xref: /openbmc/linux/kernel/sched/sched.h (revision 4e1a33b1)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/u64_stats_sync.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/binfmts.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/stop_machine.h>
12 #include <linux/irq_work.h>
13 #include <linux/tick.h>
14 #include <linux/slab.h>
15 
16 #include "cpupri.h"
17 #include "cpudeadline.h"
18 #include "cpuacct.h"
19 
20 #ifdef CONFIG_SCHED_DEBUG
21 #define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
22 #else
23 #define SCHED_WARN_ON(x)	((void)(x))
24 #endif
25 
26 struct rq;
27 struct cpuidle_state;
28 
29 /* task_struct::on_rq states: */
30 #define TASK_ON_RQ_QUEUED	1
31 #define TASK_ON_RQ_MIGRATING	2
32 
33 extern __read_mostly int scheduler_running;
34 
35 extern unsigned long calc_load_update;
36 extern atomic_long_t calc_load_tasks;
37 
38 extern void calc_global_load_tick(struct rq *this_rq);
39 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
40 
41 #ifdef CONFIG_SMP
42 extern void cpu_load_update_active(struct rq *this_rq);
43 #else
44 static inline void cpu_load_update_active(struct rq *this_rq) { }
45 #endif
46 
47 /*
48  * Helpers for converting nanosecond timing to jiffy resolution
49  */
50 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
51 
52 /*
53  * Increase resolution of nice-level calculations for 64-bit architectures.
54  * The extra resolution improves shares distribution and load balancing of
55  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
56  * hierarchies, especially on larger systems. This is not a user-visible change
57  * and does not change the user-interface for setting shares/weights.
58  *
59  * We increase resolution only if we have enough bits to allow this increased
60  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
61  * pretty high and the returns do not justify the increased costs.
62  *
63  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
64  * increase coverage and consistency always enable it on 64bit platforms.
65  */
66 #ifdef CONFIG_64BIT
67 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
68 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
69 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
70 #else
71 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
72 # define scale_load(w)		(w)
73 # define scale_load_down(w)	(w)
74 #endif
75 
76 /*
77  * Task weight (visible to users) and its load (invisible to users) have
78  * independent resolution, but they should be well calibrated. We use
79  * scale_load() and scale_load_down(w) to convert between them. The
80  * following must be true:
81  *
82  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
83  *
84  */
85 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
86 
87 /*
88  * Single value that decides SCHED_DEADLINE internal math precision.
89  * 10 -> just above 1us
90  * 9  -> just above 0.5us
91  */
92 #define DL_SCALE (10)
93 
94 /*
95  * These are the 'tuning knobs' of the scheduler:
96  */
97 
98 /*
99  * single value that denotes runtime == period, ie unlimited time.
100  */
101 #define RUNTIME_INF	((u64)~0ULL)
102 
103 static inline int idle_policy(int policy)
104 {
105 	return policy == SCHED_IDLE;
106 }
107 static inline int fair_policy(int policy)
108 {
109 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
110 }
111 
112 static inline int rt_policy(int policy)
113 {
114 	return policy == SCHED_FIFO || policy == SCHED_RR;
115 }
116 
117 static inline int dl_policy(int policy)
118 {
119 	return policy == SCHED_DEADLINE;
120 }
121 static inline bool valid_policy(int policy)
122 {
123 	return idle_policy(policy) || fair_policy(policy) ||
124 		rt_policy(policy) || dl_policy(policy);
125 }
126 
127 static inline int task_has_rt_policy(struct task_struct *p)
128 {
129 	return rt_policy(p->policy);
130 }
131 
132 static inline int task_has_dl_policy(struct task_struct *p)
133 {
134 	return dl_policy(p->policy);
135 }
136 
137 /*
138  * Tells if entity @a should preempt entity @b.
139  */
140 static inline bool
141 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
142 {
143 	return dl_time_before(a->deadline, b->deadline);
144 }
145 
146 /*
147  * This is the priority-queue data structure of the RT scheduling class:
148  */
149 struct rt_prio_array {
150 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 	struct list_head queue[MAX_RT_PRIO];
152 };
153 
154 struct rt_bandwidth {
155 	/* nests inside the rq lock: */
156 	raw_spinlock_t		rt_runtime_lock;
157 	ktime_t			rt_period;
158 	u64			rt_runtime;
159 	struct hrtimer		rt_period_timer;
160 	unsigned int		rt_period_active;
161 };
162 
163 void __dl_clear_params(struct task_struct *p);
164 
165 /*
166  * To keep the bandwidth of -deadline tasks and groups under control
167  * we need some place where:
168  *  - store the maximum -deadline bandwidth of the system (the group);
169  *  - cache the fraction of that bandwidth that is currently allocated.
170  *
171  * This is all done in the data structure below. It is similar to the
172  * one used for RT-throttling (rt_bandwidth), with the main difference
173  * that, since here we are only interested in admission control, we
174  * do not decrease any runtime while the group "executes", neither we
175  * need a timer to replenish it.
176  *
177  * With respect to SMP, the bandwidth is given on a per-CPU basis,
178  * meaning that:
179  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
180  *  - dl_total_bw array contains, in the i-eth element, the currently
181  *    allocated bandwidth on the i-eth CPU.
182  * Moreover, groups consume bandwidth on each CPU, while tasks only
183  * consume bandwidth on the CPU they're running on.
184  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
185  * that will be shown the next time the proc or cgroup controls will
186  * be red. It on its turn can be changed by writing on its own
187  * control.
188  */
189 struct dl_bandwidth {
190 	raw_spinlock_t dl_runtime_lock;
191 	u64 dl_runtime;
192 	u64 dl_period;
193 };
194 
195 static inline int dl_bandwidth_enabled(void)
196 {
197 	return sysctl_sched_rt_runtime >= 0;
198 }
199 
200 extern struct dl_bw *dl_bw_of(int i);
201 
202 struct dl_bw {
203 	raw_spinlock_t lock;
204 	u64 bw, total_bw;
205 };
206 
207 static inline
208 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
209 {
210 	dl_b->total_bw -= tsk_bw;
211 }
212 
213 static inline
214 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
215 {
216 	dl_b->total_bw += tsk_bw;
217 }
218 
219 static inline
220 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
221 {
222 	return dl_b->bw != -1 &&
223 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
224 }
225 
226 extern void init_dl_bw(struct dl_bw *dl_b);
227 
228 #ifdef CONFIG_CGROUP_SCHED
229 
230 #include <linux/cgroup.h>
231 
232 struct cfs_rq;
233 struct rt_rq;
234 
235 extern struct list_head task_groups;
236 
237 struct cfs_bandwidth {
238 #ifdef CONFIG_CFS_BANDWIDTH
239 	raw_spinlock_t lock;
240 	ktime_t period;
241 	u64 quota, runtime;
242 	s64 hierarchical_quota;
243 	u64 runtime_expires;
244 
245 	int idle, period_active;
246 	struct hrtimer period_timer, slack_timer;
247 	struct list_head throttled_cfs_rq;
248 
249 	/* statistics */
250 	int nr_periods, nr_throttled;
251 	u64 throttled_time;
252 #endif
253 };
254 
255 /* task group related information */
256 struct task_group {
257 	struct cgroup_subsys_state css;
258 
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260 	/* schedulable entities of this group on each cpu */
261 	struct sched_entity **se;
262 	/* runqueue "owned" by this group on each cpu */
263 	struct cfs_rq **cfs_rq;
264 	unsigned long shares;
265 
266 #ifdef	CONFIG_SMP
267 	/*
268 	 * load_avg can be heavily contended at clock tick time, so put
269 	 * it in its own cacheline separated from the fields above which
270 	 * will also be accessed at each tick.
