue */
718 struct dl_rq {
719 	/* runqueue is an rbtree, ordered by deadline */
720 	struct rb_root_cached	root;
721 
722 	unsigned int		dl_nr_running;
723 
724 #ifdef CONFIG_SMP
725 	/*
726 	 * Deadline values of the currently executing and the
727 	 * earliest ready task on this rq. Caching these facilitates
728 	 * the decision whether or not a ready but not running task
729 	 * should migrate somewhere else.
730 	 */
731 	struct {
732 		u64		curr;
733 		u64		next;
734 	} earliest_dl;
735 
736 	unsigned int		dl_nr_migratory;
737 	int			overloaded;
738 
739 	/*
740 	 * Tasks on this rq that can be pushed away. They are kept in
741 	 * an rb-tree, ordered by tasks' deadlines, with caching
742 	 * of the leftmost (earliest deadline) element.
743 	 */
744 	struct rb_root_cached	pushable_dl_tasks_root;
745 #else
746 	struct dl_bw		dl_bw;
747 #endif
748 	/*
749 	 * "Active utilization" for this runqueue: increased when a
750 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
751 	 * task blocks
752 	 */
753 	u64			running_bw;
754 
755 	/*
756 	 * Utilization of the tasks "assigned" to this runqueue (including
757 	 * the tasks that are in runqueue and the tasks that executed on this
758 	 * CPU and blocked). Increased when a task moves to this runqueue, and
759 	 * decreased when the task moves away (migrates, changes scheduling
760 	 * policy, or terminates).
761 	 * This is needed to compute the "inactive utilization" for the
762 	 * runqueue (inactive utilization = this_bw - running_bw).
763 	 */
764 	u64			this_bw;
765 	u64			extra_bw;
766 
767 	/*
768 	 * Inverse of the fraction of CPU utilization that can be reclaimed
769 	 * by the GRUB algorithm.
770 	 */
771 	u64			bw_ratio;
772 };
773 
774 #ifdef CONFIG_FAIR_GROUP_SCHED
775 /* An entity is a task if it doesn't "own" a runqueue */
776 #define entity_is_task(se)	(!se->my_q)
777 
778 static inline void se_update_runnable(struct sched_entity *se)
779 {
780 	if (!entity_is_task(se))
781 		se->runnable_weight = se->my_q->h_nr_running;
782 }
783 
784 static inline long se_runnable(struct sched_entity *se)
785 {
786 	if (entity_is_task(se))
787 		return !!se->on_rq;
788 	else
789 		return se->runnable_weight;
790 }
791 
792 #else
793 #define entity_is_task(se)	1
794 
795 static inline void se_update_runnable(struct sched_entity *se) {}
796 
797 static inline long se_runnable(struct sched_entity *se)
798 {
799 	return !!se->on_rq;
800 }
801 #endif
802 
803 #ifdef CONFIG_SMP
804 /*
805  * XXX we want to get rid of these helpers and use the full load resolution.
806  */
807 static inline long se_weight(struct sched_entity *se)
808 {
809 	return scale_load_down(se->load.weight);
810 }
811 
812 
813 static inline bool sched_asym_prefer(int a, int b)
814 {
815 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
816 }
817 
818 struct perf_domain {
819 	struct em_perf_domain *em_pd;
820 	struct perf_domain *next;
821 	struct rcu_head rcu;
822 };
823 
824 /* Scheduling group status flags */
825 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
826 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
827 
828 /*
829  * We add the notion of a root-domain which will be used to define per-domain
830  * variables. Each exclusive cpuset essentially defines an island domain by
831  * fully partitioning the member CPUs from any other cpuset. Whenever a new
832  * exclusive cpuset is created, we also create and attach a new root-domain
833  * object.
834  *
835  */
836 struct root_domain {
837 	atomic_t		refcount;
838 	atomic_t		rto_count;
839 	struct rcu_head		rcu;
840 	cpumask_var_t		span;
841 	cpumask_var_t		online;
842 
843 	/*
844 	 * Indicate pullable load on at least one CPU, e.g:
845 	 * - More than one runnable task
846 	 * - Running task is misfit
847 	 */
848 	int			overload;
849 
850 	/* Indicate one or more cpus over-utilized (tipping point) */
851 	int			overutilized;
852 
853 	/*
854 	 * The bit corresponding to a CPU gets set here if such CPU has more
855 	 * than one runnable -deadline task (as it is below for RT tasks).
856 	 */
857 	cpumask_var_t		dlo_mask;
858 	atomic_t		dlo_count;
859 	struct dl_bw		dl_bw;
860 	struct cpudl		cpudl;
861 
862 	/*
863 	 * Indicate whether a root_domain's dl_bw has been checked or
864 	 * updated. It's monotonously increasing value.
865 	 *
866 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
867 	 * that u64 is 'big enough'. So that shouldn't be a concern.
868 	 */
869 	u64 visit_gen;
870 
871 #ifdef HAVE_RT_PUSH_IPI
872 	/*
873 	 * For IPI pull requests, loop across the rto_mask.
874 	 */
875 	struct irq_work		rto_push_work;
876 	raw_spinlock_t		rto_lock;
877 	/* These are only updated and read within rto_lock */
878 	int			rto_loop;
879 	int			rto_cpu;
880 	/* These atomics are updated outside of a lock */
881 	atomic_t		rto_loop_next;
882 	atomic_t		rto_loop_start;
883 #endif
884 	/*
885 	 * The "RT overload" flag: it gets set if a CPU has more than
886 	 * one runnable RT task.
887 	 */
888 	cpumask_var_t		rto_mask;
889 	struct cpupri		cpupri;
890 
891 	unsigned long		max_cpu_capacity;
892 
893 	/*
894 	 * NULL-terminated list of performance domains intersecting with the
895 	 * CPUs of the rd. Protected by RCU.
896 	 */
897 	struct perf_domain __rcu *pd;
898 };
899 
900 extern void init_defrootdomain(void);
901 extern int sched_init_domains(const struct cpumask *cpu_map);
902 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
903 extern void sched_get_rd(struct root_domain *rd);
904 extern void sched_put_rd(struct root_domain *rd);
905 
906 #ifdef HAVE_RT_PUSH_IPI
907 extern void rto_push_irq_work_func(struct irq_work *work);
908 #endif
909 #endif /* CONFIG_SMP */
910 
911 #ifdef CONFIG_UCLAMP_TASK
912 /*
913  * struct uclamp_bucket - Utilization clamp bucket
914  * @value: utilization clamp value for tasks on this clamp bucket
915  * @tasks: number of RUNNABLE tasks on this clamp bucket
916  *
917  * Keep track of how many tasks are RUNNABLE for a given utilization
918  * clamp value.
919  */
920 struct uclamp_bucket {
921 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
922 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
923 };
924 
925 /*
926  * struct uclamp_rq - rq's utilization clamp
927  * @value: currently active clamp values for a rq
928  * @bucket: utilization clamp buckets affecting a rq
929  *
930  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
931  * A clamp value is affecting a rq when there is at least one task RUNNABLE
932  * (or actually running) with that value.
933  *
934  * There are up to UCLAMP_CNT possible different clamp values, currently there
935  * are only two: minimum utilization and maximum utilization.
936  *
937  * All utilization clamping values are MAX aggregated, since:
938  * - for util_min: we want to run the CPU at least at the max of the minimum
939  *   utilization required by its currently RUNNABLE tasks.
940  * - for util_max: we want to allow the CPU to run up to the max of the
941  *   maximum utilization allowed by its currently RUNNABLE tasks.
942  *
943  * Since on each system we expect only a limited number of different
944  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
945  * the metrics required to compute all the per-rq utilization clamp values.
946  */
947 struct uclamp_rq {
948 	unsigned int value;
949 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
950 };
951 
952 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
953 #endif /* CONFIG_UCLAMP_TASK */
954 
955 /*
956  * This is the main, per-CPU runqueue data structure.
957  *
958  * Locking rule: those places that want to lock multiple runqueues
959  * (such as the load balancing or the thread migration code), lock
960  * acquire operations must be ordered by ascending &runqueue.
961  */
962 struct rq {
963 	/* runqueue lock: */
964 	raw_spinlock_t		__lock;
965 
966 	/*
967 	 * nr_running and cpu_load should be in the same cacheline because
968 	 * remote CPUs use both these fields when doing load calculation.
