1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/u64_stats_sync.h> 6 #include <linux/sched/deadline.h> 7 #include <linux/kernel_stat.h> 8 #include <linux/binfmts.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/stop_machine.h> 12 #include <linux/irq_work.h> 13 #include <linux/tick.h> 14 #include <linux/slab.h> 15 16 #include "cpupri.h" 17 #include "cpudeadline.h" 18 #include "cpuacct.h" 19 20 #ifdef CONFIG_SCHED_DEBUG 21 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 22 #else 23 #define SCHED_WARN_ON(x) ((void)(x)) 24 #endif 25 26 struct rq; 27 struct cpuidle_state; 28 29 /* task_struct::on_rq states: */ 30 #define TASK_ON_RQ_QUEUED 1 31 #define TASK_ON_RQ_MIGRATING 2 32 33 extern __read_mostly int scheduler_running; 34 35 extern unsigned long calc_load_update; 36 extern atomic_long_t calc_load_tasks; 37 38 extern void calc_global_load_tick(struct rq *this_rq); 39 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 40 41 #ifdef CONFIG_SMP 42 extern void cpu_load_update_active(struct rq *this_rq); 43 #else 44 static inline void cpu_load_update_active(struct rq *this_rq) { } 45 #endif 46 47 /* 48 * Helpers for converting nanosecond timing to jiffy resolution 49 */ 50 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 51 52 /* 53 * Increase resolution of nice-level calculations for 64-bit architectures. 54 * The extra resolution improves shares distribution and load balancing of 55 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 56 * hierarchies, especially on larger systems. This is not a user-visible change 57 * and does not change the user-interface for setting shares/weights. 58 * 59 * We increase resolution only if we have enough bits to allow this increased 60 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are 61 * pretty high and the returns do not justify the increased costs. 62 * 63 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to 64 * increase coverage and consistency always enable it on 64bit platforms. 65 */ 66 #ifdef CONFIG_64BIT 67 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 68 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 69 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) 70 #else 71 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 72 # define scale_load(w) (w) 73 # define scale_load_down(w) (w) 74 #endif 75 76 /* 77 * Task weight (visible to users) and its load (invisible to users) have 78 * independent resolution, but they should be well calibrated. We use 79 * scale_load() and scale_load_down(w) to convert between them. The 80 * following must be true: 81 * 82 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD 83 * 84 */ 85 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 86 87 /* 88 * Single value that decides SCHED_DEADLINE internal math precision. 89 * 10 -> just above 1us 90 * 9 -> just above 0.5us 91 */ 92 #define DL_SCALE (10) 93 94 /* 95 * These are the 'tuning knobs' of the scheduler: 96 */ 97 98 /* 99 * single value that denotes runtime == period, ie unlimited time. 100 */ 101 #define RUNTIME_INF ((u64)~0ULL) 102 103 static inline int idle_policy(int policy) 104 { 105 return policy == SCHED_IDLE; 106 } 107 static inline int fair_policy(int policy) 108 { 109 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 110 } 111 112 static inline int rt_policy(int policy) 113 { 114 return policy == SCHED_FIFO || policy == SCHED_RR; 115 } 116 117 static inline int dl_policy(int policy) 118 { 119 return policy == SCHED_DEADLINE; 120 } 121 static inline bool valid_policy(int policy) 122 { 123 return idle_policy(policy) || fair_policy(policy) || 124 rt_policy(policy) || dl_policy(policy); 125 } 126 127 static inline int task_has_rt_policy(struct task_struct *p) 128 { 129 return rt_policy(p->policy); 130 } 131 132 static inline int task_has_dl_policy(struct task_struct *p) 133 { 134 return dl_policy(p->policy); 135 } 136 137 /* 138 * Tells if entity @a should preempt entity @b. 139 */ 140 static inline bool 141 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 142 { 143 return dl_time_before(a->deadline, b->deadline); 144 } 145 146 /* 147 * This is the priority-queue data structure of the RT scheduling class: 148 */ 149 struct rt_prio_array { 150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 151 struct list_head queue[MAX_RT_PRIO]; 152 }; 153 154 struct rt_bandwidth { 155 /* nests inside the rq lock: */ 156 raw_spinlock_t rt_runtime_lock; 157 ktime_t rt_period; 158 u64 rt_runtime; 159 struct hrtimer rt_period_timer; 160 unsigned int rt_period_active; 161 }; 162 163 void __dl_clear_params(struct task_struct *p); 164 165 /* 166 * To keep the bandwidth of -deadline tasks and groups under control 167 * we need some place where: 168 * - store the maximum -deadline bandwidth of the system (the group); 169 * - cache the fraction of that bandwidth that is currently allocated. 