xref: /openbmc/linux/kernel/sched/sched.h (revision 55eb9a6c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/cpufreq.h>
31 #include <linux/cpumask_api.h>
32 #include <linux/ctype.h>
33 #include <linux/file.h>
34 #include <linux/fs_api.h>
35 #include <linux/hrtimer_api.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq_work.h>
38 #include <linux/jiffies.h>
39 #include <linux/kref_api.h>
40 #include <linux/kthread.h>
41 #include <linux/ktime_api.h>
42 #include <linux/lockdep_api.h>
43 #include <linux/lockdep.h>
44 #include <linux/minmax.h>
45 #include <linux/mm.h>
46 #include <linux/module.h>
47 #include <linux/mutex_api.h>
48 #include <linux/plist.h>
49 #include <linux/poll.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/psi.h>
53 #include <linux/rcupdate.h>
54 #include <linux/seq_file.h>
55 #include <linux/seqlock.h>
56 #include <linux/softirq.h>
57 #include <linux/spinlock_api.h>
58 #include <linux/static_key.h>
59 #include <linux/stop_machine.h>
60 #include <linux/syscalls_api.h>
61 #include <linux/syscalls.h>
62 #include <linux/tick.h>
63 #include <linux/topology.h>
64 #include <linux/types.h>
65 #include <linux/u64_stats_sync_api.h>
66 #include <linux/uaccess.h>
67 #include <linux/wait_api.h>
68 #include <linux/wait_bit.h>
69 #include <linux/workqueue_api.h>
70 
71 #include <trace/events/power.h>
72 #include <trace/events/sched.h>
73 
74 #include "../workqueue_internal.h"
75 
76 #ifdef CONFIG_CGROUP_SCHED
77 #include <linux/cgroup.h>
78 #include <linux/psi.h>
79 #endif
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # include <linux/static_key.h>
83 #endif
84 
85 #ifdef CONFIG_PARAVIRT
86 # include <asm/paravirt.h>
87 # include <asm/paravirt_api_clock.h>
88 #endif
89 
90 #include "cpupri.h"
91 #include "cpudeadline.h"
92 
93 #ifdef CONFIG_SCHED_DEBUG
94 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
95 #else
96 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
97 #endif
98 
99 struct rq;
100 struct cpuidle_state;
101 
102 /* task_struct::on_rq states: */
103 #define TASK_ON_RQ_QUEUED	1
104 #define TASK_ON_RQ_MIGRATING	2
105 
106 extern __read_mostly int scheduler_running;
107 
108 extern unsigned long calc_load_update;
109 extern atomic_long_t calc_load_tasks;
110 
111 extern unsigned int sysctl_sched_child_runs_first;
112 
113 extern void calc_global_load_tick(struct rq *this_rq);
114 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
115 
116 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
117 
118 extern unsigned int sysctl_sched_rt_period;
119 extern int sysctl_sched_rt_runtime;
120 extern int sched_rr_timeslice;
121 
122 /*
123  * Helpers for converting nanosecond timing to jiffy resolution
124  */
125 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
126 
127 /*
128  * Increase resolution of nice-level calculations for 64-bit architectures.
129  * The extra resolution improves shares distribution and load balancing of
130  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
131  * hierarchies, especially on larger systems. This is not a user-visible change
132  * and does not change the user-interface for setting shares/weights.
133  *
134  * We increase resolution only if we have enough bits to allow this increased
135  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
136  * are pretty high and the returns do not justify the increased costs.
137  *
138  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
139  * increase coverage and consistency always enable it on 64-bit platforms.
140  */
141 #ifdef CONFIG_64BIT
142 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
143 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load_down(w) \
145 ({ \
146 	unsigned long __w = (w); \
147 	if (__w) \
148 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
149 	__w; \
150 })
151 #else
152 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w)		(w)
154 # define scale_load_down(w)	(w)
155 #endif
156 
157 /*
158  * Task weight (visible to users) and its load (invisible to users) have
159  * independent resolution, but they should be well calibrated. We use
160  * scale_load() and scale_load_down(w) to convert between them. The
161  * following must be true:
162  *
163  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
164  *
165  */
166 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
167 
168 /*
169  * Single value that decides SCHED_DEADLINE internal math precision.
170  * 10 -> just above 1us
171  * 9  -> just above 0.5us
172  */
173 #define DL_SCALE		10
174 
175 /*
176  * Single value that denotes runtime == period, ie unlimited time.
177  */
178 #define RUNTIME_INF		((u64)~0ULL)
179 
180 static inline int idle_policy(int policy)
181 {
182 	return policy == SCHED_IDLE;
183 }
184 static inline int fair_policy(int policy)
185 {
186 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
187 }
188 
189 static inline int rt_policy(int policy)
190 {
191 	return policy == SCHED_FIFO || policy == SCHED_RR;
192 }
193 
194 static inline int dl_policy(int policy)
195 {
196 	return policy == SCHED_DEADLINE;
197 }
198 static inline bool valid_policy(int policy)
199 {
200 	return idle_policy(policy) || fair_policy(policy) ||
201 		rt_policy(policy) || dl_policy(policy);
202 }
203 
204 static inline int task_has_idle_policy(struct task_struct *p)
205 {
206 	return idle_policy(p->policy);
207 }
208 
209 static inline int task_has_rt_policy(struct task_struct *p)
210 {
211 	return rt_policy(p->policy);
212 }
213 
214 static inline int task_has_dl_policy(struct task_struct *p)
215 {
216 	return dl_policy(p->policy);
217 }
218 
219 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
220 
221 static inline void update_avg(u64 *avg, u64 sample)
222 {
223 	s64 diff = sample - *avg;
224 	*avg += diff / 8;
225 }
226 
227 /*
228  * Shifting a value by an exponent greater *or equal* to the size of said value
229  * is UB; cap at size-1.
230  */
231 #define shr_bound(val, shift)							\
232 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
233 
234 /*
235  * !! For sched_setattr_nocheck() (kernel) only !!
236  *
237  * This is actually gross. :(
238  *
239  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
240  * tasks, but still be able to sleep. We need this on platforms that cannot
241  * atomically change clock frequency. Remove once fast switching will be
242  * available on such platforms.
243  *
244  * SUGOV stands for SchedUtil GOVernor.
245  */
246 #define SCHED_FLAG_SUGOV	0x10000000
247 
248 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
249 
250 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
251 {
252 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
253 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
254 #else
255 	return false;
256 #endif
257 }
258 
259 /*
260  * Tells if entity @a should preempt entity @b.
261  */
262 static inline bool
263 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
264 {
265 	return dl_entity_is_special(a) ||
266 	       dl_time_before(a->deadline, b->deadline);
267 }
268 
269 /*
270  * This is the priority-queue data structure of the RT scheduling class:
271  */
272 struct rt_prio_array {
273 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
274 	struct list_head queue[MAX_RT_PRIO];
275 };
276 
277 struct rt_bandwidth {
278 	/* nests inside the rq lock: */
279 	raw_spinlock_t		rt_runtime_lock;
280 	ktime_t			rt_period;
281 	u64			rt_runtime;
282 	struct hrtimer		rt_period_timer;
283 	unsigned int		rt_period_active;
284 };
285 
286 void __dl_clear_params(struct task_struct *p);
287 
288 struct dl_bandwidth {
289 	raw_spinlock_t		dl_runtime_lock;
290 	u64			dl_runtime;
291 	u64			dl_period;
292 };
293 
294 static inline int dl_bandwidth_enabled(void)
295 {
296 	return sysctl_sched_rt_runtime >= 0;
297 }
298 
299 /*
300  * To keep the bandwidth of -deadline tasks under control
301  * we need some place where:
302  *  - store the maximum -deadline bandwidth of each cpu;
303  *  - cache the fraction of bandwidth that is currently allocated in
304  *    each root domain;
305  *
306  * This is all done in the data structure below. It is similar to the
307  * one used for RT-throttling (rt_bandwidth), with the main difference
308  * that, since here we are only interested in admission control, we
309  * do not decrease any runtime while the group "executes", neither we
310  * need a timer to replenish it.
311  *
312  * With respect to SMP, bandwidth is given on a per root domain basis,
313  * meaning that:
314  *  - bw (< 100%) is the deadline bandwidth of each CPU;
315  *  - total_bw is the currently allocated bandwidth in each root domain;
316  */
317 struct dl_bw {
318 	raw_spinlock_t		lock;
319 	u64			bw;
320 	u64			total_bw;
321 };
322 
323 /*
324  * Verify the fitness of task @p to run on @cpu taking into account the
325  * CPU original capacity and the runtime/deadline ratio of the task.
326  *
327  * The function will return true if the CPU original capacity of the
328  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
329  * task and false otherwise.
330  */
331 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
332 {
333 	unsigned long cap = arch_scale_cpu_capacity(cpu);
334 
335 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
336 }
337 
338 extern void init_dl_bw(struct dl_bw *dl_b);
339 extern int  sched_dl_global_validate(void);
340 extern void sched_dl_do_global(void);
341 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
342 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
343 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
344 extern bool __checkparam_dl(const struct sched_attr *attr);
345 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
346 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
347 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
348 
349 #ifdef CONFIG_CGROUP_SCHED
350 
351 struct cfs_rq;
352 struct rt_rq;
353 
354 extern struct list_head task_groups;
355 
356 struct cfs_bandwidth {
357 #ifdef CONFIG_CFS_BANDWIDTH
358 	raw_spinlock_t		lock;
359 	ktime_t			period;
360 	u64			quota;
361 	u64			runtime;
362 	u64			burst;
363 	u64			runtime_snap;
364 	s64			hierarchical_quota;
365 
366 	u8			idle;
367 	u8			period_active;
368 	u8			slack_started;
369 	struct hrtimer		period_timer;
370 	struct hrtimer		slack_timer;
371 	struct list_head	throttled_cfs_rq;
372 
373 	/* Statistics: */
374 	int			nr_periods;
375 	int			nr_throttled;
376 	int			nr_burst;
377 	u64			throttled_time;
378 	u64			burst_time;
379 #endif
380 };
381 
382 /* Task group related information */
383 struct task_group {
384 	struct cgroup_subsys_state css;
385 
386 #ifdef CONFIG_FAIR_GROUP_SCHED
387 	/* schedulable entities of this group on each CPU */
388 	struct sched_entity	**se;
389 	/* runqueue "owned" by this group on each CPU */
390 	struct cfs_rq		**cfs_rq;
391 	unsigned long		shares;
392 
393 	/* A positive value indicates that this is a SCHED_IDLE group. */
394 	int			idle;
395 
396 #ifdef	CONFIG_SMP
397 	/*
398 	 * load_avg can be heavily contended at clock tick time, so put
399 	 * it in its own cacheline separated from the fields above which
400 	 * will also be accessed at each tick.
401 	 */
402 	atomic_long_t		load_avg ____cacheline_aligned;
403 #endif
404 #endif
405 
406 #ifdef CONFIG_RT_GROUP_SCHED
407 	struct sched_rt_entity	**rt_se;
408 	struct rt_rq		**rt_rq;
409 
410 	struct rt_bandwidth	rt_bandwidth;
411 #endif
412 
413 	struct rcu_head		rcu;
414 	struct list_head	list;
415 
416 	struct task_group	*parent;
417 	struct list_head	siblings;
418 	struct list_head	children;
419 
420 #ifdef CONFIG_SCHED_AUTOGROUP
421 	struct autogroup	*autogroup;
422 #endif
423 
424 	struct cfs_bandwidth	cfs_bandwidth;
425 
426 #ifdef CONFIG_UCLAMP_TASK_GROUP
427 	/* The two decimal precision [%] value requested from user-space */
428 	unsigned int		uclamp_pct[UCLAMP_CNT];
429 	/* Clamp values requested for a task group */
430 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
431 	/* Effective clamp values used for a task group */
432 	struct uclamp_se	uclamp[UCLAMP_CNT];
433 #endif
434 
435 };
436 
437 #ifdef CONFIG_FAIR_GROUP_SCHED
438 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
439 
440 /*
441  * A weight of 0 or 1 can cause arithmetics problems.
