1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/bitops.h> 40 #include <linux/compat.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpufreq.h> 43 #include <linux/cpuidle.h> 44 #include <linux/cpuset.h> 45 #include <linux/ctype.h> 46 #include <linux/debugfs.h> 47 #include <linux/delayacct.h> 48 #include <linux/energy_model.h> 49 #include <linux/init_task.h> 50 #include <linux/kprobes.h> 51 #include <linux/kthread.h> 52 #include <linux/membarrier.h> 53 #include <linux/migrate.h> 54 #include <linux/mmu_context.h> 55 #include <linux/nmi.h> 56 #include <linux/proc_fs.h> 57 #include <linux/prefetch.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/ratelimit.h> 61 #include <linux/rcupdate_wait.h> 62 #include <linux/security.h> 63 #include <linux/stop_machine.h> 64 #include <linux/suspend.h> 65 #include <linux/swait.h> 66 #include <linux/syscalls.h> 67 #include <linux/task_work.h> 68 #include <linux/tsacct_kern.h> 69 70 #include <asm/tlb.h> 71 72 #ifdef CONFIG_PARAVIRT 73 # include <asm/paravirt.h> 74 #endif 75 76 #include "cpupri.h" 77 #include "cpudeadline.h" 78 79 #include <trace/events/sched.h> 80 81 #ifdef CONFIG_SCHED_DEBUG 82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 83 #else 84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 85 #endif 86 87 struct rq; 88 struct cpuidle_state; 89 90 /* task_struct::on_rq states: */ 91 #define TASK_ON_RQ_QUEUED 1 92 #define TASK_ON_RQ_MIGRATING 2 93 94 extern __read_mostly int scheduler_running; 95 96 extern unsigned long calc_load_update; 97 extern atomic_long_t calc_load_tasks; 98 99 extern void calc_global_load_tick(struct rq *this_rq); 100 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 101 102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 103 /* 104 * Helpers for converting nanosecond timing to jiffy resolution 105 */ 106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 107 108 /* 109 * Increase resolution of nice-level calculations for 64-bit architectures. 110 * The extra resolution improves shares distribution and load balancing of 111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 112 * hierarchies, especially on larger systems. This is not a user-visible change 113 * and does not change the user-interface for setting shares/weights. 114 * 115 * We increase resolution only if we have enough bits to allow this increased 116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 117 * are pretty high and the returns do not justify the increased costs. 118 * 119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 120 * increase coverage and consistency always enable it on 64-bit platforms. 121 */ 122 #ifdef CONFIG_64BIT 123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 125 # define scale_load_down(w) \ 126 ({ \ 127 unsigned long __w = (w); \ 128 if (__w) \ 129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 130 __w; \ 131 }) 132 #else 133 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 134 # define scale_load(w) (w) 135 # define scale_load_down(w) (w) 136 #endif 137 138 /* 139 * Task weight (visible to users) and its load (invisible to users) have 140 * independent resolution, but they should be well calibrated. We use 141 * scale_load() and scale_load_down(w) to convert between them. The 142 * following must be true: 143 * 144 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 145 * 146 */ 147 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 148 149 /* 150 * Single value that decides SCHED_DEADLINE internal math precision. 151 * 10 -> just above 1us 152 * 9 -> just above 0.5us 153 */ 154 #define DL_SCALE 10 155 156 /* 157 * Single value that denotes runtime == period, ie unlimited time. 158 */ 159 #define RUNTIME_INF ((u64)~0ULL) 160 161 static inline int idle_policy(int policy) 162 { 163 return policy == SCHED_IDLE; 164 } 165 static inline int fair_policy(int policy) 166 { 167 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 168 } 169 170 static inline int rt_policy(int policy) 171 { 172 return policy == SCHED_FIFO || policy == SCHED_RR; 173 } 174 175 static inline int dl_policy(int policy) 176 { 177 return policy == SCHED_DEADLINE; 178 } 179 static inline bool valid_policy(int policy) 180 { 181 return idle_policy(policy) || fair_policy(policy) || 182 rt_policy(policy) || dl_policy(policy); 183 } 184 185 static inline int task_has_idle_policy(struct task_struct *p) 186 { 187 return idle_policy(p->policy); 188 } 189 190 static inline int task_has_rt_policy(struct task_struct *p) 191 { 192 return rt_policy(p->policy); 193 } 194 195 static inline int task_has_dl_policy(struct task_struct *p) 196 { 197 return dl_policy(p->policy); 198 } 199 200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 201 202 static inline void update_avg(u64 *avg, u64 sample) 203 { 204 s64 diff = sample - *avg; 205 *avg += diff / 8; 206 } 207 208 /* 209 * Shifting a value by an exponent greater *or equal* to the size of said value 210 * is UB; cap at size-1. 211 */ 212 #define shr_bound(val, shift) \ 213 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 214 215 /* 216 * !! For sched_setattr_nocheck() (kernel) only !! 217 * 218 * This is actually gross. :( 219 * 220 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 221 * tasks, but still be able to sleep. We need this on platforms that cannot 222 * atomically change clock frequency. Remove once fast switching will be 223 * available on such platforms. 224 * 225 * SUGOV stands for SchedUtil GOVernor. 226 */ 227 #define SCHED_FLAG_SUGOV 0x10000000 228 229 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 230 231 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 232 { 233 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 234 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Tells if entity @a should preempt entity @b. 242 */ 243 static inline bool 244 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 245 { 246 return dl_entity_is_special(a) || 247 dl_time_before(a->deadline, b->deadline); 248 } 249 250 /* 251 * This is the priority-queue data structure of the RT scheduling class: 252 */ 253 struct rt_prio_array { 254 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 255 struct list_head queue[MAX_RT_PRIO]; 256 }; 257 258 struct rt_bandwidth { 259 /* nests inside the rq lock: */ 260 raw_spinlock_t rt_runtime_lock; 261 ktime_t rt_period; 262 u64 rt_runtime; 263 struct hrtimer rt_period_timer; 264 unsigned int rt_period_active; 265 }; 266 267 void __dl_clear_params(struct task_struct *p); 268 269 struct dl_bandwidth { 270 raw_spinlock_t dl_runtime_lock; 271 u64 dl_runtime; 272 u64 dl_period; 273 }; 274 275 static inline int dl_bandwidth_enabled(void) 276 { 277 return sysctl_sched_rt_runtime >= 0; 278 } 279 280 /* 281 * To keep the bandwidth of -deadline tasks under control 282 * we need some place where: 283 * - store the maximum -deadline bandwidth of each cpu; 284 * - cache the fraction of bandwidth that is currently allocated in 285 * each root domain; 286 * 287 * This is all done in the data structure below. It is similar to the 288 * one used for RT-throttling (rt_bandwidth), with the main difference 289 * that, since here we are only interested in admission control, we 290 * do not decrease any runtime while the group "executes", neither we 291 * need a timer to replenish it. 292 * 293 * With respect to SMP, bandwidth is given on a per root domain basis, 294 * meaning that: 295 * - bw (< 100%) is the deadline bandwidth of each CPU; 296 * - total_bw is the currently allocated bandwidth in each root domain; 297 */ 298 struct dl_bw { 299 raw_spinlock_t lock; 300 u64 bw; 301 u64 total_bw; 302 }; 303 304 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 305 306 static inline 307 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 308 { 309 dl_b->total_bw -= tsk_bw; 310 __dl_update(dl_b, (s32)tsk_bw / cpus); 311 } 312 313 static inline 314 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 315 { 316 dl_b->total_bw += tsk_bw; 317 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 318 } 319 320 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, 321 u64 old_bw, u64 new_bw) 322 { 323 return dl_b->bw != -1 && 324 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 325 } 326 327 /* 328 * Verify the fitness of task @p to run on @cpu taking into account the 329 * CPU original capacity and the runtime/deadline ratio of the task. 330 * 331 * The function will return true if the CPU original capacity of the 332 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 333 * task and false otherwise. 334 */ 335 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 336 { 337 unsigned long cap = arch_scale_cpu_capacity(cpu); 338 339 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 340 } 341 342 extern void init_dl_bw(struct dl_bw *dl_b); 343 extern int sched_dl_global_validate(void); 344 extern void sched_dl_do_global(void); 345 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 346 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 347 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 348 extern bool __checkparam_dl(const struct sched_attr *attr); 349 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 350 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 351 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 352 extern bool dl_cpu_busy(unsigned int cpu); 353 354 #ifdef CONFIG_CGROUP_SCHED 355 356 #include <linux/cgroup.h> 357 #include <linux/psi.h> 358 359 struct cfs_rq; 360 struct rt_rq; 361 362 extern struct list_head task_groups; 363 364 struct cfs_bandwidth { 365 #ifdef CONFIG_CFS_BANDWIDTH 366 raw_spinlock_t lock; 367 ktime_t period; 368 u64 quota; 369 u64 runtime; 370 u64 burst; 371 u64 runtime_snap; 372 s64 hierarchical_quota; 373 374 u8 idle; 375 u8 period_active; 376 u8 slack_started; 377 struct hrtimer period_timer; 378 struct hrtimer slack_timer; 379 struct list_head throttled_cfs_rq; 380 381 /* Statistics: */ 382 int nr_periods; 383 int nr_throttled; 384 int nr_burst; 385 u64 throttled_time; 386 u64 burst_time; 387 #endif 388 }; 389 390 /* Task group related information */ 391 struct task_group { 392 struct cgroup_subsys_state css; 393 394 #ifdef CONFIG_FAIR_GROUP_SCHED 395 /* schedulable entities of this group on each CPU */ 396 struct sched_entity **se; 397 /* runqueue "owned" by this group on each CPU */ 398 struct cfs_rq **cfs_rq; 399 unsigned long shares; 400 401 /* A positive value indicates that this is a SCHED_IDLE group. */ 402 int idle; 403 404 #ifdef CONFIG_SMP 405 /* 406 * load_avg can be heavily contended at clock tick time, so put 407 * it in its own cacheline separated from the fields above which 408 * will also be accessed at each tick. 409 */ 410 atomic_long_t load_avg ____cacheline_aligned; 411 #endif 412 #endif 413 414 #ifdef CONFIG_RT_GROUP_SCHED 415 struct sched_rt_entity **rt_se; 416 struct rt_rq **rt_rq; 417 418 struct rt_bandwidth rt_bandwidth; 419 #endif 420 421 struct rcu_head rcu; 422 struct list_head list; 423 424 struct task_group *parent; 425 struct list_head siblings; 426 struct list_head children; 427 428 #ifdef CONFIG_SCHED_AUTOGROUP 429 struct autogroup *autogroup; 430 #endif 431 432 struct cfs_bandwidth cfs_bandwidth; 433 434 #ifdef CONFIG_UCLAMP_TASK_GROUP 435 /* The two decimal precision [%] value requested from user-space */ 436 unsigned int uclamp_pct[UCLAMP_CNT]; 437 /* Clamp values requested for a task group */ 438 struct uclamp_se uclamp_req[UCLAMP_CNT]; 439 /* Effective clamp values used for a task group */ 440 struct uclamp_se uclamp[UCLAMP_CNT]; 441 #endif 442 443 }; 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 447 448 /* 449 * A weight of 0 or 1 can cause arithmetics problems. 