1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/tick.h> 10 #include <linux/slab.h> 11 12 #include "cpupri.h" 13 #include "cpudeadline.h" 14 #include "cpuacct.h" 15 16 struct rq; 17 struct cpuidle_state; 18 19 /* task_struct::on_rq states: */ 20 #define TASK_ON_RQ_QUEUED 1 21 #define TASK_ON_RQ_MIGRATING 2 22 23 extern __read_mostly int scheduler_running; 24 25 extern unsigned long calc_load_update; 26 extern atomic_long_t calc_load_tasks; 27 28 extern long calc_load_fold_active(struct rq *this_rq); 29 extern void update_cpu_load_active(struct rq *this_rq); 30 31 /* 32 * Helpers for converting nanosecond timing to jiffy resolution 33 */ 34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 35 36 /* 37 * Increase resolution of nice-level calculations for 64-bit architectures. 38 * The extra resolution improves shares distribution and load balancing of 39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 40 * hierarchies, especially on larger systems. This is not a user-visible change 41 * and does not change the user-interface for setting shares/weights. 42 * 43 * We increase resolution only if we have enough bits to allow this increased 44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 46 * increased costs. 47 */ 48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 49 # define SCHED_LOAD_RESOLUTION 10 50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 52 #else 53 # define SCHED_LOAD_RESOLUTION 0 54 # define scale_load(w) (w) 55 # define scale_load_down(w) (w) 56 #endif 57 58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 60 61 #define NICE_0_LOAD SCHED_LOAD_SCALE 62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 63 64 /* 65 * Single value that decides SCHED_DEADLINE internal math precision. 66 * 10 -> just above 1us 67 * 9 -> just above 0.5us 68 */ 69 #define DL_SCALE (10) 70 71 /* 72 * These are the 'tuning knobs' of the scheduler: 73 */ 74 75 /* 76 * single value that denotes runtime == period, ie unlimited time. 77 */ 78 #define RUNTIME_INF ((u64)~0ULL) 79 80 static inline int fair_policy(int policy) 81 { 82 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 83 } 84 85 static inline int rt_policy(int policy) 86 { 87 return policy == SCHED_FIFO || policy == SCHED_RR; 88 } 89 90 static inline int dl_policy(int policy) 91 { 92 return policy == SCHED_DEADLINE; 93 } 94 95 static inline int task_has_rt_policy(struct task_struct *p) 96 { 97 return rt_policy(p->policy); 98 } 99 100 static inline int task_has_dl_policy(struct task_struct *p) 101 { 102 return dl_policy(p->policy); 103 } 104 105 static inline bool dl_time_before(u64 a, u64 b) 106 { 107 return (s64)(a - b) < 0; 108 } 109 110 /* 111 * Tells if entity @a should preempt entity @b. 112 */ 113 static inline bool 114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 115 { 116 return dl_time_before(a->deadline, b->deadline); 117 } 118 119 /* 120 * This is the priority-queue data structure of the RT scheduling class: 121 */ 122 struct rt_prio_array { 123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 124 struct list_head queue[MAX_RT_PRIO]; 125 }; 126 127 struct rt_bandwidth { 128 /* nests inside the rq lock: */ 129 raw_spinlock_t rt_runtime_lock; 130 ktime_t rt_period; 131 u64 rt_runtime; 132 struct hrtimer rt_period_timer; 133 }; 134 135 void __dl_clear_params(struct task_struct *p); 136 137 /* 138 * To keep the bandwidth of -deadline tasks and groups under control 139 * we need some place where: 140 * - store the maximum -deadline bandwidth of the system (the group); 141 * - cache the fraction of that bandwidth that is currently allocated. 142 * 143 * This is all done in the data structure below. It is similar to the 144 * one used for RT-throttling (rt_bandwidth), with the main difference 145 * that, since here we are only interested in admission control, we 146 * do not decrease any runtime while the group "executes", neither we 147 * need a timer to replenish it. 148 * 149 * With respect to SMP, the bandwidth is given on a per-CPU basis, 150 * meaning that: 151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 152 * - dl_total_bw array contains, in the i-eth element, the currently 153 * allocated bandwidth on the i-eth CPU. 154 * Moreover, groups consume bandwidth on each CPU, while tasks only 155 * consume bandwidth on the CPU they're running on. 156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 157 * that will be shown the next time the proc or cgroup controls will 158 * be red. It on its turn can be changed by writing on its own 159 * control. 160 */ 161 struct dl_bandwidth { 162 raw_spinlock_t dl_runtime_lock; 163 u64 dl_runtime; 164 u64 dl_period; 165 }; 166 167 static inline int dl_bandwidth_enabled(void) 168 { 169 return sysctl_sched_rt_runtime >= 0; 170 } 171 172 extern struct dl_bw *dl_bw_of(int i); 173 174 struct dl_bw { 175 raw_spinlock_t lock; 176 u64 bw, total_bw; 177 }; 178 179 extern struct mutex sched_domains_mutex; 180 181 #ifdef CONFIG_CGROUP_SCHED 182 183 #include <linux/cgroup.h> 184 185 struct cfs_rq; 186 struct rt_rq; 187 188 extern struct list_head task_groups; 189 190 struct cfs_bandwidth { 191 #ifdef CONFIG_CFS_BANDWIDTH 192 raw_spinlock_t lock; 193 ktime_t period; 194 u64 quota, runtime; 195 s64 hierarchical_quota; 196 u64 runtime_expires; 197 198 int idle, timer_active; 199 struct hrtimer period_timer, slack_timer; 200 struct list_head throttled_cfs_rq; 201 202 /* statistics */ 203 int nr_periods, nr_throttled; 204 u64 throttled_time; 205 #endif 206 }; 207 208 /* task