xref: /openbmc/linux/kernel/sched/sched.h (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34 
35 #include <uapi/linux/sched/types.h>
36 
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66 
67 #include <asm/tlb.h>
68 
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72 
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75 
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 #endif
81 
82 struct rq;
83 struct cpuidle_state;
84 
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED	1
87 #define TASK_ON_RQ_MIGRATING	2
88 
89 extern __read_mostly int scheduler_running;
90 
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93 
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102 
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w)		(w)
129 # define scale_load_down(w)	(w)
130 #endif
131 
132 /*
133  * Task weight (visible to users) and its load (invisible to users) have
134  * independent resolution, but they should be well calibrated. We use
135  * scale_load() and scale_load_down(w) to convert between them. The
136  * following must be true:
137  *
138  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139  *
140  */
141 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142 
143 /*
144  * Single value that decides SCHED_DEADLINE internal math precision.
145  * 10 -> just above 1us
146  * 9  -> just above 0.5us
147  */
148 #define DL_SCALE		10
149 
150 /*
151  * Single value that denotes runtime == period, ie unlimited time.
152  */
153 #define RUNTIME_INF		((u64)~0ULL)
154 
155 static inline int idle_policy(int policy)
156 {
157 	return policy == SCHED_IDLE;
158 }
159 static inline int fair_policy(int policy)
160 {
161 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163 
164 static inline int rt_policy(int policy)
165 {
166 	return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168 
169 static inline int dl_policy(int policy)
170 {
171 	return policy == SCHED_DEADLINE;
172 }
173 static inline bool valid_policy(int policy)
174 {
175 	return idle_policy(policy) || fair_policy(policy) ||
176 		rt_policy(policy) || dl_policy(policy);
177 }
178 
179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 	return rt_policy(p->policy);
182 }
183 
184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 	return dl_policy(p->policy);
187 }
188 
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190 
191 /*
192  * !! For sched_setattr_nocheck() (kernel) only !!
193  *
194  * This is actually gross. :(
195  *
196  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197  * tasks, but still be able to sleep. We need this on platforms that cannot
198  * atomically change clock frequency. Remove once fast switching will be
199  * available on such platforms.
200  *
201  * SUGOV stands for SchedUtil GOVernor.
202  */
203 #define SCHED_FLAG_SUGOV	0x10000000
204 
205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 	return false;
211 #endif
212 }
213 
214 /*
215  * Tells if entity @a should preempt entity @b.
216  */
217 static inline bool
218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 	return dl_entity_is_special(a) ||
221 	       dl_time_before(a->deadline, b->deadline);
222 }
223 
224 /*
225  * This is the priority-queue data structure of the RT scheduling class:
226  */
227 struct rt_prio_array {
228 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 	struct list_head queue[MAX_RT_PRIO];
230 };
231 
232 struct rt_bandwidth {
233 	/* nests inside the rq lock: */
234 	raw_spinlock_t		rt_runtime_lock;
235 	ktime_t			rt_period;
236 	u64			rt_runtime;
237 	struct hrtimer		rt_period_timer;
238 	unsigned int		rt_period_active;
239 };
240 
241 void __dl_clear_params(struct task_struct *p);
242 
243 /*
244  * To keep the bandwidth of -deadline tasks and groups under control
245  * we need some place where:
246  *  - store the maximum -deadline bandwidth of the system (the group);
247  *  - cache the fraction of that bandwidth that is currently allocated.
248  *
249  * This is all done in the data structure below. It is similar to the
250  * one used for RT-throttling (rt_bandwidth), with the main difference
251  * that, since here we are only interested in admission control, we
252  * do not decrease any runtime while the group "executes", neither we
253  * need a timer to replenish it.
254  *
255  * With respect to SMP, the bandwidth is given on a per-CPU basis,
256  * meaning that:
257  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258  *  - dl_total_bw array contains, in the i-eth element, the currently
259  *    allocated bandwidth on the i-eth CPU.
260  * Moreover, groups consume bandwidth on each CPU, while tasks only
261  * consume bandwidth on the CPU they're running on.
262  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263  * that will be shown the next time the proc or cgroup controls will
264  * be red. It on its turn can be changed by writing on its own
265  * control.
266  */
267 struct dl_bandwidth {
268 	raw_spinlock_t		dl_runtime_lock;
269 	u64			dl_runtime;
270 	u64			dl_period;
271 };
272 
273 static inline int dl_bandwidth_enabled(void)
274 {
275 	return sysctl_sched_rt_runtime >= 0;
276 }
277 
278 struct dl_bw {
279 	raw_spinlock_t		lock;
280 	u64			bw;
281 	u64			total_bw;
282 };
283 
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285 
286 static inline
287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 	dl_b->total_bw -= tsk_bw;
290 	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292 
293 static inline
294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw += tsk_bw;
297 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299 
300 static inline
301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 	return dl_b->bw != -1 &&
304 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306 
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int  sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319 
320 #ifdef CONFIG_CGROUP_SCHED
321 
322 #include <linux/cgroup.h>
323 
324 struct cfs_rq;
325 struct rt_rq;
326 
327 extern struct list_head task_groups;
328 
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 	raw_spinlock_t		lock;
332 	ktime_t			period;
333 	u64			quota;
334 	u64			runtime;
335 	s64			hierarchical_quota;
336 	u64			runtime_expires;
337 	int			expires_seq;
338 
339 	short			idle;
340 	short			period_active;
341 	struct hrtimer		period_timer;
342 	struct hrtimer		slack_timer;
343 	struct list_head	throttled_cfs_rq;
344 
345 	/* Statistics: */
346 	int			nr_periods;
347 	int			nr_throttled;
348 	u64			throttled_time;
349 #endif
350 };
351 
352 /* Task group related information */
353 struct task_group {
354 	struct cgroup_subsys_state css;
355 
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 	/* schedulable entities of this group on each CPU */
358 	struct sched_entity	**se;
359 	/* runqueue "owned" by this group on each CPU */
360 	struct cfs_rq		**cfs_rq;
361 	unsigned long		shares;
362 
363 #ifdef	CONFIG_SMP
364 	/*
365 	 * load_avg can be heavily contended at clock tick time, so put
366 	 * it in its own cacheline separated from the fields above which
367 	 * will also be accessed at each tick.
368 	 */
369 	atomic_long_t		load_avg ____cacheline_aligned;
370 #endif
371 #endif
372 
373 #ifdef CONFIG_RT_GROUP_SCHED
374 	struct sched_rt_entity	**rt_se;
375 	struct rt_rq		**rt_rq;
376 
377 	struct rt_bandwidth	rt_bandwidth;
378 #endif
379 
380 	struct rcu_head		rcu;
381 	struct list_head	list;
382 
383 	struct task_group	*parent;
384 	struct list_head	siblings;
385 	struct list_head	children;
386 
387 #ifdef CONFIG_SCHED_AUTOGROUP
388 	struct autogroup	*autogroup;
389 #endif
390 
391 	struct cfs_bandwidth	cfs_bandwidth;
392 };
393 
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
396 
397 /*
398  * A weight of 0 or 1 can cause arithmetics problems.
399  * A weight of a cfs_rq is the sum of weights of which entities
400  * are queued on this cfs_rq, so a weight of a entity should not be
401  * too large, so as the shares value of a task group.
402  * (The default weight is 1024 - so there's no practical
403  *  limitation from this.)
404  */
405 #define MIN_SHARES		(1UL <<  1)
406 #define MAX_SHARES		(1UL << 18)
407 #endif
408 
409 typedef int (*tg_visitor)(struct task_group *, void *);
410 
411 extern int walk_tg_tree_from(struct task_group *from,
412 			     tg_visitor down, tg_visitor up, void *data);
413 
414 /*
415  * Iterate the full tree, calling @down when first entering a node and @up when
416  * leaving it for the final time.
417  *
418  * Caller must hold rcu_lock or sufficient equivalent.