969 	 */
970 	unsigned int		nr_running;
971 #ifdef CONFIG_NUMA_BALANCING
972 	unsigned int		nr_numa_running;
973 	unsigned int		nr_preferred_running;
974 	unsigned int		numa_migrate_on;
975 #endif
976 #ifdef CONFIG_NO_HZ_COMMON
977 #ifdef CONFIG_SMP
978 	unsigned long		last_blocked_load_update_tick;
979 	unsigned int		has_blocked_load;
980 	call_single_data_t	nohz_csd;
981 #endif /* CONFIG_SMP */
982 	unsigned int		nohz_tick_stopped;
983 	atomic_t		nohz_flags;
984 #endif /* CONFIG_NO_HZ_COMMON */
985 
986 #ifdef CONFIG_SMP
987 	unsigned int		ttwu_pending;
988 #endif
989 	u64			nr_switches;
990 
991 #ifdef CONFIG_UCLAMP_TASK
992 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
993 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
994 	unsigned int		uclamp_flags;
995 #define UCLAMP_FLAG_IDLE 0x01
996 #endif
997 
998 	struct cfs_rq		cfs;
999 	struct rt_rq		rt;
1000 	struct dl_rq		dl;
1001 
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 	/* list of leaf cfs_rq on this CPU: */
1004 	struct list_head	leaf_cfs_rq_list;
1005 	struct list_head	*tmp_alone_branch;
1006 #endif /* CONFIG_FAIR_GROUP_SCHED */
1007 
1008 	/*
1009 	 * This is part of a global counter where only the total sum
1010 	 * over all CPUs matters. A task can increase this counter on
1011 	 * one CPU and if it got migrated afterwards it may decrease
1012 	 * it on another CPU. Always updated under the runqueue lock:
1013 	 */
1014 	unsigned int		nr_uninterruptible;
1015 
1016 	struct task_struct __rcu	*curr;
1017 	struct task_struct	*idle;
1018 	struct task_struct	*stop;
1019 	unsigned long		next_balance;
1020 	struct mm_struct	*prev_mm;
1021 
1022 	unsigned int		clock_update_flags;
1023 	u64			clock;
1024 	/* Ensure that all clocks are in the same cache line */
1025 	u64			clock_task ____cacheline_aligned;
1026 	u64			clock_pelt;
1027 	unsigned long		lost_idle_time;
1028 	u64			clock_pelt_idle;
1029 	u64			clock_idle;
1030 #ifndef CONFIG_64BIT
1031 	u64			clock_pelt_idle_copy;
1032 	u64			clock_idle_copy;
1033 #endif
1034 
1035 	atomic_t		nr_iowait;
1036 
1037 #ifdef CONFIG_SCHED_DEBUG
1038 	u64 last_seen_need_resched_ns;
1039 	int ticks_without_resched;
1040 #endif
1041 
1042 #ifdef CONFIG_MEMBARRIER
1043 	int membarrier_state;
1044 #endif
1045 
1046 #ifdef CONFIG_SMP
1047 	struct root_domain		*rd;
1048 	struct sched_domain __rcu	*sd;
1049 
1050 	unsigned long		cpu_capacity;
1051 	unsigned long		cpu_capacity_orig;
1052 
1053 	struct callback_head	*balance_callback;
1054 
1055 	unsigned char		nohz_idle_balance;
1056 	unsigned char		idle_balance;
1057 
1058 	unsigned long		misfit_task_load;
1059 
1060 	/* For active balancing */
1061 	int			active_balance;
1062 	int			push_cpu;
1063 	struct cpu_stop_work	active_balance_work;
1064 
1065 	/* CPU of this runqueue: */
1066 	int			cpu;
1067 	int			online;
1068 
1069 	struct list_head cfs_tasks;
1070 
1071 	struct sched_avg	avg_rt;
1072 	struct sched_avg	avg_dl;
1073 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1074 	struct sched_avg	avg_irq;
1075 #endif
1076 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1077 	struct sched_avg	avg_thermal;
1078 #endif
1079 	u64			idle_stamp;
1080 	u64			avg_idle;
1081 
1082 	unsigned long		wake_stamp;
1083 	u64			wake_avg_idle;
1084 
1085 	/* This is used to determine avg_idle's max value */
1086 	u64			max_idle_balance_cost;
1087 
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 	struct rcuwait		hotplug_wait;
1090 #endif
1091 #endif /* CONFIG_SMP */
1092 
1093 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1094 	u64			prev_irq_time;
1095 #endif
1096 #ifdef CONFIG_PARAVIRT
1097 	u64			prev_steal_time;
1098 #endif
1099 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1100 	u64			prev_steal_time_rq;
1101 #endif
1102 
1103 	/* calc_load related fields */
1104 	unsigned long		calc_load_update;
1105 	long			calc_load_active;
1106 
1107 #ifdef CONFIG_SCHED_HRTICK
1108 #ifdef CONFIG_SMP
1109 	call_single_data_t	hrtick_csd;
1110 #endif
1111 	struct hrtimer		hrtick_timer;
1112 	ktime_t 		hrtick_time;
1113 #endif
1114 
1115 #ifdef CONFIG_SCHEDSTATS
1116 	/* latency stats */
1117 	struct sched_info	rq_sched_info;
1118 	unsigned long long	rq_cpu_time;
1119 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1120 
1121 	/* sys_sched_yield() stats */
1122 	unsigned int		yld_count;
1123 
1124 	/* schedule() stats */
1125 	unsigned int		sched_count;
1126 	unsigned int		sched_goidle;
1127 
1128 	/* try_to_wake_up() stats */
1129 	unsigned int		ttwu_count;
1130 	unsigned int		ttwu_local;
1131 #endif
1132 
1133 #ifdef CONFIG_CPU_IDLE
1134 	/* Must be inspected within a rcu lock section */
1135 	struct cpuidle_state	*idle_state;
1136 #endif
1137 
1138 #ifdef CONFIG_SMP
1139 	unsigned int		nr_pinned;
1140 #endif
1141 	unsigned int		push_busy;
1142 	struct cpu_stop_work	push_work;
1143 
1144 #ifdef CONFIG_SCHED_CORE
1145 	/* per rq */
1146 	struct rq		*core;
1147 	struct task_struct	*core_pick;
1148 	unsigned int		core_enabled;
1149 	unsigned int		core_sched_seq;
1150 	struct rb_root		core_tree;
1151 
1152 	/* shared state -- careful with sched_core_cpu_deactivate() */
1153 	unsigned int		core_task_seq;
1154 	unsigned int		core_pick_seq;
1155 	unsigned long		core_cookie;
1156 	unsigned int		core_forceidle_count;
1157 	unsigned int		core_forceidle_seq;
1158 	unsigned int		core_forceidle_occupation;
1159 	u64			core_forceidle_start;
1160 #endif
1161 };
1162 
1163 #ifdef CONFIG_FAIR_GROUP_SCHED
1164 
1165 /* CPU runqueue to which this cfs_rq is attached */
1166 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1167 {
1168 	return cfs_rq->rq;
1169 }
1170 
1171 #else
1172 
1173 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1174 {
1175 	return container_of(cfs_rq, struct rq, cfs);
1176 }
1177 #endif
1178 
1179 static inline int cpu_of(struct rq *rq)
1180 {
1181 #ifdef CONFIG_SMP
1182 	return rq->cpu;
1183 #else
1184 	return 0;
1185 #endif
1186 }
1187 
1188 #define MDF_PUSH	0x01
1189 
1190 static inline bool is_migration_disabled(struct task_struct *p)
1191 {
1192 #ifdef CONFIG_SMP
1193 	return p->migration_disabled;
1194 #else
1195 	return false;
1196 #endif
1197 }
1198 
1199 struct sched_group;
1200 #ifdef CONFIG_SCHED_CORE
1201 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1202 
1203 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1204 
1205 static inline bool sched_core_enabled(struct rq *rq)
1206 {
1207 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1208 }
1209 
1210 static inline bool sched_core_disabled(void)
1211 {
1212 	return !static_branch_unlikely(&__sched_core_enabled);
1213 }
1214 
1215 /*
1216  * Be careful with this function; not for general use. The return value isn't
1217  * stable unless you actually hold a relevant rq->__lock.
1218  */
1219 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1220 {
1221 	if (sched_core_enabled(rq))
1222 		return &rq->core->__lock;
1223 
1224 	return &rq->__lock;
1225 }
1226 
1227 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1228 {
1229 	if (rq->core_enabled)
1230 		return &rq->core->__lock;
1231 
1232 	return &rq->__lock;
1233 }
1234 
1235 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1236 
1237 /*
1238  * Helpers to check if the CPU's core cookie matches with the task's cookie
1239  * when core scheduling is enabled.
1240  * A special case is that the task's cookie always matches with CPU's core
1241  * cookie if the CPU is in an idle core.
1242  */
1243 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1244 {
1245 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1246 	if (!sched_core_enabled(rq))
1247 		return true;
1248 
1249 	return rq->core->core_cookie == p->core_cookie;
1250 }
1251 
1252 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1253 {
1254 	bool idle_core = true;
1255 	int cpu;
1256 
1257 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1258 	if (!sched_core_enabled(rq))
1259 		return true;
1260 
1261 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1262 		if (!available_idle_cpu(cpu)) {
1263 			idle_core = false;
1264 			break;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * A CPU in an idle core is always the best choice for tasks with
1270 	 * cookies.