271 	 */
272 	atomic_long_t load_avg ____cacheline_aligned;
273 #endif
274 #endif
275 
276 #ifdef CONFIG_RT_GROUP_SCHED
277 	struct sched_rt_entity **rt_se;
278 	struct rt_rq **rt_rq;
279 
280 	struct rt_bandwidth rt_bandwidth;
281 #endif
282 
283 	struct rcu_head rcu;
284 	struct list_head list;
285 
286 	struct task_group *parent;
287 	struct list_head siblings;
288 	struct list_head children;
289 
290 #ifdef CONFIG_SCHED_AUTOGROUP
291 	struct autogroup *autogroup;
292 #endif
293 
294 	struct cfs_bandwidth cfs_bandwidth;
295 };
296 
297 #ifdef CONFIG_FAIR_GROUP_SCHED
298 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
299 
300 /*
301  * A weight of 0 or 1 can cause arithmetics problems.
302  * A weight of a cfs_rq is the sum of weights of which entities
303  * are queued on this cfs_rq, so a weight of a entity should not be
304  * too large, so as the shares value of a task group.
305  * (The default weight is 1024 - so there's no practical
306  *  limitation from this.)
307  */
308 #define MIN_SHARES	(1UL <<  1)
309 #define MAX_SHARES	(1UL << 18)
310 #endif
311 
312 typedef int (*tg_visitor)(struct task_group *, void *);
313 
314 extern int walk_tg_tree_from(struct task_group *from,
315 			     tg_visitor down, tg_visitor up, void *data);
316 
317 /*
318  * Iterate the full tree, calling @down when first entering a node and @up when
319  * leaving it for the final time.
320  *
321  * Caller must hold rcu_lock or sufficient equivalent.
322  */
323 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
324 {
325 	return walk_tg_tree_from(&root_task_group, down, up, data);
326 }
327 
328 extern int tg_nop(struct task_group *tg, void *data);
329 
330 extern void free_fair_sched_group(struct task_group *tg);
331 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
332 extern void online_fair_sched_group(struct task_group *tg);
333 extern void unregister_fair_sched_group(struct task_group *tg);
334 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
335 			struct sched_entity *se, int cpu,
336 			struct sched_entity *parent);
337 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
338 
339 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
340 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
341 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
342 
343 extern void free_rt_sched_group(struct task_group *tg);
344 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
345 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
346 		struct sched_rt_entity *rt_se, int cpu,
347 		struct sched_rt_entity *parent);
348 
349 extern struct task_group *sched_create_group(struct task_group *parent);
350 extern void sched_online_group(struct task_group *tg,
351 			       struct task_group *parent);
352 extern void sched_destroy_group(struct task_group *tg);
353 extern void sched_offline_group(struct task_group *tg);
354 
355 extern void sched_move_task(struct task_struct *tsk);
356 
357 #ifdef CONFIG_FAIR_GROUP_SCHED
358 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
359 
360 #ifdef CONFIG_SMP
361 extern void set_task_rq_fair(struct sched_entity *se,
362 			     struct cfs_rq *prev, struct cfs_rq *next);
363 #else /* !CONFIG_SMP */
364 static inline void set_task_rq_fair(struct sched_entity *se,
365 			     struct cfs_rq *prev, struct cfs_rq *next) { }
366 #endif /* CONFIG_SMP */
367 #endif /* CONFIG_FAIR_GROUP_SCHED */
368 
369 #else /* CONFIG_CGROUP_SCHED */
370 
371 struct cfs_bandwidth { };
372 
373 #endif	/* CONFIG_CGROUP_SCHED */
374 
375 /* CFS-related fields in a runqueue */
376 struct cfs_rq {
377 	struct load_weight load;
378 	unsigned int nr_running, h_nr_running;
379 
380 	u64 exec_clock;
381 	u64 min_vruntime;
382 #ifndef CONFIG_64BIT
383 	u64 min_vruntime_copy;
384 #endif
385 
386 	struct rb_root tasks_timeline;
387 	struct rb_node *rb_leftmost;
388 
389 	/*
390 	 * 'curr' points to currently running entity on this cfs_rq.
391 	 * It is set to NULL otherwise (i.e when none are currently running).
392 	 */
393 	struct sched_entity *curr, *next, *last, *skip;
394 
395 #ifdef	CONFIG_SCHED_DEBUG
396 	unsigned int nr_spread_over;
397 #endif
398 
399 #ifdef CONFIG_SMP
400 	/*
401 	 * CFS load tracking
402 	 */
403 	struct sched_avg avg;
404 	u64 runnable_load_sum;
405 	unsigned long runnable_load_avg;
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 	unsigned long tg_load_avg_contrib;
408 	unsigned long propagate_avg;
409 #endif
410 	atomic_long_t removed_load_avg, removed_util_avg;
411 #ifndef CONFIG_64BIT
412 	u64 load_last_update_time_copy;
413 #endif
414 
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 	/*
417 	 *   h_load = weight * f(tg)
418 	 *
419 	 * Where f(tg) is the recursive weight fraction assigned to
420 	 * this group.
421 	 */
422 	unsigned long h_load;
423 	u64 last_h_load_update;
424 	struct sched_entity *h_load_next;
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 #endif /* CONFIG_SMP */
427 
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
430 
431 	/*
432 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
433 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
434 	 * (like users, containers etc.)
435 	 *
436 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
437 	 * list is used during load balance.
438 	 */
439 	int on_list;
440 	struct list_head leaf_cfs_rq_list;
441 	struct task_group *tg;	/* group that "owns" this runqueue */
442 
443 #ifdef CONFIG_CFS_BANDWIDTH
444 	int runtime_enabled;
445 	u64 runtime_expires;
446 	s64 runtime_remaining;
447 
448 	u64 throttled_clock, throttled_clock_task;
449 	u64 throttled_clock_task_time;
450 	int throttled, throttle_count;
451 	struct list_head throttled_list;
452 #endif /* CONFIG_CFS_BANDWIDTH */
453 #endif /* CONFIG_FAIR_GROUP_SCHED */
454 };
455 
456 static inline int rt_bandwidth_enabled(void)
457 {
458 	return sysctl_sched_rt_runtime >= 0;
459 }
460 
461 /* RT IPI pull logic requires IRQ_WORK */
462 #ifdef CONFIG_IRQ_WORK
463 # define HAVE_RT_PUSH_IPI
464 #endif
465 
466 /* Real-Time classes' related field in a runqueue: */
467 struct rt_rq {
468 	struct rt_prio_array active;
469 	unsigned int rt_nr_running;
470 	unsigned int rr_nr_running;
471 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
472 	struct {
473 		int curr; /* highest queued rt task prio */
474 #ifdef CONFIG_SMP
475 		int next; /* next highest */
476 #endif
477 	} highest_prio;
478 #endif
479 #ifdef CONFIG_SMP
480 	unsigned long rt_nr_migratory;
481 	unsigned long rt_nr_total;
482 	int overloaded;
483 	struct plist_head pushable_tasks;
484 #ifdef HAVE_RT_PUSH_IPI
485 	int push_flags;
486 	int push_cpu;
487 	struct irq_work push_work;
488 	raw_spinlock_t push_lock;
489 #endif
490 #endif /* CONFIG_SMP */
491 	int rt_queued;
492 
493 	int rt_throttled;
494 	u64 rt_time;
495 	u64 rt_runtime;
496 	/* Nests inside the rq lock: */
497 	raw_spinlock_t rt_runtime_lock;
498 
499 #ifdef CONFIG_RT_GROUP_SCHED
500 	unsigned long rt_nr_boosted;
501 
502 	struct rq *rq;
503 	struct task_group *tg;
504 #endif
505 };
506 
507 /* Deadline class' related fields in a runqueue */
508 struct dl_rq {
509 	/* runqueue is an rbtree, ordered by deadline */
510 	struct rb_root rb_root;
511 	struct rb_node *rb_leftmost;
512 
513 	unsigned long dl_nr_running;
514 
515 #ifdef CONFIG_SMP
516 	/*
517 	 * Deadline values of the currently executing and the
518 	 * earliest ready task on this rq. Caching these facilitates
519 	 * the decision wether or not a ready but not running task
520 	 * should migrate somewhere else.