419  */
420 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
421 {
422 	return walk_tg_tree_from(&root_task_group, down, up, data);
423 }
424 
425 extern int tg_nop(struct task_group *tg, void *data);
426 
427 extern void free_fair_sched_group(struct task_group *tg);
428 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
429 extern void online_fair_sched_group(struct task_group *tg);
430 extern void unregister_fair_sched_group(struct task_group *tg);
431 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
432 			struct sched_entity *se, int cpu,
433 			struct sched_entity *parent);
434 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
435 
436 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
437 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
439 
440 extern void free_rt_sched_group(struct task_group *tg);
441 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
442 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
443 		struct sched_rt_entity *rt_se, int cpu,
444 		struct sched_rt_entity *parent);
445 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
446 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
447 extern long sched_group_rt_runtime(struct task_group *tg);
448 extern long sched_group_rt_period(struct task_group *tg);
449 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
450 
451 extern struct task_group *sched_create_group(struct task_group *parent);
452 extern void sched_online_group(struct task_group *tg,
453 			       struct task_group *parent);
454 extern void sched_destroy_group(struct task_group *tg);
455 extern void sched_offline_group(struct task_group *tg);
456 
457 extern void sched_move_task(struct task_struct *tsk);
458 
459 #ifdef CONFIG_FAIR_GROUP_SCHED
460 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
461 
462 #ifdef CONFIG_SMP
463 extern void set_task_rq_fair(struct sched_entity *se,
464 			     struct cfs_rq *prev, struct cfs_rq *next);
465 #else /* !CONFIG_SMP */
466 static inline void set_task_rq_fair(struct sched_entity *se,
467 			     struct cfs_rq *prev, struct cfs_rq *next) { }
468 #endif /* CONFIG_SMP */
469 #endif /* CONFIG_FAIR_GROUP_SCHED */
470 
471 #else /* CONFIG_CGROUP_SCHED */
472 
473 struct cfs_bandwidth { };
474 
475 #endif	/* CONFIG_CGROUP_SCHED */
476 
477 /* CFS-related fields in a runqueue */
478 struct cfs_rq {
479 	struct load_weight	load;
480 	unsigned long		runnable_weight;
481 	unsigned int		nr_running;
482 	unsigned int		h_nr_running;
483 
484 	u64			exec_clock;
485 	u64			min_vruntime;
486 #ifndef CONFIG_64BIT
487 	u64			min_vruntime_copy;
488 #endif
489 
490 	struct rb_root_cached	tasks_timeline;
491 
492 	/*
493 	 * 'curr' points to currently running entity on this cfs_rq.
494 	 * It is set to NULL otherwise (i.e when none are currently running).
495 	 */
496 	struct sched_entity	*curr;
497 	struct sched_entity	*next;
498 	struct sched_entity	*last;
499 	struct sched_entity	*skip;
500 
501 #ifdef	CONFIG_SCHED_DEBUG
502 	unsigned int		nr_spread_over;
503 #endif
504 
505 #ifdef CONFIG_SMP
506 	/*
507 	 * CFS load tracking
508 	 */
509 	struct sched_avg	avg;
510 #ifndef CONFIG_64BIT
511 	u64			load_last_update_time_copy;
512 #endif
513 	struct {
514 		raw_spinlock_t	lock ____cacheline_aligned;
515 		int		nr;
516 		unsigned long	load_avg;
517 		unsigned long	util_avg;
518 		unsigned long	runnable_sum;
519 	} removed;
520 
521 #ifdef CONFIG_FAIR_GROUP_SCHED
522 	unsigned long		tg_load_avg_contrib;
523 	long			propagate;
524 	long			prop_runnable_sum;
525 
526 	/*
527 	 *   h_load = weight * f(tg)
528 	 *
529 	 * Where f(tg) is the recursive weight fraction assigned to
530 	 * this group.
531 	 */
532 	unsigned long		h_load;
533 	u64			last_h_load_update;
534 	struct sched_entity	*h_load_next;
535 #endif /* CONFIG_FAIR_GROUP_SCHED */
536 #endif /* CONFIG_SMP */
537 
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
540 
541 	/*
542 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
543 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
544 	 * (like users, containers etc.)
545 	 *
546 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
547 	 * This list is used during load balance.
548 	 */
549 	int			on_list;
550 	struct list_head	leaf_cfs_rq_list;
551 	struct task_group	*tg;	/* group that "owns" this runqueue */
552 
553 #ifdef CONFIG_CFS_BANDWIDTH
554 	int			runtime_enabled;
555 	int			expires_seq;
556 	u64			runtime_expires;
557 	s64			runtime_remaining;
558 
559 	u64			throttled_clock;
560 	u64			throttled_clock_task;
561 	u64			throttled_clock_task_time;
562 	int			throttled;
563 	int			throttle_count;
564 	struct list_head	throttled_list;
565 #endif /* CONFIG_CFS_BANDWIDTH */
566 #endif /* CONFIG_FAIR_GROUP_SCHED */
567 };
568 
569 static inline int rt_bandwidth_enabled(void)
570 {
571 	return sysctl_sched_rt_runtime >= 0;
572 }
573 
574 /* RT IPI pull logic requires IRQ_WORK */
575 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
576 # define HAVE_RT_PUSH_IPI
577 #endif
578 
579 /* Real-Time classes' related field in a runqueue: */
580 struct rt_rq {
581 	struct rt_prio_array	active;
582 	unsigned int		rt_nr_running;
583 	unsigned int		rr_nr_running;
584 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
585 	struct {
586 		int		curr; /* highest queued rt task prio */
587 #ifdef CONFIG_SMP
588 		int		next; /* next highest */
589 #endif
590 	} highest_prio;
591 #endif
592 #ifdef CONFIG_SMP
593 	unsigned long		rt_nr_migratory;
594 	unsigned long		rt_nr_total;
595 	int			overloaded;
596 	struct plist_head	pushable_tasks;
597 
598 #endif /* CONFIG_SMP */
599 	int			rt_queued;
600 
601 	int			rt_throttled;
602 	u64			rt_time;
603 	u64			rt_runtime;
604 	/* Nests inside the rq lock: */
605 	raw_spinlock_t		rt_runtime_lock;
606 
607 #ifdef CONFIG_RT_GROUP_SCHED
608 	unsigned long		rt_nr_boosted;
609 
610 	struct rq		*rq;
611 	struct task_group	*tg;
612 #endif
613 };
614 
615 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
616 {
617 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
618 }
619 
620 /* Deadline class' related fields in a runqueue */
621 struct dl_rq {
622 	/* runqueue is an rbtree, ordered by deadline */
623 	struct rb_root_cached	root;
624 
625 	unsigned long		dl_nr_running;
626 
627 #ifdef CONFIG_SMP
628 	/*
629 	 * Deadline values of the currently executing and the
630 	 * earliest ready task on this rq. Caching these facilitates
631 	 * the decision wether or not a ready but not running task
632 	 * should migrate somewhere else.
633 	 */
634 	struct {
635 		u64		curr;
636 		u64		next;
637 	} earliest_dl;
638 
639 	unsigned long		dl_nr_migratory;
640 	int			overloaded;
641 
642 	/*
643 	 * Tasks on this rq that can be pushed away. They are kept in
644 	 * an rb-tree, ordered by tasks' deadlines, with caching
645 	 * of the leftmost (earliest deadline) element.
646 	 */
647 	struct rb_root_cached	pushable_dl_tasks_root;
648 #else
649 	struct dl_bw		dl_bw;
650 #endif
651 	/*
652 	 * "Active utilization" for this runqueue: increased when a
653 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
654 	 * task blocks
655 	 */
656 	u64			running_bw;
657 
658 	/*
659 	 * Utilization of the tasks "assigned" to this runqueue (including
660 	 * the tasks that are in runqueue and the tasks that executed on this
661 	 * CPU and blocked). Increased when a task moves to this runqueue, and
662 	 * decreased when the task moves away (migrates, changes scheduling
663 	 * policy, or terminates).