1271 	 */
1272 	return idle_core || rq->core->core_cookie == p->core_cookie;
1273 }
1274 
1275 static inline bool sched_group_cookie_match(struct rq *rq,
1276 					    struct task_struct *p,
1277 					    struct sched_group *group)
1278 {
1279 	int cpu;
1280 
1281 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1282 	if (!sched_core_enabled(rq))
1283 		return true;
1284 
1285 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1286 		if (sched_core_cookie_match(rq, p))
1287 			return true;
1288 	}
1289 	return false;
1290 }
1291 
1292 static inline bool sched_core_enqueued(struct task_struct *p)
1293 {
1294 	return !RB_EMPTY_NODE(&p->core_node);
1295 }
1296 
1297 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1298 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1299 
1300 extern void sched_core_get(void);
1301 extern void sched_core_put(void);
1302 
1303 #else /* !CONFIG_SCHED_CORE */
1304 
1305 static inline bool sched_core_enabled(struct rq *rq)
1306 {
1307 	return false;
1308 }
1309 
1310 static inline bool sched_core_disabled(void)
1311 {
1312 	return true;
1313 }
1314 
1315 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1316 {
1317 	return &rq->__lock;
1318 }
1319 
1320 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1321 {
1322 	return &rq->__lock;
1323 }
1324 
1325 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1326 {
1327 	return true;
1328 }
1329 
1330 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1331 {
1332 	return true;
1333 }
1334 
1335 static inline bool sched_group_cookie_match(struct rq *rq,
1336 					    struct task_struct *p,
1337 					    struct sched_group *group)
1338 {
1339 	return true;
1340 }
1341 #endif /* CONFIG_SCHED_CORE */
1342 
1343 static inline void lockdep_assert_rq_held(struct rq *rq)
1344 {
1345 	lockdep_assert_held(__rq_lockp(rq));
1346 }
1347 
1348 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1349 extern bool raw_spin_rq_trylock(struct rq *rq);
1350 extern void raw_spin_rq_unlock(struct rq *rq);
1351 
1352 static inline void raw_spin_rq_lock(struct rq *rq)
1353 {
1354 	raw_spin_rq_lock_nested(rq, 0);
1355 }
1356 
1357 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1358 {
1359 	local_irq_disable();
1360 	raw_spin_rq_lock(rq);
1361 }
1362 
1363 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1364 {
1365 	raw_spin_rq_unlock(rq);
1366 	local_irq_enable();
1367 }
1368 
1369 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1370 {
1371 	unsigned long flags;
1372 	local_irq_save(flags);
1373 	raw_spin_rq_lock(rq);
1374 	return flags;
1375 }
1376 
1377 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1378 {
1379 	raw_spin_rq_unlock(rq);
1380 	local_irq_restore(flags);
1381 }
1382 
1383 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1384 do {						\
1385 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1386 } while (0)
1387 
1388 #ifdef CONFIG_SCHED_SMT
1389 extern void __update_idle_core(struct rq *rq);
1390 
1391 static inline void update_idle_core(struct rq *rq)
1392 {
1393 	if (static_branch_unlikely(&sched_smt_present))
1394 		__update_idle_core(rq);
1395 }
1396 
1397 #else
1398 static inline void update_idle_core(struct rq *rq) { }
1399 #endif
1400 
1401 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1402 
1403 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1404 #define this_rq()		this_cpu_ptr(&runqueues)
1405 #define task_rq(p)		cpu_rq(task_cpu(p))
1406 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1407 #define raw_rq()		raw_cpu_ptr(&runqueues)
1408 
1409 #ifdef CONFIG_FAIR_GROUP_SCHED
1410 static inline struct task_struct *task_of(struct sched_entity *se)
1411 {
1412 	SCHED_WARN_ON(!entity_is_task(se));
1413 	return container_of(se, struct task_struct, se);
1414 }
1415 
1416 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1417 {
1418 	return p->se.cfs_rq;
1419 }
1420 
1421 /* runqueue on which this entity is (to be) queued */
1422 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1423 {
1424 	return se->cfs_rq;
1425 }
1426 
1427 /* runqueue "owned" by this group */
1428 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1429 {
1430 	return grp->my_q;
1431 }
1432 
1433 #else
1434 
1435 static inline struct task_struct *task_of(struct sched_entity *se)
1436 {
1437 	return container_of(se, struct task_struct, se);
1438 }
1439 
1440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1441 {
1442 	return &task_rq(p)->cfs;
1443 }
1444 
1445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1446 {
1447 	struct task_struct *p = task_of(se);
1448 	struct rq *rq = task_rq(p);
1449 
1450 	return &rq->cfs;
1451 }
1452 
1453 /* runqueue "owned" by this group */
1454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1455 {
1456 	return NULL;
1457 }
1458 #endif
1459 
1460 extern void update_rq_clock(struct rq *rq);
1461 
1462 /*
1463  * rq::clock_update_flags bits
1464  *
1465  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1466  *  call to __schedule(). This is an optimisation to avoid
1467  *  neighbouring rq clock updates.
1468  *
1469  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1470  *  in effect and calls to update_rq_clock() are being ignored.
1471  *
1472  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1473  *  made to update_rq_clock() since the last time rq::lock was pinned.
1474  *
1475  * If inside of __schedule(), clock_update_flags will have been
1476  * shifted left (a left shift is a cheap operation for the fast path
1477  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1478  *
1479  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1480  *
1481  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1482  * one position though, because the next rq_unpin_lock() will shift it
1483  * back.
1484  */
1485 #define RQCF_REQ_SKIP		0x01
1486 #define RQCF_ACT_SKIP		0x02
1487 #define RQCF_UPDATED		0x04
1488 
1489 static inline void assert_clock_updated(struct rq *rq)
1490 {
1491 	/*
1492 	 * The only reason for not seeing a clock update since the
1493 	 * last rq_pin_lock() is if we're currently skipping updates.
1494 	 */
1495 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1496 }
1497 
1498 static inline u64 rq_clock(struct rq *rq)
1499 {
1500 	lockdep_assert_rq_held(rq);
1501 	assert_clock_updated(rq);
1502 
1503 	return rq->clock;
1504 }
1505 
1506 static inline u64 rq_clock_task(struct rq *rq)
1507 {
1508 	lockdep_assert_rq_held(rq);
1509 	assert_clock_updated(rq);
1510 
1511 	return rq->clock_task;
1512 }
1513 
1514 /**
1515  * By default the decay is the default pelt decay period.
1516  * The decay shift can change the decay period in
1517  * multiples of 32.
1518  *  Decay shift		Decay period(ms)
1519  *	0			32
1520  *	1			64
1521  *	2			128
1522  *	3			256
1523  *	4			512
1524  */
1525 extern int sched_thermal_decay_shift;
1526 
1527 static inline u64 rq_clock_thermal(struct rq *rq)
1528 {
1529 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1530 }
1531 
1532 static inline void rq_clock_skip_update(struct rq *rq)
1533 {
1534 	lockdep_assert_rq_held(rq);
1535 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1536 }
1537 
1538 /*
1539  * See rt task throttling, which is the only time a skip
1540  * request is canceled.
1541  */
1542 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1543 {
1544 	lockdep_assert_rq_held(rq);
1545 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1546 }
1547 
1548 struct rq_flags {
1549 	unsigned long flags;
1550 	struct pin_cookie cookie;
1551 #ifdef CONFIG_SCHED_DEBUG
1552 	/*
1553 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1554 	 * current pin context is stashed here in case it needs to be
1555 	 * restored in rq_repin_lock().
1556 	 */
1557 	unsigned int clock_update_flags;
1558 #endif
1559 };
1560 
1561 extern struct callback_head balance_push_callback;
1562 
1563 /*
1564  * Lockdep annotation that avoids accidental unlocks; it's like a
1565  * sticky/continuous lockdep_assert_held().
1566  *
1567  * This avoids code that has access to 'struct rq *rq' (basically everything in
1568  * the scheduler) from accidentally unlocking the rq if they do not also have a
1569  * copy of the (on-stack) 'struct rq_flags rf'.
1570  *
1571  * Also see Documentation/locking/lockdep-design.rst.
1572  */
1573 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1574 {
1575 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1576 
1577 #ifdef CONFIG_SCHED_DEBUG
1578 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1579 	rf->clock_update_flags = 0;
1580 #ifdef CONFIG_SMP
1581 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1582 #endif
1583 #endif
1584 }
1585 
1586 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1587 {
1588 #ifdef CONFIG_SCHED_DEBUG
1589 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1590 		rf->clock_update_flags = RQCF_UPDATED;
1591 #endif
1592 
1593 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1594 }
1595 
1596 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1597 {
1598 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1599 
1600 #ifdef CONFIG_SCHED_DEBUG
1601 	/*
1602 	 * Restore the value we stashed in @rf for this pin context.