group related information */ 209 struct task_group { 210 struct cgroup_subsys_state css; 211 212 #ifdef CONFIG_FAIR_GROUP_SCHED 213 /* schedulable entities of this group on each cpu */ 214 struct sched_entity **se; 215 /* runqueue "owned" by this group on each cpu */ 216 struct cfs_rq **cfs_rq; 217 unsigned long shares; 218 219 #ifdef CONFIG_SMP 220 atomic_long_t load_avg; 221 atomic_t runnable_avg; 222 #endif 223 #endif 224 225 #ifdef CONFIG_RT_GROUP_SCHED 226 struct sched_rt_entity **rt_se; 227 struct rt_rq **rt_rq; 228 229 struct rt_bandwidth rt_bandwidth; 230 #endif 231 232 struct rcu_head rcu; 233 struct list_head list; 234 235 struct task_group *parent; 236 struct list_head siblings; 237 struct list_head children; 238 239 #ifdef CONFIG_SCHED_AUTOGROUP 240 struct autogroup *autogroup; 241 #endif 242 243 struct cfs_bandwidth cfs_bandwidth; 244 }; 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 248 249 /* 250 * A weight of 0 or 1 can cause arithmetics problems. 251 * A weight of a cfs_rq is the sum of weights of which entities 252 * are queued on this cfs_rq, so a weight of a entity should not be 253 * too large, so as the shares value of a task group. 254 * (The default weight is 1024 - so there's no practical 255 * limitation from this.) 256 */ 257 #define MIN_SHARES (1UL << 1) 258 #define MAX_SHARES (1UL << 18) 259 #endif 260 261 typedef int (*tg_visitor)(struct task_group *, void *); 262 263 extern int walk_tg_tree_from(struct task_group *from, 264 tg_visitor down, tg_visitor up, void *data); 265 266 /* 267 * Iterate the full tree, calling @down when first entering a node and @up when 268 * leaving it for the final time. 269 * 270 * Caller must hold rcu_lock or sufficient equivalent. 271 */ 272 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 273 { 274 return walk_tg_tree_from(&root_task_group, down, up, data); 275 } 276 277 extern int tg_nop(struct task_group *tg, void *data); 278 279 extern void free_fair_sched_group(struct task_group *tg); 280 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 281 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 282 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 283 struct sched_entity *se, int cpu, 284 struct sched_entity *parent); 285 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 286 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 287 288 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 289 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); 290 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 291 292 extern void free_rt_sched_group(struct task_group *tg); 293 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 294 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 295 struct sched_rt_entity *rt_se, int cpu, 296 struct sched_rt_entity *parent); 297 298 extern struct task_group *sched_create_group(struct task_group *parent); 299 extern void sched_online_group(struct task_group *tg, 300 struct task_group *parent); 301 extern void sched_destroy_group(struct task_group *tg); 302 extern void sched_offline_group(struct task_group *tg); 303 304 extern void sched_move_task(struct task_struct *tsk); 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 308 #endif 309 310 #else /* CONFIG_CGROUP_SCHED */ 311 312 struct cfs_bandwidth { }; 313 314 #endif /* CONFIG_CGROUP_SCHED */ 315 316 /* CFS-related fields in a runqueue */ 317 struct cfs_rq { 318 struct load_weight load; 319 unsigned int nr_running, h_nr_running; 320 321 u64 exec_clock; 322 u64 min_vruntime; 323 #ifndef CONFIG_64BIT 324 u64 min_vruntime_copy; 325 #endif 326 327 struct rb_root tasks_timeline; 328 struct rb_node *rb_leftmost; 329 330 /* 331 * 'curr' points to currently running entity on this cfs_rq. 332 * It is set to NULL otherwise (i.e when none are currently running). 333 */ 334 struct sched_entity *curr, *next, *last, *skip; 335 336 #ifdef CONFIG_SCHED_DEBUG 337 unsigned int nr_spread_over; 338 #endif 339 340 #ifdef CONFIG_SMP 341 /* 342 * CFS Load tracking 343 * Under CFS, load is tracked on a per-entity basis and aggregated up. 344 * This allows for the description of both thread and group usage (in 345 * the FAIR_GROUP_SCHED case). 346 */ 347 unsigned long runnable_load_avg, blocked_load_avg; 348 atomic64_t decay_counter; 349 u64 last_decay; 350 atomic_long_t removed_load; 351 352 #ifdef CONFIG_FAIR_GROUP_SCHED 353 /* Required to track per-cpu representation of a task_group */ 354 u32 tg_runnable_contrib; 355 unsigned long tg_load_contrib; 356 357 /* 358 * h_load = weight * f(tg) 359 * 360 * Where f(tg) is the recursive weight fraction assigned to 361 * this group. 362 */ 363 unsigned long h_load; 364 u64 last_h_load_update; 365 struct sched_entity *h_load_next; 366 #endif /* CONFIG_FAIR_GROUP_SCHED */ 367 #endif /* CONFIG_SMP */ 368 369 #ifdef CONFIG_FAIR_GROUP_SCHED 370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 371 372 /* 373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 375 * (like users, containers etc.) 376 * 377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 378 * list is used during load balance. 