450 * A weight of a cfs_rq is the sum of weights of which entities 451 * are queued on this cfs_rq, so a weight of a entity should not be 452 * too large, so as the shares value of a task group. 453 * (The default weight is 1024 - so there's no practical 454 * limitation from this.) 455 */ 456 #define MIN_SHARES (1UL << 1) 457 #define MAX_SHARES (1UL << 18) 458 #endif 459 460 typedef int (*tg_visitor)(struct task_group *, void *); 461 462 extern int walk_tg_tree_from(struct task_group *from, 463 tg_visitor down, tg_visitor up, void *data); 464 465 /* 466 * Iterate the full tree, calling @down when first entering a node and @up when 467 * leaving it for the final time. 468 * 469 * Caller must hold rcu_lock or sufficient equivalent. 470 */ 471 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 472 { 473 return walk_tg_tree_from(&root_task_group, down, up, data); 474 } 475 476 extern int tg_nop(struct task_group *tg, void *data); 477 478 extern void free_fair_sched_group(struct task_group *tg); 479 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 480 extern void online_fair_sched_group(struct task_group *tg); 481 extern void unregister_fair_sched_group(struct task_group *tg); 482 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 483 struct sched_entity *se, int cpu, 484 struct sched_entity *parent); 485 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 486 487 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 488 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 489 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 490 491 extern void unregister_rt_sched_group(struct task_group *tg); 492 extern void free_rt_sched_group(struct task_group *tg); 493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 494 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 495 struct sched_rt_entity *rt_se, int cpu, 496 struct sched_rt_entity *parent); 497 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 498 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 499 extern long sched_group_rt_runtime(struct task_group *tg); 500 extern long sched_group_rt_period(struct task_group *tg); 501 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 502 503 extern struct task_group *sched_create_group(struct task_group *parent); 504 extern void sched_online_group(struct task_group *tg, 505 struct task_group *parent); 506 extern void sched_destroy_group(struct task_group *tg); 507 extern void sched_release_group(struct task_group *tg); 508 509 extern void sched_move_task(struct task_struct *tsk); 510 511 #ifdef CONFIG_FAIR_GROUP_SCHED 512 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 513 514 extern int sched_group_set_idle(struct task_group *tg, long idle); 515 516 #ifdef CONFIG_SMP 517 extern void set_task_rq_fair(struct sched_entity *se, 518 struct cfs_rq *prev, struct cfs_rq *next); 519 #else /* !CONFIG_SMP */ 520 static inline void set_task_rq_fair(struct sched_entity *se, 521 struct cfs_rq *prev, struct cfs_rq *next) { } 522 #endif /* CONFIG_SMP */ 523 #endif /* CONFIG_FAIR_GROUP_SCHED */ 524 525 #else /* CONFIG_CGROUP_SCHED */ 526 527 struct cfs_bandwidth { }; 528 529 #endif /* CONFIG_CGROUP_SCHED */ 530 531 /* CFS-related fields in a runqueue */ 532 struct cfs_rq { 533 struct load_weight load; 534 unsigned int nr_running; 535 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 536 unsigned int idle_nr_running; /* SCHED_IDLE */ 537 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 538 539 u64 exec_clock; 540 u64 min_vruntime; 541 #ifdef CONFIG_SCHED_CORE 542 unsigned int forceidle_seq; 543 u64 min_vruntime_fi; 544 #endif 545 546 #ifndef CONFIG_64BIT 547 u64 min_vruntime_copy; 548 #endif 549 550 struct rb_root_cached tasks_timeline; 551 552 /* 553 * 'curr' points to currently running entity on this cfs_rq. 554 * It is set to NULL otherwise (i.e when none are currently running). 555 */ 556 struct sched_entity *curr; 557 struct sched_entity *next; 558 struct sched_entity *last; 559 struct sched_entity *skip; 560 561 #ifdef CONFIG_SCHED_DEBUG 562 unsigned int nr_spread_over; 563 #endif 564 565 #ifdef CONFIG_SMP 566 /* 567 * CFS load tracking 568 */ 569 struct sched_avg avg; 570 #ifndef CONFIG_64BIT 571 u64 load_last_update_time_copy; 572 #endif 573 struct { 574 raw_spinlock_t lock ____cacheline_aligned; 575 int nr; 576 unsigned long load_avg; 577 unsigned long util_avg; 578 unsigned long runnable_avg; 579 } removed; 580 581 #ifdef CONFIG_FAIR_GROUP_SCHED 582 unsigned long tg_load_avg_contrib; 583 long propagate; 584 long prop_runnable_sum; 585 586 /* 587 * h_load = weight * f(tg) 588 * 589 * Where f(tg) is the recursive weight fraction assigned to 590 * this group. 591 */ 592 unsigned long h_load; 593 u64 last_h_load_update; 594 struct sched_entity *h_load_next; 595 #endif /* CONFIG_FAIR_GROUP_SCHED */ 596 #endif /* CONFIG_SMP */ 597 598 #ifdef CONFIG_FAIR_GROUP_SCHED 599 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 600 601 /* 602 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 603 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 604 * (like users, containers etc.) 605 * 606 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 607 * This list is used during load balance. 608 */ 609 int on_list; 610 struct list_head leaf_cfs_rq_list; 611 struct task_group *tg; /* group that "owns" this runqueue */ 612 613 /* Locally cached copy of our task_group's idle value */ 614 int idle; 615 616 #ifdef CONFIG_CFS_BANDWIDTH 617 int runtime_enabled; 618 s64 runtime_remaining; 619 620 u64 throttled_clock; 621 u64 throttled_clock_task; 622 u64 throttled_clock_task_time; 623 int throttled; 624 int throttle_count; 625 struct list_head throttled_list; 626 #endif /* CONFIG_CFS_BANDWIDTH */ 627 #endif /* CONFIG_FAIR_GROUP_SCHED */ 628 }; 629 630 static inline int rt_bandwidth_enabled(void) 631 { 632 return sysctl_sched_rt_runtime >= 0; 633 } 634 635 /* RT IPI pull logic requires IRQ_WORK */ 636 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 637 # define HAVE_RT_PUSH_IPI 638 #endif 639 640 /* Real-Time classes' related field in a runqueue: */ 641 struct rt_rq { 642 struct rt_prio_array active; 643 unsigned int rt_nr_running; 644 unsigned int rr_nr_running; 645 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 646 struct { 647 int curr; /* highest queued rt task prio */ 648 #ifdef CONFIG_SMP 649 int next; /* next highest */ 650 #endif 651 } highest_prio; 652 #endif 653 #ifdef CONFIG_SMP 654 unsigned int rt_nr_migratory; 655 unsigned int rt_nr_total; 656 int overloaded; 657 struct plist_head pushable_tasks; 658 659 #endif /* CONFIG_SMP */ 660 int rt_queued; 661 662 int rt_throttled; 663 u64 rt_time; 664 u64 rt_runtime; 665 /* Nests inside the rq lock: */ 666 raw_spinlock_t rt_runtime_lock; 667 668 #ifdef CONFIG_RT_GROUP_SCHED 669 unsigned int rt_nr_boosted; 670 671 struct rq *rq; 672 struct task_group *tg; 673 #endif 674 }; 675 676 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 677 { 678 return rt_rq->rt_queued && rt_rq->rt_nr_running; 679 } 680 681 /* Deadline class' related fields in a runqueue */ 682 struct dl_rq { 683 /* runqueue is an rbtree, ordered by deadline */ 684 struct rb_root_cached root; 685 686 unsigned int dl_nr_running; 687 688 #ifdef CONFIG_SMP 689 /* 690 * Deadline values of the currently executing and the 691 * earliest ready task on this rq. Caching these facilitates 692 * the decision whether or not a ready but not running task 693 * should migrate somewhere else. 694 */ 695 struct { 696 u64 curr; 697 u64 next; 698 } earliest_dl; 699 700 unsigned int dl_nr_migratory; 701 int overloaded; 702 703 /* 704 * Tasks on this rq that can be pushed away. They are kept in 705 * an rb-tree, ordered by tasks' deadlines, with caching 706 * of the leftmost (earliest deadline) element. 707 */ 708 struct rb_root_cached pushable_dl_tasks_root; 709 #else 710 struct dl_bw dl_bw; 711 #endif 712 /* 713 * "Active utilization" for this runqueue: increased when a 714 * task wakes up (becomes TASK_RUNNING) and decreased when a 715 * task blocks 716 */ 717 u64 running_bw; 718 719 /* 720 * Utilization of the tasks "assigned" to this runqueue (including 721 * the tasks that are in runqueue and the tasks that executed on this 722 * CPU and blocked). Increased when a task moves to this runqueue, and 723 * decreased when the task moves away (migrates, changes scheduling 724 * policy, or terminates). 725 * This is needed to compute the "inactive utilization" for the 726 * runqueue (inactive utilization = this_bw - running_bw). 727 */ 728 u64 this_bw; 729 u64 extra_bw; 730 731 /* 732 * Inverse of the fraction of CPU utilization that can be reclaimed 733 * by the GRUB algorithm. 734 */ 735 u64 bw_ratio; 736 }; 737 738 #ifdef CONFIG_FAIR_GROUP_SCHED 739 /* An entity is a task if it doesn't "own" a runqueue */ 740 #define entity_is_task(se) (!se->my_q) 741 742 static inline void se_update_runnable(struct sched_entity *se) 743 { 744 if (!entity_is_task(se)) 745 se->runnable_weight = se->my_q->h_nr_running; 746 } 747 748 static inline long se_runnable(struct sched_entity *se) 749 { 750 if (entity_is_task(se)) 751 return !!se->on_rq; 752 else 753 return se->runnable_weight; 754 } 755 756 #else 757 #define entity_is_task(se) 1 758 759 static inline void se_update_runnable(struct sched_entity *se) {} 760 761 static inline long se_runnable(struct sched_entity *se) 762 { 763 return !!se->on_rq; 764 } 765 #endif 766 767 #ifdef CONFIG_SMP 768 /* 769 * XXX we want to get rid of these helpers and use the full load resolution. 770 */ 771 static inline long se_weight(struct sched_entity *se) 772 { 773 return scale_load_down(se->load.weight); 774 } 775 776 777 static inline bool sched_asym_prefer(int a, int b) 778 { 779 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 780 } 781 782 struct perf_domain { 783 struct em_perf_domain *em_pd; 784 struct perf_domain *next; 785 struct rcu_head rcu; 786 }; 787 788 /* Scheduling group status flags */ 789 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 790 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 791 792 /* 793 * We add the notion of a root-domain which will be used to define per-domain 794 * variables. Each exclusive cpuset essentially defines an island domain by 795 * fully partitioning the member CPUs from any other cpuset. Whenever a new 796 * exclusive cpuset is created, we also create and attach a new root-domain 797 * object. 