1603 	 */
1604 	rq->clock_update_flags |= rf->clock_update_flags;
1605 #endif
1606 }
1607 
1608 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1609 	__acquires(rq->lock);
1610 
1611 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1612 	__acquires(p->pi_lock)
1613 	__acquires(rq->lock);
1614 
1615 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1616 	__releases(rq->lock)
1617 {
1618 	rq_unpin_lock(rq, rf);
1619 	raw_spin_rq_unlock(rq);
1620 }
1621 
1622 static inline void
1623 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1624 	__releases(rq->lock)
1625 	__releases(p->pi_lock)
1626 {
1627 	rq_unpin_lock(rq, rf);
1628 	raw_spin_rq_unlock(rq);
1629 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1630 }
1631 
1632 static inline void
1633 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1634 	__acquires(rq->lock)
1635 {
1636 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1637 	rq_pin_lock(rq, rf);
1638 }
1639 
1640 static inline void
1641 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1642 	__acquires(rq->lock)
1643 {
1644 	raw_spin_rq_lock_irq(rq);
1645 	rq_pin_lock(rq, rf);
1646 }
1647 
1648 static inline void
1649 rq_lock(struct rq *rq, struct rq_flags *rf)
1650 	__acquires(rq->lock)
1651 {
1652 	raw_spin_rq_lock(rq);
1653 	rq_pin_lock(rq, rf);
1654 }
1655 
1656 static inline void
1657 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1658 	__releases(rq->lock)
1659 {
1660 	rq_unpin_lock(rq, rf);
1661 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1662 }
1663 
1664 static inline void
1665 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1666 	__releases(rq->lock)
1667 {
1668 	rq_unpin_lock(rq, rf);
1669 	raw_spin_rq_unlock_irq(rq);
1670 }
1671 
1672 static inline void
1673 rq_unlock(struct rq *rq, struct rq_flags *rf)
1674 	__releases(rq->lock)
1675 {
1676 	rq_unpin_lock(rq, rf);
1677 	raw_spin_rq_unlock(rq);
1678 }
1679 
1680 static inline struct rq *
1681 this_rq_lock_irq(struct rq_flags *rf)
1682 	__acquires(rq->lock)
1683 {
1684 	struct rq *rq;
1685 
1686 	local_irq_disable();
1687 	rq = this_rq();
1688 	rq_lock(rq, rf);
1689 	return rq;
1690 }
1691 
1692 #ifdef CONFIG_NUMA
1693 enum numa_topology_type {
1694 	NUMA_DIRECT,
1695 	NUMA_GLUELESS_MESH,
1696 	NUMA_BACKPLANE,
1697 };
1698 extern enum numa_topology_type sched_numa_topology_type;
1699 extern int sched_max_numa_distance;
1700 extern bool find_numa_distance(int distance);
1701 extern void sched_init_numa(int offline_node);
1702 extern void sched_update_numa(int cpu, bool online);
1703 extern void sched_domains_numa_masks_set(unsigned int cpu);
1704 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1705 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1706 #else
1707 static inline void sched_init_numa(int offline_node) { }
1708 static inline void sched_update_numa(int cpu, bool online) { }
1709 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1710 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1711 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1712 {
1713 	return nr_cpu_ids;
1714 }
1715 #endif
1716 
1717 #ifdef CONFIG_NUMA_BALANCING
1718 /* The regions in numa_faults array from task_struct */
1719 enum numa_faults_stats {
1720 	NUMA_MEM = 0,
1721 	NUMA_CPU,
1722 	NUMA_MEMBUF,
1723 	NUMA_CPUBUF
1724 };
1725 extern void sched_setnuma(struct task_struct *p, int node);
1726 extern int migrate_task_to(struct task_struct *p, int cpu);
1727 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1728 			int cpu, int scpu);
1729 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1730 #else
1731 static inline void
1732 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1733 {
1734 }
1735 #endif /* CONFIG_NUMA_BALANCING */
1736 
1737 #ifdef CONFIG_SMP
1738 
1739 static inline void
1740 queue_balance_callback(struct rq *rq,
1741 		       struct callback_head *head,
1742 		       void (*func)(struct rq *rq))
1743 {
1744 	lockdep_assert_rq_held(rq);
1745 
1746 	/*
1747 	 * Don't (re)queue an already queued item; nor queue anything when
1748 	 * balance_push() is active, see the comment with
1749 	 * balance_push_callback.
1750 	 */
1751 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1752 		return;
1753 
1754 	head->func = (void (*)(struct callback_head *))func;
1755 	head->next = rq->balance_callback;
1756 	rq->balance_callback = head;
1757 }
1758 
1759 #define rcu_dereference_check_sched_domain(p) \
1760 	rcu_dereference_check((p), \
1761 			      lockdep_is_held(&sched_domains_mutex))
1762 
1763 /*
1764  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1765  * See destroy_sched_domains: call_rcu for details.
1766  *
1767  * The domain tree of any CPU may only be accessed from within
1768  * preempt-disabled sections.
1769  */
1770 #define for_each_domain(cpu, __sd) \
1771 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1772 			__sd; __sd = __sd->parent)
1773 
1774 /**
1775  * highest_flag_domain - Return highest sched_domain containing flag.
1776  * @cpu:	The CPU whose highest level of sched domain is to
1777  *		be returned.
1778  * @flag:	The flag to check for the highest sched_domain
1779  *		for the given CPU.
1780  *
1781  * Returns the highest sched_domain of a CPU which contains the given flag.
1782  */
1783 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1784 {
1785 	struct sched_domain *sd, *hsd = NULL;
1786 
1787 	for_each_domain(cpu, sd) {
1788 		if (!(sd->flags & flag))
1789 			break;
1790 		hsd = sd;
1791 	}
1792 
1793 	return hsd;
1794 }
1795 
1796 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1797 {
1798 	struct sched_domain *sd;
1799 
1800 	for_each_domain(cpu, sd) {
1801 		if (sd->flags & flag)
1802 			break;
1803 	}
1804 
1805 	return sd;
1806 }
1807 
1808 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1809 DECLARE_PER_CPU(int, sd_llc_size);
1810 DECLARE_PER_CPU(int, sd_llc_id);
1811 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1812 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1813 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1814 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1815 extern struct static_key_false sched_asym_cpucapacity;
1816 
1817 struct sched_group_capacity {
1818 	atomic_t		ref;
1819 	/*
1820 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1821 	 * for a single CPU.
1822 	 */
1823 	unsigned long		capacity;
1824 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1825 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1826 	unsigned long		next_update;
1827 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1828 
1829 #ifdef CONFIG_SCHED_DEBUG
1830 	int			id;
1831 #endif
1832 
1833 	unsigned long		cpumask[];		/* Balance mask */
1834 };
1835 
1836 struct sched_group {
1837 	struct sched_group	*next;			/* Must be a circular list */
1838 	atomic_t		ref;
1839 
1840 	unsigned int		group_weight;
1841 	struct sched_group_capacity *sgc;
1842 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1843 	int			flags;
1844 
1845 	/*
1846 	 * The CPUs this group covers.
1847 	 *
1848 	 * NOTE: this field is variable length. (Allocated dynamically
1849 	 * by attaching extra space to the end of the structure,
1850 	 * depending on how many CPUs the kernel has booted up with)
1851 	 */
1852 	unsigned long		cpumask[];
1853 };
1854 
1855 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1856 {
1857 	return to_cpumask(sg->cpumask);
1858 }
1859 
1860 /*
1861  * See build_balance_mask().
1862  */
1863 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1864 {
1865 	return to_cpumask(sg->sgc->cpumask);
1866 }
1867 
1868 extern int group_balance_cpu(struct sched_group *sg);
1869 
1870 #ifdef CONFIG_SCHED_DEBUG
1871 void update_sched_domain_debugfs(void);
1872 void dirty_sched_domain_sysctl(int cpu);
1873 #else
1874 static inline void update_sched_domain_debugfs(void)
1875 {
1876 }
1877 static inline void dirty_sched_domain_sysctl(int cpu)
1878 {
1879 }
1880 #endif
1881 
1882 extern int sched_update_scaling(void);
1883 #endif /* CONFIG_SMP */
1884 
1885 #include "stats.h"
1886 
1887 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1888 
1889 extern void __sched_core_account_forceidle(struct rq *rq);
1890 
1891 static inline void sched_core_account_forceidle(struct rq *rq)
1892 {
1893 	if (schedstat_enabled())
1894 		__sched_core_account_forceidle(rq);
1895 }
1896 
1897 extern void __sched_core_tick(struct rq *rq);
1898 
1899 static inline void sched_core_tick(struct rq *rq)
1900 {
1901 	if (sched_core_enabled(rq) && schedstat_enabled())
1902 		__sched_core_tick(rq);
1903 }
1904 
1905 #else
1906 
1907 static inline void sched_core_account_forceidle(struct rq *rq) {}
1908 
1909 static inline void sched_core_tick(struct rq *rq) {}
1910 
1911 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1912 
1913 #ifdef CONFIG_CGROUP_SCHED
1914 
1915 /*
1916  * Return the group to which this tasks belongs.
1917  *
1918  * We cannot use task_css() and friends because the cgroup subsystem
1919  * changes that value before the cgroup_subsys::attach() method is called,
1920  * therefore we cannot pin it and might observe the wrong value.
1921  *
1922  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1923  * core changes this before calling sched_move_task().
1924  *
1925  * Instead we use a 'copy' which is updated from sched_move_task() while
1926  * holding both task_struct::pi_lock and rq::lock.