664 	 * This is needed to compute the "inactive utilization" for the
665 	 * runqueue (inactive utilization = this_bw - running_bw).
666 	 */
667 	u64			this_bw;
668 	u64			extra_bw;
669 
670 	/*
671 	 * Inverse of the fraction of CPU utilization that can be reclaimed
672 	 * by the GRUB algorithm.
673 	 */
674 	u64			bw_ratio;
675 };
676 
677 #ifdef CONFIG_FAIR_GROUP_SCHED
678 /* An entity is a task if it doesn't "own" a runqueue */
679 #define entity_is_task(se)	(!se->my_q)
680 #else
681 #define entity_is_task(se)	1
682 #endif
683 
684 #ifdef CONFIG_SMP
685 /*
686  * XXX we want to get rid of these helpers and use the full load resolution.
687  */
688 static inline long se_weight(struct sched_entity *se)
689 {
690 	return scale_load_down(se->load.weight);
691 }
692 
693 static inline long se_runnable(struct sched_entity *se)
694 {
695 	return scale_load_down(se->runnable_weight);
696 }
697 
698 static inline bool sched_asym_prefer(int a, int b)
699 {
700 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
701 }
702 
703 /*
704  * We add the notion of a root-domain which will be used to define per-domain
705  * variables. Each exclusive cpuset essentially defines an island domain by
706  * fully partitioning the member CPUs from any other cpuset. Whenever a new
707  * exclusive cpuset is created, we also create and attach a new root-domain
708  * object.
709  *
710  */
711 struct root_domain {
712 	atomic_t		refcount;
713 	atomic_t		rto_count;
714 	struct rcu_head		rcu;
715 	cpumask_var_t		span;
716 	cpumask_var_t		online;
717 
718 	/* Indicate more than one runnable task for any CPU */
719 	bool			overload;
720 
721 	/*
722 	 * The bit corresponding to a CPU gets set here if such CPU has more
723 	 * than one runnable -deadline task (as it is below for RT tasks).
724 	 */
725 	cpumask_var_t		dlo_mask;
726 	atomic_t		dlo_count;
727 	struct dl_bw		dl_bw;
728 	struct cpudl		cpudl;
729 
730 #ifdef HAVE_RT_PUSH_IPI
731 	/*
732 	 * For IPI pull requests, loop across the rto_mask.
733 	 */
734 	struct irq_work		rto_push_work;
735 	raw_spinlock_t		rto_lock;
736 	/* These are only updated and read within rto_lock */
737 	int			rto_loop;
738 	int			rto_cpu;
739 	/* These atomics are updated outside of a lock */
740 	atomic_t		rto_loop_next;
741 	atomic_t		rto_loop_start;
742 #endif
743 	/*
744 	 * The "RT overload" flag: it gets set if a CPU has more than
745 	 * one runnable RT task.
746 	 */
747 	cpumask_var_t		rto_mask;
748 	struct cpupri		cpupri;
749 
750 	unsigned long		max_cpu_capacity;
751 };
752 
753 extern struct root_domain def_root_domain;
754 extern struct mutex sched_domains_mutex;
755 
756 extern void init_defrootdomain(void);
757 extern int sched_init_domains(const struct cpumask *cpu_map);
758 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
759 extern void sched_get_rd(struct root_domain *rd);
760 extern void sched_put_rd(struct root_domain *rd);
761 
762 #ifdef HAVE_RT_PUSH_IPI
763 extern void rto_push_irq_work_func(struct irq_work *work);
764 #endif
765 #endif /* CONFIG_SMP */
766 
767 /*
768  * This is the main, per-CPU runqueue data structure.
769  *
770  * Locking rule: those places that want to lock multiple runqueues
771  * (such as the load balancing or the thread migration code), lock
772  * acquire operations must be ordered by ascending &runqueue.
773  */
774 struct rq {
775 	/* runqueue lock: */
776 	raw_spinlock_t		lock;
777 
778 	/*
779 	 * nr_running and cpu_load should be in the same cacheline because
780 	 * remote CPUs use both these fields when doing load calculation.
781 	 */
782 	unsigned int		nr_running;
783 #ifdef CONFIG_NUMA_BALANCING
784 	unsigned int		nr_numa_running;
785 	unsigned int		nr_preferred_running;
786 #endif
787 	#define CPU_LOAD_IDX_MAX 5
788 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
789 #ifdef CONFIG_NO_HZ_COMMON
790 #ifdef CONFIG_SMP
791 	unsigned long		last_load_update_tick;
792 	unsigned long		last_blocked_load_update_tick;
793 	unsigned int		has_blocked_load;
794 #endif /* CONFIG_SMP */
795 	unsigned int		nohz_tick_stopped;
796 	atomic_t nohz_flags;
797 #endif /* CONFIG_NO_HZ_COMMON */
798 
799 	/* capture load from *all* tasks on this CPU: */
800 	struct load_weight	load;
801 	unsigned long		nr_load_updates;
802 	u64			nr_switches;
803 
804 	struct cfs_rq		cfs;
805 	struct rt_rq		rt;
806 	struct dl_rq		dl;
807 
808 #ifdef CONFIG_FAIR_GROUP_SCHED
809 	/* list of leaf cfs_rq on this CPU: */
810 	struct list_head	leaf_cfs_rq_list;
811 	struct list_head	*tmp_alone_branch;
812 #endif /* CONFIG_FAIR_GROUP_SCHED */
813 
814 	/*
815 	 * This is part of a global counter where only the total sum
816 	 * over all CPUs matters. A task can increase this counter on
817 	 * one CPU and if it got migrated afterwards it may decrease
818 	 * it on another CPU. Always updated under the runqueue lock:
819 	 */
820 	unsigned long		nr_uninterruptible;
821 
822 	struct task_struct	*curr;
823 	struct task_struct	*idle;
824 	struct task_struct	*stop;
825 	unsigned long		next_balance;
826 	struct mm_struct	*prev_mm;
827 
828 	unsigned int		clock_update_flags;
829 	u64			clock;
830 	u64			clock_task;
831 
832 	atomic_t		nr_iowait;
833 
834 #ifdef CONFIG_SMP
835 	struct root_domain	*rd;
836 	struct sched_domain	*sd;
837 
838 	unsigned long		cpu_capacity;
839 	unsigned long		cpu_capacity_orig;
840 
841 	struct callback_head	*balance_callback;
842 
843 	unsigned char		idle_balance;
844 
845 	/* For active balancing */
846 	int			active_balance;
847 	int			push_cpu;
848 	struct cpu_stop_work	active_balance_work;
849 
850 	/* CPU of this runqueue: */
851 	int			cpu;
852 	int			online;
853 
854 	struct list_head cfs_tasks;
855 
856 	struct sched_avg	avg_rt;
857 	struct sched_avg	avg_dl;
858 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
859 #define HAVE_SCHED_AVG_IRQ
860 	struct sched_avg	avg_irq;
861 #endif
862 	u64			idle_stamp;
863 	u64			avg_idle;
864 
865 	/* This is used to determine avg_idle's max value */
866 	u64			max_idle_balance_cost;
867 #endif
868 
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 	u64			prev_irq_time;
871 #endif
872 #ifdef CONFIG_PARAVIRT
873 	u64			prev_steal_time;
874 #endif
875 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
876 	u64			prev_steal_time_rq;
877 #endif
878 
879 	/* calc_load related fields */
880 	unsigned long		calc_load_update;
881 	long			calc_load_active;
882 
883 #ifdef CONFIG_SCHED_HRTICK
884 #ifdef CONFIG_SMP
885 	int			hrtick_csd_pending;
886 	call_single_data_t	hrtick_csd;
887 #endif
888 	struct hrtimer		hrtick_timer;
889 #endif
890 
891 #ifdef CONFIG_SCHEDSTATS
892 	/* latency stats */
893 	struct sched_info	rq_sched_info;
894 	unsigned long long	rq_cpu_time;
895 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
896 
897 	/* sys_sched_yield() stats */
898 	unsigned int		yld_count;
899 
900 	/* schedule() stats */
901 	unsigned int		sched_count;
902 	unsigned int		sched_goidle;
903 
904 	/* try_to_wake_up() stats */
905 	unsigned int		ttwu_count;
906 	unsigned int		ttwu_local;
907 #endif
908 
909 #ifdef CONFIG_SMP
910 	struct llist_head	wake_list;
911 #endif
912 
913 #ifdef CONFIG_CPU_IDLE
914 	/* Must be inspected within a rcu lock section */
915 	struct cpuidle_state	*idle_state;
916 #endif
917 };
918 
919 static inline int cpu_of(struct rq *rq)
920 {
921 #ifdef CONFIG_SMP
922 	return rq->cpu;
923 #else
924 	return 0;
925 #endif
926 }
927 
928 
929 #ifdef CONFIG_SCHED_SMT
930 
931 extern struct static_key_false sched_smt_present;
932 
933 extern void __update_idle_core(struct rq *rq);
934 
935 static inline void update_idle_core(struct rq *rq)
936 {
937 	if (static_branch_unlikely(&sched_smt_present))
938 		__update_idle_core(rq);
939 }
940 
941 #else
942 static inline void update_idle_core(struct rq *rq) { }
943 #endif
944 
945 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
946 
947 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
948 #define this_rq()		this_cpu_ptr(&runqueues)
949 #define task_rq(p)		cpu_rq(task_cpu(p))
950 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
951 #define raw_rq()		raw_cpu_ptr(&runqueues)
952 
953 static inline u64 __rq_clock_broken(struct rq *rq)
954 {
955 	return READ_ONCE(rq->clock);
956 }
957 
958 /*
959  * rq::clock_update_flags bits
960  *
961  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
962  *  call to __schedule(). This is an optimisation to avoid
963  *  neighbouring rq clock updates.