379 */ 380 int on_list; 381 struct list_head leaf_cfs_rq_list; 382 struct task_group *tg; /* group that "owns" this runqueue */ 383 384 #ifdef CONFIG_CFS_BANDWIDTH 385 int runtime_enabled; 386 u64 runtime_expires; 387 s64 runtime_remaining; 388 389 u64 throttled_clock, throttled_clock_task; 390 u64 throttled_clock_task_time; 391 int throttled, throttle_count; 392 struct list_head throttled_list; 393 #endif /* CONFIG_CFS_BANDWIDTH */ 394 #endif /* CONFIG_FAIR_GROUP_SCHED */ 395 }; 396 397 static inline int rt_bandwidth_enabled(void) 398 { 399 return sysctl_sched_rt_runtime >= 0; 400 } 401 402 /* Real-Time classes' related field in a runqueue: */ 403 struct rt_rq { 404 struct rt_prio_array active; 405 unsigned int rt_nr_running; 406 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 407 struct { 408 int curr; /* highest queued rt task prio */ 409 #ifdef CONFIG_SMP 410 int next; /* next highest */ 411 #endif 412 } highest_prio; 413 #endif 414 #ifdef CONFIG_SMP 415 unsigned long rt_nr_migratory; 416 unsigned long rt_nr_total; 417 int overloaded; 418 struct plist_head pushable_tasks; 419 #endif 420 int rt_queued; 421 422 int rt_throttled; 423 u64 rt_time; 424 u64 rt_runtime; 425 /* Nests inside the rq lock: */ 426 raw_spinlock_t rt_runtime_lock; 427 428 #ifdef CONFIG_RT_GROUP_SCHED 429 unsigned long rt_nr_boosted; 430 431 struct rq *rq; 432 struct task_group *tg; 433 #endif 434 }; 435 436 /* Deadline class' related fields in a runqueue */ 437 struct dl_rq { 438 /* runqueue is an rbtree, ordered by deadline */ 439 struct rb_root rb_root; 440 struct rb_node *rb_leftmost; 441 442 unsigned long dl_nr_running; 443 444 #ifdef CONFIG_SMP 445 /* 446 * Deadline values of the currently executing and the 447 * earliest ready task on this rq. Caching these facilitates 448 * the decision wether or not a ready but not running task 449 * should migrate somewhere else. 450 */ 451 struct { 452 u64 curr; 453 u64 next; 454 } earliest_dl; 455 456 unsigned long dl_nr_migratory; 457 int overloaded; 458 459 /* 460 * Tasks on this rq that can be pushed away. They are kept in 461 * an rb-tree, ordered by tasks' deadlines, with caching 462 * of the leftmost (earliest deadline) element. 463 */ 464 struct rb_root pushable_dl_tasks_root; 465 struct rb_node *pushable_dl_tasks_leftmost; 466 #else 467 struct dl_bw dl_bw; 468 #endif 469 }; 470 471 #ifdef CONFIG_SMP 472 473 /* 474 * We add the notion of a root-domain which will be used to define per-domain 475 * variables. Each exclusive cpuset essentially defines an island domain by 476 * fully partitioning the member cpus from any other cpuset. Whenever a new 477 * exclusive cpuset is created, we also create and attach a new root-domain 478 * object. 479 * 480 */ 481 struct root_domain { 482 atomic_t refcount; 483 atomic_t rto_count; 484 struct rcu_head rcu; 485 cpumask_var_t span; 486 cpumask_var_t online; 487 488 /* Indicate more than one runnable task for any CPU */ 489 bool overload; 490 491 /* 492 * The bit corresponding to a CPU gets set here if such CPU has more 493 * than one runnable -deadline task (as it is below for RT tasks). 494 */ 495 cpumask_var_t dlo_mask; 496 atomic_t dlo_count; 497 struct dl_bw dl_bw; 498 struct cpudl cpudl; 499 500 /* 501 * The "RT overload" flag: it gets set if a CPU has more than 502 * one runnable RT task. 503 */ 504 cpumask_var_t rto_mask; 505 struct cpupri cpupri; 506 }; 507 508 extern struct root_domain def_root_domain; 509 510 #endif /* CONFIG_SMP */ 511 512 /* 513 * This is the main, per-CPU runqueue data structure. 514 * 515 * Locking rule: those places that want to lock multiple runqueues 516 * (such as the load balancing or the thread migration code), lock 517 * acquire operations must be ordered by ascending &runqueue. 518 */ 519 struct rq { 520 /* runqueue lock: */ 521 raw_spinlock_t lock; 522 523 /* 524 * nr_running and cpu_load should be in the same cacheline because 525 * remote CPUs use both these fields when doing load calculation. 526 */ 527 unsigned int nr_running; 528 #ifdef CONFIG_NUMA_BALANCING 529 unsigned int nr_numa_running; 530 unsigned int nr_preferred_running; 531 #endif 532 #define CPU_LOAD_IDX_MAX 5 533 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 534 unsigned long last_load_update_tick; 535 #ifdef CONFIG_NO_HZ_COMMON 536 u64 nohz_stamp; 537 unsigned long nohz_flags; 538 #endif 539 #ifdef CONFIG_NO_HZ_FULL 540 unsigned long last_sched_tick; 541 #endif 542 int skip_clock_update; 543 544 /* capture load from *all* tasks on this cpu: */ 545 struct load_weight load; 546 unsigned long nr_load_updates; 547 u64 nr_switches; 548 549 struct cfs_rq cfs; 550 struct rt_rq rt; 551 struct dl_rq dl; 552 553 #ifdef CONFIG_FAIR_GROUP_SCHED 554 /* list of leaf cfs_rq on this cpu: */ 555 struct list_head leaf_cfs_rq_list; 556 557 struct sched_avg avg; 558 #endif /* CONFIG_FAIR_GROUP_SCHED */ 559 560 /* 561 * This is part of a global counter where only the total sum 562 * over all CPUs matters. A task can increase this counter on 563 * one CPU and if it got migrated afterwards it may decrease 564 * it on another CPU. Always updated under the runqueue lock: 565 */ 566 unsigned long nr_uninterruptible; 567 568 struct task_struct *curr, *idle, *stop; 569 unsigned long next_balance; 570 struct mm_struct *prev_mm; 571 572 u64 clock; 573 u64 clock_task; 574 575 atomic_t nr_iowait; 576 577 #ifdef CONFIG_SMP 578 struct root_domain *rd; 579 struct sched_domain *sd; 580 581 unsigned long cpu_capacity; 582 583 unsigned char idle_balance; 584 /* For active balancing */ 585 int post_schedule; 586 int active_balance; 587 int push_cpu; 588 struct cpu_stop_work active_balance_work; 589 /* cpu of this runqueue: */ 590 int cpu; 591 int online; 592 593 struct list_head cfs_tasks; 594 595 u64 rt_avg; 596 u64 age_stamp; 597 u64 idle_stamp; 598 u64 avg_idle; 599 600 /* This is used to determine avg_idle's max value */ 601 u64 max_idle_balance_cost; 602 #endif 603 604 