442  * A weight of a cfs_rq is the sum of weights of which entities
443  * are queued on this cfs_rq, so a weight of a entity should not be
444  * too large, so as the shares value of a task group.
445  * (The default weight is 1024 - so there's no practical
446  *  limitation from this.)
447  */
448 #define MIN_SHARES		(1UL <<  1)
449 #define MAX_SHARES		(1UL << 18)
450 #endif
451 
452 typedef int (*tg_visitor)(struct task_group *, void *);
453 
454 extern int walk_tg_tree_from(struct task_group *from,
455 			     tg_visitor down, tg_visitor up, void *data);
456 
457 /*
458  * Iterate the full tree, calling @down when first entering a node and @up when
459  * leaving it for the final time.
460  *
461  * Caller must hold rcu_lock or sufficient equivalent.
462  */
463 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
464 {
465 	return walk_tg_tree_from(&root_task_group, down, up, data);
466 }
467 
468 extern int tg_nop(struct task_group *tg, void *data);
469 
470 extern void free_fair_sched_group(struct task_group *tg);
471 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
472 extern void online_fair_sched_group(struct task_group *tg);
473 extern void unregister_fair_sched_group(struct task_group *tg);
474 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
475 			struct sched_entity *se, int cpu,
476 			struct sched_entity *parent);
477 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
478 
479 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
480 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
481 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
482 
483 extern void unregister_rt_sched_group(struct task_group *tg);
484 extern void free_rt_sched_group(struct task_group *tg);
485 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
486 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
487 		struct sched_rt_entity *rt_se, int cpu,
488 		struct sched_rt_entity *parent);
489 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
490 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
491 extern long sched_group_rt_runtime(struct task_group *tg);
492 extern long sched_group_rt_period(struct task_group *tg);
493 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
494 
495 extern struct task_group *sched_create_group(struct task_group *parent);
496 extern void sched_online_group(struct task_group *tg,
497 			       struct task_group *parent);
498 extern void sched_destroy_group(struct task_group *tg);
499 extern void sched_release_group(struct task_group *tg);
500 
501 extern void sched_move_task(struct task_struct *tsk);
502 
503 #ifdef CONFIG_FAIR_GROUP_SCHED
504 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
505 
506 extern int sched_group_set_idle(struct task_group *tg, long idle);
507 
508 #ifdef CONFIG_SMP
509 extern void set_task_rq_fair(struct sched_entity *se,
510 			     struct cfs_rq *prev, struct cfs_rq *next);
511 #else /* !CONFIG_SMP */
512 static inline void set_task_rq_fair(struct sched_entity *se,
513 			     struct cfs_rq *prev, struct cfs_rq *next) { }
514 #endif /* CONFIG_SMP */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
516 
517 #else /* CONFIG_CGROUP_SCHED */
518 
519 struct cfs_bandwidth { };
520 
521 #endif	/* CONFIG_CGROUP_SCHED */
522 
523 /* CFS-related fields in a runqueue */
524 struct cfs_rq {
525 	struct load_weight	load;
526 	unsigned int		nr_running;
527 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
528 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
529 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
530 
531 	u64			exec_clock;
532 	u64			min_vruntime;
533 #ifdef CONFIG_SCHED_CORE
534 	unsigned int		forceidle_seq;
535 	u64			min_vruntime_fi;
536 #endif
537 
538 #ifndef CONFIG_64BIT
539 	u64			min_vruntime_copy;
540 #endif
541 
542 	struct rb_root_cached	tasks_timeline;
543 
544 	/*
545 	 * 'curr' points to currently running entity on this cfs_rq.
546 	 * It is set to NULL otherwise (i.e when none are currently running).
547 	 */
548 	struct sched_entity	*curr;
549 	struct sched_entity	*next;
550 	struct sched_entity	*last;
551 	struct sched_entity	*skip;
552 
553 #ifdef	CONFIG_SCHED_DEBUG
554 	unsigned int		nr_spread_over;
555 #endif
556 
557 #ifdef CONFIG_SMP
558 	/*
559 	 * CFS load tracking
560 	 */
561 	struct sched_avg	avg;
562 #ifndef CONFIG_64BIT
563 	u64			load_last_update_time_copy;
564 #endif
565 	struct {
566 		raw_spinlock_t	lock ____cacheline_aligned;
567 		int		nr;
568 		unsigned long	load_avg;
569 		unsigned long	util_avg;
570 		unsigned long	runnable_avg;
571 	} removed;
572 
573 #ifdef CONFIG_FAIR_GROUP_SCHED
574 	unsigned long		tg_load_avg_contrib;
575 	long			propagate;
576 	long			prop_runnable_sum;
577 
578 	/*
579 	 *   h_load = weight * f(tg)
580 	 *
581 	 * Where f(tg) is the recursive weight fraction assigned to
582 	 * this group.
583 	 */
584 	unsigned long		h_load;
585 	u64			last_h_load_update;
586 	struct sched_entity	*h_load_next;
587 #endif /* CONFIG_FAIR_GROUP_SCHED */
588 #endif /* CONFIG_SMP */
589 
590 #ifdef CONFIG_FAIR_GROUP_SCHED
591 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
592 
593 	/*
594 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
595 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
596 	 * (like users, containers etc.)
597 	 *
598 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
599 	 * This list is used during load balance.
600 	 */
601 	int			on_list;
602 	struct list_head	leaf_cfs_rq_list;
603 	struct task_group	*tg;	/* group that "owns" this runqueue */
604 
605 	/* Locally cached copy of our task_group's idle value */
606 	int			idle;
607 
608 #ifdef CONFIG_CFS_BANDWIDTH
609 	int			runtime_enabled;
610 	s64			runtime_remaining;
611 
612 	u64			throttled_clock;
613 	u64			throttled_clock_pelt;
614 	u64			throttled_clock_pelt_time;
615 	int			throttled;
616 	int			throttle_count;
617 	struct list_head	throttled_list;
618 #endif /* CONFIG_CFS_BANDWIDTH */
619 #endif /* CONFIG_FAIR_GROUP_SCHED */
620 };
621 
622 static inline int rt_bandwidth_enabled(void)
623 {
624 	return sysctl_sched_rt_runtime >= 0;
625 }
626 
627 /* RT IPI pull logic requires IRQ_WORK */
628 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
629 # define HAVE_RT_PUSH_IPI
630 #endif
631 
632 /* Real-Time classes' related field in a runqueue: */
633 struct rt_rq {
634 	struct rt_prio_array	active;
635 	unsigned int		rt_nr_running;
636 	unsigned int		rr_nr_running;
637 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
638 	struct {
639 		int		curr; /* highest queued rt task prio */
640 #ifdef CONFIG_SMP
641 		int		next; /* next highest */
642 #endif
643 	} highest_prio;
644 #endif
645 #ifdef CONFIG_SMP
646 	unsigned int		rt_nr_migratory;
647 	unsigned int		rt_nr_total;
648 	int			overloaded;
649 	struct plist_head	pushable_tasks;
650 
651 #endif /* CONFIG_SMP */
652 	int			rt_queued;
653 
654 	int			rt_throttled;
655 	u64			rt_time;
656 	u64			rt_runtime;
657 	/* Nests inside the rq lock: */
658 	raw_spinlock_t		rt_runtime_lock;
659 
660 #ifdef CONFIG_RT_GROUP_SCHED
661 	unsigned int		rt_nr_boosted;
662 
663 	struct rq		*rq;
664 	struct task_group	*tg;
665 #endif
666 };
667 
668 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
669 {
670 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
671 }
672 
673 /* Deadline class' related fields in a runqueue */
674 struct dl_rq {
675 	/* runqueue is an rbtree, ordered by deadline */
676 	struct rb_root_cached	root;
677 
678 	unsigned int		dl_nr_running;
679 
680 #ifdef CONFIG_SMP
681 	/*
682 	 * Deadline values of the currently executing and the
683 	 * earliest ready task on this rq. Caching these facilitates
684 	 * the decision whether or not a ready but not running task
685 	 * should migrate somewhere else.
686 	 */
687 	struct {
688 		u64		curr;
689 		u64		next;
690 	} earliest_dl;
691 
692 	unsigned int		dl_nr_migratory;
693 	int			overloaded;
694 
695 	/*
696 	 * Tasks on this rq that can be pushed away. They are kept in
697 	 * an rb-tree, ordered by tasks' deadlines, with caching
698 	 * of the leftmost (earliest deadline) element.
699 	 */
700 	struct rb_root_cached	pushable_dl_tasks_root;
701 #else
702 	struct dl_bw		dl_bw;
703 #endif
704 	/*
705 	 * "Active utilization" for this runqueue: increased when a
706 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
707 	 * task blocks
708 	 */
709 	u64			running_bw;
710 
711 	/*
712 	 * Utilization of the tasks "assigned" to this runqueue (including
713 	 * the tasks that are in runqueue and the tasks that executed on this
714 	 * CPU and blocked). Increased when a task moves to this runqueue, and
715 	 * decreased when the task moves away (migrates, changes scheduling
716 	 * policy, or terminates).
717 	 * This is needed to compute the "inactive utilization" for the
718 	 * runqueue (inactive utilization = this_bw - running_bw).
719 	 */
720 	u64			this_bw;
721 	u64			extra_bw;
722 
723 	/*
724 	 * Inverse of the fraction of CPU utilization that can be reclaimed
725 	 * by the GRUB algorithm.
726 	 */
727 	u64			bw_ratio;
728 };
729 
730 #ifdef CONFIG_FAIR_GROUP_SCHED
731 /* An entity is a task if it doesn't "own" a runqueue */
732 #define entity_is_task(se)	(!se->my_q)
733 
734 static inline void se_update_runnable(struct sched_entity *se)
735 {
736 	if (!entity_is_task(se))
737 		se->runnable_weight = se->my_q->h_nr_running;
738 }
739 
740 static inline long se_runnable(struct sched_entity *se)
741 {
742 	if (entity_is_task(se))
743 		return !!se->on_rq;
744 	else
745 		return se->runnable_weight;
746 }
747 
748 #else
749 #define entity_is_task(se)	1
750 
751 static inline void se_update_runnable(struct sched_entity *se) {}
752 
753 static inline long se_runnable(struct sched_entity *se)
754 {
755 	return !!se->on_rq;
756 }
757 #endif
758 
759 #ifdef CONFIG_SMP
760 /*
761  * XXX we want to get rid of these helpers and use the full load resolution.
762  */
763 static inline long se_weight(struct sched_entity *se)
764 {
765 	return scale_load_down(se->load.weight);
766 }
767 
768 
769 static inline bool sched_asym_prefer(int a, int b)
770 {
771 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
772 }
773 
774 struct perf_domain {
775 	struct em_perf_domain *em_pd;
776 	struct perf_domain *next;
777 	struct rcu_head rcu;
778 };
779 
780 /* Scheduling group status flags */
781 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
782 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
783 
784 /*
785  * We add the notion of a root-domain which will be used to define per-domain
786  * variables. Each exclusive cpuset essentially defines an island domain by
787  * fully partitioning the member CPUs from any other cpuset. Whenever a new
788  * exclusive cpuset is created, we also create and attach a new root-domain
789  * object.