798 * 799 */ 800 struct root_domain { 801 atomic_t refcount; 802 atomic_t rto_count; 803 struct rcu_head rcu; 804 cpumask_var_t span; 805 cpumask_var_t online; 806 807 /* 808 * Indicate pullable load on at least one CPU, e.g: 809 * - More than one runnable task 810 * - Running task is misfit 811 */ 812 int overload; 813 814 /* Indicate one or more cpus over-utilized (tipping point) */ 815 int overutilized; 816 817 /* 818 * The bit corresponding to a CPU gets set here if such CPU has more 819 * than one runnable -deadline task (as it is below for RT tasks). 820 */ 821 cpumask_var_t dlo_mask; 822 atomic_t dlo_count; 823 struct dl_bw dl_bw; 824 struct cpudl cpudl; 825 826 /* 827 * Indicate whether a root_domain's dl_bw has been checked or 828 * updated. It's monotonously increasing value. 829 * 830 * Also, some corner cases, like 'wrap around' is dangerous, but given 831 * that u64 is 'big enough'. So that shouldn't be a concern. 832 */ 833 u64 visit_gen; 834 835 #ifdef HAVE_RT_PUSH_IPI 836 /* 837 * For IPI pull requests, loop across the rto_mask. 838 */ 839 struct irq_work rto_push_work; 840 raw_spinlock_t rto_lock; 841 /* These are only updated and read within rto_lock */ 842 int rto_loop; 843 int rto_cpu; 844 /* These atomics are updated outside of a lock */ 845 atomic_t rto_loop_next; 846 atomic_t rto_loop_start; 847 #endif 848 /* 849 * The "RT overload" flag: it gets set if a CPU has more than 850 * one runnable RT task. 851 */ 852 cpumask_var_t rto_mask; 853 struct cpupri cpupri; 854 855 unsigned long max_cpu_capacity; 856 857 /* 858 * NULL-terminated list of performance domains intersecting with the 859 * CPUs of the rd. Protected by RCU. 860 */ 861 struct perf_domain __rcu *pd; 862 }; 863 864 extern void init_defrootdomain(void); 865 extern int sched_init_domains(const struct cpumask *cpu_map); 866 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 867 extern void sched_get_rd(struct root_domain *rd); 868 extern void sched_put_rd(struct root_domain *rd); 869 870 #ifdef HAVE_RT_PUSH_IPI 871 extern void rto_push_irq_work_func(struct irq_work *work); 872 #endif 873 #endif /* CONFIG_SMP */ 874 875 #ifdef CONFIG_UCLAMP_TASK 876 /* 877 * struct uclamp_bucket - Utilization clamp bucket 878 * @value: utilization clamp value for tasks on this clamp bucket 879 * @tasks: number of RUNNABLE tasks on this clamp bucket 880 * 881 * Keep track of how many tasks are RUNNABLE for a given utilization 882 * clamp value. 883 */ 884 struct uclamp_bucket { 885 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 886 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 887 }; 888 889 /* 890 * struct uclamp_rq - rq's utilization clamp 891 * @value: currently active clamp values for a rq 892 * @bucket: utilization clamp buckets affecting a rq 893 * 894 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 895 * A clamp value is affecting a rq when there is at least one task RUNNABLE 896 * (or actually running) with that value. 897 * 898 * There are up to UCLAMP_CNT possible different clamp values, currently there 899 * are only two: minimum utilization and maximum utilization. 900 * 901 * All utilization clamping values are MAX aggregated, since: 902 * - for util_min: we want to run the CPU at least at the max of the minimum 903 * utilization required by its currently RUNNABLE tasks. 904 * - for util_max: we want to allow the CPU to run up to the max of the 905 * maximum utilization allowed by its currently RUNNABLE tasks. 906 * 907 * Since on each system we expect only a limited number of different 908 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 909 * the metrics required to compute all the per-rq utilization clamp values. 910 */ 911 struct uclamp_rq { 912 unsigned int value; 913 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 914 }; 915 916 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 917 #endif /* CONFIG_UCLAMP_TASK */ 918 919 /* 920 * This is the main, per-CPU runqueue data structure. 921 * 922 * Locking rule: those places that want to lock multiple runqueues 923 * (such as the load balancing or the thread migration code), lock 924 * acquire operations must be ordered by ascending &runqueue. 925 */ 926 struct rq { 927 /* runqueue lock: */ 928 raw_spinlock_t __lock; 929 930 /* 931 * nr_running and cpu_load should be in the same cacheline because 932 * remote CPUs use both these fields when doing load calculation. 933 */ 934 unsigned int nr_running; 935 #ifdef CONFIG_NUMA_BALANCING 936 unsigned int nr_numa_running; 937 unsigned int nr_preferred_running; 938 unsigned int numa_migrate_on; 939 #endif 940 #ifdef CONFIG_NO_HZ_COMMON 941 #ifdef CONFIG_SMP 942 unsigned long last_blocked_load_update_tick; 943 unsigned int has_blocked_load; 944 call_single_data_t nohz_csd; 945 #endif /* CONFIG_SMP */ 946 unsigned int nohz_tick_stopped; 947 atomic_t nohz_flags; 948 #endif /* CONFIG_NO_HZ_COMMON */ 949 950 #ifdef CONFIG_SMP 951 unsigned int ttwu_pending; 952 #endif 953 u64 nr_switches; 954 955 #ifdef CONFIG_UCLAMP_TASK 956 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 957 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 958 unsigned int uclamp_flags; 959 #define UCLAMP_FLAG_IDLE 0x01 960 #endif 961 962 struct cfs_rq cfs; 963 struct rt_rq rt; 964 struct dl_rq dl; 965 966 #ifdef CONFIG_FAIR_GROUP_SCHED 967 /* list of leaf cfs_rq on this CPU: */ 968 struct list_head leaf_cfs_rq_list; 969 struct list_head *tmp_alone_branch; 970 #endif /* CONFIG_FAIR_GROUP_SCHED */ 971 972 /* 973 * This is part of a global counter where only the total sum 974 * over all CPUs matters. A task can increase this counter on 975 * one CPU and if it got migrated afterwards it may decrease 976 * it on another CPU. Always updated under the runqueue lock: 977 */ 978 unsigned int nr_uninterruptible; 979 980 struct task_struct __rcu *curr; 981 struct task_struct *idle; 982 struct task_struct *stop; 983 unsigned long next_balance; 984 struct mm_struct *prev_mm; 985 986 unsigned int clock_update_flags; 987 u64 clock; 988 /* Ensure that all clocks are in the same cache line */ 989 u64 clock_task ____cacheline_aligned; 990 u64 clock_pelt; 991 unsigned long lost_idle_time; 992 993 atomic_t nr_iowait; 994 995 #ifdef CONFIG_SCHED_DEBUG 996 u64 last_seen_need_resched_ns; 997 int ticks_without_resched; 998 #endif 999 1000 #ifdef CONFIG_MEMBARRIER 1001 int membarrier_state; 1002 #endif 1003 1004 #ifdef CONFIG_SMP 1005 struct root_domain *rd; 1006 struct sched_domain __rcu *sd; 1007 1008 unsigned long cpu_capacity; 1009 unsigned long cpu_capacity_orig; 1010 1011 struct callback_head *balance_callback; 1012 1013 unsigned char nohz_idle_balance; 1014 unsigned char idle_balance; 1015 1016 unsigned long misfit_task_load; 1017 1018 /* For active balancing */ 1019 int active_balance; 1020 int push_cpu; 1021 struct cpu_stop_work active_balance_work; 1022 1023 /* CPU of this runqueue: */ 1024 int cpu; 1025 int online; 1026 1027 struct list_head cfs_tasks; 1028 1029 struct sched_avg avg_rt; 1030 struct sched_avg avg_dl; 1031 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1032 struct sched_avg avg_irq; 1033 #endif 1034 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1035 struct sched_avg avg_thermal; 1036 #endif 1037 u64 idle_stamp; 1038 u64 avg_idle; 1039 1040 unsigned long wake_stamp; 1041 u64 wake_avg_idle; 1042 1043 /* This is used to determine avg_idle's max value */ 1044 u64 max_idle_balance_cost; 1045 1046 #ifdef CONFIG_HOTPLUG_CPU 1047 struct rcuwait hotplug_wait; 1048 #endif 1049 #endif /* CONFIG_SMP */ 1050 1051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1052 u64 prev_irq_time; 1053 #endif 1054 #ifdef CONFIG_PARAVIRT 1055 u64 prev_steal_time; 1056 #endif 1057 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1058 u64 prev_steal_time_rq; 1059 #endif 1060 1061 /* calc_load related fields */ 1062 unsigned long calc_load_update; 1063 long calc_load_active; 1064 1065 #ifdef CONFIG_SCHED_HRTICK 1066 #ifdef CONFIG_SMP 1067 call_single_data_t hrtick_csd; 1068 #endif 1069 struct hrtimer hrtick_timer; 1070 ktime_t hrtick_time; 1071 #endif 1072 1073 #ifdef CONFIG_SCHEDSTATS 1074 /* latency stats */ 1075 struct sched_info rq_sched_info; 1076 unsigned long long rq_cpu_time; 1077 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1078 1079 /* sys_sched_yield() stats */ 1080 unsigned int yld_count; 1081 1082 /* schedule() stats */ 1083 unsigned int sched_count; 1084 unsigned int sched_goidle; 1085 1086 /* try_to_wake_up() stats */ 1087 unsigned int ttwu_count; 1088 unsigned int ttwu_local; 1089 #endif 1090 1091 #ifdef CONFIG_CPU_IDLE 1092 /* Must be inspected within a rcu lock section */ 1093 struct cpuidle_state *idle_state; 1094 #endif 1095 1096 #ifdef CONFIG_SMP 1097 unsigned int nr_pinned; 1098 #endif 1099 unsigned int push_busy; 1100 struct cpu_stop_work push_work; 1101 1102 #ifdef CONFIG_SCHED_CORE 1103 /* per rq */ 1104 struct rq *core; 1105 struct task_struct *core_pick; 1106 unsigned int core_enabled; 1107 unsigned int core_sched_seq; 1108 struct rb_root core_tree; 1109 1110 /* shared state -- careful with sched_core_cpu_deactivate() */ 1111 unsigned int core_task_seq; 1112 unsigned int core_pick_seq; 1113 unsigned long core_cookie; 1114 unsigned char core_forceidle; 1115 unsigned int core_forceidle_seq; 1116 #endif 1117 }; 1118 1119 #ifdef CONFIG_FAIR_GROUP_SCHED 1120 1121 /* CPU runqueue to which this cfs_rq is attached */ 1122 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1123 { 1124 return cfs_rq->rq; 1125 } 1126 1127 #else 1128 1129 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1130 { 1131 return container_of(cfs_rq, struct rq, cfs); 1132 } 1133 #endif 1134 1135 static inline int cpu_of(struct rq *rq) 1136 { 1137 #ifdef CONFIG_SMP 1138 return rq->cpu; 1139 #else 1140 return 0; 1141 #endif 1142 } 1143 1144 #define MDF_PUSH 0x01 1145 1146 static inline bool is_migration_disabled(struct task_struct *p) 1147 { 1148 #ifdef CONFIG_SMP 1149 return p->migration_disabled; 1150 #else 1151 return false; 1152 #endif 1153 } 1154 1155 struct sched_group; 1156 #ifdef CONFIG_SCHED_CORE 1157 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1158 1159 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1160 1161 static inline bool sched_core_enabled(struct rq *rq) 1162 { 1163 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1164 } 1165 1166 static inline bool sched_core_disabled(void) 1167 { 1168 return !static_branch_unlikely(&__sched_core_enabled); 1169 } 1170 1171 /* 1172 * Be careful with this function; not for general use. The return value isn't 1173 * stable unless you actually hold a relevant rq->__lock. 1174 */ 1175 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1176 { 1177 if (sched_core_enabled(rq)) 1178 return &rq->core->__lock; 1179 1180 return &rq->__lock; 1181 } 1182 1183 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1184 { 1185 if (rq->core_enabled) 1186 return &rq->core->__lock; 1187 1188 return &rq->__lock; 1189 } 1190 1191 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1192 1193 /* 1194 * Helpers to check if the CPU's core cookie matches with the task's cookie 1195 * when core scheduling is enabled. 