521 	 */
522 	struct {
523 		u64 curr;
524 		u64 next;
525 	} earliest_dl;
526 
527 	unsigned long dl_nr_migratory;
528 	int overloaded;
529 
530 	/*
531 	 * Tasks on this rq that can be pushed away. They are kept in
532 	 * an rb-tree, ordered by tasks' deadlines, with caching
533 	 * of the leftmost (earliest deadline) element.
534 	 */
535 	struct rb_root pushable_dl_tasks_root;
536 	struct rb_node *pushable_dl_tasks_leftmost;
537 #else
538 	struct dl_bw dl_bw;
539 #endif
540 };
541 
542 #ifdef CONFIG_SMP
543 
544 static inline bool sched_asym_prefer(int a, int b)
545 {
546 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
547 }
548 
549 /*
550  * We add the notion of a root-domain which will be used to define per-domain
551  * variables. Each exclusive cpuset essentially defines an island domain by
552  * fully partitioning the member cpus from any other cpuset. Whenever a new
553  * exclusive cpuset is created, we also create and attach a new root-domain
554  * object.
555  *
556  */
557 struct root_domain {
558 	atomic_t refcount;
559 	atomic_t rto_count;
560 	struct rcu_head rcu;
561 	cpumask_var_t span;
562 	cpumask_var_t online;
563 
564 	/* Indicate more than one runnable task for any CPU */
565 	bool overload;
566 
567 	/*
568 	 * The bit corresponding to a CPU gets set here if such CPU has more
569 	 * than one runnable -deadline task (as it is below for RT tasks).
570 	 */
571 	cpumask_var_t dlo_mask;
572 	atomic_t dlo_count;
573 	struct dl_bw dl_bw;
574 	struct cpudl cpudl;
575 
576 	/*
577 	 * The "RT overload" flag: it gets set if a CPU has more than
578 	 * one runnable RT task.
579 	 */
580 	cpumask_var_t rto_mask;
581 	struct cpupri cpupri;
582 
583 	unsigned long max_cpu_capacity;
584 };
585 
586 extern struct root_domain def_root_domain;
587 extern struct mutex sched_domains_mutex;
588 extern cpumask_var_t fallback_doms;
589 extern cpumask_var_t sched_domains_tmpmask;
590 
591 extern void init_defrootdomain(void);
592 extern int init_sched_domains(const struct cpumask *cpu_map);
593 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
594 
595 #endif /* CONFIG_SMP */
596 
597 /*
598  * This is the main, per-CPU runqueue data structure.
599  *
600  * Locking rule: those places that want to lock multiple runqueues
601  * (such as the load balancing or the thread migration code), lock
602  * acquire operations must be ordered by ascending &runqueue.
603  */
604 struct rq {
605 	/* runqueue lock: */
606 	raw_spinlock_t lock;
607 
608 	/*
609 	 * nr_running and cpu_load should be in the same cacheline because
610 	 * remote CPUs use both these fields when doing load calculation.
611 	 */
612 	unsigned int nr_running;
613 #ifdef CONFIG_NUMA_BALANCING
614 	unsigned int nr_numa_running;
615 	unsigned int nr_preferred_running;
616 #endif
617 	#define CPU_LOAD_IDX_MAX 5
618 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
619 #ifdef CONFIG_NO_HZ_COMMON
620 #ifdef CONFIG_SMP
621 	unsigned long last_load_update_tick;
622 #endif /* CONFIG_SMP */
623 	unsigned long nohz_flags;
624 #endif /* CONFIG_NO_HZ_COMMON */
625 #ifdef CONFIG_NO_HZ_FULL
626 	unsigned long last_sched_tick;
627 #endif
628 	/* capture load from *all* tasks on this cpu: */
629 	struct load_weight load;
630 	unsigned long nr_load_updates;
631 	u64 nr_switches;
632 
633 	struct cfs_rq cfs;
634 	struct rt_rq rt;
635 	struct dl_rq dl;
636 
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 	/* list of leaf cfs_rq on this cpu: */
639 	struct list_head leaf_cfs_rq_list;
640 	struct list_head *tmp_alone_branch;
641 #endif /* CONFIG_FAIR_GROUP_SCHED */
642 
643 	/*
644 	 * This is part of a global counter where only the total sum
645 	 * over all CPUs matters. A task can increase this counter on
646 	 * one CPU and if it got migrated afterwards it may decrease
647 	 * it on another CPU. Always updated under the runqueue lock:
648 	 */
649 	unsigned long nr_uninterruptible;
650 
651 	struct task_struct *curr, *idle, *stop;
652 	unsigned long next_balance;
653 	struct mm_struct *prev_mm;
654 
655 	unsigned int clock_update_flags;
656 	u64 clock;
657 	u64 clock_task;
658 
659 	atomic_t nr_iowait;
660 
661 #ifdef CONFIG_SMP
662 	struct root_domain *rd;
663 	struct sched_domain *sd;
664 
665 	unsigned long cpu_capacity;
666 	unsigned long cpu_capacity_orig;
667 
668 	struct callback_head *balance_callback;
669 
670 	unsigned char idle_balance;
671 	/* For active balancing */
672 	int active_balance;
673 	int push_cpu;
674 	struct cpu_stop_work active_balance_work;
675 	/* cpu of this runqueue: */
676 	int cpu;
677 	int online;
678 
679 	struct list_head cfs_tasks;
680 
681 	u64 rt_avg;
682 	u64 age_stamp;
683 	u64 idle_stamp;
684 	u64 avg_idle;
685 
686 	/* This is used to determine avg_idle's max value */
687 	u64 max_idle_balance_cost;
688 #endif
689 
690 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
691 	u64 prev_irq_time;
692 #endif
693 #ifdef CONFIG_PARAVIRT
694 	u64 prev_steal_time;
695 #endif
696 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
697 	u64 prev_steal_time_rq;
698 #endif
699 
700 	/* calc_load related fields */
701 	unsigned long calc_load_update;
702 	long calc_load_active;
703 
704 #ifdef CONFIG_SCHED_HRTICK
705 #ifdef CONFIG_SMP
706 	int hrtick_csd_pending;
707 	struct call_single_data hrtick_csd;
708 #endif
709 	struct hrtimer hrtick_timer;
710 #endif
711 
712 #ifdef CONFIG_SCHEDSTATS
713 	/* latency stats */
714 	struct sched_info rq_sched_info;
715 	unsigned long long rq_cpu_time;
716 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
717 
718 	/* sys_sched_yield() stats */
719 	unsigned int yld_count;
720 
721 	/* schedule() stats */
722 	unsigned int sched_count;
723 	unsigned int sched_goidle;
724 
725 	/* try_to_wake_up() stats */
726 	unsigned int ttwu_count;
727 	unsigned int ttwu_local;
728 #endif
729 
730 #ifdef CONFIG_SMP
731 	struct llist_head wake_list;
732 #endif
733 
734 #ifdef CONFIG_CPU_IDLE