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 605 u64 prev_irq_time; 606 #endif 607 #ifdef CONFIG_PARAVIRT 608 u64 prev_steal_time; 609 #endif 610 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 611 u64 prev_steal_time_rq; 612 #endif 613 614 /* calc_load related fields */ 615 unsigned long calc_load_update; 616 long calc_load_active; 617 618 #ifdef CONFIG_SCHED_HRTICK 619 #ifdef CONFIG_SMP 620 int hrtick_csd_pending; 621 struct call_single_data hrtick_csd; 622 #endif 623 struct hrtimer hrtick_timer; 624 #endif 625 626 #ifdef CONFIG_SCHEDSTATS 627 /* latency stats */ 628 struct sched_info rq_sched_info; 629 unsigned long long rq_cpu_time; 630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 631 632 /* sys_sched_yield() stats */ 633 unsigned int yld_count; 634 635 /* schedule() stats */ 636 unsigned int sched_count; 637 unsigned int sched_goidle; 638 639 /* try_to_wake_up() stats */ 640 unsigned int ttwu_count; 641 unsigned int ttwu_local; 642 #endif 643 644 #ifdef CONFIG_SMP 645 struct llist_head wake_list; 646 #endif 647 648 #ifdef CONFIG_CPU_IDLE 649 /* Must be inspected within a rcu lock section */ 650 struct cpuidle_state *idle_state; 651 #endif 652 }; 653 654 static inline int cpu_of(struct rq *rq) 655 { 656 #ifdef CONFIG_SMP 657 return rq->cpu; 658 #else 659 return 0; 660 #endif 661 } 662 663 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 664 665 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 666 #define this_rq() this_cpu_ptr(&runqueues) 667 #define task_rq(p) cpu_rq(task_cpu(p)) 668 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 669 #define raw_rq() raw_cpu_ptr(&runqueues) 670 671 static inline u64 rq_clock(struct rq *rq) 672 { 673 return rq->clock; 674 } 675 676 static inline u64 rq_clock_task(struct rq *rq) 677 { 678 return rq->clock_task; 679 } 680 681 #ifdef CONFIG_NUMA_BALANCING 682 extern void sched_setnuma(struct task_struct *p, int node); 683 extern int migrate_task_to(struct task_struct *p, int cpu); 684 extern int migrate_swap(struct task_struct *, struct task_struct *); 685 #endif /* CONFIG_NUMA_BALANCING */ 686 687 #ifdef CONFIG_SMP 688 689 extern void sched_ttwu_pending(void); 690 691 #define rcu_dereference_check_sched_domain(p) \ 692 rcu_dereference_check((p), \ 693 lockdep_is_held(&sched_domains_mutex)) 694 695 /* 696 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 697 * See detach_destroy_domains: synchronize_sched for details. 698 * 699 * The domain tree of any CPU may only be accessed from within 700 * preempt-disabled sections. 701 */ 702 #define for_each_domain(cpu, __sd) \ 703 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 704 __sd; __sd = __sd->parent) 705 706 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 707 708 /** 709 * highest_flag_domain - Return highest sched_domain containing flag. 710 * @cpu: The cpu whose highest level of sched domain is to 711 * be returned. 712 * @flag: The flag to check for the highest sched_domain 713 * for the given cpu. 714 * 715 * Returns the highest sched_domain of a cpu which contains the given flag. 716 */ 717 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 718 { 719 struct sched_domain *sd, *hsd = NULL; 720 721 for_each_domain(cpu, sd) { 722 if (!(sd->flags & flag)) 723 break; 724 hsd = sd; 725 } 726 727 return hsd; 728 } 729 730 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 731 { 732 struct sched_domain *sd; 733 734 for_each_domain(cpu, sd) { 735 if (sd->flags & flag) 736 break; 737 } 738 739 return sd; 740 } 741 742 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 743 DECLARE_PER_CPU(int, sd_llc_size); 744 DECLARE_PER_CPU(int, sd_llc_id); 745 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 746 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 747 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 748 749 struct sched_group_capacity { 750 atomic_t ref; 751 /* 752 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 753 * for a single CPU. 754 */ 755 unsigned int capacity, capacity_orig; 756 unsigned long next_update; 757 int imbalance; /* XXX unrelated to capacity but shared group state */ 758 /* 759 * Number of busy cpus in this group. 760 */ 761 atomic_t nr_busy_cpus; 762 763 unsigned long cpumask[0]; /* iteration mask */ 764 }; 765 766 struct sched_group { 767 struct sched_group *next; /* Must be a circular list */ 768 atomic_t ref; 769 770 unsigned int group_weight; 771 struct sched_group_capacity *sgc; 772 773 /* 774 * The CPUs this group covers. 775 * 776 * NOTE: this field is variable length. (Allocated dynamically 777 * by attaching extra space to the end of the structure, 778 * depending on how many CPUs the kernel has booted up with) 779 */ 780 unsigned long cpumask[0]; 781 }; 782 783 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 784 { 785 return to_cpumask(sg->cpumask); 786 } 787 788 /* 789 * cpumask masking which cpus in the group are allowed to iterate up the domain 790 * tree. 791 */ 792 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 793 { 794 return to_cpumask(sg->sgc->cpumask); 795 } 796 797 /** 798 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 799 * @group: The group whose first cpu is to be returned. 800 */ 801 static inline unsigned int group_first_cpu(struct sched_group *group) 802 { 803 return cpumask_first(sched_group_cpus(group)); 804 } 805 806 extern int group_balance_cpu(struct sched_group *sg); 807 808 #else 809 810 static inline void sched_ttwu_pending(void) { } 811 812 #endif /* CONFIG_SMP */ 813 814 #include "stats.h" 815 #include "auto_group.h" 816 817 #ifdef CONFIG_CGROUP_SCHED 818 819 /* 820 * Return the group to which this tasks belongs. 