1196 * A special case is that the task's cookie always matches with CPU's core 1197 * cookie if the CPU is in an idle core. 1198 */ 1199 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1200 { 1201 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1202 if (!sched_core_enabled(rq)) 1203 return true; 1204 1205 return rq->core->core_cookie == p->core_cookie; 1206 } 1207 1208 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1209 { 1210 bool idle_core = true; 1211 int cpu; 1212 1213 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1214 if (!sched_core_enabled(rq)) 1215 return true; 1216 1217 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1218 if (!available_idle_cpu(cpu)) { 1219 idle_core = false; 1220 break; 1221 } 1222 } 1223 1224 /* 1225 * A CPU in an idle core is always the best choice for tasks with 1226 * cookies. 1227 */ 1228 return idle_core || rq->core->core_cookie == p->core_cookie; 1229 } 1230 1231 static inline bool sched_group_cookie_match(struct rq *rq, 1232 struct task_struct *p, 1233 struct sched_group *group) 1234 { 1235 int cpu; 1236 1237 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1238 if (!sched_core_enabled(rq)) 1239 return true; 1240 1241 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1242 if (sched_core_cookie_match(rq, p)) 1243 return true; 1244 } 1245 return false; 1246 } 1247 1248 extern void queue_core_balance(struct rq *rq); 1249 1250 static inline bool sched_core_enqueued(struct task_struct *p) 1251 { 1252 return !RB_EMPTY_NODE(&p->core_node); 1253 } 1254 1255 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1256 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p); 1257 1258 extern void sched_core_get(void); 1259 extern void sched_core_put(void); 1260 1261 #else /* !CONFIG_SCHED_CORE */ 1262 1263 static inline bool sched_core_enabled(struct rq *rq) 1264 { 1265 return false; 1266 } 1267 1268 static inline bool sched_core_disabled(void) 1269 { 1270 return true; 1271 } 1272 1273 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1274 { 1275 return &rq->__lock; 1276 } 1277 1278 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1279 { 1280 return &rq->__lock; 1281 } 1282 1283 static inline void queue_core_balance(struct rq *rq) 1284 { 1285 } 1286 1287 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1288 { 1289 return true; 1290 } 1291 1292 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1293 { 1294 return true; 1295 } 1296 1297 static inline bool sched_group_cookie_match(struct rq *rq, 1298 struct task_struct *p, 1299 struct sched_group *group) 1300 { 1301 return true; 1302 } 1303 #endif /* CONFIG_SCHED_CORE */ 1304 1305 static inline void lockdep_assert_rq_held(struct rq *rq) 1306 { 1307 lockdep_assert_held(__rq_lockp(rq)); 1308 } 1309 1310 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1311 extern bool raw_spin_rq_trylock(struct rq *rq); 1312 extern void raw_spin_rq_unlock(struct rq *rq); 1313 1314 static inline void raw_spin_rq_lock(struct rq *rq) 1315 { 1316 raw_spin_rq_lock_nested(rq, 0); 1317 } 1318 1319 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1320 { 1321 local_irq_disable(); 1322 raw_spin_rq_lock(rq); 1323 } 1324 1325 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1326 { 1327 raw_spin_rq_unlock(rq); 1328 local_irq_enable(); 1329 } 1330 1331 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1332 { 1333 unsigned long flags; 1334 local_irq_save(flags); 1335 raw_spin_rq_lock(rq); 1336 return flags; 1337 } 1338 1339 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1340 { 1341 raw_spin_rq_unlock(rq); 1342 local_irq_restore(flags); 1343 } 1344 1345 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1346 do { \ 1347 flags = _raw_spin_rq_lock_irqsave(rq); \ 1348 } while (0) 1349 1350 #ifdef CONFIG_SCHED_SMT 1351 extern void __update_idle_core(struct rq *rq); 1352 1353 static inline void update_idle_core(struct rq *rq) 1354 { 1355 if (static_branch_unlikely(&sched_smt_present)) 1356 __update_idle_core(rq); 1357 } 1358 1359 #else 1360 static inline void update_idle_core(struct rq *rq) { } 1361 #endif 1362 1363 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1364 1365 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1366 #define this_rq() this_cpu_ptr(&runqueues) 1367 #define task_rq(p) cpu_rq(task_cpu(p)) 1368 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1369 #define raw_rq() raw_cpu_ptr(&runqueues) 1370 1371 #ifdef CONFIG_FAIR_GROUP_SCHED 1372 static inline struct task_struct *task_of(struct sched_entity *se) 1373 { 1374 SCHED_WARN_ON(!entity_is_task(se)); 1375 return container_of(se, struct task_struct, se); 1376 } 1377 1378 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1379 { 1380 return p->se.cfs_rq; 1381 } 1382 1383 /* runqueue on which this entity is (to be) queued */ 1384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1385 { 1386 return se->cfs_rq; 1387 } 1388 1389 /* runqueue "owned" by this group */ 1390 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1391 { 1392 return grp->my_q; 1393 } 1394 1395 #else 1396 1397 static inline struct task_struct *task_of(struct sched_entity *se) 1398 { 1399 return container_of(se, struct task_struct, se); 1400 } 1401 1402 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1403 { 1404 return &task_rq(p)->cfs; 1405 } 1406 1407 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1408 { 1409 struct task_struct *p = task_of(se); 1410 struct rq *rq = task_rq(p); 1411 1412 return &rq->cfs; 1413 } 1414 1415 /* runqueue "owned" by this group */ 1416 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1417 { 1418 return NULL; 1419 } 1420 #endif 1421 1422 extern void update_rq_clock(struct rq *rq); 1423 1424 /* 1425 * rq::clock_update_flags bits 1426 * 1427 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1428 * call to __schedule(). This is an optimisation to avoid 1429 * neighbouring rq clock updates. 1430 * 1431 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1432 * in effect and calls to update_rq_clock() are being ignored. 1433 * 1434 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1435 * made to update_rq_clock() since the last time rq::lock was pinned. 1436 * 1437 * If inside of __schedule(), clock_update_flags will have been 1438 * shifted left (a left shift is a cheap operation for the fast path 1439 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1440 * 1441 * if (rq-clock_update_flags >= RQCF_UPDATED) 1442 * 1443 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1444 * one position though, because the next rq_unpin_lock() will shift it 1445 * back. 1446 */ 1447 #define RQCF_REQ_SKIP 0x01 1448 #define RQCF_ACT_SKIP 0x02 1449 #define RQCF_UPDATED 0x04 1450 1451 static inline void assert_clock_updated(struct rq *rq) 1452 { 1453 /* 1454 * The only reason for not seeing a clock update since the 1455 * last rq_pin_lock() is if we're currently skipping updates. 1456 */ 1457 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1458 } 1459 1460 static inline u64 rq_clock(struct rq *rq) 1461 { 1462 lockdep_assert_rq_held(rq); 1463 assert_clock_updated(rq); 1464 1465 return rq->clock; 1466 } 1467 1468 static inline u64 rq_clock_task(struct rq *rq) 1469 { 1470 lockdep_assert_rq_held(rq); 1471 assert_clock_updated(rq); 1472 1473 return rq->clock_task; 1474 } 1475 1476 /** 1477 * By default the decay is the default pelt decay period. 1478 * The decay shift can change the decay period in 1479 * multiples of 32. 1480 * Decay shift Decay period(ms) 1481 * 0 32 1482 * 1 64 1483 * 2 128 1484 * 3 256 1485 * 4 512 1486 */ 1487 extern int sched_thermal_decay_shift; 1488 1489 static inline u64 rq_clock_thermal(struct rq *rq) 1490 { 1491 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1492 } 1493 1494 static inline void rq_clock_skip_update(struct rq *rq) 1495 { 1496 lockdep_assert_rq_held(rq); 1497 rq->clock_update_flags |= RQCF_REQ_SKIP; 1498 } 1499 1500 /* 1501 * See rt task throttling, which is the only time a skip 1502 * request is canceled. 1503 */ 1504 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1505 { 1506 lockdep_assert_rq_held(rq); 1507 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1508 } 1509 1510 struct rq_flags { 1511 unsigned long flags; 1512 struct pin_cookie cookie; 1513 #ifdef CONFIG_SCHED_DEBUG 1514 /* 1515 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1516 * current pin context is stashed here in case it needs to be 1517 * restored in rq_repin_lock(). 1518 */ 1519 unsigned int clock_update_flags; 1520 #endif 1521 }; 1522 1523 extern struct callback_head balance_push_callback; 1524 1525 /* 1526 * Lockdep annotation that avoids accidental unlocks; it's like a 1527 * sticky/continuous lockdep_assert_held(). 1528 * 1529 * This avoids code that has access to 'struct rq *rq' (basically everything in 1530 * the scheduler) from accidentally unlocking the rq if they do not also have a 1531 * copy of the (on-stack) 'struct rq_flags rf'. 1532 * 1533 * Also see Documentation/locking/lockdep-design.rst. 1534 */ 1535 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1536 { 1537 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1538 1539 #ifdef CONFIG_SCHED_DEBUG 1540 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1541 rf->clock_update_flags = 0; 1542 #ifdef CONFIG_SMP 1543 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1544 #endif 1545 #endif 1546 } 1547 1548 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1549 { 1550 #ifdef CONFIG_SCHED_DEBUG 1551 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1552 rf->clock_update_flags = RQCF_UPDATED; 1553 #endif 1554 1555 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1556 } 1557 1558 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1559 { 1560 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1561 1562 #ifdef CONFIG_SCHED_DEBUG 1563 /* 1564 * Restore the value we stashed in @rf for this pin context. 