964  *
965  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
966  *  in effect and calls to update_rq_clock() are being ignored.
967  *
968  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
969  *  made to update_rq_clock() since the last time rq::lock was pinned.
970  *
971  * If inside of __schedule(), clock_update_flags will have been
972  * shifted left (a left shift is a cheap operation for the fast path
973  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
974  *
975  *	if (rq-clock_update_flags >= RQCF_UPDATED)
976  *
977  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
978  * one position though, because the next rq_unpin_lock() will shift it
979  * back.
980  */
981 #define RQCF_REQ_SKIP		0x01
982 #define RQCF_ACT_SKIP		0x02
983 #define RQCF_UPDATED		0x04
984 
985 static inline void assert_clock_updated(struct rq *rq)
986 {
987 	/*
988 	 * The only reason for not seeing a clock update since the
989 	 * last rq_pin_lock() is if we're currently skipping updates.
990 	 */
991 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
992 }
993 
994 static inline u64 rq_clock(struct rq *rq)
995 {
996 	lockdep_assert_held(&rq->lock);
997 	assert_clock_updated(rq);
998 
999 	return rq->clock;
1000 }
1001 
1002 static inline u64 rq_clock_task(struct rq *rq)
1003 {
1004 	lockdep_assert_held(&rq->lock);
1005 	assert_clock_updated(rq);
1006 
1007 	return rq->clock_task;
1008 }
1009 
1010 static inline void rq_clock_skip_update(struct rq *rq)
1011 {
1012 	lockdep_assert_held(&rq->lock);
1013 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1014 }
1015 
1016 /*
1017  * See rt task throttling, which is the only time a skip
1018  * request is cancelled.
1019  */
1020 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1021 {
1022 	lockdep_assert_held(&rq->lock);
1023 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1024 }
1025 
1026 struct rq_flags {
1027 	unsigned long flags;
1028 	struct pin_cookie cookie;
1029 #ifdef CONFIG_SCHED_DEBUG
1030 	/*
1031 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1032 	 * current pin context is stashed here in case it needs to be
1033 	 * restored in rq_repin_lock().
1034 	 */
1035 	unsigned int clock_update_flags;
1036 #endif
1037 };
1038 
1039 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1040 {
1041 	rf->cookie = lockdep_pin_lock(&rq->lock);
1042 
1043 #ifdef CONFIG_SCHED_DEBUG
1044 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1045 	rf->clock_update_flags = 0;
1046 #endif
1047 }
1048 
1049 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1053 		rf->clock_update_flags = RQCF_UPDATED;
1054 #endif
1055 
1056 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1057 }
1058 
1059 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1060 {
1061 	lockdep_repin_lock(&rq->lock, rf->cookie);
1062 
1063 #ifdef CONFIG_SCHED_DEBUG
1064 	/*
1065 	 * Restore the value we stashed in @rf for this pin context.
1066 	 */
1067 	rq->clock_update_flags |= rf->clock_update_flags;
1068 #endif
1069 }
1070 
1071 #ifdef CONFIG_NUMA
1072 enum numa_topology_type {
1073 	NUMA_DIRECT,
1074 	NUMA_GLUELESS_MESH,
1075 	NUMA_BACKPLANE,
1076 };
1077 extern enum numa_topology_type sched_numa_topology_type;
1078 extern int sched_max_numa_distance;
1079 extern bool find_numa_distance(int distance);
1080 #endif
1081 
1082 #ifdef CONFIG_NUMA
1083 extern void sched_init_numa(void);
1084 extern void sched_domains_numa_masks_set(unsigned int cpu);
1085 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1086 #else
1087 static inline void sched_init_numa(void) { }
1088 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1089 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1090 #endif
1091 
1092 #ifdef CONFIG_NUMA_BALANCING
1093 /* The regions in numa_faults array from task_struct */
1094 enum numa_faults_stats {
1095 	NUMA_MEM = 0,
1096 	NUMA_CPU,
1097 	NUMA_MEMBUF,
1098 	NUMA_CPUBUF
1099 };
1100 extern void sched_setnuma(struct task_struct *p, int node);
1101 extern int migrate_task_to(struct task_struct *p, int cpu);
1102 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1103 			int cpu, int scpu);
1104 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1105 #else
1106 static inline void
1107 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1108 {
1109 }
1110 #endif /* CONFIG_NUMA_BALANCING */
1111 
1112 #ifdef CONFIG_SMP
1113 
1114 static inline void
1115 queue_balance_callback(struct rq *rq,
1116 		       struct callback_head *head,
1117 		       void (*func)(struct rq *rq))
1118 {
1119 	lockdep_assert_held(&rq->lock);
1120 
1121 	if (unlikely(head->next))
1122 		return;
1123 
1124 	head->func = (void (*)(struct callback_head *))func;
1125 	head->next = rq->balance_callback;
1126 	rq->balance_callback = head;
1127 }
1128 
1129 extern void sched_ttwu_pending(void);
1130 
1131 #define rcu_dereference_check_sched_domain(p) \
1132 	rcu_dereference_check((p), \
1133 			      lockdep_is_held(&sched_domains_mutex))
1134 
1135 /*
1136  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1137  * See detach_destroy_domains: synchronize_sched for details.
1138  *
1139  * The domain tree of any CPU may only be accessed from within
1140  * preempt-disabled sections.
1141  */
1142 #define for_each_domain(cpu, __sd) \
1143 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1144 			__sd; __sd = __sd->parent)
1145 
1146 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1147 
1148 /**
1149  * highest_flag_domain - Return highest sched_domain containing flag.
1150  * @cpu:	The CPU whose highest level of sched domain is to
1151  *		be returned.
1152  * @flag:	The flag to check for the highest sched_domain
1153  *		for the given CPU.
1154  *
1155  * Returns the highest sched_domain of a CPU which contains the given flag.