735 	/* Must be inspected within a rcu lock section */
736 	struct cpuidle_state *idle_state;
737 #endif
738 };
739 
740 static inline int cpu_of(struct rq *rq)
741 {
742 #ifdef CONFIG_SMP
743 	return rq->cpu;
744 #else
745 	return 0;
746 #endif
747 }
748 
749 
750 #ifdef CONFIG_SCHED_SMT
751 
752 extern struct static_key_false sched_smt_present;
753 
754 extern void __update_idle_core(struct rq *rq);
755 
756 static inline void update_idle_core(struct rq *rq)
757 {
758 	if (static_branch_unlikely(&sched_smt_present))
759 		__update_idle_core(rq);
760 }
761 
762 #else
763 static inline void update_idle_core(struct rq *rq) { }
764 #endif
765 
766 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
767 
768 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
769 #define this_rq()		this_cpu_ptr(&runqueues)
770 #define task_rq(p)		cpu_rq(task_cpu(p))
771 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
772 #define raw_rq()		raw_cpu_ptr(&runqueues)
773 
774 static inline u64 __rq_clock_broken(struct rq *rq)
775 {
776 	return READ_ONCE(rq->clock);
777 }
778 
779 /*
780  * rq::clock_update_flags bits
781  *
782  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
783  *  call to __schedule(). This is an optimisation to avoid
784  *  neighbouring rq clock updates.
785  *
786  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
787  *  in effect and calls to update_rq_clock() are being ignored.
788  *
789  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
790  *  made to update_rq_clock() since the last time rq::lock was pinned.
791  *
792  * If inside of __schedule(), clock_update_flags will have been
793  * shifted left (a left shift is a cheap operation for the fast path
794  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
795  *
796  *	if (rq-clock_update_flags >= RQCF_UPDATED)
797  *
798  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
799  * one position though, because the next rq_unpin_lock() will shift it
800  * back.
801  */
802 #define RQCF_REQ_SKIP	0x01
803 #define RQCF_ACT_SKIP	0x02
804 #define RQCF_UPDATED	0x04
805 
806 static inline void assert_clock_updated(struct rq *rq)
807 {
808 	/*
809 	 * The only reason for not seeing a clock update since the
810 	 * last rq_pin_lock() is if we're currently skipping updates.
811 	 */
812 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
813 }
814 
815 static inline u64 rq_clock(struct rq *rq)
816 {
817 	lockdep_assert_held(&rq->lock);
818 	assert_clock_updated(rq);
819 
820 	return rq->clock;
821 }
822 
823 static inline u64 rq_clock_task(struct rq *rq)
824 {
825 	lockdep_assert_held(&rq->lock);
826 	assert_clock_updated(rq);
827 
828 	return rq->clock_task;
829 }
830 
831 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
832 {
833 	lockdep_assert_held(&rq->lock);
834 	if (skip)
835 		rq->clock_update_flags |= RQCF_REQ_SKIP;
836 	else
837 		rq->clock_update_flags &= ~RQCF_REQ_SKIP;
838 }
839 
840 struct rq_flags {
841 	unsigned long flags;
842 	struct pin_cookie cookie;
843 #ifdef CONFIG_SCHED_DEBUG
844 	/*
845 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
846 	 * current pin context is stashed here in case it needs to be
847 	 * restored in rq_repin_lock().
848 	 */
849 	unsigned int clock_update_flags;
850 #endif
851 };
852 
853 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
854 {
855 	rf->cookie = lockdep_pin_lock(&rq->lock);
856 
857 #ifdef CONFIG_SCHED_DEBUG
858 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
859 	rf->clock_update_flags = 0;
860 #endif
861 }
862 
863 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
864 {
865 #ifdef CONFIG_SCHED_DEBUG
866 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
867 		rf->clock_update_flags = RQCF_UPDATED;
868 #endif
869 
870 	lockdep_unpin_lock(&rq->lock, rf->cookie);
871 }
872 
873 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
874 {
875 	lockdep_repin_lock(&rq->lock, rf->cookie);
876 
877 #ifdef CONFIG_SCHED_DEBUG
878 	/*
879 	 * Restore the value we stashed in @rf for this pin context.
880 	 */
881 	rq->clock_update_flags |= rf->clock_update_flags;
882 #endif
883 }
884 
885 #ifdef CONFIG_NUMA
886 enum numa_topology_type {
887 	NUMA_DIRECT,
888 	NUMA_GLUELESS_MESH,
889 	NUMA_BACKPLANE,
890 };
891 extern enum numa_topology_type sched_numa_topology_type;
892 extern int sched_max_numa_distance;
893 extern bool find_numa_distance(int distance);
894 #endif
895 
896 #ifdef CONFIG_NUMA
897 extern void sched_init_numa(void);
898 extern void sched_domains_numa_masks_set(unsigned int cpu);
899 extern void sched_domains_numa_masks_clear(unsigned int cpu);
900 #else
901 static inline void sched_init_numa(void) { }
902 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
903 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
904 #endif
905 
906 #ifdef CONFIG_NUMA_BALANCING
907 /* The regions in numa_faults array from task_struct */
908 enum numa_faults_stats {
909 	NUMA_MEM = 0,
910 	NUMA_CPU,
911 	NUMA_MEMBUF,
912 	NUMA_CPUBUF
913 };
914 extern void sched_setnuma(struct task_struct *p, int node);
915 extern int migrate_task_to(struct task_struct *p, int cpu);
916 extern int migrate_swap(struct task_struct *, struct task_struct *);
917 #endif /* CONFIG_NUMA_BALANCING */
918 
919 #ifdef CONFIG_SMP
920 
921 static inline void
922 queue_balance_callback(struct rq *rq,
923 		       struct callback_head *head,
924 		       void (*func)(struct rq *rq))
925 {
926 	lockdep_assert_held(&rq->lock);
927 
928 	if (unlikely(head->next))
929 		return;
930 
931 	head->func = (void (*)(struct callback_head *))func;
932 	head->next = rq->balance_callback;
933 	rq->balance_callback = head;
934 }
935 
936 extern void sched_ttwu_pending(void);
937 
938 #define rcu_dereference_check_sched_domain(p) \
939 	rcu_dereference_check((p), \
940 			      lockdep_is_held(&sched_domains_mutex))
941 
942 /*
943  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
944  * See detach_destroy_domains: synchronize_sched for details.