1565 */ 1566 rq->clock_update_flags |= rf->clock_update_flags; 1567 #endif 1568 } 1569 1570 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1571 __acquires(rq->lock); 1572 1573 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1574 __acquires(p->pi_lock) 1575 __acquires(rq->lock); 1576 1577 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1578 __releases(rq->lock) 1579 { 1580 rq_unpin_lock(rq, rf); 1581 raw_spin_rq_unlock(rq); 1582 } 1583 1584 static inline void 1585 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1586 __releases(rq->lock) 1587 __releases(p->pi_lock) 1588 { 1589 rq_unpin_lock(rq, rf); 1590 raw_spin_rq_unlock(rq); 1591 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1592 } 1593 1594 static inline void 1595 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1596 __acquires(rq->lock) 1597 { 1598 raw_spin_rq_lock_irqsave(rq, rf->flags); 1599 rq_pin_lock(rq, rf); 1600 } 1601 1602 static inline void 1603 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1604 __acquires(rq->lock) 1605 { 1606 raw_spin_rq_lock_irq(rq); 1607 rq_pin_lock(rq, rf); 1608 } 1609 1610 static inline void 1611 rq_lock(struct rq *rq, struct rq_flags *rf) 1612 __acquires(rq->lock) 1613 { 1614 raw_spin_rq_lock(rq); 1615 rq_pin_lock(rq, rf); 1616 } 1617 1618 static inline void 1619 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1620 __releases(rq->lock) 1621 { 1622 rq_unpin_lock(rq, rf); 1623 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1624 } 1625 1626 static inline void 1627 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1628 __releases(rq->lock) 1629 { 1630 rq_unpin_lock(rq, rf); 1631 raw_spin_rq_unlock_irq(rq); 1632 } 1633 1634 static inline void 1635 rq_unlock(struct rq *rq, struct rq_flags *rf) 1636 __releases(rq->lock) 1637 { 1638 rq_unpin_lock(rq, rf); 1639 raw_spin_rq_unlock(rq); 1640 } 1641 1642 static inline struct rq * 1643 this_rq_lock_irq(struct rq_flags *rf) 1644 __acquires(rq->lock) 1645 { 1646 struct rq *rq; 1647 1648 local_irq_disable(); 1649 rq = this_rq(); 1650 rq_lock(rq, rf); 1651 return rq; 1652 } 1653 1654 #ifdef CONFIG_NUMA 1655 enum numa_topology_type { 1656 NUMA_DIRECT, 1657 NUMA_GLUELESS_MESH, 1658 NUMA_BACKPLANE, 1659 }; 1660 extern enum numa_topology_type sched_numa_topology_type; 1661 extern int sched_max_numa_distance; 1662 extern bool find_numa_distance(int distance); 1663 extern void sched_init_numa(void); 1664 extern void sched_domains_numa_masks_set(unsigned int cpu); 1665 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1666 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1667 #else 1668 static inline void sched_init_numa(void) { } 1669 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1670 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1671 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1672 { 1673 return nr_cpu_ids; 1674 } 1675 #endif 1676 1677 #ifdef CONFIG_NUMA_BALANCING 1678 /* The regions in numa_faults array from task_struct */ 1679 enum numa_faults_stats { 1680 NUMA_MEM = 0, 1681 NUMA_CPU, 1682 NUMA_MEMBUF, 1683 NUMA_CPUBUF 1684 }; 1685 extern void sched_setnuma(struct task_struct *p, int node); 1686 extern int migrate_task_to(struct task_struct *p, int cpu); 1687 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1688 int cpu, int scpu); 1689 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1690 #else 1691 static inline void 1692 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1693 { 1694 } 1695 #endif /* CONFIG_NUMA_BALANCING */ 1696 1697 #ifdef CONFIG_SMP 1698 1699 static inline void 1700 queue_balance_callback(struct rq *rq, 1701 struct callback_head *head, 1702 void (*func)(struct rq *rq)) 1703 { 1704 lockdep_assert_rq_held(rq); 1705 1706 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1707 return; 1708 1709 head->func = (void (*)(struct callback_head *))func; 1710 head->next = rq->balance_callback; 1711 rq->balance_callback = head; 1712 } 1713 1714 #define rcu_dereference_check_sched_domain(p) \ 1715 rcu_dereference_check((p), \ 1716 lockdep_is_held(&sched_domains_mutex)) 1717 1718 /* 1719 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1720 * See destroy_sched_domains: call_rcu for details. 1721 * 1722 * The domain tree of any CPU may only be accessed from within 1723 * preempt-disabled sections. 1724 */ 1725 #define for_each_domain(cpu, __sd) \ 1726 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1727 __sd; __sd = __sd->parent) 1728 1729 /** 1730 * highest_flag_domain - Return highest sched_domain containing flag. 1731 * @cpu: The CPU whose highest level of sched domain is to 1732 * be returned. 1733 * @flag: The flag to check for the highest sched_domain 1734 * for the given CPU. 1735 * 1736 * Returns the highest sched_domain of a CPU which contains the given flag. 1737 */ 1738 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1739 { 1740 struct sched_domain *sd, *hsd = NULL; 1741 1742 for_each_domain(cpu, sd) { 1743 if (!(sd->flags & flag)) 1744 break; 1745 hsd = sd; 1746 } 1747 1748 return hsd; 1749 } 1750 1751 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1752 { 1753 struct sched_domain *sd; 1754 1755 for_each_domain(cpu, sd) { 1756 if (sd->flags & flag) 1757 break; 1758 } 1759 1760 return sd; 1761 } 1762 1763 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1764 DECLARE_PER_CPU(int, sd_llc_size); 1765 DECLARE_PER_CPU(int, sd_llc_id); 1766 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1767 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1768 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1769 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1770 extern struct static_key_false sched_asym_cpucapacity; 1771 1772 struct sched_group_capacity { 1773 atomic_t ref; 1774 /* 1775 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1776 * for a single CPU. 1777 */ 1778 unsigned long capacity; 1779 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1780 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1781 unsigned long next_update; 1782 int imbalance; /* XXX unrelated to capacity but shared group state */ 1783 1784 #ifdef CONFIG_SCHED_DEBUG 1785 int id; 1786 #endif 1787 1788 unsigned long cpumask[]; /* Balance mask */ 1789 }; 1790 1791 struct sched_group { 1792 struct sched_group *next; /* Must be a circular list */ 1793 atomic_t ref; 1794 1795 unsigned int group_weight; 1796 struct sched_group_capacity *sgc; 1797 int asym_prefer_cpu; /* CPU of highest priority in group */ 1798 int flags; 1799 1800 /* 1801 * The CPUs this group covers. 1802 * 1803 * NOTE: this field is variable length. (Allocated dynamically 1804 * by attaching extra space to the end of the structure, 1805 * depending on how many CPUs the kernel has booted up with) 1806 */ 1807 unsigned long cpumask[]; 1808 }; 1809 1810 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1811 { 1812 return to_cpumask(sg->cpumask); 1813 } 1814 1815 /* 1816 * See build_balance_mask(). 1817 */ 1818 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1819 { 1820 return to_cpumask(sg->sgc->cpumask); 1821 } 1822 1823 /** 1824 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1825 * @group: The group whose first CPU is to be returned. 1826 */ 1827 static inline unsigned int group_first_cpu(struct sched_group *group) 1828 { 1829 return cpumask_first(sched_group_span(group)); 1830 } 1831 1832 extern int group_balance_cpu(struct sched_group *sg); 1833 1834 #ifdef CONFIG_SCHED_DEBUG 1835 void update_sched_domain_debugfs(void); 1836 void dirty_sched_domain_sysctl(int cpu); 1837 #else 1838 static inline void update_sched_domain_debugfs(void) 1839 { 1840 } 1841 static inline void dirty_sched_domain_sysctl(int cpu) 1842 { 1843 } 1844 #endif 1845 1846 extern int sched_update_scaling(void); 1847 1848 extern void flush_smp_call_function_from_idle(void); 1849 1850 #else /* !CONFIG_SMP: */ 1851 static inline void flush_smp_call_function_from_idle(void) { } 1852 #endif 1853 1854 #include "stats.h" 1855 #include "autogroup.h" 1856 1857 #ifdef CONFIG_CGROUP_SCHED 1858 1859 /* 1860 * Return the group to which this tasks belongs. 1861 * 1862 * We cannot use task_css() and friends because the cgroup subsystem 1863 * changes that value before the cgroup_subsys::attach() method is called, 1864 * therefore we cannot pin it and might observe the wrong value. 1865 * 1866 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1867 * core changes this before calling sched_move_task(). 1868 * 1869 * Instead we use a 'copy' which is updated from sched_move_task() while 1870 * holding both task_struct::pi_lock and rq::lock. 1871 */ 1872 static inline struct task_group *task_group(struct task_struct *p) 1873 { 1874 return p->sched_task_group; 1875 } 1876 1877 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1878 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1879 { 1880 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1881 struct task_group *tg = task_group(p); 1882 #endif 1883 1884 #ifdef CONFIG_FAIR_GROUP_SCHED 1885 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1886 p->se.cfs_rq = tg->cfs_rq[cpu]; 1887 p->se.parent = tg->se[cpu]; 1888 #endif 1889 1890 #ifdef CONFIG_RT_GROUP_SCHED 1891 p->rt.rt_rq = tg->rt_rq[cpu]; 1892 p->rt.parent = tg->rt_se[cpu]; 1893 #endif 1894 } 1895 1896 #else /* CONFIG_CGROUP_SCHED */ 1897 1898 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1899 static inline struct task_group *task_group(struct task_struct *p) 1900 { 1901 return NULL; 1902 } 1903 1904 #endif /* CONFIG_CGROUP_SCHED */ 1905 1906 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1907 { 1908 set_task_rq(p, cpu); 1909 #ifdef CONFIG_SMP 1910 /* 1911 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1912 * successfully executed on another CPU. We must ensure that updates of 1913 * per-task data have been completed by this moment. 1914 */ 1915 smp_wmb(); 1916 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1917 p->wake_cpu = cpu; 1918 #endif 1919 } 1920 1921 /* 1922 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1923 */ 1924 #ifdef CONFIG_SCHED_DEBUG 1925 # include <linux/static_key.h> 1926 # define const_debug __read_mostly 1927 #else 1928 # define const_debug const 1929 #endif 1930 1931 #define SCHED_FEAT(name, enabled) \ 1932 __SCHED_FEAT_##name , 1933 1934 enum { 1935 #include "features.h" 1936 __SCHED_FEAT_NR, 1937 }; 1938 1939 #undef SCHED_FEAT 1940 1941 #ifdef CONFIG_SCHED_DEBUG 1942 1943 /* 1944 * To support run-time toggling of sched features, all the translation units 1945 * (but core.c) reference the sysctl_sched_features defined in core.c. 1946 */ 1947 extern const_debug unsigned int sysctl_sched_features; 1948 1949 #ifdef CONFIG_JUMP_LABEL 1950 #define SCHED_FEAT(name, enabled) \ 1951 static __always_inline bool static_branch_##name(struct static_key *key) \ 1952 { \ 1953 return static_key_##enabled(key); \ 1954 } 1955 1956 #include "features.h" 1957 #undef SCHED_FEAT 1958 1959 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1960 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1961 1962 #else /* !CONFIG_JUMP_LABEL */ 1963 1964 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1965 1966 #endif /* CONFIG_JUMP_LABEL */ 1967 1968 #else /* !SCHED_DEBUG */ 1969 1970 /* 1971 * Each translation unit has its own copy of sysctl_sched_features to allow 1972 * constants propagation at compile time and compiler optimization based on 1973 * features default. 