821 * 822 * We cannot use task_css() and friends because the cgroup subsystem 823 * changes that value before the cgroup_subsys::attach() method is called, 824 * therefore we cannot pin it and might observe the wrong value. 825 * 826 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 827 * core changes this before calling sched_move_task(). 828 * 829 * Instead we use a 'copy' which is updated from sched_move_task() while 830 * holding both task_struct::pi_lock and rq::lock. 831 */ 832 static inline struct task_group *task_group(struct task_struct *p) 833 { 834 return p->sched_task_group; 835 } 836 837 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 838 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 839 { 840 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 841 struct task_group *tg = task_group(p); 842 #endif 843 844 #ifdef CONFIG_FAIR_GROUP_SCHED 845 p->se.cfs_rq = tg->cfs_rq[cpu]; 846 p->se.parent = tg->se[cpu]; 847 #endif 848 849 #ifdef CONFIG_RT_GROUP_SCHED 850 p->rt.rt_rq = tg->rt_rq[cpu]; 851 p->rt.parent = tg->rt_se[cpu]; 852 #endif 853 } 854 855 #else /* CONFIG_CGROUP_SCHED */ 856 857 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 858 static inline struct task_group *task_group(struct task_struct *p) 859 { 860 return NULL; 861 } 862 863 #endif /* CONFIG_CGROUP_SCHED */ 864 865 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 866 { 867 set_task_rq(p, cpu); 868 #ifdef CONFIG_SMP 869 /* 870 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 871 * successfuly executed on another CPU. We must ensure that updates of 872 * per-task data have been completed by this moment. 873 */ 874 smp_wmb(); 875 task_thread_info(p)->cpu = cpu; 876 p->wake_cpu = cpu; 877 #endif 878 } 879 880 /* 881 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 882 */ 883 #ifdef CONFIG_SCHED_DEBUG 884 # include <linux/static_key.h> 885 # define const_debug __read_mostly 886 #else 887 # define const_debug const 888 #endif 889 890 extern const_debug unsigned int sysctl_sched_features; 891 892 #define SCHED_FEAT(name, enabled) \ 893 __SCHED_FEAT_##name , 894 895 enum { 896 #include "features.h" 897 __SCHED_FEAT_NR, 898 }; 899 900 #undef SCHED_FEAT 901 902 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 903 #define SCHED_FEAT(name, enabled) \ 904 static __always_inline bool static_branch_##name(struct static_key *key) \ 905 { \ 906 return static_key_##enabled(key); \ 907 } 908 909 #include "features.h" 910 911 #undef SCHED_FEAT 912 913 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 914 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 915 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 916 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 917 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 918 919 #ifdef CONFIG_NUMA_BALANCING 920 #define sched_feat_numa(x) sched_feat(x) 921 #ifdef CONFIG_SCHED_DEBUG 922 #define numabalancing_enabled sched_feat_numa(NUMA) 923 #else 924 extern bool numabalancing_enabled; 925 #endif /* CONFIG_SCHED_DEBUG */ 926 #else 927 #define sched_feat_numa(x) (0) 928 #define numabalancing_enabled (0) 929 #endif /* CONFIG_NUMA_BALANCING */ 930 931 static inline u64 global_rt_period(void) 932 { 933 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 934 } 935 936 static inline u64 global_rt_runtime(void) 937 { 938 if (sysctl_sched_rt_runtime < 0) 939 return RUNTIME_INF; 940 941 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 942 } 943 944 static inline int task_current(struct rq *rq, struct task_struct *p) 945 { 946 return rq->curr == p; 947 } 948 949 static inline int task_running(struct rq *rq, struct task_struct *p) 950 { 951 #ifdef CONFIG_SMP 952 return p->on_cpu; 953 #else 954 return task_current(rq, p); 955 #endif 956 } 957 958 static inline int task_on_rq_queued(struct task_struct *p) 959 { 960 return p->on_rq == TASK_ON_RQ_QUEUED; 961 } 962 963 static inline int task_on_rq_migrating(struct task_struct *p) 964 { 965 return p->on_rq == TASK_ON_RQ_MIGRATING; 966 } 967 968 #ifndef prepare_arch_switch 969 # define prepare_arch_switch(next) do { } while (0) 970 #endif 971 #ifndef finish_arch_switch 972 # define finish_arch_switch(prev) do { } while (0) 973 #endif 974 #ifndef finish_arch_post_lock_switch 975 # define finish_arch_post_lock_switch() do { } while (0) 976 #endif 977 978 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 979 { 980 #ifdef CONFIG_SMP 981 /* 982 * We can optimise this out completely for !SMP, because the 983 * SMP rebalancing from interrupt is the only thing that cares 984 * here. 985 */ 986 next->on_cpu = 1; 987 #endif 988 } 989 990 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 991 { 992 #ifdef CONFIG_SMP 993 /* 994 * After ->on_cpu is cleared, the task can be moved to a different CPU. 995 * We must ensure this doesn't happen until the switch is completely 996 * finished. 