1927  */
1928 static inline struct task_group *task_group(struct task_struct *p)
1929 {
1930 	return p->sched_task_group;
1931 }
1932 
1933 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1934 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1935 {
1936 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1937 	struct task_group *tg = task_group(p);
1938 #endif
1939 
1940 #ifdef CONFIG_FAIR_GROUP_SCHED
1941 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1942 	p->se.cfs_rq = tg->cfs_rq[cpu];
1943 	p->se.parent = tg->se[cpu];
1944 #endif
1945 
1946 #ifdef CONFIG_RT_GROUP_SCHED
1947 	p->rt.rt_rq  = tg->rt_rq[cpu];
1948 	p->rt.parent = tg->rt_se[cpu];
1949 #endif
1950 }
1951 
1952 #else /* CONFIG_CGROUP_SCHED */
1953 
1954 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1955 static inline struct task_group *task_group(struct task_struct *p)
1956 {
1957 	return NULL;
1958 }
1959 
1960 #endif /* CONFIG_CGROUP_SCHED */
1961 
1962 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1963 {
1964 	set_task_rq(p, cpu);
1965 #ifdef CONFIG_SMP
1966 	/*
1967 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1968 	 * successfully executed on another CPU. We must ensure that updates of
1969 	 * per-task data have been completed by this moment.
1970 	 */
1971 	smp_wmb();
1972 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1973 	p->wake_cpu = cpu;
1974 #endif
1975 }
1976 
1977 /*
1978  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1979  */
1980 #ifdef CONFIG_SCHED_DEBUG
1981 # define const_debug __read_mostly
1982 #else
1983 # define const_debug const
1984 #endif
1985 
1986 #define SCHED_FEAT(name, enabled)	\
1987 	__SCHED_FEAT_##name ,
1988 
1989 enum {
1990 #include "features.h"
1991 	__SCHED_FEAT_NR,
1992 };
1993 
1994 #undef SCHED_FEAT
1995 
1996 #ifdef CONFIG_SCHED_DEBUG
1997 
1998 /*
1999  * To support run-time toggling of sched features, all the translation units
2000  * (but core.c) reference the sysctl_sched_features defined in core.c.
2001  */
2002 extern const_debug unsigned int sysctl_sched_features;
2003 
2004 #ifdef CONFIG_JUMP_LABEL
2005 #define SCHED_FEAT(name, enabled)					\
2006 static __always_inline bool static_branch_##name(struct static_key *key) \
2007 {									\
2008 	return static_key_##enabled(key);				\
2009 }
2010 
2011 #include "features.h"
2012 #undef SCHED_FEAT
2013 
2014 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2015 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2016 
2017 #else /* !CONFIG_JUMP_LABEL */
2018 
2019 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2020 
2021 #endif /* CONFIG_JUMP_LABEL */
2022 
2023 #else /* !SCHED_DEBUG */
2024 
2025 /*
2026  * Each translation unit has its own copy of sysctl_sched_features to allow
2027  * constants propagation at compile time and compiler optimization based on
2028  * features default.
2029  */
2030 #define SCHED_FEAT(name, enabled)	\
2031 	(1UL << __SCHED_FEAT_##name) * enabled |
2032 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2033 #include "features.h"
2034 	0;
2035 #undef SCHED_FEAT
2036 
2037 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2038 
2039 #endif /* SCHED_DEBUG */
2040 
2041 extern struct static_key_false sched_numa_balancing;
2042 extern struct static_key_false sched_schedstats;
2043 
2044 static inline u64 global_rt_period(void)
2045 {
2046 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2047 }
2048 
2049 static inline u64 global_rt_runtime(void)
2050 {
2051 	if (sysctl_sched_rt_runtime < 0)
2052 		return RUNTIME_INF;
2053 
2054 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2055 }
2056 
2057 static inline int task_current(struct rq *rq, struct task_struct *p)
2058 {
2059 	return rq->curr == p;
2060 }
2061 
2062 static inline int task_running(struct rq *rq, struct task_struct *p)
2063 {
2064 #ifdef CONFIG_SMP
2065 	return p->on_cpu;
2066 #else
2067 	return task_current(rq, p);
2068 #endif
2069 }
2070 
2071 static inline int task_on_rq_queued(struct task_struct *p)
2072 {
2073 	return p->on_rq == TASK_ON_RQ_QUEUED;
2074 }
2075 
2076 static inline int task_on_rq_migrating(struct task_struct *p)
2077 {
2078 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2079 }
2080 
2081 /* Wake flags. The first three directly map to some SD flag value */
2082 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2083 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2084 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2085 
2086 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2087 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2088 
2089 #ifdef CONFIG_SMP
2090 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2091 static_assert(WF_FORK == SD_BALANCE_FORK);
2092 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2093 #endif
2094 
2095 /*
2096  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2097  * of tasks with abnormal "nice" values across CPUs the contribution that
2098  * each task makes to its run queue's load is weighted according to its
2099  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2100  * scaled version of the new time slice allocation that they receive on time
2101  * slice expiry etc.
2102  */
2103 
2104 #define WEIGHT_IDLEPRIO		3
2105 #define WMULT_IDLEPRIO		1431655765
2106 
2107 extern const int		sched_prio_to_weight[40];
2108 extern const u32		sched_prio_to_wmult[40];
2109 
2110 /*
2111  * {de,en}queue flags:
2112  *
2113  * DEQUEUE_SLEEP  - task is no longer runnable
2114  * ENQUEUE_WAKEUP - task just became runnable
2115  *
2116  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2117  *                are in a known state which allows modification. Such pairs
2118  *                should preserve as much state as possible.
2119  *
2120  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2121  *        in the runqueue.
2122  *
2123  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2124  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2125  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2126  *
2127  */
2128 
2129 #define DEQUEUE_SLEEP		0x01
2130 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2131 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2132 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2133 
2134 #define ENQUEUE_WAKEUP		0x01
2135 #define ENQUEUE_RESTORE		0x02
2136 #define ENQUEUE_MOVE		0x04
2137 #define ENQUEUE_NOCLOCK		0x08
2138 
2139 #define ENQUEUE_HEAD		0x10
2140 #define ENQUEUE_REPLENISH	0x20
2141 #ifdef CONFIG_SMP
2142 #define ENQUEUE_MIGRATED	0x40
2143 #else
2144 #define ENQUEUE_MIGRATED	0x00
2145 #endif
2146 
2147 #define RETRY_TASK		((void *)-1UL)
2148 
2149 struct sched_class {
2150 
2151 #ifdef CONFIG_UCLAMP_TASK
2152 	int uclamp_enabled;
2153 #endif
2154 
2155 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2156 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2157 	void (*yield_task)   (struct rq *rq);
2158 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2159 
2160 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2161 
2162 	struct task_struct *(*pick_next_task)(struct rq *rq);
2163 
2164 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2165 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2166 
2167 #ifdef CONFIG_SMP
2168 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2169 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2170 
2171 	struct task_struct * (*pick_task)(struct rq *rq);
2172 
2173 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2174 
2175 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2176 
2177 	void (*set_cpus_allowed)(struct task_struct *p,
2178 				 const struct cpumask *newmask,
2179 				 u32 flags);
2180 
2181 	void (*rq_online)(struct rq *rq);
2182 	void (*rq_offline)(struct rq *rq);
2183 
2184 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2185 #endif
2186 
2187 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2188 	void (*task_fork)(struct task_struct *p);
2189 	void (*task_dead)(struct task_struct *p);
2190 
2191 	/*
2192 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2193 	 * cannot assume the switched_from/switched_to pair is serialized by
2194 	 * rq->lock. They are however serialized by p->pi_lock.
2195 	 */
2196 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2197 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2198 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2199 			      int oldprio);
2200 
2201 	unsigned int (*get_rr_interval)(struct rq *rq,
2202 					struct task_struct *task);
2203 
2204 	void (*update_curr)(struct rq *rq);
2205 
2206 #define TASK_SET_GROUP		0
2207 #define TASK_MOVE_GROUP		1
2208 
2209 #ifdef CONFIG_FAIR_GROUP_SCHED
2210 	void (*task_change_group)(struct task_struct *p, int type);
2211 #endif
2212 };
2213 
2214 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2215 {
2216 	WARN_ON_ONCE(rq->curr != prev);
2217 	prev->sched_class->put_prev_task(rq, prev);
2218 }
2219 
2220 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2221 {
2222 	next->sched_class->set_next_task(rq, next, false);
2223 }
2224 
2225 
2226 /*
2227  * Helper to define a sched_class instance; each one is placed in a separate
2228  * section which is ordered by the linker script:
2229  *
2230  *   include/asm-generic/vmlinux.lds.h
2231  *
2232  * *CAREFUL* they are laid out in *REVERSE* order!!!
2233  *
2234  * Also enforce alignment on the instance, not the type, to guarantee layout.