945  *
946  * The domain tree of any CPU may only be accessed from within
947  * preempt-disabled sections.
948  */
949 #define for_each_domain(cpu, __sd) \
950 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
951 			__sd; __sd = __sd->parent)
952 
953 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
954 
955 /**
956  * highest_flag_domain - Return highest sched_domain containing flag.
957  * @cpu:	The cpu whose highest level of sched domain is to
958  *		be returned.
959  * @flag:	The flag to check for the highest sched_domain
960  *		for the given cpu.
961  *
962  * Returns the highest sched_domain of a cpu which contains the given flag.
963  */
964 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
965 {
966 	struct sched_domain *sd, *hsd = NULL;
967 
968 	for_each_domain(cpu, sd) {
969 		if (!(sd->flags & flag))
970 			break;
971 		hsd = sd;
972 	}
973 
974 	return hsd;
975 }
976 
977 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
978 {
979 	struct sched_domain *sd;
980 
981 	for_each_domain(cpu, sd) {
982 		if (sd->flags & flag)
983 			break;
984 	}
985 
986 	return sd;
987 }
988 
989 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
990 DECLARE_PER_CPU(int, sd_llc_size);
991 DECLARE_PER_CPU(int, sd_llc_id);
992 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
993 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
994 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
995 
996 struct sched_group_capacity {
997 	atomic_t ref;
998 	/*
999 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1000 	 * for a single CPU.
1001 	 */
1002 	unsigned long capacity;
1003 	unsigned long min_capacity; /* Min per-CPU capacity in group */
1004 	unsigned long next_update;
1005 	int imbalance; /* XXX unrelated to capacity but shared group state */
1006 
1007 	unsigned long cpumask[0]; /* iteration mask */
1008 };
1009 
1010 struct sched_group {
1011 	struct sched_group *next;	/* Must be a circular list */
1012 	atomic_t ref;
1013 
1014 	unsigned int group_weight;
1015 	struct sched_group_capacity *sgc;
1016 	int asym_prefer_cpu;		/* cpu of highest priority in group */
1017 
1018 	/*
1019 	 * The CPUs this group covers.
1020 	 *
1021 	 * NOTE: this field is variable length. (Allocated dynamically
1022 	 * by attaching extra space to the end of the structure,
1023 	 * depending on how many CPUs the kernel has booted up with)
1024 	 */
1025 	unsigned long cpumask[0];
1026 };
1027 
1028 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1029 {
1030 	return to_cpumask(sg->cpumask);
1031 }
1032 
1033 /*
1034  * cpumask masking which cpus in the group are allowed to iterate up the domain
1035  * tree.
1036  */
1037 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1038 {
1039 	return to_cpumask(sg->sgc->cpumask);
1040 }
1041 
1042 /**
1043  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1044  * @group: The group whose first cpu is to be returned.
1045  */
1046 static inline unsigned int group_first_cpu(struct sched_group *group)
1047 {
1048 	return cpumask_first(sched_group_cpus(group));
1049 }
1050 
1051 extern int group_balance_cpu(struct sched_group *sg);
1052 
1053 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1054 void register_sched_domain_sysctl(void);
1055 void unregister_sched_domain_sysctl(void);
1056 #else
1057 static inline void register_sched_domain_sysctl(void)
1058 {
1059 }
1060 static inline void unregister_sched_domain_sysctl(void)
1061 {
1062 }
1063 #endif
1064 
1065 #else
1066 
1067 static inline void sched_ttwu_pending(void) { }
1068 
1069 #endif /* CONFIG_SMP */
1070 
1071 #include "stats.h"
1072 #include "autogroup.h"
1073 
1074 #ifdef CONFIG_CGROUP_SCHED
1075 
1076 /*
1077  * Return the group to which this tasks belongs.
1078  *
1079  * We cannot use task_css() and friends because the cgroup subsystem
1080  * changes that value before the cgroup_subsys::attach() method is called,
1081  * therefore we cannot pin it and might observe the wrong value.
1082  *
1083  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1084  * core changes this before calling sched_move_task().
1085  *
1086  * Instead we use a 'copy' which is updated from sched_move_task() while
1087  * holding both task_struct::pi_lock and rq::lock.
1088  */
1089 static inline struct task_group *task_group(struct task_struct *p)
1090 {
1091 	return p->sched_task_group;
1092 }
1093 
1094 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1095 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1096 {
1097 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1098 	struct task_group *tg = task_group(p);
1099 #endif
1100 
1101 #ifdef CONFIG_FAIR_GROUP_SCHED
1102 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1103 	p->se.cfs_rq = tg->cfs_rq[cpu];
1104 	p->se.parent = tg->se[cpu];
1105 #endif
1106 
1107 #ifdef CONFIG_RT_GROUP_SCHED
1108 	p->rt.rt_rq  = tg->rt_rq[cpu];
1109 	p->rt.parent = tg->rt_se[cpu];
1110 #endif
1111 }
1112 
1113 #else /* CONFIG_CGROUP_SCHED */
1114 
1115 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1116 static inline struct task_group *task_group(struct task_struct *p)
1117 {
1118 	return NULL;
1119 }
1120 
1121 #endif /* CONFIG_CGROUP_SCHED */
1122 
1123 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1124 {
1125 	set_task_rq(p, cpu);
1126 #ifdef CONFIG_SMP
1127 	/*
1128 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1129 	 * successfuly executed on another CPU. We must ensure that updates of
1130 	 * per-task data have been completed by this moment.
1131 	 */
1132 	smp_wmb();
1133 #ifdef CONFIG_THREAD_INFO_IN_TASK
1134 	p->cpu = cpu;
1135 #else
1136 	task_thread_info(p)->cpu = cpu;
1137 #endif
1138 	p->wake_cpu = cpu;
1139 #endif
1140 }
1141 
1142 /*
1143  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1144  */
1145 #ifdef CONFIG_SCHED_DEBUG
1146 # include <linux/static_key.h>
1147 # define const_debug __read_mostly
1148 #else
1149 # define const_debug const
1150 #endif
1151 
1152 extern const_debug unsigned int sysctl_sched_features;
1153 
1154 #define SCHED_FEAT(name, enabled)	\
1155 	__SCHED_FEAT_##name ,
1156 
1157 enum {
1158 #include "features.h"
1159 	__SCHED_FEAT_NR,
1160 };
1161 
1162 #undef SCHED_FEAT
1163 
1164 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1165 #define SCHED_FEAT(name, enabled)					\
1166 static __always_inline bool static_branch_##name(struct static_key *key) \
1167 {									\
1168 	return static_key_##enabled(key);				\
1169 }
1170 
1171 #include "features.h"
1172 
1173 #undef SCHED_FEAT
1174 
1175 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1176 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1177 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1178 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1179 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1180 
1181 extern struct static_key_false sched_numa_balancing;
1182 extern struct static_key_false sched_schedstats;
1183 
1184 static inline u64 global_rt_period(void)
1185 {
1186 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1187 }
1188 
1189 static inline u64 global_rt_runtime(void)
1190 {
1191 	if (sysctl_sched_rt_runtime < 0)
1192 		return RUNTIME_INF;
1193 
1194 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1195 }
1196 
1197 static inline int task_current(struct rq *rq, struct task_struct *p)
1198 {
1199 	return rq->curr == p;
1200 }
1201 
1202 static inline int task_running(struct rq *rq, struct task_struct *p)
1203 {
1204 #ifdef CONFIG_SMP
1205 	return p->on_cpu;
1206 #else
1207 	return task_current(rq, p);
1208 #endif
1209 }
1210 
1211 static inline int task_on_rq_queued(struct task_struct *p)
1212 {
1213 	return p->on_rq == TASK_ON_RQ_QUEUED;
1214 }
1215 
1216 static inline int task_on_rq_migrating(struct task_struct *p)
1217 {
1218 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1219 }
1220 
1221 #ifndef prepare_arch_switch
1222 # define prepare_arch_switch(next)	do { } while (0)
1223 #endif
1224 #ifndef finish_arch_post_lock_switch
1225 # define finish_arch_post_lock_switch()	do { } while (0)
1226 #endif
1227 
1228 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1229 {
1230 #ifdef CONFIG_SMP
1231 	/*
1232 	 * We can optimise this out completely for !SMP, because the
1233 	 * SMP rebalancing from interrupt is the only thing that cares
1234 	 * here.