790  *
791  */
792 struct root_domain {
793 	atomic_t		refcount;
794 	atomic_t		rto_count;
795 	struct rcu_head		rcu;
796 	cpumask_var_t		span;
797 	cpumask_var_t		online;
798 
799 	/*
800 	 * Indicate pullable load on at least one CPU, e.g:
801 	 * - More than one runnable task
802 	 * - Running task is misfit
803 	 */
804 	int			overload;
805 
806 	/* Indicate one or more cpus over-utilized (tipping point) */
807 	int			overutilized;
808 
809 	/*
810 	 * The bit corresponding to a CPU gets set here if such CPU has more
811 	 * than one runnable -deadline task (as it is below for RT tasks).
812 	 */
813 	cpumask_var_t		dlo_mask;
814 	atomic_t		dlo_count;
815 	struct dl_bw		dl_bw;
816 	struct cpudl		cpudl;
817 
818 	/*
819 	 * Indicate whether a root_domain's dl_bw has been checked or
820 	 * updated. It's monotonously increasing value.
821 	 *
822 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
823 	 * that u64 is 'big enough'. So that shouldn't be a concern.
824 	 */
825 	u64 visit_gen;
826 
827 #ifdef HAVE_RT_PUSH_IPI
828 	/*
829 	 * For IPI pull requests, loop across the rto_mask.
830 	 */
831 	struct irq_work		rto_push_work;
832 	raw_spinlock_t		rto_lock;
833 	/* These are only updated and read within rto_lock */
834 	int			rto_loop;
835 	int			rto_cpu;
836 	/* These atomics are updated outside of a lock */
837 	atomic_t		rto_loop_next;
838 	atomic_t		rto_loop_start;
839 #endif
840 	/*
841 	 * The "RT overload" flag: it gets set if a CPU has more than
842 	 * one runnable RT task.
843 	 */
844 	cpumask_var_t		rto_mask;
845 	struct cpupri		cpupri;
846 
847 	unsigned long		max_cpu_capacity;
848 
849 	/*
850 	 * NULL-terminated list of performance domains intersecting with the
851 	 * CPUs of the rd. Protected by RCU.
852 	 */
853 	struct perf_domain __rcu *pd;
854 };
855 
856 extern void init_defrootdomain(void);
857 extern int sched_init_domains(const struct cpumask *cpu_map);
858 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
859 extern void sched_get_rd(struct root_domain *rd);
860 extern void sched_put_rd(struct root_domain *rd);
861 
862 #ifdef HAVE_RT_PUSH_IPI
863 extern void rto_push_irq_work_func(struct irq_work *work);
864 #endif
865 #endif /* CONFIG_SMP */
866 
867 #ifdef CONFIG_UCLAMP_TASK
868 /*
869  * struct uclamp_bucket - Utilization clamp bucket
870  * @value: utilization clamp value for tasks on this clamp bucket
871  * @tasks: number of RUNNABLE tasks on this clamp bucket
872  *
873  * Keep track of how many tasks are RUNNABLE for a given utilization
874  * clamp value.
875  */
876 struct uclamp_bucket {
877 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
878 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
879 };
880 
881 /*
882  * struct uclamp_rq - rq's utilization clamp
883  * @value: currently active clamp values for a rq
884  * @bucket: utilization clamp buckets affecting a rq
885  *
886  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
887  * A clamp value is affecting a rq when there is at least one task RUNNABLE
888  * (or actually running) with that value.
889  *
890  * There are up to UCLAMP_CNT possible different clamp values, currently there
891  * are only two: minimum utilization and maximum utilization.
892  *
893  * All utilization clamping values are MAX aggregated, since:
894  * - for util_min: we want to run the CPU at least at the max of the minimum
895  *   utilization required by its currently RUNNABLE tasks.
896  * - for util_max: we want to allow the CPU to run up to the max of the
897  *   maximum utilization allowed by its currently RUNNABLE tasks.
898  *
899  * Since on each system we expect only a limited number of different
900  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
901  * the metrics required to compute all the per-rq utilization clamp values.
902  */
903 struct uclamp_rq {
904 	unsigned int value;
905 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
906 };
907 
908 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
909 #endif /* CONFIG_UCLAMP_TASK */
910 
911 /*
912  * This is the main, per-CPU runqueue data structure.
913  *
914  * Locking rule: those places that want to lock multiple runqueues
915  * (such as the load balancing or the thread migration code), lock
916  * acquire operations must be ordered by ascending &runqueue.
917  */
918 struct rq {
919 	/* runqueue lock: */
920 	raw_spinlock_t		__lock;
921 
922 	/*
923 	 * nr_running and cpu_load should be in the same cacheline because
924 	 * remote CPUs use both these fields when doing load calculation.
925 	 */
926 	unsigned int		nr_running;
927 #ifdef CONFIG_NUMA_BALANCING
928 	unsigned int		nr_numa_running;
929 	unsigned int		nr_preferred_running;
930 	unsigned int		numa_migrate_on;
931 #endif
932 #ifdef CONFIG_NO_HZ_COMMON
933 #ifdef CONFIG_SMP
934 	unsigned long		last_blocked_load_update_tick;
935 	unsigned int		has_blocked_load;
936 	call_single_data_t	nohz_csd;
937 #endif /* CONFIG_SMP */
938 	unsigned int		nohz_tick_stopped;
939 	atomic_t		nohz_flags;
940 #endif /* CONFIG_NO_HZ_COMMON */
941 
942 #ifdef CONFIG_SMP
943 	unsigned int		ttwu_pending;
944 #endif
945 	u64			nr_switches;
946 
947 #ifdef CONFIG_UCLAMP_TASK
948 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
949 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
950 	unsigned int		uclamp_flags;
951 #define UCLAMP_FLAG_IDLE 0x01
952 #endif
953 
954 	struct cfs_rq		cfs;
955 	struct rt_rq		rt;
956 	struct dl_rq		dl;
957 
958 #ifdef CONFIG_FAIR_GROUP_SCHED
959 	/* list of leaf cfs_rq on this CPU: */
960 	struct list_head	leaf_cfs_rq_list;
961 	struct list_head	*tmp_alone_branch;
962 #endif /* CONFIG_FAIR_GROUP_SCHED */
963 
964 	/*
965 	 * This is part of a global counter where only the total sum
966 	 * over all CPUs matters. A task can increase this counter on
967 	 * one CPU and if it got migrated afterwards it may decrease
968 	 * it on another CPU. Always updated under the runqueue lock:
969 	 */
970 	unsigned int		nr_uninterruptible;
971 
972 	struct task_struct __rcu	*curr;
973 	struct task_struct	*idle;
974 	struct task_struct	*stop;
975 	unsigned long		next_balance;
976 	struct mm_struct	*prev_mm;
977 
978 	unsigned int		clock_update_flags;
979 	u64			clock;
980 	/* Ensure that all clocks are in the same cache line */
981 	u64			clock_task ____cacheline_aligned;
982 	u64			clock_pelt;
983 	unsigned long		lost_idle_time;
984 
985 	atomic_t		nr_iowait;
986 
987 #ifdef CONFIG_SCHED_DEBUG
988 	u64 last_seen_need_resched_ns;
989 	int ticks_without_resched;
990 #endif
991 
992 #ifdef CONFIG_MEMBARRIER
993 	int membarrier_state;
994 #endif
995 
996 #ifdef CONFIG_SMP
997 	struct root_domain		*rd;
998 	struct sched_domain __rcu	*sd;
999 
1000 	unsigned long		cpu_capacity;
1001 	unsigned long		cpu_capacity_orig;
1002 
1003 	struct callback_head	*balance_callback;
1004 
1005 	unsigned char		nohz_idle_balance;
1006 	unsigned char		idle_balance;
1007 
1008 	unsigned long		misfit_task_load;
1009 
1010 	/* For active balancing */
1011 	int			active_balance;
1012 	int			push_cpu;
1013 	struct cpu_stop_work	active_balance_work;
1014 
1015 	/* CPU of this runqueue: */
1016 	int			cpu;
1017 	int			online;
1018 
1019 	struct list_head cfs_tasks;
1020 
1021 	struct sched_avg	avg_rt;
1022 	struct sched_avg	avg_dl;
1023 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1024 	struct sched_avg	avg_irq;
1025 #endif
1026 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1027 	struct sched_avg	avg_thermal;
1028 #endif
1029 	u64			idle_stamp;
1030 	u64			avg_idle;
1031 
1032 	unsigned long		wake_stamp;
1033 	u64			wake_avg_idle;
1034 
1035 	/* This is used to determine avg_idle's max value */
1036 	u64			max_idle_balance_cost;
1037 
1038 #ifdef CONFIG_HOTPLUG_CPU
1039 	struct rcuwait		hotplug_wait;
1040 #endif
1041 #endif /* CONFIG_SMP */
1042 
1043 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1044 	u64			prev_irq_time;
1045 #endif
1046 #ifdef CONFIG_PARAVIRT
1047 	u64			prev_steal_time;
1048 #endif
1049 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1050 	u64			prev_steal_time_rq;
1051 #endif
1052 
1053 	/* calc_load related fields */
1054 	unsigned long		calc_load_update;
1055 	long			calc_load_active;
1056 
1057 #ifdef CONFIG_SCHED_HRTICK
1058 #ifdef CONFIG_SMP
1059 	call_single_data_t	hrtick_csd;
1060 #endif
1061 	struct hrtimer		hrtick_timer;
1062 	ktime_t 		hrtick_time;
1063 #endif
1064 
1065 #ifdef CONFIG_SCHEDSTATS
1066 	/* latency stats */
1067 	struct sched_info	rq_sched_info;
1068 	unsigned long long	rq_cpu_time;
1069 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1070 
1071 	/* sys_sched_yield() stats */
1072 	unsigned int		yld_count;
1073 
1074 	/* schedule() stats */
1075 	unsigned int		sched_count;
1076 	unsigned int		sched_goidle;
1077 
1078 	/* try_to_wake_up() stats */
1079 	unsigned int		ttwu_count;
1080 	unsigned int		ttwu_local;
1081 #endif
1082 
1083 #ifdef CONFIG_CPU_IDLE
1084 	/* Must be inspected within a rcu lock section */
1085 	struct cpuidle_state	*idle_state;
1086 #endif
1087 
1088 #ifdef CONFIG_SMP
1089 	unsigned int		nr_pinned;
1090 #endif
1091 	unsigned int		push_busy;
1092 	struct cpu_stop_work	push_work;
1093 
1094 #ifdef CONFIG_SCHED_CORE
1095 	/* per rq */
1096 	struct rq		*core;
1097 	struct task_struct	*core_pick;
1098 	unsigned int		core_enabled;
1099 	unsigned int		core_sched_seq;
1100 	struct rb_root		core_tree;
1101 
1102 	/* shared state -- careful with sched_core_cpu_deactivate() */
1103 	unsigned int		core_task_seq;
1104 	unsigned int		core_pick_seq;
1105 	unsigned long		core_cookie;
1106 	unsigned int		core_forceidle_count;
1107 	unsigned int		core_forceidle_seq;
1108 	unsigned int		core_forceidle_occupation;
1109 	u64			core_forceidle_start;
1110 #endif
1111 };
1112 
1113 #ifdef CONFIG_FAIR_GROUP_SCHED
1114 
1115 /* CPU runqueue to which this cfs_rq is attached */
1116 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1117 {
1118 	return cfs_rq->rq;
1119 }
1120 
1121 #else
1122 
1123 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1124 {
1125 	return container_of(cfs_rq, struct rq, cfs);
1126 }
1127 #endif
1128 
1129 static inline int cpu_of(struct rq *rq)
1130 {
1131 #ifdef CONFIG_SMP
1132 	return rq->cpu;
1133 #else
1134 	return 0;
1135 #endif
1136 }
1137 
1138 #define MDF_PUSH	0x01
1139 
1140 static inline bool is_migration_disabled(struct task_struct *p)
1141 {
1142 #ifdef CONFIG_SMP
1143 	return p->migration_disabled;
1144 #else
1145 	return false;
1146 #endif
1147 }
1148 
1149 struct sched_group;
1150 #ifdef CONFIG_SCHED_CORE
1151 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1152 
1153 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1154 
1155 static inline bool sched_core_enabled(struct rq *rq)
1156 {
1157 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1158 }
1159 
1160 static inline bool sched_core_disabled(void)
1161 {
1162 	return !static_branch_unlikely(&__sched_core_enabled);
1163 }
1164 
1165 /*
1166  * Be careful with this function; not for general use. The return value isn't
1167  * stable unless you actually hold a relevant rq->__lock.