2235  */
2236 #define DEFINE_SCHED_CLASS(name) \
2237 const struct sched_class name##_sched_class \
2238 	__aligned(__alignof__(struct sched_class)) \
2239 	__section("__" #name "_sched_class")
2240 
2241 /* Defined in include/asm-generic/vmlinux.lds.h */
2242 extern struct sched_class __sched_class_highest[];
2243 extern struct sched_class __sched_class_lowest[];
2244 
2245 #define for_class_range(class, _from, _to) \
2246 	for (class = (_from); class < (_to); class++)
2247 
2248 #define for_each_class(class) \
2249 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2250 
2251 #define sched_class_above(_a, _b)	((_a) < (_b))
2252 
2253 extern const struct sched_class stop_sched_class;
2254 extern const struct sched_class dl_sched_class;
2255 extern const struct sched_class rt_sched_class;
2256 extern const struct sched_class fair_sched_class;
2257 extern const struct sched_class idle_sched_class;
2258 
2259 static inline bool sched_stop_runnable(struct rq *rq)
2260 {
2261 	return rq->stop && task_on_rq_queued(rq->stop);
2262 }
2263 
2264 static inline bool sched_dl_runnable(struct rq *rq)
2265 {
2266 	return rq->dl.dl_nr_running > 0;
2267 }
2268 
2269 static inline bool sched_rt_runnable(struct rq *rq)
2270 {
2271 	return rq->rt.rt_queued > 0;
2272 }
2273 
2274 static inline bool sched_fair_runnable(struct rq *rq)
2275 {
2276 	return rq->cfs.nr_running > 0;
2277 }
2278 
2279 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2280 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2281 
2282 #define SCA_CHECK		0x01
2283 #define SCA_MIGRATE_DISABLE	0x02
2284 #define SCA_MIGRATE_ENABLE	0x04
2285 #define SCA_USER		0x08
2286 
2287 #ifdef CONFIG_SMP
2288 
2289 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2290 
2291 extern void trigger_load_balance(struct rq *rq);
2292 
2293 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2294 
2295 static inline struct task_struct *get_push_task(struct rq *rq)
2296 {
2297 	struct task_struct *p = rq->curr;
2298 
2299 	lockdep_assert_rq_held(rq);
2300 
2301 	if (rq->push_busy)
2302 		return NULL;
2303 
2304 	if (p->nr_cpus_allowed == 1)
2305 		return NULL;
2306 
2307 	if (p->migration_disabled)
2308 		return NULL;
2309 
2310 	rq->push_busy = true;
2311 	return get_task_struct(p);
2312 }
2313 
2314 extern int push_cpu_stop(void *arg);
2315 
2316 #endif
2317 
2318 #ifdef CONFIG_CPU_IDLE
2319 static inline void idle_set_state(struct rq *rq,
2320 				  struct cpuidle_state *idle_state)
2321 {
2322 	rq->idle_state = idle_state;
2323 }
2324 
2325 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2326 {
2327 	SCHED_WARN_ON(!rcu_read_lock_held());
2328 
2329 	return rq->idle_state;
2330 }
2331 #else
2332 static inline void idle_set_state(struct rq *rq,
2333 				  struct cpuidle_state *idle_state)
2334 {
2335 }
2336 
2337 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2338 {
2339 	return NULL;
2340 }
2341 #endif
2342 
2343 extern void schedule_idle(void);
2344 
2345 extern void sysrq_sched_debug_show(void);
2346 extern void sched_init_granularity(void);
2347 extern void update_max_interval(void);
2348 
2349 extern void init_sched_dl_class(void);
2350 extern void init_sched_rt_class(void);
2351 extern void init_sched_fair_class(void);
2352 
2353 extern void reweight_task(struct task_struct *p, int prio);
2354 
2355 extern void resched_curr(struct rq *rq);
2356 extern void resched_cpu(int cpu);
2357 
2358 extern struct rt_bandwidth def_rt_bandwidth;
2359 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2360 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2361 
2362 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2363 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2364 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2365 
2366 #define BW_SHIFT		20
2367 #define BW_UNIT			(1 << BW_SHIFT)
2368 #define RATIO_SHIFT		8
2369 #define MAX_BW_BITS		(64 - BW_SHIFT)
2370 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2371 unsigned long to_ratio(u64 period, u64 runtime);
2372 
2373 extern void init_entity_runnable_average(struct sched_entity *se);
2374 extern void post_init_entity_util_avg(struct task_struct *p);
2375 
2376 #ifdef CONFIG_NO_HZ_FULL
2377 extern bool sched_can_stop_tick(struct rq *rq);
2378 extern int __init sched_tick_offload_init(void);
2379 
2380 /*
2381  * Tick may be needed by tasks in the runqueue depending on their policy and
2382  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2383  * nohz mode if necessary.
2384  */
2385 static inline void sched_update_tick_dependency(struct rq *rq)
2386 {
2387 	int cpu = cpu_of(rq);
2388 
2389 	if (!tick_nohz_full_cpu(cpu))
2390 		return;
2391 
2392 	if (sched_can_stop_tick(rq))
2393 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2394 	else
2395 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2396 }
2397 #else
2398 static inline int sched_tick_offload_init(void) { return 0; }
2399 static inline void sched_update_tick_dependency(struct rq *rq) { }
2400 #endif
2401 
2402 static inline void add_nr_running(struct rq *rq, unsigned count)
2403 {
2404 	unsigned prev_nr = rq->nr_running;
2405 
2406 	rq->nr_running = prev_nr + count;
2407 	if (trace_sched_update_nr_running_tp_enabled()) {
2408 		call_trace_sched_update_nr_running(rq, count);
2409 	}
2410 
2411 #ifdef CONFIG_SMP
2412 	if (prev_nr < 2 && rq->nr_running >= 2) {
2413 		if (!READ_ONCE(rq->rd->overload))
2414 			WRITE_ONCE(rq->rd->overload, 1);
2415 	}
2416 #endif
2417 
2418 	sched_update_tick_dependency(rq);
2419 }
2420 
2421 static inline void sub_nr_running(struct rq *rq, unsigned count)
2422 {
2423 	rq->nr_running -= count;
2424 	if (trace_sched_update_nr_running_tp_enabled()) {
2425 		call_trace_sched_update_nr_running(rq, -count);
2426 	}
2427 
2428 	/* Check if we still need preemption */
2429 	sched_update_tick_dependency(rq);
2430 }
2431 
2432 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2433 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2434 
2435 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2436 
2437 extern const_debug unsigned int sysctl_sched_nr_migrate;
2438 extern const_debug unsigned int sysctl_sched_migration_cost;
2439 
2440 #ifdef CONFIG_SCHED_DEBUG
2441 extern unsigned int sysctl_sched_latency;
2442 extern unsigned int sysctl_sched_min_granularity;
2443 extern unsigned int sysctl_sched_idle_min_granularity;
2444 extern unsigned int sysctl_sched_wakeup_granularity;
2445 extern int sysctl_resched_latency_warn_ms;
2446 extern int sysctl_resched_latency_warn_once;
2447 
2448 extern unsigned int sysctl_sched_tunable_scaling;
2449 
2450 extern unsigned int sysctl_numa_balancing_scan_delay;
2451 extern unsigned int sysctl_numa_balancing_scan_period_min;
2452 extern unsigned int sysctl_numa_balancing_scan_period_max;
2453 extern unsigned int sysctl_numa_balancing_scan_size;
2454 #endif
2455 
2456 #ifdef CONFIG_SCHED_HRTICK
2457 
2458 /*
2459  * Use hrtick when:
2460  *  - enabled by features
2461  *  - hrtimer is actually high res
2462  */
2463 static inline int hrtick_enabled(struct rq *rq)
2464 {
2465 	if (!cpu_active(cpu_of(rq)))
2466 		return 0;
2467 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2468 }
2469 
2470 static inline int hrtick_enabled_fair(struct rq *rq)
2471 {
2472 	if (!sched_feat(HRTICK))
2473 		return 0;
2474 	return hrtick_enabled(rq);
2475 }
2476 
2477 static inline int hrtick_enabled_dl(struct rq *rq)
2478 {
2479 	if (!sched_feat(HRTICK_DL))
2480 		return 0;
2481 	return hrtick_enabled(rq);
2482 }
2483 
2484 void hrtick_start(struct rq *rq, u64 delay);
2485 
2486 #else
2487 
2488 static inline int hrtick_enabled_fair(struct rq *rq)
2489 {
2490 	return 0;
2491 }
2492 
2493 static inline int hrtick_enabled_dl(struct rq *rq)
2494 {
2495 	return 0;
2496 }
2497 
2498 static inline int hrtick_enabled(struct rq *rq)
2499 {
2500 	return 0;
2501 }
2502 
2503 #endif /* CONFIG_SCHED_HRTICK */
2504 
2505 #ifndef arch_scale_freq_tick
2506 static __always_inline
2507 void arch_scale_freq_tick(void)
2508 {
2509 }
2510 #endif
2511 
2512 #ifndef arch_scale_freq_capacity
2513 /**
2514  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2515  * @cpu: the CPU in question.
2516  *
2517  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2518  *
2519  *     f_curr
2520  *     ------ * SCHED_CAPACITY_SCALE
2521  *     f_max
2522  */
2523 static __always_inline
2524 unsigned long arch_scale_freq_capacity(int cpu)
2525 {
2526 	return SCHED_CAPACITY_SCALE;
2527 }
2528 #endif
2529 
2530 #ifdef CONFIG_SCHED_DEBUG
2531 /*
2532  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2533  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2534  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2535  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2536  */
2537 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2538 {
2539 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2540 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2541 #ifdef CONFIG_SMP
2542 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2543 #endif
2544 }
2545 #else
2546 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2547 #endif
2548 
2549 #ifdef CONFIG_SMP
2550 
2551 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2552 {
2553 #ifdef CONFIG_SCHED_CORE
2554 	/*
2555 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2556 	 * order by core-id first and cpu-id second.