1235 	 */
1236 	next->on_cpu = 1;
1237 #endif
1238 }
1239 
1240 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1241 {
1242 #ifdef CONFIG_SMP
1243 	/*
1244 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1245 	 * We must ensure this doesn't happen until the switch is completely
1246 	 * finished.
1247 	 *
1248 	 * In particular, the load of prev->state in finish_task_switch() must
1249 	 * happen before this.
1250 	 *
1251 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1252 	 */
1253 	smp_store_release(&prev->on_cpu, 0);
1254 #endif
1255 #ifdef CONFIG_DEBUG_SPINLOCK
1256 	/* this is a valid case when another task releases the spinlock */
1257 	rq->lock.owner = current;
1258 #endif
1259 	/*
1260 	 * If we are tracking spinlock dependencies then we have to
1261 	 * fix up the runqueue lock - which gets 'carried over' from
1262 	 * prev into current:
1263 	 */
1264 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1265 
1266 	raw_spin_unlock_irq(&rq->lock);
1267 }
1268 
1269 /*
1270  * wake flags
1271  */
1272 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1273 #define WF_FORK		0x02		/* child wakeup after fork */
1274 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1275 
1276 /*
1277  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1278  * of tasks with abnormal "nice" values across CPUs the contribution that
1279  * each task makes to its run queue's load is weighted according to its
1280  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1281  * scaled version of the new time slice allocation that they receive on time
1282  * slice expiry etc.
1283  */
1284 
1285 #define WEIGHT_IDLEPRIO                3
1286 #define WMULT_IDLEPRIO         1431655765
1287 
1288 extern const int sched_prio_to_weight[40];
1289 extern const u32 sched_prio_to_wmult[40];
1290 
1291 /*
1292  * {de,en}queue flags:
1293  *
1294  * DEQUEUE_SLEEP  - task is no longer runnable
1295  * ENQUEUE_WAKEUP - task just became runnable
1296  *
1297  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1298  *                are in a known state which allows modification. Such pairs
1299  *                should preserve as much state as possible.
1300  *
1301  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1302  *        in the runqueue.
1303  *
1304  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1305  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1306  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1307  *
1308  */
1309 
1310 #define DEQUEUE_SLEEP		0x01
1311 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1312 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1313 
1314 #define ENQUEUE_WAKEUP		0x01
1315 #define ENQUEUE_RESTORE		0x02
1316 #define ENQUEUE_MOVE		0x04
1317 
1318 #define ENQUEUE_HEAD		0x08
1319 #define ENQUEUE_REPLENISH	0x10
1320 #ifdef CONFIG_SMP
1321 #define ENQUEUE_MIGRATED	0x20
1322 #else
1323 #define ENQUEUE_MIGRATED	0x00
1324 #endif
1325 
1326 #define RETRY_TASK		((void *)-1UL)
1327 
1328 struct sched_class {
1329 	const struct sched_class *next;
1330 
1331 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1332 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1333 	void (*yield_task) (struct rq *rq);
1334 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1335 
1336 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1337 
1338 	/*
1339 	 * It is the responsibility of the pick_next_task() method that will
1340 	 * return the next task to call put_prev_task() on the @prev task or
1341 	 * something equivalent.
1342 	 *
1343 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1344 	 * tasks.
1345 	 */
1346 	struct task_struct * (*pick_next_task) (struct rq *rq,
1347 						struct task_struct *prev,
1348 						struct rq_flags *rf);
1349 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1350 
1351 #ifdef CONFIG_SMP
1352 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1353 	void (*migrate_task_rq)(struct task_struct *p);
1354 
1355 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1356 
1357 	void (*set_cpus_allowed)(struct task_struct *p,
1358 				 const struct cpumask *newmask);
1359 
1360 	void (*rq_online)(struct rq *rq);
1361 	void (*rq_offline)(struct rq *rq);
1362 #endif
1363 
1364 	void (*set_curr_task) (struct rq *rq);
1365 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1366 	void (*task_fork) (struct task_struct *p);
1367 	void (*task_dead) (struct task_struct *p);
1368 
1369 	/*
1370 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1371 	 * cannot assume the switched_from/switched_to pair is serliazed by
1372 	 * rq->lock. They are however serialized by p->pi_lock.
1373 	 */
1374 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1375 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1376 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1377 			     int oldprio);
1378 
1379 	unsigned int (*get_rr_interval) (struct rq *rq,
1380 					 struct task_struct *task);
1381 
1382 	void (*update_curr) (struct rq *rq);
1383 
1384 #define TASK_SET_GROUP  0
1385 #define TASK_MOVE_GROUP	1
1386 
1387 #ifdef CONFIG_FAIR_GROUP_SCHED
1388 	void (*task_change_group) (struct task_struct *p, int type);
1389 #endif
1390 };
1391 
1392 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1393 {
1394 	prev->sched_class->put_prev_task(rq, prev);
1395 }
1396 
1397 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1398 {
1399 	curr->sched_class->set_curr_task(rq);
1400 }
1401 
1402 #define sched_class_highest (&stop_sched_class)
1403 #define for_each_class(class) \
1404    for (class = sched_class_highest; class; class = class->next)
1405 
1406 extern const struct sched_class stop_sched_class;
1407 extern const struct sched_class dl_sched_class;
1408 extern const struct sched_class rt_sched_class;
1409 extern const struct sched_class fair_sched_class;
1410 extern const struct sched_class idle_sched_class;
1411 
1412 
1413 #ifdef CONFIG_SMP
1414 
1415 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1416 
1417 extern void trigger_load_balance(struct rq *rq);
1418 
1419 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1420 
1421 #endif
1422 
1423 #ifdef CONFIG_CPU_IDLE
1424 static inline void idle_set_state(struct rq *rq,
1425 				  struct cpuidle_state *idle_state)
1426 {
1427 	rq->idle_state = idle_state;
1428 }
1429 
1430 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1431 {
1432 	SCHED_WARN_ON(!rcu_read_lock_held());
1433 	return rq->idle_state;
1434 }
1435 #else
1436 static inline void idle_set_state(struct rq *rq,
1437 				  struct cpuidle_state *idle_state)
1438 {
1439 }
1440 
1441 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1442 {
1443 	return NULL;
1444 }
1445 #endif
1446 
1447 extern void sysrq_sched_debug_show(void);
1448 extern void sched_init_granularity(void);
1449 extern void update_max_interval(void);
1450 
1451 extern void init_sched_dl_class(void);
1452 extern void init_sched_rt_class(void);
1453 extern void init_sched_fair_class(void);
1454 
1455 extern void resched_curr(struct rq *rq);
1456 extern void resched_cpu(int cpu);
1457 
1458 extern struct rt_bandwidth def_rt_bandwidth;
1459 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1460 
1461 extern struct dl_bandwidth def_dl_bandwidth;
1462 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1463 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1464 
1465 unsigned long to_ratio(u64 period, u64 runtime);
1466 
1467 extern void init_entity_runnable_average(struct sched_entity *se);
1468 extern void post_init_entity_util_avg(struct sched_entity *se);
1469 
1470 #ifdef CONFIG_NO_HZ_FULL
1471 extern bool sched_can_stop_tick(struct rq *rq);
1472 
1473 /*
1474  * Tick may be needed by tasks in the runqueue depending on their policy and
1475  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1476  * nohz mode if necessary.