170 * 171 * This is all done in the data structure below. It is similar to the 172 * one used for RT-throttling (rt_bandwidth), with the main difference 173 * that, since here we are only interested in admission control, we 174 * do not decrease any runtime while the group "executes", neither we 175 * need a timer to replenish it. 176 * 177 * With respect to SMP, the bandwidth is given on a per-CPU basis, 178 * meaning that: 179 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 180 * - dl_total_bw array contains, in the i-eth element, the currently 181 * allocated bandwidth on the i-eth CPU. 182 * Moreover, groups consume bandwidth on each CPU, while tasks only 183 * consume bandwidth on the CPU they're running on. 184 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 185 * that will be shown the next time the proc or cgroup controls will 186 * be red. It on its turn can be changed by writing on its own 187 * control. 188 */ 189 struct dl_bandwidth { 190 raw_spinlock_t dl_runtime_lock; 191 u64 dl_runtime; 192 u64 dl_period; 193 }; 194 195 static inline int dl_bandwidth_enabled(void) 196 { 197 return sysctl_sched_rt_runtime >= 0; 198 } 199 200 extern struct dl_bw *dl_bw_of(int i); 201 202 struct dl_bw { 203 raw_spinlock_t lock; 204 u64 bw, total_bw; 205 }; 206 207 static inline 208 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 209 { 210 dl_b->total_bw -= tsk_bw; 211 } 212 213 static inline 214 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 215 { 216 dl_b->total_bw += tsk_bw; 217 } 218 219 static inline 220 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 221 { 222 return dl_b->bw != -1 && 223 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 224 } 225 226 extern void init_dl_bw(struct dl_bw *dl_b); 227 228 #ifdef CONFIG_CGROUP_SCHED 229 230 #include <linux/cgroup.h> 231 232 struct cfs_rq; 233 struct rt_rq; 234 235 extern struct list_head task_groups; 236 237 struct cfs_bandwidth { 238 #ifdef CONFIG_CFS_BANDWIDTH 239 raw_spinlock_t lock; 240 ktime_t period; 241 u64 quota, runtime; 242 s64 hierarchical_quota; 243 u64 runtime_expires; 244 245 int idle, period_active; 246 struct hrtimer period_timer, slack_timer; 247 struct list_head throttled_cfs_rq; 248 249 /* statistics */ 250 int nr_periods, nr_throttled; 251 u64 throttled_time; 252 #endif 253 }; 254 255 /* task group related information */ 256 struct task_group { 257 struct cgroup_subsys_state css; 258 259 #ifdef CONFIG_FAIR_GROUP_SCHED 260 /* schedulable entities of this group on each cpu */ 261 struct sched_entity **se; 262 /* runqueue "owned" by this group on each cpu */ 263 struct cfs_rq **cfs_rq; 264 unsigned long shares; 265 266 #ifdef CONFIG_SMP 267 /* 268 * load_avg can be heavily contended at clock tick time, so put 269 * it in its own cacheline separated from the fields above which 270 * will also be accessed at each tick. 271 */ 272 atomic_long_t load_avg ____cacheline_aligned; 273 #endif 274 #endif 275 276 #ifdef CONFIG_RT_GROUP_SCHED 277 struct sched_rt_entity **rt_se; 278 struct rt_rq **rt_rq; 279 280 struct rt_bandwidth rt_bandwidth; 281 #endif 282 283 struct rcu_head rcu; 284 struct list_head list; 285 286 struct task_group *parent; 287 struct list_head siblings; 288 struct list_head children; 289 290 #ifdef CONFIG_SCHED_AUTOGROUP 291 struct autogroup *autogroup; 292 #endif 293 294 struct cfs_bandwidth cfs_bandwidth; 295 }; 296 297 #ifdef CONFIG_FAIR_GROUP_SCHED 298 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 299 300 /* 301 * A weight of 0 or 1 can cause arithmetics problems. 302 * A weight of a cfs_rq is the sum of weights of which entities 303 * are queued on this cfs_rq, so a weight of a entity should not be 304 * too large, so as the shares value of a task group. 305 * (The default weight is 1024 - so there's no practical 306 * limitation from this.) 307 */ 308 #define MIN_SHARES (1UL << 1) 309 #define MAX_SHARES (1UL << 18) 310 #endif 311 312 typedef int (*tg_visitor)(struct task_group *, void *); 313 314 extern int walk_tg_tree_from(struct task_group *from, 315 tg_visitor down, tg_visitor up, void *data); 316 317 /* 318 * Iterate the full tree, calling @down when first entering a node and @up when 319 * leaving it for the final time. 320 * 321 * Caller must hold rcu_lock or sufficient equivalent. 322 */ 323 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 324 { 325 return walk_tg_tree_from(&root_task_group, down, up, data); 326 } 327 328 extern int tg_nop(struct task_group *tg, void *data); 329 330 extern void free_fair_sched_group(struct task_group *tg); 331 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 332 extern void online_fair_sched_group(struct task_group *tg); 333 extern void unregister_fair_sched_group(struct task_group *tg); 334 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 335 struct sched_entity *se, int cpu, 336 struct sched_entity *parent); 337 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 338 339 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 340 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 341 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 342 343 extern void free_rt_sched_group(struct task_group *tg); 344 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 