1974 */ 1975 #define SCHED_FEAT(name, enabled) \ 1976 (1UL << __SCHED_FEAT_##name) * enabled | 1977 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1978 #include "features.h" 1979 0; 1980 #undef SCHED_FEAT 1981 1982 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1983 1984 #endif /* SCHED_DEBUG */ 1985 1986 extern struct static_key_false sched_numa_balancing; 1987 extern struct static_key_false sched_schedstats; 1988 1989 static inline u64 global_rt_period(void) 1990 { 1991 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1992 } 1993 1994 static inline u64 global_rt_runtime(void) 1995 { 1996 if (sysctl_sched_rt_runtime < 0) 1997 return RUNTIME_INF; 1998 1999 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2000 } 2001 2002 static inline int task_current(struct rq *rq, struct task_struct *p) 2003 { 2004 return rq->curr == p; 2005 } 2006 2007 static inline int task_running(struct rq *rq, struct task_struct *p) 2008 { 2009 #ifdef CONFIG_SMP 2010 return p->on_cpu; 2011 #else 2012 return task_current(rq, p); 2013 #endif 2014 } 2015 2016 static inline int task_on_rq_queued(struct task_struct *p) 2017 { 2018 return p->on_rq == TASK_ON_RQ_QUEUED; 2019 } 2020 2021 static inline int task_on_rq_migrating(struct task_struct *p) 2022 { 2023 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2024 } 2025 2026 /* Wake flags. The first three directly map to some SD flag value */ 2027 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2028 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2029 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2030 2031 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2032 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2033 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 2034 2035 #ifdef CONFIG_SMP 2036 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2037 static_assert(WF_FORK == SD_BALANCE_FORK); 2038 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2039 #endif 2040 2041 /* 2042 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2043 * of tasks with abnormal "nice" values across CPUs the contribution that 2044 * each task makes to its run queue's load is weighted according to its 2045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2046 * scaled version of the new time slice allocation that they receive on time 2047 * slice expiry etc. 2048 */ 2049 2050 #define WEIGHT_IDLEPRIO 3 2051 #define WMULT_IDLEPRIO 1431655765 2052 2053 extern const int sched_prio_to_weight[40]; 2054 extern const u32 sched_prio_to_wmult[40]; 2055 2056 /* 2057 * {de,en}queue flags: 2058 * 2059 * DEQUEUE_SLEEP - task is no longer runnable 2060 * ENQUEUE_WAKEUP - task just became runnable 2061 * 2062 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2063 * are in a known state which allows modification. Such pairs 2064 * should preserve as much state as possible. 2065 * 2066 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2067 * in the runqueue. 2068 * 2069 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2070 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2071 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2072 * 2073 */ 2074 2075 #define DEQUEUE_SLEEP 0x01 2076 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2077 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2078 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2079 2080 #define ENQUEUE_WAKEUP 0x01 2081 #define ENQUEUE_RESTORE 0x02 2082 #define ENQUEUE_MOVE 0x04 2083 #define ENQUEUE_NOCLOCK 0x08 2084 2085 #define ENQUEUE_HEAD 0x10 2086 #define ENQUEUE_REPLENISH 0x20 2087 #ifdef CONFIG_SMP 2088 #define ENQUEUE_MIGRATED 0x40 2089 #else 2090 #define ENQUEUE_MIGRATED 0x00 2091 #endif 2092 2093 #define RETRY_TASK ((void *)-1UL) 2094 2095 struct sched_class { 2096 2097 #ifdef CONFIG_UCLAMP_TASK 2098 int uclamp_enabled; 2099 #endif 2100 2101 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2102 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2103 void (*yield_task) (struct rq *rq); 2104 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2105 2106 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2107 2108 struct task_struct *(*pick_next_task)(struct rq *rq); 2109 2110 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2111 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2112 2113 #ifdef CONFIG_SMP 2114 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2115 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2116 2117 struct task_struct * (*pick_task)(struct rq *rq); 2118 2119 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2120 2121 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2122 2123 void (*set_cpus_allowed)(struct task_struct *p, 2124 const struct cpumask *newmask, 2125 u32 flags); 2126 2127 void (*rq_online)(struct rq *rq); 2128 void (*rq_offline)(struct rq *rq); 2129 2130 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2131 #endif 2132 2133 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2134 void (*task_fork)(struct task_struct *p); 2135 void (*task_dead)(struct task_struct *p); 2136 2137 /* 2138 * The switched_from() call is allowed to drop rq->lock, therefore we 2139 * cannot assume the switched_from/switched_to pair is serialized by 2140 * rq->lock. They are however serialized by p->pi_lock. 2141 */ 2142 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2143 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2144 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2145 int oldprio); 2146 2147 unsigned int (*get_rr_interval)(struct rq *rq, 2148 struct task_struct *task); 2149 2150 void (*update_curr)(struct rq *rq); 2151 2152 #define TASK_SET_GROUP 0 2153 #define TASK_MOVE_GROUP 1 2154 2155 #ifdef CONFIG_FAIR_GROUP_SCHED 2156 void (*task_change_group)(struct task_struct *p, int type); 2157 #endif 2158 }; 2159 2160 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2161 { 2162 WARN_ON_ONCE(rq->curr != prev); 2163 prev->sched_class->put_prev_task(rq, prev); 2164 } 2165 2166 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2167 { 2168 next->sched_class->set_next_task(rq, next, false); 2169 } 2170 2171 2172 /* 2173 * Helper to define a sched_class instance; each one is placed in a separate 2174 * section which is ordered by the linker script: 2175 * 2176 * include/asm-generic/vmlinux.lds.h 2177 * 2178 * Also enforce alignment on the instance, not the type, to guarantee layout. 2179 */ 2180 #define DEFINE_SCHED_CLASS(name) \ 2181 const struct sched_class name##_sched_class \ 2182 __aligned(__alignof__(struct sched_class)) \ 2183 __section("__" #name "_sched_class") 2184 2185 /* Defined in include/asm-generic/vmlinux.lds.h */ 2186 extern struct sched_class __begin_sched_classes[]; 2187 extern struct sched_class __end_sched_classes[]; 2188 2189 #define sched_class_highest (__end_sched_classes - 1) 2190 #define sched_class_lowest (__begin_sched_classes - 1) 2191 2192 #define for_class_range(class, _from, _to) \ 2193 for (class = (_from); class != (_to); class--) 2194 2195 #define for_each_class(class) \ 2196 for_class_range(class, sched_class_highest, sched_class_lowest) 2197 2198 extern const struct sched_class stop_sched_class; 2199 extern const struct sched_class dl_sched_class; 2200 extern const struct sched_class rt_sched_class; 2201 extern const struct sched_class fair_sched_class; 2202 extern const struct sched_class idle_sched_class; 2203 2204 static inline bool sched_stop_runnable(struct rq *rq) 2205 { 2206 return rq->stop && task_on_rq_queued(rq->stop); 2207 } 2208 2209 static inline bool sched_dl_runnable(struct rq *rq) 2210 { 2211 return rq->dl.dl_nr_running > 0; 2212 } 2213 2214 static inline bool sched_rt_runnable(struct rq *rq) 2215 { 2216 return rq->rt.rt_queued > 0; 2217 } 2218 2219 static inline bool sched_fair_runnable(struct rq *rq) 2220 { 2221 return rq->cfs.nr_running > 0; 2222 } 2223 2224 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2225 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2226 2227 #define SCA_CHECK 0x01 2228 #define SCA_MIGRATE_DISABLE 0x02 2229 #define SCA_MIGRATE_ENABLE 0x04 2230 #define SCA_USER 0x08 2231 2232 #ifdef CONFIG_SMP 2233 2234 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2235 2236 extern void trigger_load_balance(struct rq *rq); 2237 2238 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2239 2240 static inline struct task_struct *get_push_task(struct rq *rq) 2241 { 2242 struct task_struct *p = rq->curr; 2243 2244 lockdep_assert_rq_held(rq); 2245 2246 if (rq->push_busy) 2247 return NULL; 2248 2249 if (p->nr_cpus_allowed == 1) 2250 return NULL; 2251 2252 if (p->migration_disabled) 2253 return NULL; 2254 2255 rq->push_busy = true; 2256 return get_task_struct(p); 2257 } 2258 2259 extern int push_cpu_stop(void *arg); 2260 2261 #endif 2262 2263 #ifdef CONFIG_CPU_IDLE 2264 static inline void idle_set_state(struct rq *rq, 2265 struct cpuidle_state *idle_state) 2266 { 2267 rq->idle_state = idle_state; 2268 } 2269 2270 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2271 { 2272 SCHED_WARN_ON(!rcu_read_lock_held()); 2273 2274 return rq->idle_state; 2275 } 2276 #else 2277 static inline void idle_set_state(struct rq *rq, 2278 struct cpuidle_state *idle_state) 2279 { 2280 } 2281 2282 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2283 { 2284 return NULL; 2285 } 2286 #endif 2287 2288 extern void schedule_idle(void); 2289 2290 extern void sysrq_sched_debug_show(void); 2291 extern void sched_init_granularity(void); 2292 extern void update_max_interval(void); 2293 2294 extern void init_sched_dl_class(void); 2295 extern void init_sched_rt_class(void); 2296 extern void init_sched_fair_class(void); 2297 2298 extern void reweight_task(struct task_struct *p, int prio); 2299 2300 extern void resched_curr(struct rq *rq); 2301 extern void resched_cpu(int cpu); 2302 2303 extern struct rt_bandwidth def_rt_bandwidth; 2304 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2305 2306 extern struct dl_bandwidth def_dl_bandwidth; 2307 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2308 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2309 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2310 2311 #define BW_SHIFT 20 2312 #define BW_UNIT (1 << BW_SHIFT) 2313 #define RATIO_SHIFT 8 2314 #define MAX_BW_BITS (64 - BW_SHIFT) 2315 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2316 unsigned long to_ratio(u64 period, u64 runtime); 2317 2318 extern void init_entity_runnable_average(struct sched_entity *se); 2319 extern void post_init_entity_util_avg(struct task_struct *p); 2320 2321 #ifdef CONFIG_NO_HZ_FULL 2322 extern bool sched_can_stop_tick(struct rq *rq); 2323 extern int __init sched_tick_offload_init(void); 2324 2325 /* 2326 * Tick may be needed by tasks in the runqueue depending on their policy and 2327 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2328 * nohz mode if necessary. 