1477  */
1478 static inline void sched_update_tick_dependency(struct rq *rq)
1479 {
1480 	int cpu;
1481 
1482 	if (!tick_nohz_full_enabled())
1483 		return;
1484 
1485 	cpu = cpu_of(rq);
1486 
1487 	if (!tick_nohz_full_cpu(cpu))
1488 		return;
1489 
1490 	if (sched_can_stop_tick(rq))
1491 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1492 	else
1493 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1494 }
1495 #else
1496 static inline void sched_update_tick_dependency(struct rq *rq) { }
1497 #endif
1498 
1499 static inline void add_nr_running(struct rq *rq, unsigned count)
1500 {
1501 	unsigned prev_nr = rq->nr_running;
1502 
1503 	rq->nr_running = prev_nr + count;
1504 
1505 	if (prev_nr < 2 && rq->nr_running >= 2) {
1506 #ifdef CONFIG_SMP
1507 		if (!rq->rd->overload)
1508 			rq->rd->overload = true;
1509 #endif
1510 	}
1511 
1512 	sched_update_tick_dependency(rq);
1513 }
1514 
1515 static inline void sub_nr_running(struct rq *rq, unsigned count)
1516 {
1517 	rq->nr_running -= count;
1518 	/* Check if we still need preemption */
1519 	sched_update_tick_dependency(rq);
1520 }
1521 
1522 static inline void rq_last_tick_reset(struct rq *rq)
1523 {
1524 #ifdef CONFIG_NO_HZ_FULL
1525 	rq->last_sched_tick = jiffies;
1526 #endif
1527 }
1528 
1529 extern void update_rq_clock(struct rq *rq);
1530 
1531 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1532 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1533 
1534 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1535 
1536 extern const_debug unsigned int sysctl_sched_time_avg;
1537 extern const_debug unsigned int sysctl_sched_nr_migrate;
1538 extern const_debug unsigned int sysctl_sched_migration_cost;
1539 
1540 static inline u64 sched_avg_period(void)
1541 {
1542 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1543 }
1544 
1545 #ifdef CONFIG_SCHED_HRTICK
1546 
1547 /*
1548  * Use hrtick when:
1549  *  - enabled by features
1550  *  - hrtimer is actually high res
1551  */
1552 static inline int hrtick_enabled(struct rq *rq)
1553 {
1554 	if (!sched_feat(HRTICK))
1555 		return 0;
1556 	if (!cpu_active(cpu_of(rq)))
1557 		return 0;
1558 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1559 }
1560 
1561 void hrtick_start(struct rq *rq, u64 delay);
1562 
1563 #else
1564 
1565 static inline int hrtick_enabled(struct rq *rq)
1566 {
1567 	return 0;
1568 }
1569 
1570 #endif /* CONFIG_SCHED_HRTICK */
1571 
1572 #ifdef CONFIG_SMP
1573 extern void sched_avg_update(struct rq *rq);
1574 
1575 #ifndef arch_scale_freq_capacity
1576 static __always_inline
1577 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1578 {
1579 	return SCHED_CAPACITY_SCALE;
1580 }
1581 #endif
1582 
1583 #ifndef arch_scale_cpu_capacity
1584 static __always_inline
1585 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1586 {
1587 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1588 		return sd->smt_gain / sd->span_weight;
1589 
1590 	return SCHED_CAPACITY_SCALE;
1591 }
1592 #endif
1593 
1594 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1595 {
1596 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1597 	sched_avg_update(rq);
1598 }
1599 #else
1600 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1601 static inline void sched_avg_update(struct rq *rq) { }
1602 #endif
1603 
1604 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1605 	__acquires(rq->lock);
1606 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1607 	__acquires(p->pi_lock)
1608 	__acquires(rq->lock);
1609 
1610 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1611 	__releases(rq->lock)
1612 {
1613 	rq_unpin_lock(rq, rf);
1614 	raw_spin_unlock(&rq->lock);
1615 }
1616 
1617 static inline void
1618 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1619 	__releases(rq->lock)
1620 	__releases(p->pi_lock)
1621 {
1622 	rq_unpin_lock(rq, rf);
1623 	raw_spin_unlock(&rq->lock);
1624 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1625 }
1626 
1627 #ifdef CONFIG_SMP
1628 #ifdef CONFIG_PREEMPT
1629 
1630 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1631 
1632 /*
1633  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634  * way at the expense of forcing extra atomic operations in all
1635  * invocations.  This assures that the double_lock is acquired using the
1636  * same underlying policy as the spinlock_t on this architecture, which
1637  * reduces latency compared to the unfair variant below.  However, it
1638  * also adds more overhead and therefore may reduce throughput.
1639  */
1640 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 	__releases(this_rq->lock)
1642 	__acquires(busiest->lock)
1643 	__acquires(this_rq->lock)
1644 {
1645 	raw_spin_unlock(&this_rq->lock);
1646 	double_rq_lock(this_rq, busiest);
1647 
1648 	return 1;
1649 }
1650 
1651 #else
1652 /*
1653  * Unfair double_lock_balance: Optimizes throughput at the expense of
1654  * latency by eliminating extra atomic operations when the locks are
1655  * already in proper order on entry.  This favors lower cpu-ids and will
1656  * grant the double lock to lower cpus over higher ids under contention,
1657  * regardless of entry order into the function.