345 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 346 struct sched_rt_entity *rt_se, int cpu, 347 struct sched_rt_entity *parent); 348 349 extern struct task_group *sched_create_group(struct task_group *parent); 350 extern void sched_online_group(struct task_group *tg, 351 struct task_group *parent); 352 extern void sched_destroy_group(struct task_group *tg); 353 extern void sched_offline_group(struct task_group *tg); 354 355 extern void sched_move_task(struct task_struct *tsk); 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 359 360 #ifdef CONFIG_SMP 361 extern void set_task_rq_fair(struct sched_entity *se, 362 struct cfs_rq *prev, struct cfs_rq *next); 363 #else /* !CONFIG_SMP */ 364 static inline void set_task_rq_fair(struct sched_entity *se, 365 struct cfs_rq *prev, struct cfs_rq *next) { } 366 #endif /* CONFIG_SMP */ 367 #endif /* CONFIG_FAIR_GROUP_SCHED */ 368 369 #else /* CONFIG_CGROUP_SCHED */ 370 371 struct cfs_bandwidth { }; 372 373 #endif /* CONFIG_CGROUP_SCHED */ 374 375 /* CFS-related fields in a runqueue */ 376 struct cfs_rq { 377 struct load_weight load; 378 unsigned int nr_running, h_nr_running; 379 380 u64 exec_clock; 381 u64 min_vruntime; 382 #ifndef CONFIG_64BIT 383 u64 min_vruntime_copy; 384 #endif 385 386 struct rb_root tasks_timeline; 387 struct rb_node *rb_leftmost; 388 389 /* 390 * 'curr' points to currently running entity on this cfs_rq. 391 * It is set to NULL otherwise (i.e when none are currently running). 392 */ 393 struct sched_entity *curr, *next, *last, *skip; 394 395 #ifdef CONFIG_SCHED_DEBUG 396 unsigned int nr_spread_over; 397 #endif 398 399 #ifdef CONFIG_SMP 400 /* 401 * CFS load tracking 402 */ 403 struct sched_avg avg; 404 u64 runnable_load_sum; 405 unsigned long runnable_load_avg; 406 #ifdef CONFIG_FAIR_GROUP_SCHED 407 unsigned long tg_load_avg_contrib; 408 unsigned long propagate_avg; 409 #endif 410 atomic_long_t removed_load_avg, removed_util_avg; 411 #ifndef CONFIG_64BIT 412 u64 load_last_update_time_copy; 413 #endif 414 415 #ifdef CONFIG_FAIR_GROUP_SCHED 416 /* 417 * h_load = weight * f(tg) 418 * 419 * Where f(tg) is the recursive weight fraction assigned to 420 * this group. 421 */ 422 unsigned long h_load; 423 u64 last_h_load_update; 424 struct sched_entity *h_load_next; 425 #endif /* CONFIG_FAIR_GROUP_SCHED */ 426 #endif /* CONFIG_SMP */ 427 428 #ifdef CONFIG_FAIR_GROUP_SCHED 429 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 430 431 /* 432 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 433 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 434 * (like users, containers etc.) 435 * 436 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 437 * list is used during load balance. 438 */ 439 int on_list; 440 struct list_head leaf_cfs_rq_list; 441 struct task_group *tg; /* group that "owns" this runqueue */ 442 443 #ifdef CONFIG_CFS_BANDWIDTH 444 int runtime_enabled; 445 u64 runtime_expires; 446 s64 runtime_remaining; 447 448 u64 throttled_clock, throttled_clock_task; 449 u64 throttled_clock_task_time; 450 int throttled, throttle_count; 451 struct list_head throttled_list; 452 #endif /* CONFIG_CFS_BANDWIDTH */ 453 #endif /* CONFIG_FAIR_GROUP_SCHED */ 454 }; 455 456 static inline int rt_bandwidth_enabled(void) 457 { 458 return sysctl_sched_rt_runtime >= 0; 459 } 460 461 /* RT IPI pull logic requires IRQ_WORK */ 462 #ifdef CONFIG_IRQ_WORK 463 # define HAVE_RT_PUSH_IPI 464 #endif 465 466 /* Real-Time classes' related field in a runqueue: */ 467 struct rt_rq { 468 struct rt_prio_array active; 469 unsigned int rt_nr_running; 470 unsigned int rr_nr_running; 471 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 472 struct { 473 int curr; /* highest queued rt task prio */ 474 #ifdef CONFIG_SMP 475 int next; /* next highest */ 476 #endif 477 } highest_prio; 478 #endif 479 #ifdef CONFIG_SMP 480 unsigned long rt_nr_migratory; 481 unsigned long rt_nr_total; 482 int overloaded; 483 struct plist_head pushable_tasks; 484 #ifdef HAVE_RT_PUSH_IPI 485 int push_flags; 486 int push_cpu; 487 struct irq_work push_work; 488 raw_spinlock_t push_lock; 489 #endif 490 #endif /* CONFIG_SMP */ 491 int rt_queued; 492 493 int rt_throttled; 494 u64 rt_time; 495 u64 rt_runtime; 496 /* Nests inside the rq lock: */ 497 raw_spinlock_t rt_runtime_lock; 498 499 #ifdef CONFIG_RT_GROUP_SCHED 500 unsigned long rt_nr_boosted; 501 502 struct rq *rq; 503 struct task_group *tg; 504 #endif 505 }; 506 507 /* Deadline class' related fields in a runqueue */ 508 struct dl_rq { 509 /* runqueue is an rbtree, ordered by deadline */ 510 struct rb_root rb_root; 511 struct rb_node *rb_leftmost; 512 513 unsigned long dl_nr_running; 514 515 #ifdef CONFIG_SMP 516 /* 517 * Deadline values of the currently executing and the 518 * earliest ready task on this rq. Caching these facilitates 519 * the decision wether or not a ready but not running task 520 * should migrate somewhere else. 521 */ 522 struct { 523 u64 curr; 524 u64 next; 525 } earliest_dl; 526 527 unsigned long dl_nr_migratory; 528 int overloaded; 529 530 /* 531 * Tasks on this rq that can be pushed away. They are kept in 532 * an rb-tree, ordered by tasks' deadlines, with caching 533 * of the leftmost (earliest deadline) element. 