1168  */
1169 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1170 {
1171 	if (sched_core_enabled(rq))
1172 		return &rq->core->__lock;
1173 
1174 	return &rq->__lock;
1175 }
1176 
1177 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1178 {
1179 	if (rq->core_enabled)
1180 		return &rq->core->__lock;
1181 
1182 	return &rq->__lock;
1183 }
1184 
1185 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1186 
1187 /*
1188  * Helpers to check if the CPU's core cookie matches with the task's cookie
1189  * when core scheduling is enabled.
1190  * A special case is that the task's cookie always matches with CPU's core
1191  * cookie if the CPU is in an idle core.
1192  */
1193 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1194 {
1195 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1196 	if (!sched_core_enabled(rq))
1197 		return true;
1198 
1199 	return rq->core->core_cookie == p->core_cookie;
1200 }
1201 
1202 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1203 {
1204 	bool idle_core = true;
1205 	int cpu;
1206 
1207 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1208 	if (!sched_core_enabled(rq))
1209 		return true;
1210 
1211 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1212 		if (!available_idle_cpu(cpu)) {
1213 			idle_core = false;
1214 			break;
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * A CPU in an idle core is always the best choice for tasks with
1220 	 * cookies.
1221 	 */
1222 	return idle_core || rq->core->core_cookie == p->core_cookie;
1223 }
1224 
1225 static inline bool sched_group_cookie_match(struct rq *rq,
1226 					    struct task_struct *p,
1227 					    struct sched_group *group)
1228 {
1229 	int cpu;
1230 
1231 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1232 	if (!sched_core_enabled(rq))
1233 		return true;
1234 
1235 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1236 		if (sched_core_cookie_match(rq, p))
1237 			return true;
1238 	}
1239 	return false;
1240 }
1241 
1242 static inline bool sched_core_enqueued(struct task_struct *p)
1243 {
1244 	return !RB_EMPTY_NODE(&p->core_node);
1245 }
1246 
1247 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1248 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1249 
1250 extern void sched_core_get(void);
1251 extern void sched_core_put(void);
1252 
1253 #else /* !CONFIG_SCHED_CORE */
1254 
1255 static inline bool sched_core_enabled(struct rq *rq)
1256 {
1257 	return false;
1258 }
1259 
1260 static inline bool sched_core_disabled(void)
1261 {
1262 	return true;
1263 }
1264 
1265 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1266 {
1267 	return &rq->__lock;
1268 }
1269 
1270 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1271 {
1272 	return &rq->__lock;
1273 }
1274 
1275 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1276 {
1277 	return true;
1278 }
1279 
1280 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1281 {
1282 	return true;
1283 }
1284 
1285 static inline bool sched_group_cookie_match(struct rq *rq,
1286 					    struct task_struct *p,
1287 					    struct sched_group *group)
1288 {
1289 	return true;
1290 }
1291 #endif /* CONFIG_SCHED_CORE */
1292 
1293 static inline void lockdep_assert_rq_held(struct rq *rq)
1294 {
1295 	lockdep_assert_held(__rq_lockp(rq));
1296 }
1297 
1298 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1299 extern bool raw_spin_rq_trylock(struct rq *rq);
1300 extern void raw_spin_rq_unlock(struct rq *rq);
1301 
1302 static inline void raw_spin_rq_lock(struct rq *rq)
1303 {
1304 	raw_spin_rq_lock_nested(rq, 0);
1305 }
1306 
1307 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1308 {
1309 	local_irq_disable();
1310 	raw_spin_rq_lock(rq);
1311 }
1312 
1313 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1314 {
1315 	raw_spin_rq_unlock(rq);
1316 	local_irq_enable();
1317 }
1318 
1319 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1320 {
1321 	unsigned long flags;
1322 	local_irq_save(flags);
1323 	raw_spin_rq_lock(rq);
1324 	return flags;
1325 }
1326 
1327 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1328 {
1329 	raw_spin_rq_unlock(rq);
1330 	local_irq_restore(flags);
1331 }
1332 
1333 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1334 do {						\
1335 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1336 } while (0)
1337 
1338 #ifdef CONFIG_SCHED_SMT
1339 extern void __update_idle_core(struct rq *rq);
1340 
1341 static inline void update_idle_core(struct rq *rq)
1342 {
1343 	if (static_branch_unlikely(&sched_smt_present))
1344 		__update_idle_core(rq);
1345 }
1346 
1347 #else
1348 static inline void update_idle_core(struct rq *rq) { }
1349 #endif
1350 
1351 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1352 
1353 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1354 #define this_rq()		this_cpu_ptr(&runqueues)
1355 #define task_rq(p)		cpu_rq(task_cpu(p))
1356 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1357 #define raw_rq()		raw_cpu_ptr(&runqueues)
1358 
1359 #ifdef CONFIG_FAIR_GROUP_SCHED
1360 static inline struct task_struct *task_of(struct sched_entity *se)
1361 {
1362 	SCHED_WARN_ON(!entity_is_task(se));
1363 	return container_of(se, struct task_struct, se);
1364 }
1365 
1366 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1367 {
1368 	return p->se.cfs_rq;
1369 }
1370 
1371 /* runqueue on which this entity is (to be) queued */
1372 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1373 {
1374 	return se->cfs_rq;
1375 }
1376 
1377 /* runqueue "owned" by this group */
1378 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1379 {
1380 	return grp->my_q;
1381 }
1382 
1383 #else
1384 
1385 static inline struct task_struct *task_of(struct sched_entity *se)
1386 {
1387 	return container_of(se, struct task_struct, se);
1388 }
1389 
1390 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1391 {
1392 	return &task_rq(p)->cfs;
1393 }
1394 
1395 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1396 {
1397 	struct task_struct *p = task_of(se);
1398 	struct rq *rq = task_rq(p);
1399 
1400 	return &rq->cfs;
1401 }
1402 
1403 /* runqueue "owned" by this group */
1404 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1405 {
1406 	return NULL;
1407 }
1408 #endif
1409 
1410 extern void update_rq_clock(struct rq *rq);
1411 
1412 /*
1413  * rq::clock_update_flags bits
1414  *
1415  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1416  *  call to __schedule(). This is an optimisation to avoid
1417  *  neighbouring rq clock updates.
1418  *
1419  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1420  *  in effect and calls to update_rq_clock() are being ignored.
1421  *
1422  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1423  *  made to update_rq_clock() since the last time rq::lock was pinned.
1424  *
1425  * If inside of __schedule(), clock_update_flags will have been
1426  * shifted left (a left shift is a cheap operation for the fast path
1427  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1428  *
1429  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1430  *
1431  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1432  * one position though, because the next rq_unpin_lock() will shift it
1433  * back.
1434  */
1435 #define RQCF_REQ_SKIP		0x01
1436 #define RQCF_ACT_SKIP		0x02
1437 #define RQCF_UPDATED		0x04
1438 
1439 static inline void assert_clock_updated(struct rq *rq)
1440 {
1441 	/*
1442 	 * The only reason for not seeing a clock update since the
1443 	 * last rq_pin_lock() is if we're currently skipping updates.
1444 	 */
1445 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1446 }
1447 
1448 static inline u64 rq_clock(struct rq *rq)
1449 {
1450 	lockdep_assert_rq_held(rq);
1451 	assert_clock_updated(rq);
1452 
1453 	return rq->clock;
1454 }
1455 
1456 static inline u64 rq_clock_task(struct rq *rq)
1457 {
1458 	lockdep_assert_rq_held(rq);
1459 	assert_clock_updated(rq);
1460 
1461 	return rq->clock_task;
1462 }
1463 
1464 /**
1465  * By default the decay is the default pelt decay period.
1466  * The decay shift can change the decay period in
1467  * multiples of 32.
1468  *  Decay shift		Decay period(ms)
1469  *	0			32
1470  *	1			64
1471  *	2			128
1472  *	3			256
1473  *	4			512
1474  */
1475 extern int sched_thermal_decay_shift;
1476 
1477 static inline u64 rq_clock_thermal(struct rq *rq)
1478 {
1479 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1480 }
1481 
1482 static inline void rq_clock_skip_update(struct rq *rq)
1483 {
1484 	lockdep_assert_rq_held(rq);
1485 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1486 }
1487 
1488 /*
1489  * See rt task throttling, which is the only time a skip
1490  * request is canceled.
1491  */
1492 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1493 {
1494 	lockdep_assert_rq_held(rq);
1495 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1496 }
1497 
1498 struct rq_flags {
1499 	unsigned long flags;
1500 	struct pin_cookie cookie;
1501 #ifdef CONFIG_SCHED_DEBUG
1502 	/*
1503 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1504 	 * current pin context is stashed here in case it needs to be
1505 	 * restored in rq_repin_lock().
1506 	 */
1507 	unsigned int clock_update_flags;
1508 #endif
1509 };
1510 
1511 extern struct callback_head balance_push_callback;
1512 
1513 /*
1514  * Lockdep annotation that avoids accidental unlocks; it's like a
1515  * sticky/continuous lockdep_assert_held().
1516  *
1517  * This avoids code that has access to 'struct rq *rq' (basically everything in
1518  * the scheduler) from accidentally unlocking the rq if they do not also have a
1519  * copy of the (on-stack) 'struct rq_flags rf'.
1520  *
1521  * Also see Documentation/locking/lockdep-design.rst.
1522  */
1523 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1524 {
1525 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1526 
1527 #ifdef CONFIG_SCHED_DEBUG
1528 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1529 	rf->clock_update_flags = 0;
1530 #ifdef CONFIG_SMP
1531 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1532 #endif
1533 #endif
1534 }
1535 
1536 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1537 {
1538 #ifdef CONFIG_SCHED_DEBUG
1539 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1540 		rf->clock_update_flags = RQCF_UPDATED;
1541 #endif
1542 
1543 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1544 }
1545 
1546 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1547 {
1548 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1549 
1550 #ifdef CONFIG_SCHED_DEBUG
1551 	/*
1552 	 * Restore the value we stashed in @rf for this pin context.