2557 	 *
2558 	 * Notably:
2559 	 *
2560 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2561 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2562 	 *
2563 	 * when only cpu-id is considered.
2564 	 */
2565 	if (rq1->core->cpu < rq2->core->cpu)
2566 		return true;
2567 	if (rq1->core->cpu > rq2->core->cpu)
2568 		return false;
2569 
2570 	/*
2571 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2572 	 */
2573 #endif
2574 	return rq1->cpu < rq2->cpu;
2575 }
2576 
2577 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2578 
2579 #ifdef CONFIG_PREEMPTION
2580 
2581 /*
2582  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2583  * way at the expense of forcing extra atomic operations in all
2584  * invocations.  This assures that the double_lock is acquired using the
2585  * same underlying policy as the spinlock_t on this architecture, which
2586  * reduces latency compared to the unfair variant below.  However, it
2587  * also adds more overhead and therefore may reduce throughput.
2588  */
2589 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2590 	__releases(this_rq->lock)
2591 	__acquires(busiest->lock)
2592 	__acquires(this_rq->lock)
2593 {
2594 	raw_spin_rq_unlock(this_rq);
2595 	double_rq_lock(this_rq, busiest);
2596 
2597 	return 1;
2598 }
2599 
2600 #else
2601 /*
2602  * Unfair double_lock_balance: Optimizes throughput at the expense of
2603  * latency by eliminating extra atomic operations when the locks are
2604  * already in proper order on entry.  This favors lower CPU-ids and will
2605  * grant the double lock to lower CPUs over higher ids under contention,
2606  * regardless of entry order into the function.
2607  */
2608 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2609 	__releases(this_rq->lock)
2610 	__acquires(busiest->lock)
2611 	__acquires(this_rq->lock)
2612 {
2613 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2614 	    likely(raw_spin_rq_trylock(busiest))) {
2615 		double_rq_clock_clear_update(this_rq, busiest);
2616 		return 0;
2617 	}
2618 
2619 	if (rq_order_less(this_rq, busiest)) {
2620 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2621 		double_rq_clock_clear_update(this_rq, busiest);
2622 		return 0;
2623 	}
2624 
2625 	raw_spin_rq_unlock(this_rq);
2626 	double_rq_lock(this_rq, busiest);
2627 
2628 	return 1;
2629 }
2630 
2631 #endif /* CONFIG_PREEMPTION */
2632 
2633 /*
2634  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2635  */
2636 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2637 {
2638 	lockdep_assert_irqs_disabled();
2639 
2640 	return _double_lock_balance(this_rq, busiest);
2641 }
2642 
2643 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2644 	__releases(busiest->lock)
2645 {
2646 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2647 		raw_spin_rq_unlock(busiest);
2648 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2649 }
2650 
2651 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2652 {
2653 	if (l1 > l2)
2654 		swap(l1, l2);
2655 
2656 	spin_lock(l1);
2657 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2658 }
2659 
2660 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2661 {
2662 	if (l1 > l2)
2663 		swap(l1, l2);
2664 
2665 	spin_lock_irq(l1);
2666 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2667 }
2668 
2669 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2670 {
2671 	if (l1 > l2)
2672 		swap(l1, l2);
2673 
2674 	raw_spin_lock(l1);
2675 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2676 }
2677 
2678 /*
2679  * double_rq_unlock - safely unlock two runqueues
2680  *
2681  * Note this does not restore interrupts like task_rq_unlock,
2682  * you need to do so manually after calling.
2683  */
2684 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2685 	__releases(rq1->lock)
2686 	__releases(rq2->lock)
2687 {
2688 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2689 		raw_spin_rq_unlock(rq2);
2690 	else
2691 		__release(rq2->lock);
2692 	raw_spin_rq_unlock(rq1);
2693 }
2694 
2695 extern void set_rq_online (struct rq *rq);
2696 extern void set_rq_offline(struct rq *rq);
2697 extern bool sched_smp_initialized;
2698 
2699 #else /* CONFIG_SMP */
2700 
2701 /*
2702  * double_rq_lock - safely lock two runqueues
2703  *
2704  * Note this does not disable interrupts like task_rq_lock,
2705  * you need to do so manually before calling.
2706  */
2707 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2708 	__acquires(rq1->lock)
2709 	__acquires(rq2->lock)
2710 {
2711 	BUG_ON(!irqs_disabled());
2712 	BUG_ON(rq1 != rq2);
2713 	raw_spin_rq_lock(rq1);
2714 	__acquire(rq2->lock);	/* Fake it out ;) */
2715 	double_rq_clock_clear_update(rq1, rq2);
2716 }
2717 
2718 /*
2719  * double_rq_unlock - safely unlock two runqueues
2720  *
2721  * Note this does not restore interrupts like task_rq_unlock,
2722  * you need to do so manually after calling.
2723  */
2724 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2725 	__releases(rq1->lock)
2726 	__releases(rq2->lock)
2727 {
2728 	BUG_ON(rq1 != rq2);
2729 	raw_spin_rq_unlock(rq1);
2730 	__release(rq2->lock);
2731 }
2732 
2733 #endif
2734 
2735 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2736 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2737 
2738 #ifdef	CONFIG_SCHED_DEBUG
2739 extern bool sched_debug_verbose;
2740 
2741 extern void print_cfs_stats(struct seq_file *m, int cpu);
2742 extern void print_rt_stats(struct seq_file *m, int cpu);
2743 extern void print_dl_stats(struct seq_file *m, int cpu);
2744 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2745 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2746 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2747 
2748 extern void resched_latency_warn(int cpu, u64 latency);
2749 #ifdef CONFIG_NUMA_BALANCING
2750 extern void
2751 show_numa_stats(struct task_struct *p, struct seq_file *m);
2752 extern void
2753 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2754 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2755 #endif /* CONFIG_NUMA_BALANCING */
2756 #else
2757 static inline void resched_latency_warn(int cpu, u64 latency) {}
2758 #endif /* CONFIG_SCHED_DEBUG */
2759 
2760 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2761 extern void init_rt_rq(struct rt_rq *rt_rq);
2762 extern void init_dl_rq(struct dl_rq *dl_rq);
2763 
2764 extern void cfs_bandwidth_usage_inc(void);
2765 extern void cfs_bandwidth_usage_dec(void);
2766 
2767 #ifdef CONFIG_NO_HZ_COMMON
2768 #define NOHZ_BALANCE_KICK_BIT	0
2769 #define NOHZ_STATS_KICK_BIT	1
2770 #define NOHZ_NEWILB_KICK_BIT	2
2771 #define NOHZ_NEXT_KICK_BIT	3
2772 
2773 /* Run rebalance_domains() */
2774 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2775 /* Update blocked load */
2776 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2777 /* Update blocked load when entering idle */
2778 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2779 /* Update nohz.next_balance */
2780 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2781 
2782 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2783 
2784 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2785 
2786 extern void nohz_balance_exit_idle(struct rq *rq);
2787 #else
2788 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2789 #endif
2790 
2791 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2792 extern void nohz_run_idle_balance(int cpu);
2793 #else
2794 static inline void nohz_run_idle_balance(int cpu) { }
2795 #endif
2796 
2797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2798 struct irqtime {
2799 	u64			total;
2800 	u64			tick_delta;
2801 	u64			irq_start_time;
2802 	struct u64_stats_sync	sync;
2803 };
2804 
2805 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2806 
2807 /*
2808  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2809  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2810  * and never move forward.
2811  */
2812 static inline u64 irq_time_read(int cpu)
2813 {
2814 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2815 	unsigned int seq;
2816 	u64 total;
2817 
2818 	do {
2819 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2820 		total = irqtime->total;
2821 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2822 
2823 	return total;
2824 }
2825 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2826 
2827 #ifdef CONFIG_CPU_FREQ
2828 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2829 
2830 /**
2831  * cpufreq_update_util - Take a note about CPU utilization changes.
2832  * @rq: Runqueue to carry out the update for.
2833  * @flags: Update reason flags.
2834  *
2835  * This function is called by the scheduler on the CPU whose utilization is
2836  * being updated.
2837  *
2838  * It can only be called from RCU-sched read-side critical sections.
2839  *
2840  * The way cpufreq is currently arranged requires it to evaluate the CPU
2841  * performance state (frequency/voltage) on a regular basis to prevent it from
2842  * being stuck in a completely inadequate performance level for too long.
2843  * That is not guaranteed to happen if the updates are only triggered from CFS
2844  * and DL, though, because they may not be coming in if only RT tasks are
2845  * active all the time (or there are RT tasks only).
2846  *
2847  * As a workaround for that issue, this function is called periodically by the
2848  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2849  * but that really is a band-aid.  Going forward it should be replaced with
2850  * solutions targeted more specifically at RT tasks.