997 */ 998 smp_wmb(); 999 prev->on_cpu = 0; 1000 #endif 1001 #ifdef CONFIG_DEBUG_SPINLOCK 1002 /* this is a valid case when another task releases the spinlock */ 1003 rq->lock.owner = current; 1004 #endif 1005 /* 1006 * If we are tracking spinlock dependencies then we have to 1007 * fix up the runqueue lock - which gets 'carried over' from 1008 * prev into current: 1009 */ 1010 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1011 1012 raw_spin_unlock_irq(&rq->lock); 1013 } 1014 1015 /* 1016 * wake flags 1017 */ 1018 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1019 #define WF_FORK 0x02 /* child wakeup after fork */ 1020 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1021 1022 /* 1023 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1024 * of tasks with abnormal "nice" values across CPUs the contribution that 1025 * each task makes to its run queue's load is weighted according to its 1026 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1027 * scaled version of the new time slice allocation that they receive on time 1028 * slice expiry etc. 1029 */ 1030 1031 #define WEIGHT_IDLEPRIO 3 1032 #define WMULT_IDLEPRIO 1431655765 1033 1034 /* 1035 * Nice levels are multiplicative, with a gentle 10% change for every 1036 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1037 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1038 * that remained on nice 0. 1039 * 1040 * The "10% effect" is relative and cumulative: from _any_ nice level, 1041 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1042 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1043 * If a task goes up by ~10% and another task goes down by ~10% then 1044 * the relative distance between them is ~25%.) 1045 */ 1046 static const int prio_to_weight[40] = { 1047 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1048 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1049 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1050 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1051 /* 0 */ 1024, 820, 655, 526, 423, 1052 /* 5 */ 335, 272, 215, 172, 137, 1053 /* 10 */ 110, 87, 70, 56, 45, 1054 /* 15 */ 36, 29, 23, 18, 15, 1055 }; 1056 1057 /* 1058 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1059 * 1060 * In cases where the weight does not change often, we can use the 1061 * precalculated inverse to speed up arithmetics by turning divisions 1062 * into multiplications: 1063 */ 1064 static const u32 prio_to_wmult[40] = { 1065 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1066 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1067 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1068 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1069 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1070 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1071 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1072 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1073 }; 1074 1075 #define ENQUEUE_WAKEUP 1 1076 #define ENQUEUE_HEAD 2 1077 #ifdef CONFIG_SMP 1078 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1079 #else 1080 #define ENQUEUE_WAKING 0 1081 #endif 1082 #define ENQUEUE_REPLENISH 8 1083 1084 #define DEQUEUE_SLEEP 1 1085 1086 #define RETRY_TASK ((void *)-1UL) 1087 1088 struct sched_class { 1089 const struct sched_class *next; 1090 1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1093 void (*yield_task) (struct rq *rq); 1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1095 1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1097 1098 /* 1099 * It is the responsibility of the pick_next_task() method that will 1100 * return the next task to call put_prev_task() on the @prev task or 1101 * something equivalent. 1102 * 1103 * May return RETRY_TASK when it finds a higher prio class has runnable 1104 * tasks. 1105 */ 1106 struct task_struct * (*pick_next_task) (struct rq *rq, 1107 struct task_struct *prev); 1108 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1109 1110 #ifdef CONFIG_SMP 1111 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1112 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1113 1114 void (*post_schedule) (struct rq *this_rq); 1115 void (*task_waking) (struct task_struct *task); 1116 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1117 1118 void (*set_cpus_allowed)(struct task_struct *p, 1119 const struct cpumask *newmask); 1120 1121 void (*rq_online)(struct rq *rq); 1122 void (*rq_offline)(struct rq *rq); 1123 #endif 1124 1125 void (*set_curr_task) (struct rq *rq); 1126 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1127 void (*task_fork) (struct task_struct *p); 1128 void (*task_dead) (struct task_struct *p); 1129 1130 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1131 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1132 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1133 int oldprio); 1134 1135 unsigned int (*get_rr_interval) (struct rq *rq, 1136 struct task_struct *task); 1137 1138 #ifdef CONFIG_FAIR_GROUP_SCHED 1139 void (*task_move_group) (struct task_struct *p, int on_rq); 1140 #endif 1141 }; 1142 1143 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1144 { 1145 prev->sched_class->put_prev_task(rq, prev); 1146 } 1147 1148 #define sched_class_highest (&stop_sched_class) 1149 #define for_each_class(class) \ 1150 for (class = sched_class_highest; class; class = class->next) 1151 1152 extern const struct sched_class stop_sched_class; 1153 extern const struct sched_class dl_sched_class; 1154 extern const struct sched_class rt_sched_class; 1155 extern const struct sched_class fair_sched_class; 1156 extern const struct sched_class idle_sched_class; 1157 1158 1159 #ifdef CONFIG_SMP 1160 1161 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1162 1163 extern void trigger_load_balance(struct rq *rq); 1164 1165 extern void idle_enter_fair(struct rq *this_rq); 1166 extern void idle_exit_fair(struct rq *this_rq); 1167 1168 #else 1169 1170 static inline void idle_enter_fair(struct rq *rq) { } 1171 static