1553 	 */
1554 	rq->clock_update_flags |= rf->clock_update_flags;
1555 #endif
1556 }
1557 
1558 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1559 	__acquires(rq->lock);
1560 
1561 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1562 	__acquires(p->pi_lock)
1563 	__acquires(rq->lock);
1564 
1565 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1566 	__releases(rq->lock)
1567 {
1568 	rq_unpin_lock(rq, rf);
1569 	raw_spin_rq_unlock(rq);
1570 }
1571 
1572 static inline void
1573 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1574 	__releases(rq->lock)
1575 	__releases(p->pi_lock)
1576 {
1577 	rq_unpin_lock(rq, rf);
1578 	raw_spin_rq_unlock(rq);
1579 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1580 }
1581 
1582 static inline void
1583 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1584 	__acquires(rq->lock)
1585 {
1586 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1587 	rq_pin_lock(rq, rf);
1588 }
1589 
1590 static inline void
1591 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1592 	__acquires(rq->lock)
1593 {
1594 	raw_spin_rq_lock_irq(rq);
1595 	rq_pin_lock(rq, rf);
1596 }
1597 
1598 static inline void
1599 rq_lock(struct rq *rq, struct rq_flags *rf)
1600 	__acquires(rq->lock)
1601 {
1602 	raw_spin_rq_lock(rq);
1603 	rq_pin_lock(rq, rf);
1604 }
1605 
1606 static inline void
1607 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1608 	__releases(rq->lock)
1609 {
1610 	rq_unpin_lock(rq, rf);
1611 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1612 }
1613 
1614 static inline void
1615 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1616 	__releases(rq->lock)
1617 {
1618 	rq_unpin_lock(rq, rf);
1619 	raw_spin_rq_unlock_irq(rq);
1620 }
1621 
1622 static inline void
1623 rq_unlock(struct rq *rq, struct rq_flags *rf)
1624 	__releases(rq->lock)
1625 {
1626 	rq_unpin_lock(rq, rf);
1627 	raw_spin_rq_unlock(rq);
1628 }
1629 
1630 static inline struct rq *
1631 this_rq_lock_irq(struct rq_flags *rf)
1632 	__acquires(rq->lock)
1633 {
1634 	struct rq *rq;
1635 
1636 	local_irq_disable();
1637 	rq = this_rq();
1638 	rq_lock(rq, rf);
1639 	return rq;
1640 }
1641 
1642 #ifdef CONFIG_NUMA
1643 enum numa_topology_type {
1644 	NUMA_DIRECT,
1645 	NUMA_GLUELESS_MESH,
1646 	NUMA_BACKPLANE,
1647 };
1648 extern enum numa_topology_type sched_numa_topology_type;
1649 extern int sched_max_numa_distance;
1650 extern bool find_numa_distance(int distance);
1651 extern void sched_init_numa(int offline_node);
1652 extern void sched_update_numa(int cpu, bool online);
1653 extern void sched_domains_numa_masks_set(unsigned int cpu);
1654 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1655 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1656 #else
1657 static inline void sched_init_numa(int offline_node) { }
1658 static inline void sched_update_numa(int cpu, bool online) { }
1659 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1660 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1661 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1662 {
1663 	return nr_cpu_ids;
1664 }
1665 #endif
1666 
1667 #ifdef CONFIG_NUMA_BALANCING
1668 /* The regions in numa_faults array from task_struct */
1669 enum numa_faults_stats {
1670 	NUMA_MEM = 0,
1671 	NUMA_CPU,
1672 	NUMA_MEMBUF,
1673 	NUMA_CPUBUF
1674 };
1675 extern void sched_setnuma(struct task_struct *p, int node);
1676 extern int migrate_task_to(struct task_struct *p, int cpu);
1677 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1678 			int cpu, int scpu);
1679 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1680 #else
1681 static inline void
1682 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1683 {
1684 }
1685 #endif /* CONFIG_NUMA_BALANCING */
1686 
1687 #ifdef CONFIG_SMP
1688 
1689 static inline void
1690 queue_balance_callback(struct rq *rq,
1691 		       struct callback_head *head,
1692 		       void (*func)(struct rq *rq))
1693 {
1694 	lockdep_assert_rq_held(rq);
1695 
1696 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1697 		return;
1698 
1699 	head->func = (void (*)(struct callback_head *))func;
1700 	head->next = rq->balance_callback;
1701 	rq->balance_callback = head;
1702 }
1703 
1704 #define rcu_dereference_check_sched_domain(p) \
1705 	rcu_dereference_check((p), \
1706 			      lockdep_is_held(&sched_domains_mutex))
1707 
1708 /*
1709  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1710  * See destroy_sched_domains: call_rcu for details.
1711  *
1712  * The domain tree of any CPU may only be accessed from within
1713  * preempt-disabled sections.
1714  */
1715 #define for_each_domain(cpu, __sd) \
1716 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1717 			__sd; __sd = __sd->parent)
1718 
1719 /**
1720  * highest_flag_domain - Return highest sched_domain containing flag.
1721  * @cpu:	The CPU whose highest level of sched domain is to
1722  *		be returned.
1723  * @flag:	The flag to check for the highest sched_domain
1724  *		for the given CPU.
1725  *
1726  * Returns the highest sched_domain of a CPU which contains the given flag.
1727  */
1728 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1729 {
1730 	struct sched_domain *sd, *hsd = NULL;
1731 
1732 	for_each_domain(cpu, sd) {
1733 		if (!(sd->flags & flag))
1734 			break;
1735 		hsd = sd;
1736 	}
1737 
1738 	return hsd;
1739 }
1740 
1741 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1742 {
1743 	struct sched_domain *sd;
1744 
1745 	for_each_domain(cpu, sd) {
1746 		if (sd->flags & flag)
1747 			break;
1748 	}
1749 
1750 	return sd;
1751 }
1752 
1753 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1754 DECLARE_PER_CPU(int, sd_llc_size);
1755 DECLARE_PER_CPU(int, sd_llc_id);
1756 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1757 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1758 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1759 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1760 extern struct static_key_false sched_asym_cpucapacity;
1761 
1762 struct sched_group_capacity {
1763 	atomic_t		ref;
1764 	/*
1765 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1766 	 * for a single CPU.
1767 	 */
1768 	unsigned long		capacity;
1769 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1770 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1771 	unsigned long		next_update;
1772 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1773 
1774 #ifdef CONFIG_SCHED_DEBUG
1775 	int			id;
1776 #endif
1777 
1778 	unsigned long		cpumask[];		/* Balance mask */
1779 };
1780 
1781 struct sched_group {
1782 	struct sched_group	*next;			/* Must be a circular list */
1783 	atomic_t		ref;
1784 
1785 	unsigned int		group_weight;
1786 	struct sched_group_capacity *sgc;
1787 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1788 	int			flags;
1789 
1790 	/*
1791 	 * The CPUs this group covers.
1792 	 *
1793 	 * NOTE: this field is variable length. (Allocated dynamically
1794 	 * by attaching extra space to the end of the structure,
1795 	 * depending on how many CPUs the kernel has booted up with)
1796 	 */
1797 	unsigned long		cpumask[];
1798 };
1799 
1800 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1801 {
1802 	return to_cpumask(sg->cpumask);
1803 }
1804 
1805 /*
1806  * See build_balance_mask().
1807  */
1808 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1809 {
1810 	return to_cpumask(sg->sgc->cpumask);
1811 }
1812 
1813 /**
1814  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1815  * @group: The group whose first CPU is to be returned.
1816  */
1817 static inline unsigned int group_first_cpu(struct sched_group *group)
1818 {
1819 	return cpumask_first(sched_group_span(group));
1820 }
1821 
1822 extern int group_balance_cpu(struct sched_group *sg);
1823 
1824 #ifdef CONFIG_SCHED_DEBUG
1825 void update_sched_domain_debugfs(void);
1826 void dirty_sched_domain_sysctl(int cpu);
1827 #else
1828 static inline void update_sched_domain_debugfs(void)
1829 {
1830 }
1831 static inline void dirty_sched_domain_sysctl(int cpu)
1832 {
1833 }
1834 #endif
1835 
1836 extern int sched_update_scaling(void);
1837 #endif /* CONFIG_SMP */
1838 
1839 #include "stats.h"
1840 
1841 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1842 
1843 extern void __sched_core_account_forceidle(struct rq *rq);
1844 
1845 static inline void sched_core_account_forceidle(struct rq *rq)
1846 {
1847 	if (schedstat_enabled())
1848 		__sched_core_account_forceidle(rq);
1849 }
1850 
1851 extern void __sched_core_tick(struct rq *rq);
1852 
1853 static inline void sched_core_tick(struct rq *rq)
1854 {
1855 	if (sched_core_enabled(rq) && schedstat_enabled())
1856 		__sched_core_tick(rq);
1857 }
1858 
1859 #else
1860 
1861 static inline void sched_core_account_forceidle(struct rq *rq) {}
1862 
1863 static inline void sched_core_tick(struct rq *rq) {}
1864 
1865 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1866 
1867 #ifdef CONFIG_CGROUP_SCHED
1868 
1869 /*
1870  * Return the group to which this tasks belongs.
1871  *
1872  * We cannot use task_css() and friends because the cgroup subsystem
1873  * changes that value before the cgroup_subsys::attach() method is called,
1874  * therefore we cannot pin it and might observe the wrong value.
1875  *
1876  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1877  * core changes this before calling sched_move_task().
1878  *
1879  * Instead we use a 'copy' which is updated from sched_move_task() while
1880  * holding both task_struct::pi_lock and rq::lock.
1881  */
1882 static inline struct task_group *task_group(struct task_struct *p)
1883 {
1884 	return p->sched_task_group;
1885 }
1886 
1887 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1888 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1889 {
1890 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1891 	struct task_group *tg = task_group(p);
1892 #endif
1893 
1894 #ifdef CONFIG_FAIR_GROUP_SCHED
1895 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1896 	p->se.cfs_rq = tg->cfs_rq[cpu];
1897 	p->se.parent = tg->se[cpu];
1898 #endif
1899 
1900 #ifdef CONFIG_RT_GROUP_SCHED
1901 	p->rt.rt_rq  = tg->rt_rq[cpu];
1902 	p->rt.parent = tg->rt_se[cpu];
1903 #endif
1904 }
1905 
1906 #else /* CONFIG_CGROUP_SCHED */
1907 
1908 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1909 static inline struct task_group *task_group(struct task_struct *p)
1910 {
1911 	return NULL;
1912 }
1913 
1914 #endif /* CONFIG_CGROUP_SCHED */
1915 
1916 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1917 {
1918 	set_task_rq(p, cpu);
1919 #ifdef CONFIG_SMP
1920 	/*
1921 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1922 	 * successfully executed on another CPU. We must ensure that updates of
1923 	 * per-task data have been completed by this moment.
1924 	 */
1925 	smp_wmb();
1926 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1927 	p->wake_cpu = cpu;
1928 #endif
1929 }
1930 
1931 /*
1932  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1933  */
1934 #ifdef CONFIG_SCHED_DEBUG
1935 # define const_debug __read_mostly
1936 #else
1937 # define const_debug const
1938 #endif
1939 
1940 #define SCHED_FEAT(name, enabled)	\
1941 	__SCHED_FEAT_##name ,
1942 
1943 enum {
1944 #include "features.h"
1945 	__SCHED_FEAT_NR,
1946 };
1947 
1948 #undef SCHED_FEAT
1949 
1950 #ifdef CONFIG_SCHED_DEBUG
1951 
1952 /*
1953  * To support run-time toggling of sched features, all the translation units
1954  * (but core.c) reference the sysctl_sched_features defined in core.c.