1156  */
1157 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1158 {
1159 	struct sched_domain *sd, *hsd = NULL;
1160 
1161 	for_each_domain(cpu, sd) {
1162 		if (!(sd->flags & flag))
1163 			break;
1164 		hsd = sd;
1165 	}
1166 
1167 	return hsd;
1168 }
1169 
1170 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1171 {
1172 	struct sched_domain *sd;
1173 
1174 	for_each_domain(cpu, sd) {
1175 		if (sd->flags & flag)
1176 			break;
1177 	}
1178 
1179 	return sd;
1180 }
1181 
1182 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1183 DECLARE_PER_CPU(int, sd_llc_size);
1184 DECLARE_PER_CPU(int, sd_llc_id);
1185 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1186 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1187 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1188 
1189 struct sched_group_capacity {
1190 	atomic_t		ref;
1191 	/*
1192 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1193 	 * for a single CPU.
1194 	 */
1195 	unsigned long		capacity;
1196 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1197 	unsigned long		next_update;
1198 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1199 
1200 #ifdef CONFIG_SCHED_DEBUG
1201 	int			id;
1202 #endif
1203 
1204 	unsigned long		cpumask[0];		/* Balance mask */
1205 };
1206 
1207 struct sched_group {
1208 	struct sched_group	*next;			/* Must be a circular list */
1209 	atomic_t		ref;
1210 
1211 	unsigned int		group_weight;
1212 	struct sched_group_capacity *sgc;
1213 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1214 
1215 	/*
1216 	 * The CPUs this group covers.
1217 	 *
1218 	 * NOTE: this field is variable length. (Allocated dynamically
1219 	 * by attaching extra space to the end of the structure,
1220 	 * depending on how many CPUs the kernel has booted up with)
1221 	 */
1222 	unsigned long		cpumask[0];
1223 };
1224 
1225 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1226 {
1227 	return to_cpumask(sg->cpumask);
1228 }
1229 
1230 /*
1231  * See build_balance_mask().
1232  */
1233 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1234 {
1235 	return to_cpumask(sg->sgc->cpumask);
1236 }
1237 
1238 /**
1239  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1240  * @group: The group whose first CPU is to be returned.
1241  */
1242 static inline unsigned int group_first_cpu(struct sched_group *group)
1243 {
1244 	return cpumask_first(sched_group_span(group));
1245 }
1246 
1247 extern int group_balance_cpu(struct sched_group *sg);
1248 
1249 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1250 void register_sched_domain_sysctl(void);
1251 void dirty_sched_domain_sysctl(int cpu);
1252 void unregister_sched_domain_sysctl(void);
1253 #else
1254 static inline void register_sched_domain_sysctl(void)
1255 {
1256 }
1257 static inline void dirty_sched_domain_sysctl(int cpu)
1258 {
1259 }
1260 static inline void unregister_sched_domain_sysctl(void)
1261 {
1262 }
1263 #endif
1264 
1265 #else
1266 
1267 static inline void sched_ttwu_pending(void) { }
1268 
1269 #endif /* CONFIG_SMP */
1270 
1271 #include "stats.h"
1272 #include "autogroup.h"
1273 
1274 #ifdef CONFIG_CGROUP_SCHED
1275 
1276 /*
1277  * Return the group to which this tasks belongs.
1278  *
1279  * We cannot use task_css() and friends because the cgroup subsystem
1280  * changes that value before the cgroup_subsys::attach() method is called,
1281  * therefore we cannot pin it and might observe the wrong value.
1282  *
1283  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1284  * core changes this before calling sched_move_task().
1285  *
1286  * Instead we use a 'copy' which is updated from sched_move_task() while
1287  * holding both task_struct::pi_lock and rq::lock.
1288  */
1289 static inline struct task_group *task_group(struct task_struct *p)
1290 {
1291 	return p->sched_task_group;
1292 }
1293 
1294 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1295 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1296 {
1297 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1298 	struct task_group *tg = task_group(p);
1299 #endif
1300 
1301 #ifdef CONFIG_FAIR_GROUP_SCHED
1302 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1303 	p->se.cfs_rq = tg->cfs_rq[cpu];
1304 	p->se.parent = tg->se[cpu];
1305 #endif
1306 
1307 #ifdef CONFIG_RT_GROUP_SCHED
1308 	p->rt.rt_rq  = tg->rt_rq[cpu];
1309 	p->rt.parent = tg->rt_se[cpu];
1310 #endif
1311 }
1312 
1313 #else /* CONFIG_CGROUP_SCHED */
1314 
1315 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1316 static inline struct task_group *task_group(struct task_struct *p)
1317 {
1318 	return NULL;
1319 }
1320 
1321 #endif /* CONFIG_CGROUP_SCHED */
1322 
1323 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1324 {
1325 	set_task_rq(p, cpu);
1326 #ifdef CONFIG_SMP
1327 	/*
1328 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1329 	 * successfuly executed on another CPU. We must ensure that updates of
1330 	 * per-task data have been completed by this moment.
1331 	 */
1332 	smp_wmb();
1333 #ifdef CONFIG_THREAD_INFO_IN_TASK
1334 	p->cpu = cpu;
1335 #else
1336 	task_thread_info(p)->cpu = cpu;
1337 #endif
1338 	p->wake_cpu = cpu;
1339 #endif
1340 }
1341 
1342 /*
1343  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1344  */
1345 #ifdef CONFIG_SCHED_DEBUG
1346 # include <linux/static_key.h>
1347 # define const_debug __read_mostly
1348 #else
1349 # define const_debug const
1350 #endif
1351 
1352 #define SCHED_FEAT(name, enabled)	\
1353 	__SCHED_FEAT_##name ,
1354 
1355 enum {
1356 #include "features.h"
1357 	__SCHED_FEAT_NR,
1358 };
1359 
1360 #undef SCHED_FEAT
1361 
1362 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1363 
1364 /*
1365  * To support run-time toggling of sched features, all the translation units
1366  * (but core.c) reference the sysctl_sched_features defined in core.c.
1367  */
1368 extern const_debug unsigned int sysctl_sched_features;
1369 
1370 #define SCHED_FEAT(name, enabled)					\
1371 static __always_inline bool static_branch_##name(struct static_key *key) \
1372 {									\
1373 	return static_key_##enabled(key);				\
1374 }
1375 
1376 #include "features.h"
1377 #undef SCHED_FEAT
1378 
1379 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1380 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1381 
1382 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1383 
1384 /*
1385  * Each translation unit has its own copy of sysctl_sched_features to allow
1386  * constants propagation at compile time and compiler optimization based on
1387  * features default.
1388  */
1389 #define SCHED_FEAT(name, enabled)	\
1390 	(1UL << __SCHED_FEAT_##name) * enabled |
1391 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1392 #include "features.h"
1393 	0;
1394 #undef SCHED_FEAT
1395 
1396 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1397 
1398 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1399 
1400 extern struct static_key_false sched_numa_balancing;
1401 extern struct static_key_false sched_schedstats;
1402 
1403 static inline u64 global_rt_period(void)
1404 {
1405 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1406 }
1407 
1408 static inline u64 global_rt_runtime(void)
1409 {
1410 	if (sysctl_sched_rt_runtime < 0)
1411 		return RUNTIME_INF;
1412 
1413 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1414 }
1415 
1416 static inline int task_current(struct rq *rq, struct task_struct *p)
1417 {
1418 	return rq->curr == p;
1419 }
1420 
1421 static inline int task_running(struct rq *rq, struct task_struct *p)
1422 {
1423 #ifdef CONFIG_SMP
1424 	return p->on_cpu;
1425 #else
1426 	return task_current(rq, p);
1427 #endif
1428 }
1429 
1430 static inline int task_on_rq_queued(struct task_struct *p)
1431 {
1432 	return p->on_rq == TASK_ON_RQ_QUEUED;
1433 }
1434 
1435 static inline int task_on_rq_migrating(struct task_struct *p)
1436 {
1437 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1438 }
1439 
1440 /*
1441  * wake flags
1442  */
1443 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1444 #define WF_FORK			0x02		/* Child wakeup after fork */
1445 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1446 
1447 /*
1448  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1449  * of tasks with abnormal "nice" values across CPUs the contribution that
1450  * each task makes to its run queue's load is weighted according to its
1451  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1452  * scaled version of the new time slice allocation that they receive on time
1453  * slice expiry etc.