534 */ 535 struct rb_root pushable_dl_tasks_root; 536 struct rb_node *pushable_dl_tasks_leftmost; 537 #else 538 struct dl_bw dl_bw; 539 #endif 540 }; 541 542 #ifdef CONFIG_SMP 543 544 static inline bool sched_asym_prefer(int a, int b) 545 { 546 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 547 } 548 549 /* 550 * We add the notion of a root-domain which will be used to define per-domain 551 * variables. Each exclusive cpuset essentially defines an island domain by 552 * fully partitioning the member cpus from any other cpuset. Whenever a new 553 * exclusive cpuset is created, we also create and attach a new root-domain 554 * object. 555 * 556 */ 557 struct root_domain { 558 atomic_t refcount; 559 atomic_t rto_count; 560 struct rcu_head rcu; 561 cpumask_var_t span; 562 cpumask_var_t online; 563 564 /* Indicate more than one runnable task for any CPU */ 565 bool overload; 566 567 /* 568 * The bit corresponding to a CPU gets set here if such CPU has more 569 * than one runnable -deadline task (as it is below for RT tasks). 570 */ 571 cpumask_var_t dlo_mask; 572 atomic_t dlo_count; 573 struct dl_bw dl_bw; 574 struct cpudl cpudl; 575 576 /* 577 * The "RT overload" flag: it gets set if a CPU has more than 578 * one runnable RT task. 579 */ 580 cpumask_var_t rto_mask; 581 struct cpupri cpupri; 582 583 unsigned long max_cpu_capacity; 584 }; 585 586 extern struct root_domain def_root_domain; 587 extern struct mutex sched_domains_mutex; 588 extern cpumask_var_t fallback_doms; 589 extern cpumask_var_t sched_domains_tmpmask; 590 591 extern void init_defrootdomain(void); 592 extern int init_sched_domains(const struct cpumask *cpu_map); 593 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 594 595 #endif /* CONFIG_SMP */ 596 597 /* 598 * This is the main, per-CPU runqueue data structure. 599 * 600 * Locking rule: those places that want to lock multiple runqueues 601 * (such as the load balancing or the thread migration code), lock 602 * acquire operations must be ordered by ascending &runqueue. 603 */ 604 struct rq { 605 /* runqueue lock: */ 606 raw_spinlock_t lock; 607 608 /* 609 * nr_running and cpu_load should be in the same cacheline because 610 * remote CPUs use both these fields when doing load calculation. 611 */ 612 unsigned int nr_running; 613 #ifdef CONFIG_NUMA_BALANCING 614 unsigned int nr_numa_running; 615 unsigned int nr_preferred_running; 616 #endif 617 #define CPU_LOAD_IDX_MAX 5 618 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 619 #ifdef CONFIG_NO_HZ_COMMON 620 #ifdef CONFIG_SMP 621 unsigned long last_load_update_tick; 622 #endif /* CONFIG_SMP */ 623 unsigned long nohz_flags; 624 #endif /* CONFIG_NO_HZ_COMMON */ 625 #ifdef CONFIG_NO_HZ_FULL 626 unsigned long last_sched_tick; 627 #endif 628 /* capture load from *all* tasks on this cpu: */ 629 struct load_weight load; 630 unsigned long nr_load_updates; 631 u64 nr_switches; 632 633 struct cfs_rq cfs; 634 struct rt_rq rt; 635 struct dl_rq dl; 636 637 #ifdef CONFIG_FAIR_GROUP_SCHED 638 /* list of leaf cfs_rq on this cpu: */ 639 struct list_head leaf_cfs_rq_list; 640 struct list_head *tmp_alone_branch; 641 #endif /* CONFIG_FAIR_GROUP_SCHED */ 642 643 /* 644 * This is part of a global counter where only the total sum 645 * over all CPUs matters. A task can increase this counter on 646 * one CPU and if it got migrated afterwards it may decrease 647 * it on another CPU. Always updated under the runqueue lock: 648 */ 649 unsigned long nr_uninterruptible; 650 651 struct task_struct *curr, *idle, *stop; 652 unsigned long next_balance; 653 struct mm_struct *prev_mm; 654 655 unsigned int clock_update_flags; 656 u64 clock; 657 u64 clock_task; 658 659 atomic_t nr_iowait; 660 661 #ifdef CONFIG_SMP 662 struct root_domain *rd; 663 struct sched_domain *sd; 664 665 unsigned long cpu_capacity; 666 unsigned long cpu_capacity_orig; 667 668 struct callback_head *balance_callback; 669 670 unsigned char idle_balance; 671 /* For active balancing */ 672 int active_balance; 673 int push_cpu; 674 struct cpu_stop_work active_balance_work; 675 /* cpu of this runqueue: */ 676 int cpu; 677 int online; 678 679 struct list_head cfs_tasks; 680 681 u64 rt_avg; 682 u64 age_stamp; 683 u64 idle_stamp; 684 u64 avg_idle; 685 686 /* This is used to determine avg_idle's max value */ 687 u64 max_idle_balance_cost; 688 #endif 689 690 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 691 u64 prev_irq_time; 692 #endif 693 #ifdef CONFIG_PARAVIRT 694 u64 prev_steal_time; 695 #endif 696 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 697 u64 prev_steal_time_rq; 698 #endif 699 700 /* calc_load related fields */ 701 unsigned long calc_load_update; 702 long calc_load_active; 703 704 #ifdef CONFIG_SCHED_HRTICK 705 #ifdef CONFIG_SMP 706 int hrtick_csd_pending; 707 struct call_single_data hrtick_csd; 708 #endif 709 struct hrtimer hrtick_timer; 710 #endif 711 712 #ifdef CONFIG_SCHEDSTATS 713 /* latency stats */ 714 struct sched_info rq_sched_info; 715 unsigned long long rq_cpu_time; 716 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 717 718 /* sys_sched_yield() stats */ 719 unsigned int yld_count; 720 721 /* schedule() stats */ 722 unsigned int sched_count; 723 unsigned int sched_goidle; 724 725 /* try_to_wake_up() stats */ 726 unsigned int ttwu_count; 727 unsigned int ttwu_local; 728 #endif 729 730 #ifdef CONFIG_SMP 731 struct llist_head wake_list; 732 #endif 733 734 #ifdef CONFIG_CPU_IDLE 735 /* Must be inspected within a rcu lock section */ 736 struct cpuidle_state *idle_state; 737 #endif 738 }; 739 740 static inline int cpu_of(struct rq *rq) 741 { 742 #ifdef CONFIG_SMP 743 return rq->cpu; 744 #else 745 return 0; 746 #endif 747 } 748 749 750 #ifdef CONFIG_SCHED_SMT 751 752 extern struct static_key_false sched_smt_present; 753 754 extern void __update_idle_core(struct rq *rq); 755 756 static inline void update_idle_core(struct rq *rq) 757 { 758 if (static_branch_unlikely(&sched_smt_present)) 759 __update_idle_core(rq); 760 } 761 762 #else 763 static inline void update_idle_core(struct rq *rq) { } 764 #endif 765 766 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 767 768 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 769 #define this_rq() this_cpu_ptr(&runqueues) 770 #define task_rq(p) cpu_rq(task_cpu(p)) 771 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 772 #define raw_rq() raw_cpu_ptr(&runqueues) 773 774 static inline u64 __rq_clock_broken(struct rq *rq) 775 { 776 return READ_ONCE(rq->clock); 777 } 778 779 /* 780 * rq::clock_update_flags bits 781 * 782 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 783 * call to __schedule(). This is an optimisation to avoid 784 * neighbouring rq clock updates. 785 * 786 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 787 * in effect and calls to update_rq_clock() are being ignored. 788 * 789 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 790 * made to update_rq_clock() since the last time rq::lock was pinned. 791 * 792 * If inside of __schedule(), clock_update_flags will have been 793 * shifted left (a left shift is a cheap operation for the fast path 794 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 795 * 796 * if (rq-clock_update_flags >= RQCF_UPDATED) 797 * 798 * to check if %RQCF_UPADTED is set. It'll never be shifted more than 799 * one position though, because the next rq_unpin_lock() will shift it 800 * back. 801 */ 802 #define RQCF_REQ_SKIP 0x01 803 #define RQCF_ACT_SKIP 0x02 804 #define RQCF_UPDATED 0x04 805 806 static inline void assert_clock_updated(struct rq *rq) 807 { 808 /* 809 * The only reason for not seeing a clock update since the 810 * last rq_pin_lock() is if we're currently skipping updates. 811 */ 812 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 813 } 814 815 static inline u64 rq_clock(struct rq *rq) 816 { 817 lockdep_assert_held(&rq->lock); 818 assert_clock_updated(rq); 819 820 return rq->clock; 821 } 822 823 static inline u64 rq_clock_task(struct rq *rq) 824 { 825 lockdep_assert_held(&rq->lock); 826 assert_clock_updated(rq); 827 828 return rq->clock_task; 829 } 830 831 static inline void rq_clock_skip_update(struct rq *rq, bool skip) 832 { 833 lockdep_assert_held(&rq->lock); 834 if (skip) 835 rq->clock_update_flags |= RQCF_REQ_SKIP; 836 else 837 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 838 } 839 840 struct rq_flags { 841 unsigned long flags; 842 struct pin_cookie cookie; 843 #ifdef CONFIG_SCHED_DEBUG 844 /* 845 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 846 * current pin context is stashed here in case it needs to be 847 * restored in rq_repin_lock(). 848 */ 849 unsigned int clock_update_flags; 850 #endif 851 }; 852 853 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 854 { 855 rf->cookie = lockdep_pin_lock(&rq->lock); 856 857 #ifdef CONFIG_SCHED_DEBUG 858 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 859 rf->clock_update_flags = 0; 860 #endif 861 } 862 863 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 864 { 865 #ifdef CONFIG_SCHED_DEBUG 866 if (rq->clock_update_flags > RQCF_ACT_SKIP) 867 rf->clock_update_flags = RQCF_UPDATED; 868 #endif 869 870 lockdep_unpin_lock(&rq->lock, rf->cookie); 871 } 872 873 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 874 { 875 lockdep_repin_lock(&rq->lock, rf->cookie); 876 877 #ifdef CONFIG_SCHED_DEBUG 878 /* 879 * Restore the value we stashed in @rf for this pin context. 