2851  */
2852 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2853 {
2854 	struct update_util_data *data;
2855 
2856 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2857 						  cpu_of(rq)));
2858 	if (data)
2859 		data->func(data, rq_clock(rq), flags);
2860 }
2861 #else
2862 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2863 #endif /* CONFIG_CPU_FREQ */
2864 
2865 #ifdef arch_scale_freq_capacity
2866 # ifndef arch_scale_freq_invariant
2867 #  define arch_scale_freq_invariant()	true
2868 # endif
2869 #else
2870 # define arch_scale_freq_invariant()	false
2871 #endif
2872 
2873 #ifdef CONFIG_SMP
2874 static inline unsigned long capacity_orig_of(int cpu)
2875 {
2876 	return cpu_rq(cpu)->cpu_capacity_orig;
2877 }
2878 
2879 /**
2880  * enum cpu_util_type - CPU utilization type
2881  * @FREQUENCY_UTIL:	Utilization used to select frequency
2882  * @ENERGY_UTIL:	Utilization used during energy calculation
2883  *
2884  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2885  * need to be aggregated differently depending on the usage made of them. This
2886  * enum is used within effective_cpu_util() to differentiate the types of
2887  * utilization expected by the callers, and adjust the aggregation accordingly.
2888  */
2889 enum cpu_util_type {
2890 	FREQUENCY_UTIL,
2891 	ENERGY_UTIL,
2892 };
2893 
2894 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2895 				 enum cpu_util_type type,
2896 				 struct task_struct *p);
2897 
2898 static inline unsigned long cpu_bw_dl(struct rq *rq)
2899 {
2900 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2901 }
2902 
2903 static inline unsigned long cpu_util_dl(struct rq *rq)
2904 {
2905 	return READ_ONCE(rq->avg_dl.util_avg);
2906 }
2907 
2908 /**
2909  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2910  * @cpu: the CPU to get the utilization for.
2911  *
2912  * The unit of the return value must be the same as the one of CPU capacity
2913  * so that CPU utilization can be compared with CPU capacity.
2914  *
2915  * CPU utilization is the sum of running time of runnable tasks plus the
2916  * recent utilization of currently non-runnable tasks on that CPU.
2917  * It represents the amount of CPU capacity currently used by CFS tasks in
2918  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2919  * capacity at f_max.
2920  *
2921  * The estimated CPU utilization is defined as the maximum between CPU
2922  * utilization and sum of the estimated utilization of the currently
2923  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2924  * previously-executed tasks, which helps better deduce how busy a CPU will
2925  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2926  * of such a task would be significantly decayed at this point of time.
2927  *
2928  * CPU utilization can be higher than the current CPU capacity
2929  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2930  * of rounding errors as well as task migrations or wakeups of new tasks.
2931  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2932  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2933  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2934  * capacity. CPU utilization is allowed to overshoot current CPU capacity
2935  * though since this is useful for predicting the CPU capacity required
2936  * after task migrations (scheduler-driven DVFS).
2937  *
2938  * Return: (Estimated) utilization for the specified CPU.
2939  */
2940 static inline unsigned long cpu_util_cfs(int cpu)
2941 {
2942 	struct cfs_rq *cfs_rq;
2943 	unsigned long util;
2944 
2945 	cfs_rq = &cpu_rq(cpu)->cfs;
2946 	util = READ_ONCE(cfs_rq->avg.util_avg);
2947 
2948 	if (sched_feat(UTIL_EST)) {
2949 		util = max_t(unsigned long, util,
2950 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
2951 	}
2952 
2953 	return min(util, capacity_orig_of(cpu));
2954 }
2955 
2956 static inline unsigned long cpu_util_rt(struct rq *rq)
2957 {
2958 	return READ_ONCE(rq->avg_rt.util_avg);
2959 }
2960 #endif
2961 
2962 #ifdef CONFIG_UCLAMP_TASK
2963 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2964 
2965 /**
2966  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2967  * @rq:		The rq to clamp against. Must not be NULL.
2968  * @util:	The util value to clamp.
2969  * @p:		The task to clamp against. Can be NULL if you want to clamp
2970  *		against @rq only.
2971  *
2972  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2973  *
2974  * If sched_uclamp_used static key is disabled, then just return the util
2975  * without any clamping since uclamp aggregation at the rq level in the fast
2976  * path is disabled, rendering this operation a NOP.
2977  *
2978  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2979  * will return the correct effective uclamp value of the task even if the
2980  * static key is disabled.
2981  */
2982 static __always_inline
2983 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2984 				  struct task_struct *p)
2985 {
2986 	unsigned long min_util = 0;
2987 	unsigned long max_util = 0;
2988 
2989 	if (!static_branch_likely(&sched_uclamp_used))
2990 		return util;
2991 
2992 	if (p) {
2993 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2994 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2995 
2996 		/*
2997 		 * Ignore last runnable task's max clamp, as this task will
2998 		 * reset it. Similarly, no need to read the rq's min clamp.
2999 		 */
3000 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
3001 			goto out;
3002 	}
3003 
3004 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
3005 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
3006 out:
3007 	/*
3008 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3009 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3010 	 * inversion. Fix it now when the clamps are applied.
3011 	 */
3012 	if (unlikely(min_util >= max_util))
3013 		return min_util;
3014 
3015 	return clamp(util, min_util, max_util);
3016 }
3017 
3018 /* Is the rq being capped/throttled by uclamp_max? */
3019 static inline bool uclamp_rq_is_capped(struct rq *rq)
3020 {
3021 	unsigned long rq_util;
3022 	unsigned long max_util;
3023 
3024 	if (!static_branch_likely(&sched_uclamp_used))
3025 		return false;
3026 
3027 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3028 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3029 
3030 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3031 }
3032 
3033 /*
3034  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3035  * by default in the fast path and only gets turned on once userspace performs
3036  * an operation that requires it.
3037  *
3038  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3039  * hence is active.
3040  */
3041 static inline bool uclamp_is_used(void)
3042 {
3043 	return static_branch_likely(&sched_uclamp_used);
3044 }
3045 #else /* CONFIG_UCLAMP_TASK */
3046 static inline
3047 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3048 				  struct task_struct *p)
3049 {
3050 	return util;
3051 }
3052 
3053 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3054 
3055 static inline bool uclamp_is_used(void)
3056 {
3057 	return false;
3058 }
3059 #endif /* CONFIG_UCLAMP_TASK */
3060 
3061 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3062 static inline unsigned long cpu_util_irq(struct rq *rq)
3063 {
3064 	return rq->avg_irq.util_avg;
3065 }
3066 
3067 static inline
3068 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3069 {
3070 	util *= (max - irq);
3071 	util /= max;
3072 
3073 	return util;
3074 
3075 }
3076 #else
3077 static inline unsigned long cpu_util_irq(struct rq *rq)
3078 {
3079 	return 0;
3080 }
3081 
3082 static inline
3083 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3084 {
3085 	return util;
3086 }
3087 #endif
3088 
3089 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3090 
3091 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3092 
3093 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3094 
3095 static inline bool sched_energy_enabled(void)
3096 {
3097 	return static_branch_unlikely(&sched_energy_present);
3098 }
3099 
3100 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3101 
3102 #define perf_domain_span(pd) NULL
3103 static inline bool sched_energy_enabled(void) { return false; }
3104 
3105 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3106 
3107 #ifdef CONFIG_MEMBARRIER
3108 /*
3109  * The scheduler provides memory barriers required by membarrier between:
3110  * - prior user-space memory accesses and store to rq->membarrier_state,
3111  * - store to rq->membarrier_state and following user-space memory accesses.
3112  * In the same way it provides those guarantees around store to rq->curr.
3113  */
3114 static inline void membarrier_switch_mm(struct rq *rq,
3115 					struct mm_struct *prev_mm,
3116 					struct mm_struct *next_mm)
3117 {
3118 	int membarrier_state;
3119 
3120 	if (prev_mm == next_mm)
3121 		return;
3122 
3123 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3124 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3125 		return;
3126 
3127 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3128 }
3129 #else
3130 static inline void membarrier_switch_mm(struct rq *rq,
3131 					struct mm_struct *prev_mm,
3132 					struct mm_struct *next_mm)
3133 {
3134 }
3135 #endif
3136 
3137 #ifdef CONFIG_SMP
3138 static inline bool is_per_cpu_kthread(struct task_struct *p)
3139 {
3140 	if (!(p->flags & PF_KTHREAD))
3141 		return false;
3142 
3143 	if (p->nr_cpus_allowed != 1)
3144 		return false;
3145 
3146 	return true;
3147 }
3148 #endif
3149 
3150 extern void swake_up_all_locked(struct swait_queue_head *q);
3151 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3152 
3153 #ifdef CONFIG_PREEMPT_DYNAMIC
3154 extern int preempt_dynamic_mode;
3155 extern int sched_dynamic_mode(const char *str);
3156 extern void sched_dynamic_update(int mode);
3157 #endif
3158 
3159 #endif /* _KERNEL_SCHED_SCHED_H */
3160