1454  */
1455 
1456 #define WEIGHT_IDLEPRIO		3
1457 #define WMULT_IDLEPRIO		1431655765
1458 
1459 extern const int		sched_prio_to_weight[40];
1460 extern const u32		sched_prio_to_wmult[40];
1461 
1462 /*
1463  * {de,en}queue flags:
1464  *
1465  * DEQUEUE_SLEEP  - task is no longer runnable
1466  * ENQUEUE_WAKEUP - task just became runnable
1467  *
1468  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1469  *                are in a known state which allows modification. Such pairs
1470  *                should preserve as much state as possible.
1471  *
1472  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1473  *        in the runqueue.
1474  *
1475  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1476  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1477  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1478  *
1479  */
1480 
1481 #define DEQUEUE_SLEEP		0x01
1482 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1483 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1484 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1485 
1486 #define ENQUEUE_WAKEUP		0x01
1487 #define ENQUEUE_RESTORE		0x02
1488 #define ENQUEUE_MOVE		0x04
1489 #define ENQUEUE_NOCLOCK		0x08
1490 
1491 #define ENQUEUE_HEAD		0x10
1492 #define ENQUEUE_REPLENISH	0x20
1493 #ifdef CONFIG_SMP
1494 #define ENQUEUE_MIGRATED	0x40
1495 #else
1496 #define ENQUEUE_MIGRATED	0x00
1497 #endif
1498 
1499 #define RETRY_TASK		((void *)-1UL)
1500 
1501 struct sched_class {
1502 	const struct sched_class *next;
1503 
1504 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1505 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1506 	void (*yield_task)   (struct rq *rq);
1507 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1508 
1509 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1510 
1511 	/*
1512 	 * It is the responsibility of the pick_next_task() method that will
1513 	 * return the next task to call put_prev_task() on the @prev task or
1514 	 * something equivalent.
1515 	 *
1516 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1517 	 * tasks.
1518 	 */
1519 	struct task_struct * (*pick_next_task)(struct rq *rq,
1520 					       struct task_struct *prev,
1521 					       struct rq_flags *rf);
1522 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1523 
1524 #ifdef CONFIG_SMP
1525 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1526 	void (*migrate_task_rq)(struct task_struct *p);
1527 
1528 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1529 
1530 	void (*set_cpus_allowed)(struct task_struct *p,
1531 				 const struct cpumask *newmask);
1532 
1533 	void (*rq_online)(struct rq *rq);
1534 	void (*rq_offline)(struct rq *rq);
1535 #endif
1536 
1537 	void (*set_curr_task)(struct rq *rq);
1538 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1539 	void (*task_fork)(struct task_struct *p);
1540 	void (*task_dead)(struct task_struct *p);
1541 
1542 	/*
1543 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1544 	 * cannot assume the switched_from/switched_to pair is serliazed by
1545 	 * rq->lock. They are however serialized by p->pi_lock.
1546 	 */
1547 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1548 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1549 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1550 			      int oldprio);
1551 
1552 	unsigned int (*get_rr_interval)(struct rq *rq,
1553 					struct task_struct *task);
1554 
1555 	void (*update_curr)(struct rq *rq);
1556 
1557 #define TASK_SET_GROUP		0
1558 #define TASK_MOVE_GROUP		1
1559 
1560 #ifdef CONFIG_FAIR_GROUP_SCHED
1561 	void (*task_change_group)(struct task_struct *p, int type);
1562 #endif
1563 };
1564 
1565 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1566 {
1567 	prev->sched_class->put_prev_task(rq, prev);
1568 }
1569 
1570 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1571 {
1572 	curr->sched_class->set_curr_task(rq);
1573 }
1574 
1575 #ifdef CONFIG_SMP
1576 #define sched_class_highest (&stop_sched_class)
1577 #else
1578 #define sched_class_highest (&dl_sched_class)
1579 #endif
1580 #define for_each_class(class) \
1581    for (class = sched_class_highest; class; class = class->next)
1582 
1583 extern const struct sched_class stop_sched_class;
1584 extern const struct sched_class dl_sched_class;
1585 extern const struct sched_class rt_sched_class;
1586 extern const struct sched_class fair_sched_class;
1587 extern const struct sched_class idle_sched_class;
1588 
1589 
1590 #ifdef CONFIG_SMP
1591 
1592 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1593 
1594 extern void trigger_load_balance(struct rq *rq);
1595 
1596 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1597 
1598 #endif
1599 
1600 #ifdef CONFIG_CPU_IDLE
1601 static inline void idle_set_state(struct rq *rq,
1602 				  struct cpuidle_state *idle_state)
1603 {
1604 	rq->idle_state = idle_state;
1605 }
1606 
1607 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1608 {
1609 	SCHED_WARN_ON(!rcu_read_lock_held());
1610 
1611 	return rq->idle_state;
1612 }
1613 #else
1614 static inline void idle_set_state(struct rq *rq,
1615 				  struct cpuidle_state *idle_state)
1616 {
1617 }
1618 
1619 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1620 {
1621 	return NULL;
1622 }
1623 #endif
1624 
1625 extern void schedule_idle(void);
1626 
1627 extern void sysrq_sched_debug_show(void);
1628 extern void sched_init_granularity(void);
1629 extern void update_max_interval(void);
1630 
1631 extern void init_sched_dl_class(void);
1632 extern void init_sched_rt_class(void);
1633 extern void init_sched_fair_class(void);
1634 
1635 extern void reweight_task(struct task_struct *p, int prio);
1636 
1637 extern void resched_curr(struct rq *rq);
1638 extern void resched_cpu(int cpu);
1639 
1640 extern struct rt_bandwidth def_rt_bandwidth;
1641 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1642 
1643 extern struct dl_bandwidth def_dl_bandwidth;
1644 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1645 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1646 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1647 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1648 
1649 #define BW_SHIFT		20
1650 #define BW_UNIT			(1 << BW_SHIFT)
1651 #define RATIO_SHIFT		8
1652 unsigned long to_ratio(u64 period, u64 runtime);
1653 
1654 extern void init_entity_runnable_average(struct sched_entity *se);
1655 extern void post_init_entity_util_avg(struct sched_entity *se);
1656 
1657 #ifdef CONFIG_NO_HZ_FULL
1658 extern bool sched_can_stop_tick(struct rq *rq);
1659 extern int __init sched_tick_offload_init(void);
1660 
1661 /*
1662  * Tick may be needed by tasks in the runqueue depending on their policy and
1663  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1664  * nohz mode if necessary.