880 */ 881 rq->clock_update_flags |= rf->clock_update_flags; 882 #endif 883 } 884 885 #ifdef CONFIG_NUMA 886 enum numa_topology_type { 887 NUMA_DIRECT, 888 NUMA_GLUELESS_MESH, 889 NUMA_BACKPLANE, 890 }; 891 extern enum numa_topology_type sched_numa_topology_type; 892 extern int sched_max_numa_distance; 893 extern bool find_numa_distance(int distance); 894 #endif 895 896 #ifdef CONFIG_NUMA 897 extern void sched_init_numa(void); 898 extern void sched_domains_numa_masks_set(unsigned int cpu); 899 extern void sched_domains_numa_masks_clear(unsigned int cpu); 900 #else 901 static inline void sched_init_numa(void) { } 902 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 903 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 904 #endif 905 906 #ifdef CONFIG_NUMA_BALANCING 907 /* The regions in numa_faults array from task_struct */ 908 enum numa_faults_stats { 909 NUMA_MEM = 0, 910 NUMA_CPU, 911 NUMA_MEMBUF, 912 NUMA_CPUBUF 913 }; 914 extern void sched_setnuma(struct task_struct *p, int node); 915 extern int migrate_task_to(struct task_struct *p, int cpu); 916 extern int migrate_swap(struct task_struct *, struct task_struct *); 917 #endif /* CONFIG_NUMA_BALANCING */ 918 919 #ifdef CONFIG_SMP 920 921 static inline void 922 queue_balance_callback(struct rq *rq, 923 struct callback_head *head, 924 void (*func)(struct rq *rq)) 925 { 926 lockdep_assert_held(&rq->lock); 927 928 if (unlikely(head->next)) 929 return; 930 931 head->func = (void (*)(struct callback_head *))func; 932 head->next = rq->balance_callback; 933 rq->balance_callback = head; 934 } 935 936 extern void sched_ttwu_pending(void); 937 938 #define rcu_dereference_check_sched_domain(p) \ 939 rcu_dereference_check((p), \ 940 lockdep_is_held(&sched_domains_mutex)) 941 942 /* 943 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 944 * See detach_destroy_domains: synchronize_sched for details. 945 * 946 * The domain tree of any CPU may only be accessed from within 947 * preempt-disabled sections. 948 */ 949 #define for_each_domain(cpu, __sd) \ 950 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 951 __sd; __sd = __sd->parent) 952 953 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 954 955 /** 956 * highest_flag_domain - Return highest sched_domain containing flag. 957 * @cpu: The cpu whose highest level of sched domain is to 958 * be returned. 959 * @flag: The flag to check for the highest sched_domain 960 * for the given cpu. 961 * 962 * Returns the highest sched_domain of a cpu which contains the given flag. 963 */ 964 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 965 { 966 struct sched_domain *sd, *hsd = NULL; 967 968 for_each_domain(cpu, sd) { 969 if (!(sd->flags & flag)) 970 break; 971 hsd = sd; 972 } 973 974 return hsd; 975 } 976 977 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 978 { 979 struct sched_domain *sd; 980 981 for_each_domain(cpu, sd) { 982 if (sd->flags & flag) 983 break; 984 } 985 986 return sd; 987 } 988 989 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 990 DECLARE_PER_CPU(int, sd_llc_size); 991 DECLARE_PER_CPU(int, sd_llc_id); 992 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 993 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 994 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 995 996 struct sched_group_capacity { 997 atomic_t ref; 998 /* 999 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1000 * for a single CPU. 1001 */ 1002 unsigned long capacity; 1003 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1004 unsigned long next_update; 1005 int imbalance; /* XXX unrelated to capacity but shared group state */ 1006 1007 unsigned long cpumask[0]; /* iteration mask */ 1008 }; 1009 1010 struct sched_group { 1011 struct sched_group *next; /* Must be a circular list */ 1012 atomic_t ref; 1013 1014 unsigned int group_weight; 1015 struct sched_group_capacity *sgc; 1016 int asym_prefer_cpu; /* cpu of highest priority in group */ 1017 1018 /* 1019 * The CPUs this group covers. 1020 * 1021 * NOTE: this field is variable length. (Allocated dynamically 1022 * by attaching extra space to the end of the structure, 1023 * depending on how many CPUs the kernel has booted up with) 1024 */ 1025 unsigned long cpumask[0]; 1026 }; 1027 1028 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 1029 { 1030 return to_cpumask(sg->cpumask); 1031 } 1032 1033 /* 1034 * cpumask masking which cpus in the group are allowed to iterate up the domain 1035 * tree. 1036 */ 1037 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 1038 { 1039 return to_cpumask(sg->sgc->cpumask); 1040 } 1041 1042 /** 1043 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 1044 * @group: The group whose first cpu is to be returned. 1045 */ 1046 static inline unsigned int group_first_cpu(struct sched_group *group) 1047 { 1048 return cpumask_first(sched_group_cpus(group)); 1049 } 1050 1051 extern int group_balance_cpu(struct sched_group *sg); 1052 1053 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 1054 void register_sched_domain_sysctl(void); 1055 void unregister_sched_domain_sysctl(void); 1056 #else 1057 static inline void register_sched_domain_sysctl(void) 1058 { 1059 } 1060 static inline void unregister_sched_domain_sysctl(void) 1061 { 1062 } 1063 #endif 1064 1065 #else 1066 1067 static inline void sched_ttwu_pending(void) { } 1068 1069 #endif /* CONFIG_SMP */ 1070 1071 #include "stats.h" 1072 #include "autogroup.h" 1073 1074 #ifdef CONFIG_CGROUP_SCHED 1075 1076 /* 1077 * Return the group to which this tasks belongs. 