1658  */
1659 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 	__releases(this_rq->lock)
1661 	__acquires(busiest->lock)
1662 	__acquires(this_rq->lock)
1663 {
1664 	int ret = 0;
1665 
1666 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1667 		if (busiest < this_rq) {
1668 			raw_spin_unlock(&this_rq->lock);
1669 			raw_spin_lock(&busiest->lock);
1670 			raw_spin_lock_nested(&this_rq->lock,
1671 					      SINGLE_DEPTH_NESTING);
1672 			ret = 1;
1673 		} else
1674 			raw_spin_lock_nested(&busiest->lock,
1675 					      SINGLE_DEPTH_NESTING);
1676 	}
1677 	return ret;
1678 }
1679 
1680 #endif /* CONFIG_PREEMPT */
1681 
1682 /*
1683  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1684  */
1685 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1686 {
1687 	if (unlikely(!irqs_disabled())) {
1688 		/* printk() doesn't work good under rq->lock */
1689 		raw_spin_unlock(&this_rq->lock);
1690 		BUG_ON(1);
1691 	}
1692 
1693 	return _double_lock_balance(this_rq, busiest);
1694 }
1695 
1696 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1697 	__releases(busiest->lock)
1698 {
1699 	raw_spin_unlock(&busiest->lock);
1700 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1701 }
1702 
1703 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1704 {
1705 	if (l1 > l2)
1706 		swap(l1, l2);
1707 
1708 	spin_lock(l1);
1709 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1710 }
1711 
1712 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1713 {
1714 	if (l1 > l2)
1715 		swap(l1, l2);
1716 
1717 	spin_lock_irq(l1);
1718 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1719 }
1720 
1721 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1722 {
1723 	if (l1 > l2)
1724 		swap(l1, l2);
1725 
1726 	raw_spin_lock(l1);
1727 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1728 }
1729 
1730 /*
1731  * double_rq_lock - safely lock two runqueues
1732  *
1733  * Note this does not disable interrupts like task_rq_lock,
1734  * you need to do so manually before calling.
1735  */
1736 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1737 	__acquires(rq1->lock)
1738 	__acquires(rq2->lock)
1739 {
1740 	BUG_ON(!irqs_disabled());
1741 	if (rq1 == rq2) {
1742 		raw_spin_lock(&rq1->lock);
1743 		__acquire(rq2->lock);	/* Fake it out ;) */
1744 	} else {
1745 		if (rq1 < rq2) {
1746 			raw_spin_lock(&rq1->lock);
1747 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1748 		} else {
1749 			raw_spin_lock(&rq2->lock);
1750 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1751 		}
1752 	}
1753 }
1754 
1755 /*
1756  * double_rq_unlock - safely unlock two runqueues
1757  *
1758  * Note this does not restore interrupts like task_rq_unlock,
1759  * you need to do so manually after calling.
1760  */
1761 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1762 	__releases(rq1->lock)
1763 	__releases(rq2->lock)
1764 {
1765 	raw_spin_unlock(&rq1->lock);
1766 	if (rq1 != rq2)
1767 		raw_spin_unlock(&rq2->lock);
1768 	else
1769 		__release(rq2->lock);
1770 }
1771 
1772 extern void set_rq_online (struct rq *rq);
1773 extern void set_rq_offline(struct rq *rq);
1774 extern bool sched_smp_initialized;
1775 
1776 #else /* CONFIG_SMP */
1777 
1778 /*
1779  * double_rq_lock - safely lock two runqueues
1780  *
1781  * Note this does not disable interrupts like task_rq_lock,
1782  * you need to do so manually before calling.
1783  */
1784 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1785 	__acquires(rq1->lock)
1786 	__acquires(rq2->lock)
1787 {
1788 	BUG_ON(!irqs_disabled());
1789 	BUG_ON(rq1 != rq2);
1790 	raw_spin_lock(&rq1->lock);
1791 	__acquire(rq2->lock);	/* Fake it out ;) */
1792 }
1793 
1794 /*
1795  * double_rq_unlock - safely unlock two runqueues
1796  *
1797  * Note this does not restore interrupts like task_rq_unlock,
1798  * you need to do so manually after calling.
1799  */
1800 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 	__releases(rq1->lock)
1802 	__releases(rq2->lock)
1803 {
1804 	BUG_ON(rq1 != rq2);
1805 	raw_spin_unlock(&rq1->lock);
1806 	__release(rq2->lock);
1807 }
1808 
1809 #endif
1810 
1811 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1812 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1813 
1814 #ifdef	CONFIG_SCHED_DEBUG
1815 extern void print_cfs_stats(struct seq_file *m, int cpu);
1816 extern void print_rt_stats(struct seq_file *m, int cpu);
1817 extern void print_dl_stats(struct seq_file *m, int cpu);
1818 extern void
1819 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1820 
1821 #ifdef CONFIG_NUMA_BALANCING
1822 extern void
1823 show_numa_stats(struct task_struct *p, struct seq_file *m);
1824 extern void
1825 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1826 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1827 #endif /* CONFIG_NUMA_BALANCING */
1828 #endif /* CONFIG_SCHED_DEBUG */
1829 
1830 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1831 extern void init_rt_rq(struct rt_rq *rt_rq);
1832 extern void init_dl_rq(struct dl_rq *dl_rq);
1833 
1834 extern void cfs_bandwidth_usage_inc(void);
1835 extern void cfs_bandwidth_usage_dec(void);
1836 
1837 #ifdef CONFIG_NO_HZ_COMMON
1838 enum rq_nohz_flag_bits {
1839 	NOHZ_TICK_STOPPED,
1840 	NOHZ_BALANCE_KICK,
1841 };
1842 
1843 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1844 
1845 extern void nohz_balance_exit_idle(unsigned int cpu);
1846 #else
1847 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1848 #endif
1849 
1850 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1851 struct irqtime {
1852 	u64			tick_delta;
1853 	u64			irq_start_time;
1854 	struct u64_stats_sync	sync;
1855 };
1856 
1857 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1858 
1859 static inline u64 irq_time_read(int cpu)
1860 {
1861 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1862 	u64 *cpustat = kcpustat_cpu(cpu).cpustat;
1863 	unsigned int seq;
1864 	u64 total;
1865 
1866 	do {
1867 		seq = __u64_stats_fetch_begin(&irqtime->sync);
1868 		total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
1869 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1870 
1871 	return total;
1872 }
1873 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1874 
1875 #ifdef CONFIG_CPU_FREQ
1876 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1877 
1878 /**
1879  * cpufreq_update_util - Take a note about CPU utilization changes.
1880  * @rq: Runqueue to carry out the update for.
1881  * @flags: Update reason flags.
1882  *
1883  * This function is called by the scheduler on the CPU whose utilization is
1884  * being updated.
1885  *
1886  * It can only be called from RCU-sched read-side critical sections.
1887  *
1888  * The way cpufreq is currently arranged requires it to evaluate the CPU
1889  * performance state (frequency/voltage) on a regular basis to prevent it from
1890  * being stuck in a completely inadequate performance level for too long.
1891  * That is not guaranteed to happen if the updates are only triggered from CFS,
1892  * though, because they may not be coming in if RT or deadline tasks are active
1893  * all the time (or there are RT and DL tasks only).
1894  *
1895  * As a workaround for that issue, this function is called by the RT and DL
1896  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1897  * but that really is a band-aid.  Going forward it should be replaced with
1898  * solutions targeted more specifically at RT and DL tasks.
1899  */
1900 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1901 {
1902 	struct update_util_data *data;
1903 
1904 	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1905 	if (data)
1906 		data->func(data, rq_clock(rq), flags);
1907 }
1908 
1909 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1910 {
1911 	if (cpu_of(rq) == smp_processor_id())
1912 		cpufreq_update_util(rq, flags);
1913 }
1914 #else
1915 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1916 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1917 #endif /* CONFIG_CPU_FREQ */
1918 
1919 #ifdef arch_scale_freq_capacity
1920 #ifndef arch_scale_freq_invariant
1921 #define arch_scale_freq_invariant()	(true)
1922 #endif
1923 #else /* arch_scale_freq_capacity */
1924 #define arch_scale_freq_invariant()	(false)
1925 #endif
1926