1665  */
1666 static inline void sched_update_tick_dependency(struct rq *rq)
1667 {
1668 	int cpu;
1669 
1670 	if (!tick_nohz_full_enabled())
1671 		return;
1672 
1673 	cpu = cpu_of(rq);
1674 
1675 	if (!tick_nohz_full_cpu(cpu))
1676 		return;
1677 
1678 	if (sched_can_stop_tick(rq))
1679 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1680 	else
1681 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1682 }
1683 #else
1684 static inline int sched_tick_offload_init(void) { return 0; }
1685 static inline void sched_update_tick_dependency(struct rq *rq) { }
1686 #endif
1687 
1688 static inline void add_nr_running(struct rq *rq, unsigned count)
1689 {
1690 	unsigned prev_nr = rq->nr_running;
1691 
1692 	rq->nr_running = prev_nr + count;
1693 
1694 	if (prev_nr < 2 && rq->nr_running >= 2) {
1695 #ifdef CONFIG_SMP
1696 		if (!rq->rd->overload)
1697 			rq->rd->overload = true;
1698 #endif
1699 	}
1700 
1701 	sched_update_tick_dependency(rq);
1702 }
1703 
1704 static inline void sub_nr_running(struct rq *rq, unsigned count)
1705 {
1706 	rq->nr_running -= count;
1707 	/* Check if we still need preemption */
1708 	sched_update_tick_dependency(rq);
1709 }
1710 
1711 extern void update_rq_clock(struct rq *rq);
1712 
1713 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1714 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1715 
1716 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1717 
1718 extern const_debug unsigned int sysctl_sched_nr_migrate;
1719 extern const_debug unsigned int sysctl_sched_migration_cost;
1720 
1721 #ifdef CONFIG_SCHED_HRTICK
1722 
1723 /*
1724  * Use hrtick when:
1725  *  - enabled by features
1726  *  - hrtimer is actually high res
1727  */
1728 static inline int hrtick_enabled(struct rq *rq)
1729 {
1730 	if (!sched_feat(HRTICK))
1731 		return 0;
1732 	if (!cpu_active(cpu_of(rq)))
1733 		return 0;
1734 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1735 }
1736 
1737 void hrtick_start(struct rq *rq, u64 delay);
1738 
1739 #else
1740 
1741 static inline int hrtick_enabled(struct rq *rq)
1742 {
1743 	return 0;
1744 }
1745 
1746 #endif /* CONFIG_SCHED_HRTICK */
1747 
1748 #ifndef arch_scale_freq_capacity
1749 static __always_inline
1750 unsigned long arch_scale_freq_capacity(int cpu)
1751 {
1752 	return SCHED_CAPACITY_SCALE;
1753 }
1754 #endif
1755 
1756 #ifdef CONFIG_SMP
1757 #ifndef arch_scale_cpu_capacity
1758 static __always_inline
1759 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1760 {
1761 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1762 		return sd->smt_gain / sd->span_weight;
1763 
1764 	return SCHED_CAPACITY_SCALE;
1765 }
1766 #endif
1767 #else
1768 #ifndef arch_scale_cpu_capacity
1769 static __always_inline
1770 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1771 {
1772 	return SCHED_CAPACITY_SCALE;
1773 }
1774 #endif
1775 #endif
1776 
1777 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1778 	__acquires(rq->lock);
1779 
1780 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1781 	__acquires(p->pi_lock)
1782 	__acquires(rq->lock);
1783 
1784 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1785 	__releases(rq->lock)
1786 {
1787 	rq_unpin_lock(rq, rf);
1788 	raw_spin_unlock(&rq->lock);
1789 }
1790 
1791 static inline void
1792 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1793 	__releases(rq->lock)
1794 	__releases(p->pi_lock)
1795 {
1796 	rq_unpin_lock(rq, rf);
1797 	raw_spin_unlock(&rq->lock);
1798 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1799 }
1800 
1801 static inline void
1802 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1803 	__acquires(rq->lock)
1804 {
1805 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1806 	rq_pin_lock(rq, rf);
1807 }
1808 
1809 static inline void
1810 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1811 	__acquires(rq->lock)
1812 {
1813 	raw_spin_lock_irq(&rq->lock);
1814 	rq_pin_lock(rq, rf);
1815 }
1816 
1817 static inline void
1818 rq_lock(struct rq *rq, struct rq_flags *rf)
1819 	__acquires(rq->lock)
1820 {
1821 	raw_spin_lock(&rq->lock);
1822 	rq_pin_lock(rq, rf);
1823 }
1824 
1825 static inline void
1826 rq_relock(struct rq *rq, struct rq_flags *rf)
1827 	__acquires(rq->lock)
1828 {
1829 	raw_spin_lock(&rq->lock);
1830 	rq_repin_lock(rq, rf);
1831 }
1832 
1833 static inline void
1834 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1835 	__releases(rq->lock)
1836 {
1837 	rq_unpin_lock(rq, rf);
1838 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1839 }
1840 
1841 static inline void
1842 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1843 	__releases(rq->lock)
1844 {
1845 	rq_unpin_lock(rq, rf);
1846 	raw_spin_unlock_irq(&rq->lock);
1847 }
1848 
1849 static inline void
1850 rq_unlock(struct rq *rq, struct rq_flags *rf)
1851 	__releases(rq->lock)
1852 {
1853 	rq_unpin_lock(rq, rf);
1854 	raw_spin_unlock(&rq->lock);
1855 }
1856 
1857 #ifdef CONFIG_SMP
1858 #ifdef CONFIG_PREEMPT
1859 
1860 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1861 
1862 /*
1863  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1864  * way at the expense of forcing extra atomic operations in all
1865  * invocations.  This assures that the double_lock is acquired using the
1866  * same underlying policy as the spinlock_t on this architecture, which
1867  * reduces latency compared to the unfair variant below.  However, it
1868  * also adds more overhead and therefore may reduce throughput.
1869  */
1870 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1871 	__releases(this_rq->lock)
1872 	__acquires(busiest->lock)
1873 	__acquires(this_rq->lock)
1874 {
1875 	raw_spin_unlock(&this_rq->lock);
1876 	double_rq_lock(this_rq, busiest);
1877 
1878 	return 1;
1879 }
1880 
1881 #else
1882 /*
1883  * Unfair double_lock_balance: Optimizes throughput at the expense of
1884  * latency by eliminating extra atomic operations when the locks are
1885  * already in proper order on entry.  This favors lower CPU-ids and will
1886  * grant the double lock to lower CPUs over higher ids under contention,
1887  * regardless of entry order into the function.
1888  */
1889 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1890 	__releases(this_rq->lock)
1891 	__acquires(busiest->lock)
1892 	__acquires(this_rq->lock)
1893 {
1894 	int ret = 0;
1895 
1896 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1897 		if (busiest < this_rq) {
1898 			raw_spin_unlock(&this_rq->lock);
1899 			raw_spin_lock(&busiest->lock);
1900 			raw_spin_lock_nested(&this_rq->lock,
1901 					      SINGLE_DEPTH_NESTING);
1902 			ret = 1;
1903 		} else
1904 			raw_spin_lock_nested(&busiest->lock,
1905 					      SINGLE_DEPTH_NESTING);
1906 	}
1907 	return ret;
1908 }
1909 
1910 #endif /* CONFIG_PREEMPT */
1911 
1912 /*
1913  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1914  */
1915 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1916 {
1917 	if (unlikely(!irqs_disabled())) {
1918 		/* printk() doesn't work well under rq->lock */
1919 		raw_spin_unlock(&this_rq->lock);
1920 		BUG_ON(1);
1921 	}
1922 
1923 	return _double_lock_balance(this_rq, busiest);
1924 }
1925 
1926 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1927 	__releases(busiest->lock)
1928 {
1929 	raw_spin_unlock(&busiest->lock);
1930 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1931 }
1932 
1933 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1934 {
1935 	if (l1 > l2)
1936 		swap(l1, l2);
1937 
1938 	spin_lock(l1);
1939 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1940 }
1941 
1942 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1943 {
1944 	if (l1 > l2)
1945 		swap(l1, l2);
1946 
1947 	spin_lock_irq(l1);
1948 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949 }
1950 
1951 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1952 {
1953 	if (l1 > l2)
1954 		swap(l1, l2);
1955 
1956 	raw_spin_lock(l1);
1957 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1958 }
1959 
1960 /*
1961  * double_rq_lock - safely lock two runqueues
1962  *
1963  * Note this does not disable interrupts like task_rq_lock,
1964  * you need to do so manually before calling.