1078 * 1079 * We cannot use task_css() and friends because the cgroup subsystem 1080 * changes that value before the cgroup_subsys::attach() method is called, 1081 * therefore we cannot pin it and might observe the wrong value. 1082 * 1083 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1084 * core changes this before calling sched_move_task(). 1085 * 1086 * Instead we use a 'copy' which is updated from sched_move_task() while 1087 * holding both task_struct::pi_lock and rq::lock. 1088 */ 1089 static inline struct task_group *task_group(struct task_struct *p) 1090 { 1091 return p->sched_task_group; 1092 } 1093 1094 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1095 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1096 { 1097 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1098 struct task_group *tg = task_group(p); 1099 #endif 1100 1101 #ifdef CONFIG_FAIR_GROUP_SCHED 1102 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1103 p->se.cfs_rq = tg->cfs_rq[cpu]; 1104 p->se.parent = tg->se[cpu]; 1105 #endif 1106 1107 #ifdef CONFIG_RT_GROUP_SCHED 1108 p->rt.rt_rq = tg->rt_rq[cpu]; 1109 p->rt.parent = tg->rt_se[cpu]; 1110 #endif 1111 } 1112 1113 #else /* CONFIG_CGROUP_SCHED */ 1114 1115 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1116 static inline struct task_group *task_group(struct task_struct *p) 1117 { 1118 return NULL; 1119 } 1120 1121 #endif /* CONFIG_CGROUP_SCHED */ 1122 1123 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1124 { 1125 set_task_rq(p, cpu); 1126 #ifdef CONFIG_SMP 1127 /* 1128 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1129 * successfuly executed on another CPU. We must ensure that updates of 1130 * per-task data have been completed by this moment. 1131 */ 1132 smp_wmb(); 1133 #ifdef CONFIG_THREAD_INFO_IN_TASK 1134 p->cpu = cpu; 1135 #else 1136 task_thread_info(p)->cpu = cpu; 1137 #endif 1138 p->wake_cpu = cpu; 1139 #endif 1140 } 1141 1142 /* 1143 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1144 */ 1145 #ifdef CONFIG_SCHED_DEBUG 1146 # include <linux/static_key.h> 1147 # define const_debug __read_mostly 1148 #else 1149 # define const_debug const 1150 #endif 1151 1152 extern const_debug unsigned int sysctl_sched_features; 1153 1154 #define SCHED_FEAT(name, enabled) \ 1155 __SCHED_FEAT_##name , 1156 1157 enum { 1158 #include "features.h" 1159 __SCHED_FEAT_NR, 1160 }; 1161 1162 #undef SCHED_FEAT 1163 1164 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 1165 #define SCHED_FEAT(name, enabled) \ 1166 static __always_inline bool static_branch_##name(struct static_key *key) \ 1167 { \ 1168 return static_key_##enabled(key); \ 1169 } 1170 1171 #include "features.h" 1172 1173 #undef SCHED_FEAT 1174 1175 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1176 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1177 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 1178 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1179 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 1180 1181 extern struct static_key_false sched_numa_balancing; 1182 extern struct static_key_false sched_schedstats; 1183 1184 static inline u64 global_rt_period(void) 1185 { 1186 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1187 } 1188 1189 static inline u64 global_rt_runtime(void) 1190 { 1191 if (sysctl_sched_rt_runtime < 0) 1192 return RUNTIME_INF; 1193 1194 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1195 } 1196 1197 static inline int task_current(struct rq *rq, struct task_struct *p) 1198 { 1199 return rq->curr == p; 1200 } 1201 1202 static inline int task_running(struct rq *rq, struct task_struct *p) 1203 { 1204 #ifdef CONFIG_SMP 1205 return p->on_cpu; 1206 #else 1207 return task_current(rq, p); 1208 #endif 1209 } 1210 1211 static inline int task_on_rq_queued(struct task_struct *p) 1212 { 1213 return p->on_rq == TASK_ON_RQ_QUEUED; 1214 } 1215 1216 static inline int task_on_rq_migrating(struct task_struct *p) 1217 { 1218 return p->on_rq == TASK_ON_RQ_MIGRATING; 1219 } 1220 1221 #ifndef prepare_arch_switch 1222 # define prepare_arch_switch(next) do { } while (0) 1223 #endif 1224 #ifndef finish_arch_post_lock_switch 1225 # define finish_arch_post_lock_switch() do { } while (0) 1226 #endif 1227 1228 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1229 { 1230 #ifdef CONFIG_SMP 1231 /* 1232 * We can optimise this out completely for !SMP, because the 1233 * SMP rebalancing from interrupt is the only thing that cares 1234 * here. 1235 */ 1236 next->on_cpu = 1; 1237 #endif 1238 } 1239 1240 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1241 { 1242 #ifdef CONFIG_SMP 1243 /* 1244 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1245 * We must ensure this doesn't happen until the switch is completely 1246 * finished. 