1955  */
1956 extern const_debug unsigned int sysctl_sched_features;
1957 
1958 #ifdef CONFIG_JUMP_LABEL
1959 #define SCHED_FEAT(name, enabled)					\
1960 static __always_inline bool static_branch_##name(struct static_key *key) \
1961 {									\
1962 	return static_key_##enabled(key);				\
1963 }
1964 
1965 #include "features.h"
1966 #undef SCHED_FEAT
1967 
1968 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1969 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1970 
1971 #else /* !CONFIG_JUMP_LABEL */
1972 
1973 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1974 
1975 #endif /* CONFIG_JUMP_LABEL */
1976 
1977 #else /* !SCHED_DEBUG */
1978 
1979 /*
1980  * Each translation unit has its own copy of sysctl_sched_features to allow
1981  * constants propagation at compile time and compiler optimization based on
1982  * features default.
1983  */
1984 #define SCHED_FEAT(name, enabled)	\
1985 	(1UL << __SCHED_FEAT_##name) * enabled |
1986 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1987 #include "features.h"
1988 	0;
1989 #undef SCHED_FEAT
1990 
1991 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1992 
1993 #endif /* SCHED_DEBUG */
1994 
1995 extern struct static_key_false sched_numa_balancing;
1996 extern struct static_key_false sched_schedstats;
1997 
1998 static inline u64 global_rt_period(void)
1999 {
2000 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2001 }
2002 
2003 static inline u64 global_rt_runtime(void)
2004 {
2005 	if (sysctl_sched_rt_runtime < 0)
2006 		return RUNTIME_INF;
2007 
2008 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2009 }
2010 
2011 static inline int task_current(struct rq *rq, struct task_struct *p)
2012 {
2013 	return rq->curr == p;
2014 }
2015 
2016 static inline int task_running(struct rq *rq, struct task_struct *p)
2017 {
2018 #ifdef CONFIG_SMP
2019 	return p->on_cpu;
2020 #else
2021 	return task_current(rq, p);
2022 #endif
2023 }
2024 
2025 static inline int task_on_rq_queued(struct task_struct *p)
2026 {
2027 	return p->on_rq == TASK_ON_RQ_QUEUED;
2028 }
2029 
2030 static inline int task_on_rq_migrating(struct task_struct *p)
2031 {
2032 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2033 }
2034 
2035 /* Wake flags. The first three directly map to some SD flag value */
2036 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2037 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2038 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2039 
2040 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2041 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2042 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2043 
2044 #ifdef CONFIG_SMP
2045 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2046 static_assert(WF_FORK == SD_BALANCE_FORK);
2047 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2048 #endif
2049 
2050 /*
2051  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2052  * of tasks with abnormal "nice" values across CPUs the contribution that
2053  * each task makes to its run queue's load is weighted according to its
2054  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2055  * scaled version of the new time slice allocation that they receive on time
2056  * slice expiry etc.
2057  */
2058 
2059 #define WEIGHT_IDLEPRIO		3
2060 #define WMULT_IDLEPRIO		1431655765
2061 
2062 extern const int		sched_prio_to_weight[40];
2063 extern const u32		sched_prio_to_wmult[40];
2064 
2065 /*
2066  * {de,en}queue flags:
2067  *
2068  * DEQUEUE_SLEEP  - task is no longer runnable
2069  * ENQUEUE_WAKEUP - task just became runnable
2070  *
2071  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2072  *                are in a known state which allows modification. Such pairs
2073  *                should preserve as much state as possible.
2074  *
2075  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2076  *        in the runqueue.
2077  *
2078  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2079  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2080  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2081  *
2082  */
2083 
2084 #define DEQUEUE_SLEEP		0x01
2085 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2086 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2087 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2088 
2089 #define ENQUEUE_WAKEUP		0x01
2090 #define ENQUEUE_RESTORE		0x02
2091 #define ENQUEUE_MOVE		0x04
2092 #define ENQUEUE_NOCLOCK		0x08
2093 
2094 #define ENQUEUE_HEAD		0x10
2095 #define ENQUEUE_REPLENISH	0x20
2096 #ifdef CONFIG_SMP
2097 #define ENQUEUE_MIGRATED	0x40
2098 #else
2099 #define ENQUEUE_MIGRATED	0x00
2100 #endif
2101 
2102 #define RETRY_TASK		((void *)-1UL)
2103 
2104 struct sched_class {
2105 
2106 #ifdef CONFIG_UCLAMP_TASK
2107 	int uclamp_enabled;
2108 #endif
2109 
2110 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2111 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2112 	void (*yield_task)   (struct rq *rq);
2113 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2114 
2115 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2116 
2117 	struct task_struct *(*pick_next_task)(struct rq *rq);
2118 
2119 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2120 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2121 
2122 #ifdef CONFIG_SMP
2123 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2124 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2125 
2126 	struct task_struct * (*pick_task)(struct rq *rq);
2127 
2128 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2129 
2130 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2131 
2132 	void (*set_cpus_allowed)(struct task_struct *p,
2133 				 const struct cpumask *newmask,
2134 				 u32 flags);
2135 
2136 	void (*rq_online)(struct rq *rq);
2137 	void (*rq_offline)(struct rq *rq);
2138 
2139 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2140 #endif
2141 
2142 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2143 	void (*task_fork)(struct task_struct *p);
2144 	void (*task_dead)(struct task_struct *p);
2145 
2146 	/*
2147 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2148 	 * cannot assume the switched_from/switched_to pair is serialized by
2149 	 * rq->lock. They are however serialized by p->pi_lock.
2150 	 */
2151 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2152 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2153 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2154 			      int oldprio);
2155 
2156 	unsigned int (*get_rr_interval)(struct rq *rq,
2157 					struct task_struct *task);
2158 
2159 	void (*update_curr)(struct rq *rq);
2160 
2161 #define TASK_SET_GROUP		0
2162 #define TASK_MOVE_GROUP		1
2163 
2164 #ifdef CONFIG_FAIR_GROUP_SCHED
2165 	void (*task_change_group)(struct task_struct *p, int type);
2166 #endif
2167 };
2168 
2169 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2170 {
2171 	WARN_ON_ONCE(rq->curr != prev);
2172 	prev->sched_class->put_prev_task(rq, prev);
2173 }
2174 
2175 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2176 {
2177 	next->sched_class->set_next_task(rq, next, false);
2178 }
2179 
2180 
2181 /*
2182  * Helper to define a sched_class instance; each one is placed in a separate
2183  * section which is ordered by the linker script:
2184  *
2185  *   include/asm-generic/vmlinux.lds.h
2186  *
2187  * *CAREFUL* they are laid out in *REVERSE* order!!!
2188  *
2189  * Also enforce alignment on the instance, not the type, to guarantee layout.
2190  */
2191 #define DEFINE_SCHED_CLASS(name) \
2192 const struct sched_class name##_sched_class \
2193 	__aligned(__alignof__(struct sched_class)) \
2194 	__section("__" #name "_sched_class")
2195 
2196 /* Defined in include/asm-generic/vmlinux.lds.h */
2197 extern struct sched_class __sched_class_highest[];
2198 extern struct sched_class __sched_class_lowest[];
2199 
2200 #define for_class_range(class, _from, _to) \
2201 	for (class = (_from); class < (_to); class++)
2202 
2203 #define for_each_class(class) \
2204 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2205 
2206 #define sched_class_above(_a, _b)	((_a) < (_b))
2207 
2208 extern const struct sched_class stop_sched_class;
2209 extern const struct sched_class dl_sched_class;
2210 extern const struct sched_class rt_sched_class;
2211 extern const struct sched_class fair_sched_class;
2212 extern const struct sched_class idle_sched_class;
2213 
2214 static inline bool sched_stop_runnable(struct rq *rq)
2215 {
2216 	return rq->stop && task_on_rq_queued(rq->stop);
2217 }
2218 
2219 static inline bool sched_dl_runnable(struct rq *rq)
2220 {
2221 	return rq->dl.dl_nr_running > 0;
2222 }
2223 
2224 static inline bool sched_rt_runnable(struct rq *rq)
2225 {
2226 	return rq->rt.rt_queued > 0;
2227 }
2228 
2229 static inline bool sched_fair_runnable(struct rq *rq)
2230 {
2231 	return rq->cfs.nr_running > 0;
2232 }
2233 
2234 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2235 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2236 
2237 #define SCA_CHECK		0x01
2238 #define SCA_MIGRATE_DISABLE	0x02
2239 #define SCA_MIGRATE_ENABLE	0x04
2240 #define SCA_USER		0x08
2241 
2242 #ifdef CONFIG_SMP
2243 
2244 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2245 
2246 extern void trigger_load_balance(struct rq *rq);
2247 
2248 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2249 
2250 static inline struct task_struct *get_push_task(struct rq *rq)
2251 {
2252 	struct task_struct *p = rq->curr;
2253 
2254 	lockdep_assert_rq_held(rq);
2255 
2256 	if (rq->push_busy)
2257 		return NULL;
2258 
2259 	if (p->nr_cpus_allowed == 1)
2260 		return NULL;
2261 
2262 	if (p->migration_disabled)
2263 		return NULL;
2264 
2265 	rq->push_busy = true;
2266 	return get_task_struct(p);
2267 }
2268 
2269 extern int push_cpu_stop(void *arg);
2270 
2271 #endif
2272 
2273 #ifdef CONFIG_CPU_IDLE
2274 static inline void idle_set_state(struct rq *rq,
2275 				  struct cpuidle_state *idle_state)
2276 {
2277 	rq->idle_state = idle_state;
2278 }
2279 
2280 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2281 {
2282 	SCHED_WARN_ON(!rcu_read_lock_held());
2283 
2284 	return rq->idle_state;
2285 }
2286 #else
2287 static inline void idle_set_state(struct rq *rq,
2288 				  struct cpuidle_state *idle_state)
2289 {
2290 }
2291 
2292 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2293 {
2294 	return NULL;
2295 }
2296 #endif
2297 
2298 extern void schedule_idle(void);
2299 
2300 extern void sysrq_sched_debug_show(void);
2301 extern void sched_init_granularity(void);
2302 extern void update_max_interval(void);
2303 
2304 extern void init_sched_dl_class(void);
2305 extern void init_sched_rt_class(void);
2306 extern void init_sched_fair_class(void);
2307 
2308 extern void reweight_task(struct task_struct *p, int prio);
2309 
2310 extern void resched_curr(struct rq *rq);
2311 extern void resched_cpu(int cpu);
2312 
2313 extern struct rt_bandwidth def_rt_bandwidth;
2314 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2315 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2316 
2317 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2318 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2319 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2320 
2321 #define BW_SHIFT		20
2322 #define BW_UNIT			(1 << BW_SHIFT)
2323 #define RATIO_SHIFT		8
2324 #define MAX_BW_BITS		(64 - BW_SHIFT)
2325 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2326 unsigned long to_ratio(u64 period, u64 runtime);
2327 
2328 extern void init_entity_runnable_average(struct sched_entity *se);
2329 extern void post_init_entity_util_avg(struct task_struct *p);
2330 
2331 #ifdef CONFIG_NO_HZ_FULL
2332 extern bool sched_can_stop_tick(struct rq *rq);
2333 extern int __init sched_tick_offload_init(void);
2334 
2335 /*
2336  * Tick may be needed by tasks in the runqueue depending on their policy and
2337  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2338  * nohz mode if necessary.