1965  */
1966 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1967 	__acquires(rq1->lock)
1968 	__acquires(rq2->lock)
1969 {
1970 	BUG_ON(!irqs_disabled());
1971 	if (rq1 == rq2) {
1972 		raw_spin_lock(&rq1->lock);
1973 		__acquire(rq2->lock);	/* Fake it out ;) */
1974 	} else {
1975 		if (rq1 < rq2) {
1976 			raw_spin_lock(&rq1->lock);
1977 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1978 		} else {
1979 			raw_spin_lock(&rq2->lock);
1980 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1981 		}
1982 	}
1983 }
1984 
1985 /*
1986  * double_rq_unlock - safely unlock two runqueues
1987  *
1988  * Note this does not restore interrupts like task_rq_unlock,
1989  * you need to do so manually after calling.
1990  */
1991 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1992 	__releases(rq1->lock)
1993 	__releases(rq2->lock)
1994 {
1995 	raw_spin_unlock(&rq1->lock);
1996 	if (rq1 != rq2)
1997 		raw_spin_unlock(&rq2->lock);
1998 	else
1999 		__release(rq2->lock);
2000 }
2001 
2002 extern void set_rq_online (struct rq *rq);
2003 extern void set_rq_offline(struct rq *rq);
2004 extern bool sched_smp_initialized;
2005 
2006 #else /* CONFIG_SMP */
2007 
2008 /*
2009  * double_rq_lock - safely lock two runqueues
2010  *
2011  * Note this does not disable interrupts like task_rq_lock,
2012  * you need to do so manually before calling.
2013  */
2014 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2015 	__acquires(rq1->lock)
2016 	__acquires(rq2->lock)
2017 {
2018 	BUG_ON(!irqs_disabled());
2019 	BUG_ON(rq1 != rq2);
2020 	raw_spin_lock(&rq1->lock);
2021 	__acquire(rq2->lock);	/* Fake it out ;) */
2022 }
2023 
2024 /*
2025  * double_rq_unlock - safely unlock two runqueues
2026  *
2027  * Note this does not restore interrupts like task_rq_unlock,
2028  * you need to do so manually after calling.
2029  */
2030 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2031 	__releases(rq1->lock)
2032 	__releases(rq2->lock)
2033 {
2034 	BUG_ON(rq1 != rq2);
2035 	raw_spin_unlock(&rq1->lock);
2036 	__release(rq2->lock);
2037 }
2038 
2039 #endif
2040 
2041 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2042 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2043 
2044 #ifdef	CONFIG_SCHED_DEBUG
2045 extern bool sched_debug_enabled;
2046 
2047 extern void print_cfs_stats(struct seq_file *m, int cpu);
2048 extern void print_rt_stats(struct seq_file *m, int cpu);
2049 extern void print_dl_stats(struct seq_file *m, int cpu);
2050 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2051 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2052 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2053 #ifdef CONFIG_NUMA_BALANCING
2054 extern void
2055 show_numa_stats(struct task_struct *p, struct seq_file *m);
2056 extern void
2057 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2058 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2059 #endif /* CONFIG_NUMA_BALANCING */
2060 #endif /* CONFIG_SCHED_DEBUG */
2061 
2062 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2063 extern void init_rt_rq(struct rt_rq *rt_rq);
2064 extern void init_dl_rq(struct dl_rq *dl_rq);
2065 
2066 extern void cfs_bandwidth_usage_inc(void);
2067 extern void cfs_bandwidth_usage_dec(void);
2068 
2069 #ifdef CONFIG_NO_HZ_COMMON
2070 #define NOHZ_BALANCE_KICK_BIT	0
2071 #define NOHZ_STATS_KICK_BIT	1
2072 
2073 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2074 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2075 
2076 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2077 
2078 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2079 
2080 extern void nohz_balance_exit_idle(struct rq *rq);
2081 #else
2082 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2083 #endif
2084 
2085 
2086 #ifdef CONFIG_SMP
2087 static inline
2088 void __dl_update(struct dl_bw *dl_b, s64 bw)
2089 {
2090 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2091 	int i;
2092 
2093 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2094 			 "sched RCU must be held");
2095 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2096 		struct rq *rq = cpu_rq(i);
2097 
2098 		rq->dl.extra_bw += bw;
2099 	}
2100 }
2101 #else
2102 static inline
2103 void __dl_update(struct dl_bw *dl_b, s64 bw)
2104 {
2105 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2106 
2107 	dl->extra_bw += bw;
2108 }
2109 #endif
2110 
2111 
2112 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2113 struct irqtime {
2114 	u64			total;
2115 	u64			tick_delta;
2116 	u64			irq_start_time;
2117 	struct u64_stats_sync	sync;
2118 };
2119 
2120 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2121 
2122 /*
2123  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2124  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2125  * and never move forward.
2126  */
2127 static inline u64 irq_time_read(int cpu)
2128 {
2129 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2130 	unsigned int seq;
2131 	u64 total;
2132 
2133 	do {
2134 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2135 		total = irqtime->total;
2136 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2137 
2138 	return total;
2139 }
2140 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2141 
2142 #ifdef CONFIG_CPU_FREQ
2143 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2144 
2145 /**
2146  * cpufreq_update_util - Take a note about CPU utilization changes.
2147  * @rq: Runqueue to carry out the update for.
2148  * @flags: Update reason flags.
2149  *
2150  * This function is called by the scheduler on the CPU whose utilization is
2151  * being updated.
2152  *
2153  * It can only be called from RCU-sched read-side critical sections.
2154  *
2155  * The way cpufreq is currently arranged requires it to evaluate the CPU
2156  * performance state (frequency/voltage) on a regular basis to prevent it from
2157  * being stuck in a completely inadequate performance level for too long.
2158  * That is not guaranteed to happen if the updates are only triggered from CFS
2159  * and DL, though, because they may not be coming in if only RT tasks are
2160  * active all the time (or there are RT tasks only).
2161  *
2162  * As a workaround for that issue, this function is called periodically by the
2163  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2164  * but that really is a band-aid.  Going forward it should be replaced with
2165  * solutions targeted more specifically at RT tasks.
2166  */
2167 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2168 {
2169 	struct update_util_data *data;
2170 
2171 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2172 						  cpu_of(rq)));
2173 	if (data)
2174 		data->func(data, rq_clock(rq), flags);
2175 }
2176 #else
2177 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2178 #endif /* CONFIG_CPU_FREQ */
2179 
2180 #ifdef arch_scale_freq_capacity
2181 # ifndef arch_scale_freq_invariant
2182 #  define arch_scale_freq_invariant()	true
2183 # endif
2184 #else
2185 # define arch_scale_freq_invariant()	false
2186 #endif
2187 
2188 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2189 static inline unsigned long cpu_bw_dl(struct rq *rq)
2190 {
2191 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2192 }
2193 
2194 static inline unsigned long cpu_util_dl(struct rq *rq)
2195 {
2196 	return READ_ONCE(rq->avg_dl.util_avg);
2197 }
2198 
2199 static inline unsigned long cpu_util_cfs(struct rq *rq)
2200 {
2201 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2202 
2203 	if (sched_feat(UTIL_EST)) {
2204 		util = max_t(unsigned long, util,
2205 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2206 	}
2207 
2208 	return util;
2209 }
2210 
2211 static inline unsigned long cpu_util_rt(struct rq *rq)
2212 {
2213 	return READ_ONCE(rq->avg_rt.util_avg);
2214 }
2215 #endif
2216 
2217 #ifdef HAVE_SCHED_AVG_IRQ
2218 static inline unsigned long cpu_util_irq(struct rq *rq)
2219 {
2220 	return rq->avg_irq.util_avg;
2221 }
2222 
2223 static inline
2224 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2225 {
2226 	util *= (max - irq);
2227 	util /= max;
2228 
2229 	return util;
2230 
2231 }
2232 #else
2233 static inline unsigned long cpu_util_irq(struct rq *rq)
2234 {
2235 	return 0;
2236 }
2237 
2238 static inline
2239 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2240 {
2241 	return util;
2242 }
2243 #endif
2244