2329 */ 2330 static inline void sched_update_tick_dependency(struct rq *rq) 2331 { 2332 int cpu = cpu_of(rq); 2333 2334 if (!tick_nohz_full_cpu(cpu)) 2335 return; 2336 2337 if (sched_can_stop_tick(rq)) 2338 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2339 else 2340 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2341 } 2342 #else 2343 static inline int sched_tick_offload_init(void) { return 0; } 2344 static inline void sched_update_tick_dependency(struct rq *rq) { } 2345 #endif 2346 2347 static inline void add_nr_running(struct rq *rq, unsigned count) 2348 { 2349 unsigned prev_nr = rq->nr_running; 2350 2351 rq->nr_running = prev_nr + count; 2352 if (trace_sched_update_nr_running_tp_enabled()) { 2353 call_trace_sched_update_nr_running(rq, count); 2354 } 2355 2356 #ifdef CONFIG_SMP 2357 if (prev_nr < 2 && rq->nr_running >= 2) { 2358 if (!READ_ONCE(rq->rd->overload)) 2359 WRITE_ONCE(rq->rd->overload, 1); 2360 } 2361 #endif 2362 2363 sched_update_tick_dependency(rq); 2364 } 2365 2366 static inline void sub_nr_running(struct rq *rq, unsigned count) 2367 { 2368 rq->nr_running -= count; 2369 if (trace_sched_update_nr_running_tp_enabled()) { 2370 call_trace_sched_update_nr_running(rq, -count); 2371 } 2372 2373 /* Check if we still need preemption */ 2374 sched_update_tick_dependency(rq); 2375 } 2376 2377 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2378 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2379 2380 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2381 2382 extern const_debug unsigned int sysctl_sched_nr_migrate; 2383 extern const_debug unsigned int sysctl_sched_migration_cost; 2384 2385 #ifdef CONFIG_SCHED_DEBUG 2386 extern unsigned int sysctl_sched_latency; 2387 extern unsigned int sysctl_sched_min_granularity; 2388 extern unsigned int sysctl_sched_idle_min_granularity; 2389 extern unsigned int sysctl_sched_wakeup_granularity; 2390 extern int sysctl_resched_latency_warn_ms; 2391 extern int sysctl_resched_latency_warn_once; 2392 2393 extern unsigned int sysctl_sched_tunable_scaling; 2394 2395 extern unsigned int sysctl_numa_balancing_scan_delay; 2396 extern unsigned int sysctl_numa_balancing_scan_period_min; 2397 extern unsigned int sysctl_numa_balancing_scan_period_max; 2398 extern unsigned int sysctl_numa_balancing_scan_size; 2399 #endif 2400 2401 #ifdef CONFIG_SCHED_HRTICK 2402 2403 /* 2404 * Use hrtick when: 2405 * - enabled by features 2406 * - hrtimer is actually high res 2407 */ 2408 static inline int hrtick_enabled(struct rq *rq) 2409 { 2410 if (!cpu_active(cpu_of(rq))) 2411 return 0; 2412 return hrtimer_is_hres_active(&rq->hrtick_timer); 2413 } 2414 2415 static inline int hrtick_enabled_fair(struct rq *rq) 2416 { 2417 if (!sched_feat(HRTICK)) 2418 return 0; 2419 return hrtick_enabled(rq); 2420 } 2421 2422 static inline int hrtick_enabled_dl(struct rq *rq) 2423 { 2424 if (!sched_feat(HRTICK_DL)) 2425 return 0; 2426 return hrtick_enabled(rq); 2427 } 2428 2429 void hrtick_start(struct rq *rq, u64 delay); 2430 2431 #else 2432 2433 static inline int hrtick_enabled_fair(struct rq *rq) 2434 { 2435 return 0; 2436 } 2437 2438 static inline int hrtick_enabled_dl(struct rq *rq) 2439 { 2440 return 0; 2441 } 2442 2443 static inline int hrtick_enabled(struct rq *rq) 2444 { 2445 return 0; 2446 } 2447 2448 #endif /* CONFIG_SCHED_HRTICK */ 2449 2450 #ifndef arch_scale_freq_tick 2451 static __always_inline 2452 void arch_scale_freq_tick(void) 2453 { 2454 } 2455 #endif 2456 2457 #ifndef arch_scale_freq_capacity 2458 /** 2459 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2460 * @cpu: the CPU in question. 2461 * 2462 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2463 * 2464 * f_curr 2465 * ------ * SCHED_CAPACITY_SCALE 2466 * f_max 2467 */ 2468 static __always_inline 2469 unsigned long arch_scale_freq_capacity(int cpu) 2470 { 2471 return SCHED_CAPACITY_SCALE; 2472 } 2473 #endif 2474 2475 2476 #ifdef CONFIG_SMP 2477 2478 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2479 { 2480 #ifdef CONFIG_SCHED_CORE 2481 /* 2482 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2483 * order by core-id first and cpu-id second. 2484 * 2485 * Notably: 2486 * 2487 * double_rq_lock(0,3); will take core-0, core-1 lock 2488 * double_rq_lock(1,2); will take core-1, core-0 lock 2489 * 2490 * when only cpu-id is considered. 2491 */ 2492 if (rq1->core->cpu < rq2->core->cpu) 2493 return true; 2494 if (rq1->core->cpu > rq2->core->cpu) 2495 return false; 2496 2497 /* 2498 * __sched_core_flip() relies on SMT having cpu-id lock order. 2499 */ 2500 #endif 2501 return rq1->cpu < rq2->cpu; 2502 } 2503 2504 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2505 2506 #ifdef CONFIG_PREEMPTION 2507 2508 /* 2509 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2510 * way at the expense of forcing extra atomic operations in all 2511 * invocations. This assures that the double_lock is acquired using the 2512 * same underlying policy as the spinlock_t on this architecture, which 2513 * reduces latency compared to the unfair variant below. However, it 2514 * also adds more overhead and therefore may reduce throughput. 2515 */ 2516 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2517 __releases(this_rq->lock) 2518 __acquires(busiest->lock) 2519 __acquires(this_rq->lock) 2520 { 2521 raw_spin_rq_unlock(this_rq); 2522 double_rq_lock(this_rq, busiest); 2523 2524 return 1; 2525 } 2526 2527 #else 2528 /* 2529 * Unfair double_lock_balance: Optimizes throughput at the expense of 2530 * latency by eliminating extra atomic operations when the locks are 2531 * already in proper order on entry. This favors lower CPU-ids and will 2532 * grant the double lock to lower CPUs over higher ids under contention, 2533 * regardless of entry order into the function. 2534 */ 2535 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2536 __releases(this_rq->lock) 2537 __acquires(busiest->lock) 2538 __acquires(this_rq->lock) 2539 { 2540 if (__rq_lockp(this_rq) == __rq_lockp(busiest)) 2541 return 0; 2542 2543 if (likely(raw_spin_rq_trylock(busiest))) 2544 return 0; 2545 2546 if (rq_order_less(this_rq, busiest)) { 2547 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2548 return 0; 2549 } 2550 2551 raw_spin_rq_unlock(this_rq); 2552 double_rq_lock(this_rq, busiest); 2553 2554 return 1; 2555 } 2556 2557 #endif /* CONFIG_PREEMPTION */ 2558 2559 /* 2560 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2561 */ 2562 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2563 { 2564 lockdep_assert_irqs_disabled(); 2565 2566 return _double_lock_balance(this_rq, busiest); 2567 } 2568 2569 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2570 __releases(busiest->lock) 2571 { 2572 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2573 raw_spin_rq_unlock(busiest); 2574 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2575 } 2576 2577 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2578 { 2579 if (l1 > l2) 2580 swap(l1, l2); 2581 2582 spin_lock(l1); 2583 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2584 } 2585 2586 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2587 { 2588 if (l1 > l2) 2589 swap(l1, l2); 2590 2591 spin_lock_irq(l1); 2592 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2593 } 2594 2595 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2596 { 2597 if (l1 > l2) 2598 swap(l1, l2); 2599 2600 raw_spin_lock(l1); 2601 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2602 } 2603 2604 /* 2605 * double_rq_unlock - safely unlock two runqueues 2606 * 2607 * Note this does not restore interrupts like task_rq_unlock, 2608 * you need to do so manually after calling. 2609 */ 2610 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2611 __releases(rq1->lock) 2612 __releases(rq2->lock) 2613 { 2614 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2615 raw_spin_rq_unlock(rq2); 2616 else 2617 __release(rq2->lock); 2618 raw_spin_rq_unlock(rq1); 2619 } 2620 2621 extern void set_rq_online (struct rq *rq); 2622 extern void set_rq_offline(struct rq *rq); 2623 extern bool sched_smp_initialized; 2624 2625 #else /* CONFIG_SMP */ 2626 2627 /* 2628 * double_rq_lock - safely lock two runqueues 2629 * 2630 * Note this does not disable interrupts like task_rq_lock, 2631 * you need to do so manually before calling. 2632 */ 2633 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2634 __acquires(rq1->lock) 2635 __acquires(rq2->lock) 2636 { 2637 BUG_ON(!irqs_disabled()); 2638 BUG_ON(rq1 != rq2); 2639 raw_spin_rq_lock(rq1); 2640 __acquire(rq2->lock); /* Fake it out ;) */ 2641 } 2642 2643 /* 2644 * double_rq_unlock - safely unlock two runqueues 2645 * 2646 * Note this does not restore interrupts like task_rq_unlock, 2647 * you need to do so manually after calling. 2648 */ 2649 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2650 __releases(rq1->lock) 2651 __releases(rq2->lock) 2652 { 2653 BUG_ON(rq1 != rq2); 2654 raw_spin_rq_unlock(rq1); 2655 __release(rq2->lock); 2656 } 2657 2658 #endif 2659 2660 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2661 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2662 2663 #ifdef CONFIG_SCHED_DEBUG 2664 extern bool sched_debug_verbose; 2665 2666 extern void print_cfs_stats(struct seq_file *m, int cpu); 2667 extern void print_rt_stats(struct seq_file *m, int cpu); 2668 extern void print_dl_stats(struct seq_file *m, int cpu); 2669 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2670 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2671 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2672 2673 extern void resched_latency_warn(int cpu, u64 latency); 2674 #ifdef CONFIG_NUMA_BALANCING 2675 extern void 2676 show_numa_stats(struct task_struct *p, struct seq_file *m); 2677 extern void 2678 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2679 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2680 #endif /* CONFIG_NUMA_BALANCING */ 2681 #else 2682 static inline void resched_latency_warn(int cpu, u64 latency) {} 2683 #endif /* CONFIG_SCHED_DEBUG */ 2684 2685 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2686 extern void init_rt_rq(struct rt_rq *rt_rq); 2687 extern void init_dl_rq(struct dl_rq *dl_rq); 2688 2689 extern void cfs_bandwidth_usage_inc(void); 2690 extern void cfs_bandwidth_usage_dec(void); 2691 2692 #ifdef CONFIG_NO_HZ_COMMON 2693 #define NOHZ_BALANCE_KICK_BIT 0 2694 #define NOHZ_STATS_KICK_BIT 1 2695 #define NOHZ_NEWILB_KICK_BIT 2 2696 #define NOHZ_NEXT_KICK_BIT 3 2697 2698 /* Run