inline void idle_exit_fair(struct rq *rq) { } 1172 1173 #endif 1174 1175 #ifdef CONFIG_CPU_IDLE 1176 static inline void idle_set_state(struct rq *rq, 1177 struct cpuidle_state *idle_state) 1178 { 1179 rq->idle_state = idle_state; 1180 } 1181 1182 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1183 { 1184 WARN_ON(!rcu_read_lock_held()); 1185 return rq->idle_state; 1186 } 1187 #else 1188 static inline void idle_set_state(struct rq *rq, 1189 struct cpuidle_state *idle_state) 1190 { 1191 } 1192 1193 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1194 { 1195 return NULL; 1196 } 1197 #endif 1198 1199 extern void sysrq_sched_debug_show(void); 1200 extern void sched_init_granularity(void); 1201 extern void update_max_interval(void); 1202 1203 extern void init_sched_dl_class(void); 1204 extern void init_sched_rt_class(void); 1205 extern void init_sched_fair_class(void); 1206 extern void init_sched_dl_class(void); 1207 1208 extern void resched_curr(struct rq *rq); 1209 extern void resched_cpu(int cpu); 1210 1211 extern struct rt_bandwidth def_rt_bandwidth; 1212 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1213 1214 extern struct dl_bandwidth def_dl_bandwidth; 1215 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1216 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1217 1218 unsigned long to_ratio(u64 period, u64 runtime); 1219 1220 extern void update_idle_cpu_load(struct rq *this_rq); 1221 1222 extern void init_task_runnable_average(struct task_struct *p); 1223 1224 static inline void add_nr_running(struct rq *rq, unsigned count) 1225 { 1226 unsigned prev_nr = rq->nr_running; 1227 1228 rq->nr_running = prev_nr + count; 1229 1230 if (prev_nr < 2 && rq->nr_running >= 2) { 1231 #ifdef CONFIG_SMP 1232 if (!rq->rd->overload) 1233 rq->rd->overload = true; 1234 #endif 1235 1236 #ifdef CONFIG_NO_HZ_FULL 1237 if (tick_nohz_full_cpu(rq->cpu)) { 1238 /* 1239 * Tick is needed if more than one task runs on a CPU. 1240 * Send the target an IPI to kick it out of nohz mode. 1241 * 1242 * We assume that IPI implies full memory barrier and the 1243 * new value of rq->nr_running is visible on reception 1244 * from the target. 1245 */ 1246 tick_nohz_full_kick_cpu(rq->cpu); 1247 } 1248 #endif 1249 } 1250 } 1251 1252 static inline void sub_nr_running(struct rq *rq, unsigned count) 1253 { 1254 rq->nr_running -= count; 1255 } 1256 1257 static inline void rq_last_tick_reset(struct rq *rq) 1258 { 1259 #ifdef CONFIG_NO_HZ_FULL 1260 rq->last_sched_tick = jiffies; 1261 #endif 1262 } 1263 1264 extern void update_rq_clock(struct rq *rq); 1265 1266 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1267 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1268 1269 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1270 1271 extern const_debug unsigned int sysctl_sched_time_avg; 1272 extern const_debug unsigned int sysctl_sched_nr_migrate; 1273 extern const_debug unsigned int sysctl_sched_migration_cost; 1274 1275 static inline u64 sched_avg_period(void) 1276 { 1277 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1278 } 1279 1280 #ifdef CONFIG_SCHED_HRTICK 1281 1282 /* 1283 * Use hrtick when: 1284 * - enabled by features 1285 * - hrtimer is actually high res 1286 */ 1287 static inline int hrtick_enabled(struct rq *rq) 1288 { 1289 if (!sched_feat(HRTICK)) 1290 return 0; 1291 if (!cpu_active(cpu_of(rq))) 1292 return 0; 1293 return hrtimer_is_hres_active(&rq->hrtick_timer); 1294 } 1295 1296 void hrtick_start(struct rq *rq, u64 delay); 1297 1298 #else 1299 1300 static inline int hrtick_enabled(struct rq *rq) 1301 { 1302 return 0; 1303 } 1304 1305 #endif /* CONFIG_SCHED_HRTICK */ 1306 1307 #ifdef CONFIG_SMP 1308 extern void sched_avg_update(struct rq *rq); 1309 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1310 { 1311 rq->rt_avg += rt_delta; 1312 sched_avg_update(rq); 1313 } 1314 #else 1315 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1316 static inline void sched_avg_update(struct rq *rq) { } 1317 #endif 1318 1319 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1320 1321 #ifdef CONFIG_SMP 1322 #ifdef CONFIG_PREEMPT 1323 1324 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1325 1326 /* 1327 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1328 * way at the expense of forcing extra atomic operations in all 1329 * invocations. This assures that the double_lock is acquired using the 1330 * same underlying policy as the spinlock_t on this architecture, which 1331 * reduces latency compared to the unfair variant below. However, it 1332 * also adds more overhead and therefore may reduce throughput. 1333 */ 1334 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1335 __releases(this_rq->lock) 1336 __acquires(busiest->lock) 1337 __acquires(this_rq->lock) 1338 { 1339 raw_spin_unlock(&this_rq->lock); 1340 double_rq_lock(this_rq, busiest); 1341 1342 return 1; 1343 } 1344 1345 #else 1346 /* 1347 * Unfair double_lock_balance: Optimizes throughput at the expense of 1348 * latency by eliminating extra atomic operations when the locks are 1349 * already in proper order on entry. This favors lower cpu-ids and will 1350 * grant the double lock to lower cpus over higher ids under contention, 1351 * regardless of entry order into the function. 