2339  */
2340 static inline void sched_update_tick_dependency(struct rq *rq)
2341 {
2342 	int cpu = cpu_of(rq);
2343 
2344 	if (!tick_nohz_full_cpu(cpu))
2345 		return;
2346 
2347 	if (sched_can_stop_tick(rq))
2348 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2349 	else
2350 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2351 }
2352 #else
2353 static inline int sched_tick_offload_init(void) { return 0; }
2354 static inline void sched_update_tick_dependency(struct rq *rq) { }
2355 #endif
2356 
2357 static inline void add_nr_running(struct rq *rq, unsigned count)
2358 {
2359 	unsigned prev_nr = rq->nr_running;
2360 
2361 	rq->nr_running = prev_nr + count;
2362 	if (trace_sched_update_nr_running_tp_enabled()) {
2363 		call_trace_sched_update_nr_running(rq, count);
2364 	}
2365 
2366 #ifdef CONFIG_SMP
2367 	if (prev_nr < 2 && rq->nr_running >= 2) {
2368 		if (!READ_ONCE(rq->rd->overload))
2369 			WRITE_ONCE(rq->rd->overload, 1);
2370 	}
2371 #endif
2372 
2373 	sched_update_tick_dependency(rq);
2374 }
2375 
2376 static inline void sub_nr_running(struct rq *rq, unsigned count)
2377 {
2378 	rq->nr_running -= count;
2379 	if (trace_sched_update_nr_running_tp_enabled()) {
2380 		call_trace_sched_update_nr_running(rq, -count);
2381 	}
2382 
2383 	/* Check if we still need preemption */
2384 	sched_update_tick_dependency(rq);
2385 }
2386 
2387 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2388 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2389 
2390 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2391 
2392 extern const_debug unsigned int sysctl_sched_nr_migrate;
2393 extern const_debug unsigned int sysctl_sched_migration_cost;
2394 
2395 #ifdef CONFIG_SCHED_DEBUG
2396 extern unsigned int sysctl_sched_latency;
2397 extern unsigned int sysctl_sched_min_granularity;
2398 extern unsigned int sysctl_sched_idle_min_granularity;
2399 extern unsigned int sysctl_sched_wakeup_granularity;
2400 extern int sysctl_resched_latency_warn_ms;
2401 extern int sysctl_resched_latency_warn_once;
2402 
2403 extern unsigned int sysctl_sched_tunable_scaling;
2404 
2405 extern unsigned int sysctl_numa_balancing_scan_delay;
2406 extern unsigned int sysctl_numa_balancing_scan_period_min;
2407 extern unsigned int sysctl_numa_balancing_scan_period_max;
2408 extern unsigned int sysctl_numa_balancing_scan_size;
2409 #endif
2410 
2411 #ifdef CONFIG_SCHED_HRTICK
2412 
2413 /*
2414  * Use hrtick when:
2415  *  - enabled by features
2416  *  - hrtimer is actually high res
2417  */
2418 static inline int hrtick_enabled(struct rq *rq)
2419 {
2420 	if (!cpu_active(cpu_of(rq)))
2421 		return 0;
2422 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2423 }
2424 
2425 static inline int hrtick_enabled_fair(struct rq *rq)
2426 {
2427 	if (!sched_feat(HRTICK))
2428 		return 0;
2429 	return hrtick_enabled(rq);
2430 }
2431 
2432 static inline int hrtick_enabled_dl(struct rq *rq)
2433 {
2434 	if (!sched_feat(HRTICK_DL))
2435 		return 0;
2436 	return hrtick_enabled(rq);
2437 }
2438 
2439 void hrtick_start(struct rq *rq, u64 delay);
2440 
2441 #else
2442 
2443 static inline int hrtick_enabled_fair(struct rq *rq)
2444 {
2445 	return 0;
2446 }
2447 
2448 static inline int hrtick_enabled_dl(struct rq *rq)
2449 {
2450 	return 0;
2451 }
2452 
2453 static inline int hrtick_enabled(struct rq *rq)
2454 {
2455 	return 0;
2456 }
2457 
2458 #endif /* CONFIG_SCHED_HRTICK */
2459 
2460 #ifndef arch_scale_freq_tick
2461 static __always_inline
2462 void arch_scale_freq_tick(void)
2463 {
2464 }
2465 #endif
2466 
2467 #ifndef arch_scale_freq_capacity
2468 /**
2469  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2470  * @cpu: the CPU in question.
2471  *
2472  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2473  *
2474  *     f_curr
2475  *     ------ * SCHED_CAPACITY_SCALE
2476  *     f_max
2477  */
2478 static __always_inline
2479 unsigned long arch_scale_freq_capacity(int cpu)
2480 {
2481 	return SCHED_CAPACITY_SCALE;
2482 }
2483 #endif
2484 
2485 #ifdef CONFIG_SCHED_DEBUG
2486 /*
2487  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2488  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2489  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2490  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2491  */
2492 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2493 {
2494 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2495 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2496 #ifdef CONFIG_SMP
2497 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2498 #endif
2499 }
2500 #else
2501 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2502 #endif
2503 
2504 #ifdef CONFIG_SMP
2505 
2506 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2507 {
2508 #ifdef CONFIG_SCHED_CORE
2509 	/*
2510 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2511 	 * order by core-id first and cpu-id second.
2512 	 *
2513 	 * Notably:
2514 	 *
2515 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2516 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2517 	 *
2518 	 * when only cpu-id is considered.
2519 	 */
2520 	if (rq1->core->cpu < rq2->core->cpu)
2521 		return true;
2522 	if (rq1->core->cpu > rq2->core->cpu)
2523 		return false;
2524 
2525 	/*
2526 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2527 	 */
2528 #endif
2529 	return rq1->cpu < rq2->cpu;
2530 }
2531 
2532 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2533 
2534 #ifdef CONFIG_PREEMPTION
2535 
2536 /*
2537  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2538  * way at the expense of forcing extra atomic operations in all
2539  * invocations.  This assures that the double_lock is acquired using the
2540  * same underlying policy as the spinlock_t on this architecture, which
2541  * reduces latency compared to the unfair variant below.  However, it
2542  * also adds more overhead and therefore may reduce throughput.
2543  */
2544 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2545 	__releases(this_rq->lock)
2546 	__acquires(busiest->lock)
2547 	__acquires(this_rq->lock)
2548 {
2549 	raw_spin_rq_unlock(this_rq);
2550 	double_rq_lock(this_rq, busiest);
2551 
2552 	return 1;
2553 }
2554 
2555 #else
2556 /*
2557  * Unfair double_lock_balance: Optimizes throughput at the expense of
2558  * latency by eliminating extra atomic operations when the locks are
2559  * already in proper order on entry.  This favors lower CPU-ids and will
2560  * grant the double lock to lower CPUs over higher ids under contention,
2561  * regardless of entry order into the function.
2562  */
2563 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2564 	__releases(this_rq->lock)
2565 	__acquires(busiest->lock)
2566 	__acquires(this_rq->lock)
2567 {
2568 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2569 	    likely(raw_spin_rq_trylock(busiest))) {
2570 		double_rq_clock_clear_update(this_rq, busiest);
2571 		return 0;
2572 	}
2573 
2574 	if (rq_order_less(this_rq, busiest)) {
2575 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2576 		double_rq_clock_clear_update(this_rq, busiest);
2577 		return 0;
2578 	}
2579 
2580 	raw_spin_rq_unlock(this_rq);
2581 	double_rq_lock(this_rq, busiest);
2582 
2583 	return 1;
2584 }
2585 
2586 #endif /* CONFIG_PREEMPTION */
2587 
2588 /*
2589  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2590  */
2591 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2592 {
2593 	lockdep_assert_irqs_disabled();
2594 
2595 	return _double_lock_balance(this_rq, busiest);
2596 }
2597 
2598 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2599 	__releases(busiest->lock)
2600 {
2601 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2602 		raw_spin_rq_unlock(busiest);
2603 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2604 }
2605 
2606 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2607 {
2608 	if (l1 > l2)
2609 		swap(l1, l2);
2610 
2611 	spin_lock(l1);
2612 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2613 }
2614 
2615 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2616 {
2617 	if (l1 > l2)
2618 		swap(l1, l2);
2619 
2620 	spin_lock_irq(l1);
2621 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2622 }
2623 
2624 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2625 {
2626 	if (l1 > l2)
2627 		swap(l1, l2);
2628 
2629 	raw_spin_lock(l1);
2630 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2631 }
2632 
2633 /*
2634  * double_rq_unlock - safely unlock two runqueues
2635  *
2636  * Note this does not restore interrupts like task_rq_unlock,
2637  * you need to do so manually after calling.
2638  */
2639 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2640 	__releases(rq1->lock)
2641 	__releases(rq2->lock)
2642 {
2643 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2644 		raw_spin_rq_unlock(rq2);
2645 	else
2646 		__release(rq2->lock);
2647 	raw_spin_rq_unlock(rq1);
2648 }
2649 
2650 extern void set_rq_online (struct rq *rq);
2651 extern void set_rq_offline(struct rq *rq);
2652 extern bool sched_smp_initialized;
2653 
2654 #else /* CONFIG_SMP */
2655 
2656 /*
2657  * double_rq_lock - safely lock two runqueues
2658  *
2659  * Note this does not disable interrupts like task_rq_lock,
2660  * you need to do so manually before calling.
2661  */
2662 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2663 	__acquires(rq1->lock)
2664 	__acquires(rq2->lock)
2665 {
2666 	BUG_ON(!irqs_disabled());
2667 	BUG_ON(rq1 != rq2);
2668 	raw_spin_rq_lock(rq1);
2669 	__acquire(rq2->lock);	/* Fake it out ;) */
2670 	double_rq_clock_clear_update(rq1, rq2);
2671 }
2672 
2673 /*
2674  * double_rq_unlock - safely unlock two runqueues
2675  *
2676  * Note this does not restore interrupts like task_rq_unlock,
2677  * you need to do so manually after calling.
2678  */
2679 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2680 	__releases(rq1->lock)
2681 	__releases(rq2->lock)
2682 {
2683 	BUG_ON(rq1 != rq2);
2684 	raw_spin_rq_unlock(rq1);
2685 	__release(rq2->lock);
2686 }
2687 
2688 #endif
2689 
2690 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2691 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2692 
2693 #ifdef	CONFIG_SCHED_DEBUG
2694 extern bool sched_debug_verbose;
2695 
2696 extern void print_cfs_stats(struct seq_file *m, int cpu);
2697 extern void print_rt_stats(struct seq_file *m, int cpu);
2698 extern void print_dl_stats(struct seq_file *m, int cpu);
2699 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2700 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2701 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2702 
2703 extern void resched_latency_warn(int cpu, u64 latency);
2704 #ifdef CONFIG_NUMA_BALANCING
2705 extern void
2706 show_numa_stats(struct task_struct *p, struct seq_file *m);
2707 extern void
2708 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2709 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2710 #endif /* CONFIG_NUMA_BALANCING */
2711 #else
2712 static inline void resched_latency_warn(int cpu, u64 latency) {}
2713 #endif /* CONFIG_SCHED_DEBUG */
2714 
2715 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2716 extern void init_rt_rq(struct rt_rq *rt_rq);
2717 extern void init_dl_rq(struct dl_rq *dl_rq);
2718 
2719 extern void cfs_bandwidth_usage_inc(void);
2720 extern void cfs_bandwidth_usage_dec(void);
2721 
2722 #ifdef CONFIG_NO_HZ_COMMON
2723 #define NOHZ_BALANCE_KICK_BIT	0
2724 #define NOHZ_STATS_KICK_BIT	1
2725 #define NOHZ_NEWILB_KICK_BIT	2
2726 #define NOHZ_NEXT_KICK_BIT	3
2727 
2728 /* Run rebalance_domains() */
2729 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2730 /* Update blocked load */
2731 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2732 /* Update blocked load when entering idle */
2733 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2734 /* Update nohz.next_balance */
2735 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2736 
2737 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2738 
2739 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2740 
2741 extern void nohz_balance_exit_idle(struct rq *rq);
2742 #else
2743 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2744 #endif
2745 
2746 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2747 extern void nohz_run_idle_balance(int cpu);
2748 #else
2749 static inline void nohz_run_idle_balance(int cpu) { }
2750 #endif
2751 
2752 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2753 struct irqtime {
2754 	u64			total;
2755 	u64			tick_delta;
2756 	u64			irq_start_time;
2757 	struct u64_stats_sync	sync;
2758 };
2759 
2760 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2761 
2762 /*
2763  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2764  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2765  * and never move forward.