rebalance_domains() */ 2699 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2700 /* Update blocked load */ 2701 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2702 /* Update blocked load when entering idle */ 2703 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2704 /* Update nohz.next_balance */ 2705 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2706 2707 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2708 2709 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2710 2711 extern void nohz_balance_exit_idle(struct rq *rq); 2712 #else 2713 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2714 #endif 2715 2716 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2717 extern void nohz_run_idle_balance(int cpu); 2718 #else 2719 static inline void nohz_run_idle_balance(int cpu) { } 2720 #endif 2721 2722 #ifdef CONFIG_SMP 2723 static inline 2724 void __dl_update(struct dl_bw *dl_b, s64 bw) 2725 { 2726 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2727 int i; 2728 2729 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2730 "sched RCU must be held"); 2731 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2732 struct rq *rq = cpu_rq(i); 2733 2734 rq->dl.extra_bw += bw; 2735 } 2736 } 2737 #else 2738 static inline 2739 void __dl_update(struct dl_bw *dl_b, s64 bw) 2740 { 2741 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2742 2743 dl->extra_bw += bw; 2744 } 2745 #endif 2746 2747 2748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2749 struct irqtime { 2750 u64 total; 2751 u64 tick_delta; 2752 u64 irq_start_time; 2753 struct u64_stats_sync sync; 2754 }; 2755 2756 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2757 2758 /* 2759 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2760 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2761 * and never move forward. 2762 */ 2763 static inline u64 irq_time_read(int cpu) 2764 { 2765 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2766 unsigned int seq; 2767 u64 total; 2768 2769 do { 2770 seq = __u64_stats_fetch_begin(&irqtime->sync); 2771 total = irqtime->total; 2772 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2773 2774 return total; 2775 } 2776 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2777 2778 #ifdef CONFIG_CPU_FREQ 2779 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2780 2781 /** 2782 * cpufreq_update_util - Take a note about CPU utilization changes. 2783 * @rq: Runqueue to carry out the update for. 2784 * @flags: Update reason flags. 2785 * 2786 * This function is called by the scheduler on the CPU whose utilization is 2787 * being updated. 2788 * 2789 * It can only be called from RCU-sched read-side critical sections. 2790 * 2791 * The way cpufreq is currently arranged requires it to evaluate the CPU 2792 * performance state (frequency/voltage) on a regular basis to prevent it from 2793 * being stuck in a completely inadequate performance level for too long. 2794 * That is not guaranteed to happen if the updates are only triggered from CFS 2795 * and DL, though, because they may not be coming in if only RT tasks are 2796 * active all the time (or there are RT tasks only). 2797 * 2798 * As a workaround for that issue, this function is called periodically by the 2799 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2800 * but that really is a band-aid. Going forward it should be replaced with 2801 * solutions targeted more specifically at RT tasks. 2802 */ 2803 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2804 { 2805 struct update_util_data *data; 2806 2807 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2808 cpu_of(rq))); 2809 if (data) 2810 data->func(data, rq_clock(rq), flags); 2811 } 2812 #else 2813 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2814 #endif /* CONFIG_CPU_FREQ */ 2815 2816 #ifdef CONFIG_UCLAMP_TASK 2817 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2818 2819 /** 2820 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2821 * @rq: The rq to clamp against. Must not be NULL. 2822 * @util: The util value to clamp. 2823 * @p: The task to clamp against. Can be NULL if you want to clamp 2824 * against @rq only. 2825 * 2826 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2827 * 2828 * If sched_uclamp_used static key is disabled, then just return the util 2829 * without any clamping since uclamp aggregation at the rq level in the fast 2830 * path is disabled, rendering this operation a NOP. 2831 * 2832 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2833 * will return the correct effective uclamp value of the task even if the 2834 * static key is disabled. 2835 */ 2836 static __always_inline 2837 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2838 struct task_struct *p) 2839 { 2840 unsigned long min_util = 0; 2841 unsigned long max_util = 0; 2842 2843 if (!static_branch_likely(&sched_uclamp_used)) 2844 return util; 2845 2846 if (p) { 2847 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2848 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2849 2850 /* 2851 * Ignore last runnable task's max clamp, as this task will 2852 * reset it. Similarly, no need to read the rq's min clamp. 2853 */ 2854 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 2855 goto out; 2856 } 2857 2858 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 2859 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 2860 out: 2861 /* 2862 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2863 * RUNNABLE tasks with _different_ clamps, we can end up with an 2864 * inversion. Fix it now when the clamps are applied. 2865 */ 2866 if (unlikely(min_util >= max_util)) 2867 return min_util; 2868 2869 return clamp(util, min_util, max_util); 2870 } 2871 2872 /* 2873 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2874 * by default in the fast path and only gets turned on once userspace performs 2875 * an operation that requires it. 2876 * 2877 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2878 * hence is active. 2879 */ 2880 static inline bool uclamp_is_used(void) 2881 { 2882 return static_branch_likely(&sched_uclamp_used); 2883 } 2884 #else /* CONFIG_UCLAMP_TASK */ 2885 static inline 2886 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2887 struct task_struct *p) 2888 { 2889 return util; 2890 } 2891 2892 static inline bool uclamp_is_used(void) 2893 { 2894 return false; 2895 } 2896 #endif /* CONFIG_UCLAMP_TASK */ 2897 2898 #ifdef arch_scale_freq_capacity 2899 # ifndef arch_scale_freq_invariant 2900 # define arch_scale_freq_invariant() true 2901 # endif 2902 #else 2903 # define arch_scale_freq_invariant() false 2904 #endif 2905 2906 #ifdef CONFIG_SMP 2907 static inline unsigned long capacity_orig_of(int cpu) 2908 { 2909 return cpu_rq(cpu)->cpu_capacity_orig; 2910 } 2911 2912 /** 2913 * enum cpu_util_type - CPU utilization type 2914 * @FREQUENCY_UTIL: Utilization used to select frequency 2915 * @ENERGY_UTIL: Utilization used during energy calculation 2916 * 2917 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2918 * need to be aggregated differently depending on the usage made of them. This 2919 * enum is used within effective_cpu_util() to differentiate the types of 2920 * utilization expected by the callers, and adjust the aggregation accordingly. 2921 */ 2922 enum cpu_util_type { 2923 FREQUENCY_UTIL, 2924 ENERGY_UTIL, 2925 }; 2926 2927 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2928 unsigned long max, enum cpu_util_type type, 2929 struct task_struct *p); 2930 2931 static inline unsigned long cpu_bw_dl(struct rq *rq) 2932 { 2933 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2934 } 2935 2936 static inline unsigned long cpu_util_dl(struct rq *rq) 2937 { 2938 return READ_ONCE(rq->avg_dl.util_avg); 2939 } 2940 2941 static inline unsigned long cpu_util_cfs(struct rq *rq) 2942 { 2943 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2944 2945 if (sched_feat(UTIL_EST)) { 2946 util = max_t(unsigned long, util, 2947 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2948 } 2949 2950 return util; 2951 } 2952 2953 static inline unsigned long cpu_util_rt(struct rq *rq) 2954 { 2955 return READ_ONCE(rq->avg_rt.util_avg); 2956 } 2957 #endif 2958 2959 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2960 static inline unsigned long cpu_util_irq(struct rq *rq) 2961 { 2962 return rq->avg_irq.util_avg; 2963 } 2964 2965 static inline 2966 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2967 { 2968 util *= (max - irq); 2969 util /= max; 2970 2971 return util; 2972 2973 } 2974 #else 2975 static inline unsigned long cpu_util_irq(struct rq *rq) 2976 { 2977 return 0; 2978 } 2979 2980 static inline 2981 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2982 { 2983 return util; 2984 } 2985 #endif 2986 2987 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2988 2989 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 2990 2991 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 2992 2993 static inline bool sched_energy_enabled(void) 2994 { 2995 return static_branch_unlikely(&sched_energy_present); 2996 } 2997 2998 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 2999 3000 #define perf_domain_span(pd) NULL 3001 static inline bool sched_energy_enabled(void) { return false; } 3002 3003 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3004 3005 #ifdef CONFIG_MEMBARRIER 3006 /* 3007 * The scheduler provides memory barriers required by membarrier between: 3008 * - prior user-space memory accesses and store to rq->membarrier_state, 3009 * - store to rq->membarrier_state and following user-space memory accesses. 3010 * In the same way it provides those guarantees around store to rq->curr. 3011 */ 3012 static inline void membarrier_switch_mm(struct rq *rq, 3013 struct mm_struct *prev_mm, 3014 struct mm_struct *next_mm) 3015 { 3016 int membarrier_state; 3017 3018 if (prev_mm == next_mm) 3019 return; 3020 3021 membarrier_state = atomic_read(&next_mm->membarrier_state); 3022 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3023 return; 3024 3025 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3026 } 3027 #else 3028 static inline void membarrier_switch_mm(struct rq *rq, 3029 struct mm_struct *prev_mm, 3030 struct mm_struct *next_mm) 3031 { 3032 } 3033 #endif 3034 3035 #ifdef CONFIG_SMP 3036 static inline bool is_per_cpu_kthread(struct task_struct *p) 3037 { 3038 if (!(p->flags & PF_KTHREAD)) 3039 return false; 3040 3041 if (p->nr_cpus_allowed != 1) 3042 return false; 3043 3044 return true; 3045 } 3046 #endif 3047 3048 extern void swake_up_all_locked(struct swait_queue_head *q); 3049 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3050 3051 #ifdef CONFIG_PREEMPT_DYNAMIC 3052 extern int preempt_dynamic_mode; 3053 extern int sched_dynamic_mode(const char *str); 3054 extern void sched_dynamic_update(int mode); 3055 #endif 3056 3057