1352 */ 1353 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1354 __releases(this_rq->lock) 1355 __acquires(busiest->lock) 1356 __acquires(this_rq->lock) 1357 { 1358 int ret = 0; 1359 1360 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1361 if (busiest < this_rq) { 1362 raw_spin_unlock(&this_rq->lock); 1363 raw_spin_lock(&busiest->lock); 1364 raw_spin_lock_nested(&this_rq->lock, 1365 SINGLE_DEPTH_NESTING); 1366 ret = 1; 1367 } else 1368 raw_spin_lock_nested(&busiest->lock, 1369 SINGLE_DEPTH_NESTING); 1370 } 1371 return ret; 1372 } 1373 1374 #endif /* CONFIG_PREEMPT */ 1375 1376 /* 1377 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1378 */ 1379 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1380 { 1381 if (unlikely(!irqs_disabled())) { 1382 /* printk() doesn't work good under rq->lock */ 1383 raw_spin_unlock(&this_rq->lock); 1384 BUG_ON(1); 1385 } 1386 1387 return _double_lock_balance(this_rq, busiest); 1388 } 1389 1390 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1391 __releases(busiest->lock) 1392 { 1393 raw_spin_unlock(&busiest->lock); 1394 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1395 } 1396 1397 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1398 { 1399 if (l1 > l2) 1400 swap(l1, l2); 1401 1402 spin_lock(l1); 1403 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1404 } 1405 1406 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1407 { 1408 if (l1 > l2) 1409 swap(l1, l2); 1410 1411 spin_lock_irq(l1); 1412 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1413 } 1414 1415 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1416 { 1417 if (l1 > l2) 1418 swap(l1, l2); 1419 1420 raw_spin_lock(l1); 1421 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1422 } 1423 1424 /* 1425 * double_rq_lock - safely lock two runqueues 1426 * 1427 * Note this does not disable interrupts like task_rq_lock, 1428 * you need to do so manually before calling. 1429 */ 1430 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1431 __acquires(rq1->lock) 1432 __acquires(rq2->lock) 1433 { 1434 BUG_ON(!irqs_disabled()); 1435 if (rq1 == rq2) { 1436 raw_spin_lock(&rq1->lock); 1437 __acquire(rq2->lock); /* Fake it out ;) */ 1438 } else { 1439 if (rq1 < rq2) { 1440 raw_spin_lock(&rq1->lock); 1441 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1442 } else { 1443 raw_spin_lock(&rq2->lock); 1444 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1445 } 1446 } 1447 } 1448 1449 /* 1450 * double_rq_unlock - safely unlock two runqueues 1451 * 1452 * Note this does not restore interrupts like task_rq_unlock, 1453 * you need to do so manually after calling. 1454 */ 1455 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1456 __releases(rq1->lock) 1457 __releases(rq2->lock) 1458 { 1459 raw_spin_unlock(&rq1->lock); 1460 if (rq1 != rq2) 1461 raw_spin_unlock(&rq2->lock); 1462 else 1463 __release(rq2->lock); 1464 } 1465 1466 #else /* CONFIG_SMP */ 1467 1468 /* 1469 * double_rq_lock - safely lock two runqueues 1470 * 1471 * Note this does not disable interrupts like task_rq_lock, 1472 * you need to do so manually before calling. 1473 */ 1474 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1475 __acquires(rq1->lock) 1476 __acquires(rq2->lock) 1477 { 1478 BUG_ON(!irqs_disabled()); 1479 BUG_ON(rq1 != rq2); 1480 raw_spin_lock(&rq1->lock); 1481 __acquire(rq2->lock); /* Fake it out ;) */ 1482 } 1483 1484 /* 1485 * double_rq_unlock - safely unlock two runqueues 1486 * 1487 * Note this does not restore interrupts like task_rq_unlock, 1488 * you need to do so manually after calling. 1489 */ 1490 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1491 __releases(rq1->lock) 1492 __releases(rq2->lock) 1493 { 1494 BUG_ON(rq1 != rq2); 1495 raw_spin_unlock(&rq1->lock); 1496 __release(rq2->lock); 1497 } 1498 1499 #endif 1500 1501 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1502 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1503 extern void print_cfs_stats(struct seq_file *m, int cpu); 1504 extern void print_rt_stats(struct seq_file *m, int cpu); 1505 1506 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1507 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1508 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1509 1510 extern void cfs_bandwidth_usage_inc(void); 1511 extern void cfs_bandwidth_usage_dec(void); 1512 1513 #ifdef CONFIG_NO_HZ_COMMON 1514 enum rq_nohz_flag_bits { 1515 NOHZ_TICK_STOPPED, 1516 NOHZ_BALANCE_KICK, 1517 }; 1518 1519 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1520 #endif 1521 1522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1523 1524 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1525 DECLARE_PER_CPU(u64, cpu_softirq_time); 1526 1527 #ifndef CONFIG_64BIT 1528 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1529 1530 static inline void irq_time_write_begin(void) 1531 { 1532 __this_cpu_inc(irq_time_seq.sequence); 1533 smp_wmb(); 1534 } 1535 1536 static inline void irq_time_write_end(void) 1537 { 1538 smp_wmb(); 1539 __this_cpu_inc(irq_time_seq.sequence); 1540 } 1541 1542 static inline u64 irq_time_read(int cpu) 1543 { 1544 u64 irq_time; 1545 unsigned seq; 1546 1547 do { 1548 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1549 irq_time = per_cpu(cpu_softirq_time, cpu) + 1550 per_cpu(cpu_hardirq_time, cpu); 1551 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1552 1553 return irq_time; 1554 } 1555 #else /* CONFIG_64BIT */ 1556 static inline void irq_time_write_begin(void) 1557 { 1558 } 1559 1560 static inline void irq_time_write_end(void) 1561 { 1562 } 1563 1564 static inline u64 irq_time_read(int cpu) 1565 { 1566 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1567 } 1568 #endif /* CONFIG_64BIT */ 1569 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1570