2766  */
2767 static inline u64 irq_time_read(int cpu)
2768 {
2769 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2770 	unsigned int seq;
2771 	u64 total;
2772 
2773 	do {
2774 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2775 		total = irqtime->total;
2776 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2777 
2778 	return total;
2779 }
2780 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2781 
2782 #ifdef CONFIG_CPU_FREQ
2783 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2784 
2785 /**
2786  * cpufreq_update_util - Take a note about CPU utilization changes.
2787  * @rq: Runqueue to carry out the update for.
2788  * @flags: Update reason flags.
2789  *
2790  * This function is called by the scheduler on the CPU whose utilization is
2791  * being updated.
2792  *
2793  * It can only be called from RCU-sched read-side critical sections.
2794  *
2795  * The way cpufreq is currently arranged requires it to evaluate the CPU
2796  * performance state (frequency/voltage) on a regular basis to prevent it from
2797  * being stuck in a completely inadequate performance level for too long.
2798  * That is not guaranteed to happen if the updates are only triggered from CFS
2799  * and DL, though, because they may not be coming in if only RT tasks are
2800  * active all the time (or there are RT tasks only).
2801  *
2802  * As a workaround for that issue, this function is called periodically by the
2803  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2804  * but that really is a band-aid.  Going forward it should be replaced with
2805  * solutions targeted more specifically at RT tasks.
2806  */
2807 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2808 {
2809 	struct update_util_data *data;
2810 
2811 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2812 						  cpu_of(rq)));
2813 	if (data)
2814 		data->func(data, rq_clock(rq), flags);
2815 }
2816 #else
2817 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2818 #endif /* CONFIG_CPU_FREQ */
2819 
2820 #ifdef arch_scale_freq_capacity
2821 # ifndef arch_scale_freq_invariant
2822 #  define arch_scale_freq_invariant()	true
2823 # endif
2824 #else
2825 # define arch_scale_freq_invariant()	false
2826 #endif
2827 
2828 #ifdef CONFIG_SMP
2829 static inline unsigned long capacity_orig_of(int cpu)
2830 {
2831 	return cpu_rq(cpu)->cpu_capacity_orig;
2832 }
2833 
2834 /**
2835  * enum cpu_util_type - CPU utilization type
2836  * @FREQUENCY_UTIL:	Utilization used to select frequency
2837  * @ENERGY_UTIL:	Utilization used during energy calculation
2838  *
2839  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2840  * need to be aggregated differently depending on the usage made of them. This
2841  * enum is used within effective_cpu_util() to differentiate the types of
2842  * utilization expected by the callers, and adjust the aggregation accordingly.
2843  */
2844 enum cpu_util_type {
2845 	FREQUENCY_UTIL,
2846 	ENERGY_UTIL,
2847 };
2848 
2849 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2850 				 unsigned long max, enum cpu_util_type type,
2851 				 struct task_struct *p);
2852 
2853 static inline unsigned long cpu_bw_dl(struct rq *rq)
2854 {
2855 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2856 }
2857 
2858 static inline unsigned long cpu_util_dl(struct rq *rq)
2859 {
2860 	return READ_ONCE(rq->avg_dl.util_avg);
2861 }
2862 
2863 /**
2864  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2865  * @cpu: the CPU to get the utilization for.
2866  *
2867  * The unit of the return value must be the same as the one of CPU capacity
2868  * so that CPU utilization can be compared with CPU capacity.
2869  *
2870  * CPU utilization is the sum of running time of runnable tasks plus the
2871  * recent utilization of currently non-runnable tasks on that CPU.
2872  * It represents the amount of CPU capacity currently used by CFS tasks in
2873  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2874  * capacity at f_max.
2875  *
2876  * The estimated CPU utilization is defined as the maximum between CPU
2877  * utilization and sum of the estimated utilization of the currently
2878  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2879  * previously-executed tasks, which helps better deduce how busy a CPU will
2880  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2881  * of such a task would be significantly decayed at this point of time.
2882  *
2883  * CPU utilization can be higher than the current CPU capacity
2884  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2885  * of rounding errors as well as task migrations or wakeups of new tasks.
2886  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2887  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2888  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2889  * capacity. CPU utilization is allowed to overshoot current CPU capacity
2890  * though since this is useful for predicting the CPU capacity required
2891  * after task migrations (scheduler-driven DVFS).
2892  *
2893  * Return: (Estimated) utilization for the specified CPU.
2894  */
2895 static inline unsigned long cpu_util_cfs(int cpu)
2896 {
2897 	struct cfs_rq *cfs_rq;
2898 	unsigned long util;
2899 
2900 	cfs_rq = &cpu_rq(cpu)->cfs;
2901 	util = READ_ONCE(cfs_rq->avg.util_avg);
2902 
2903 	if (sched_feat(UTIL_EST)) {
2904 		util = max_t(unsigned long, util,
2905 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
2906 	}
2907 
2908 	return min(util, capacity_orig_of(cpu));
2909 }
2910 
2911 static inline unsigned long cpu_util_rt(struct rq *rq)
2912 {
2913 	return READ_ONCE(rq->avg_rt.util_avg);
2914 }
2915 #endif
2916 
2917 #ifdef CONFIG_UCLAMP_TASK
2918 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2919 
2920 /**
2921  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2922  * @rq:		The rq to clamp against. Must not be NULL.
2923  * @util:	The util value to clamp.
2924  * @p:		The task to clamp against. Can be NULL if you want to clamp
2925  *		against @rq only.
2926  *
2927  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2928  *
2929  * If sched_uclamp_used static key is disabled, then just return the util
2930  * without any clamping since uclamp aggregation at the rq level in the fast
2931  * path is disabled, rendering this operation a NOP.
2932  *
2933  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2934  * will return the correct effective uclamp value of the task even if the
2935  * static key is disabled.
2936  */
2937 static __always_inline
2938 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2939 				  struct task_struct *p)
2940 {
2941 	unsigned long min_util = 0;
2942 	unsigned long max_util = 0;
2943 
2944 	if (!static_branch_likely(&sched_uclamp_used))
2945 		return util;
2946 
2947 	if (p) {
2948 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2949 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2950 
2951 		/*
2952 		 * Ignore last runnable task's max clamp, as this task will
2953 		 * reset it. Similarly, no need to read the rq's min clamp.
2954 		 */
2955 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2956 			goto out;
2957 	}
2958 
2959 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2960 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2961 out:
2962 	/*
2963 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2964 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2965 	 * inversion. Fix it now when the clamps are applied.
2966 	 */
2967 	if (unlikely(min_util >= max_util))
2968 		return min_util;
2969 
2970 	return clamp(util, min_util, max_util);
2971 }
2972 
2973 /* Is the rq being capped/throttled by uclamp_max? */
2974 static inline bool uclamp_rq_is_capped(struct rq *rq)
2975 {
2976 	unsigned long rq_util;
2977 	unsigned long max_util;
2978 
2979 	if (!static_branch_likely(&sched_uclamp_used))
2980 		return false;
2981 
2982 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
2983 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2984 
2985 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
2986 }
2987 
2988 /*
2989  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2990  * by default in the fast path and only gets turned on once userspace performs
2991  * an operation that requires it.
2992  *
2993  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2994  * hence is active.
2995  */
2996 static inline bool uclamp_is_used(void)
2997 {
2998 	return static_branch_likely(&sched_uclamp_used);
2999 }
3000 #else /* CONFIG_UCLAMP_TASK */
3001 static inline
3002 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3003 				  struct task_struct *p)
3004 {
3005 	return util;
3006 }
3007 
3008 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3009 
3010 static inline bool uclamp_is_used(void)
3011 {
3012 	return false;
3013 }
3014 #endif /* CONFIG_UCLAMP_TASK */
3015 
3016 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3017 static inline unsigned long cpu_util_irq(struct rq *rq)
3018 {
3019 	return rq->avg_irq.util_avg;
3020 }
3021 
3022 static inline
3023 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3024 {
3025 	util *= (max - irq);
3026 	util /= max;
3027 
3028 	return util;
3029 
3030 }
3031 #else
3032 static inline unsigned long cpu_util_irq(struct rq *rq)
3033 {
3034 	return 0;
3035 }
3036 
3037 static inline
3038 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3039 {
3040 	return util;
3041 }
3042 #endif
3043 
3044 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3045 
3046 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3047 
3048 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3049 
3050 static inline bool sched_energy_enabled(void)
3051 {
3052 	return static_branch_unlikely(&sched_energy_present);
3053 }
3054 
3055 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3056 
3057 #define perf_domain_span(pd) NULL
3058 static inline bool sched_energy_enabled(void) { return false; }
3059 
3060 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3061 
3062 #ifdef CONFIG_MEMBARRIER
3063 /*
3064  * The scheduler provides memory barriers required by membarrier between:
3065  * - prior user-space memory accesses and store to rq->membarrier_state,
3066  * - store to rq->membarrier_state and following user-space memory accesses.
3067  * In the same way it provides those guarantees around store to rq->curr.
3068  */
3069 static inline void membarrier_switch_mm(struct rq *rq,
3070 					struct mm_struct *prev_mm,
3071 					struct mm_struct *next_mm)
3072 {
3073 	int membarrier_state;
3074 
3075 	if (prev_mm == next_mm)
3076 		return;
3077 
3078 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3079 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3080 		return;
3081 
3082 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3083 }
3084 #else
3085 static inline void membarrier_switch_mm(struct rq *rq,
3086 					struct mm_struct *prev_mm,
3087 					struct mm_struct *next_mm)
3088 {
3089 }
3090 #endif
3091 
3092 #ifdef CONFIG_SMP
3093 static inline bool is_per_cpu_kthread(struct task_struct *p)
3094 {
3095 	if (!(p->flags & PF_KTHREAD))
3096 		return false;
3097 
3098 	if (p->nr_cpus_allowed != 1)
3099 		return false;
3100 
3101 	return true;
3102 }
3103 #endif
3104 
3105 extern void swake_up_all_locked(struct swait_queue_head *q);
3106 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3107 
3108 #ifdef CONFIG_PREEMPT_DYNAMIC
3109 extern int preempt_dynamic_mode;
3110 extern int sched_dynamic_mode(const char *str);
3111 extern void sched_dynamic_update(int mode);
3112 #endif
3113 
3114 #endif /* _KERNEL_SCHED_SCHED_H */
3115