1247 * 1248 * In particular, the load of prev->state in finish_task_switch() must 1249 * happen before this. 1250 * 1251 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 1252 */ 1253 smp_store_release(&prev->on_cpu, 0); 1254 #endif 1255 #ifdef CONFIG_DEBUG_SPINLOCK 1256 /* this is a valid case when another task releases the spinlock */ 1257 rq->lock.owner = current; 1258 #endif 1259 /* 1260 * If we are tracking spinlock dependencies then we have to 1261 * fix up the runqueue lock - which gets 'carried over' from 1262 * prev into current: 1263 */ 1264 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1265 1266 raw_spin_unlock_irq(&rq->lock); 1267 } 1268 1269 /* 1270 * wake flags 1271 */ 1272 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1273 #define WF_FORK 0x02 /* child wakeup after fork */ 1274 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1275 1276 /* 1277 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1278 * of tasks with abnormal "nice" values across CPUs the contribution that 1279 * each task makes to its run queue's load is weighted according to its 1280 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1281 * scaled version of the new time slice allocation that they receive on time 1282 * slice expiry etc. 1283 */ 1284 1285 #define WEIGHT_IDLEPRIO 3 1286 #define WMULT_IDLEPRIO 1431655765 1287 1288 extern const int sched_prio_to_weight[40]; 1289 extern const u32 sched_prio_to_wmult[40]; 1290 1291 /* 1292 * {de,en}queue flags: 1293 * 1294 * DEQUEUE_SLEEP - task is no longer runnable 1295 * ENQUEUE_WAKEUP - task just became runnable 1296 * 1297 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1298 * are in a known state which allows modification. Such pairs 1299 * should preserve as much state as possible. 1300 * 1301 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1302 * in the runqueue. 1303 * 1304 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1305 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1306 * ENQUEUE_MIGRATED - the task was migrated during wakeup 1307 * 1308 */ 1309 1310 #define DEQUEUE_SLEEP 0x01 1311 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */ 1312 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */ 1313 1314 #define ENQUEUE_WAKEUP 0x01 1315 #define ENQUEUE_RESTORE 0x02 1316 #define ENQUEUE_MOVE 0x04 1317 1318 #define ENQUEUE_HEAD 0x08 1319 #define ENQUEUE_REPLENISH 0x10 1320 #ifdef CONFIG_SMP 1321 #define ENQUEUE_MIGRATED 0x20 1322 #else 1323 #define ENQUEUE_MIGRATED 0x00 1324 #endif 1325 1326 #define RETRY_TASK ((void *)-1UL) 1327 1328 struct sched_class { 1329 const struct sched_class *next; 1330 1331 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1332 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1333 void (*yield_task) (struct rq *rq); 1334 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1335 1336 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1337 1338 /* 1339 * It is the responsibility of the pick_next_task() method that will 1340 * return the next task to call put_prev_task() on the @prev task or 1341 * something equivalent. 1342 * 1343 * May return RETRY_TASK when it finds a higher prio class has runnable 1344 * tasks. 1345 */ 1346 struct task_struct * (*pick_next_task) (struct rq *rq, 1347 struct task_struct *prev, 1348 struct rq_flags *rf); 1349 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1350 1351 #ifdef CONFIG_SMP 1352 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1353 void (*migrate_task_rq)(struct task_struct *p); 1354 1355 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1356 1357 void (*set_cpus_allowed)(struct task_struct *p, 1358 const struct cpumask *newmask); 1359 1360 void (*rq_online)(struct rq *rq); 1361 void (*rq_offline)(struct rq *rq); 1362 #endif 1363 1364 void (*set_curr_task) (struct rq *rq); 1365 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1366 void (*task_fork) (struct task_struct *p); 1367 void (*task_dead) (struct task_struct *p); 1368 1369 /* 1370 * The switched_from() call is allowed to drop rq->lock, therefore we 1371 * cannot assume the switched_from/switched_to pair is serliazed by 1372 * rq->lock. They are however serialized by p->pi_lock. 1373 */ 1374 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1375 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1376 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1377 int oldprio); 1378 1379 unsigned int (*get_rr_interval) (struct rq *rq, 1380 struct task_struct *task); 1381 1382 void (*update_curr) (struct rq *rq); 1383 1384 #define TASK_SET_GROUP 0 1385 #define TASK_MOVE_GROUP 1 1386 1387 #ifdef CONFIG_FAIR_GROUP_SCHED 1388 void (*task_change_group) (struct task_struct *p, int type); 1389 #endif 1390 }; 1391 1392 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1393 { 1394 prev->sched_class->put_prev_task(rq, prev); 1395 } 1396 1397 static inline void set_curr_task(struct rq *rq, struct task_struct *curr) 1398 { 1399 curr->sched_class->set_curr_task(rq); 1400 } 1401 1402 #define sched_class_highest (&stop_sched_class) 1403 #define for_each_class(class) \ 1404 for (class = sched_class_highest; class; class = class->next) 1405 1406 extern const struct sched_class stop_sched_class; 1407 extern const struct sched_class dl_sched_class; 1408 extern const struct sched_class rt_sched_class; 1409 extern const struct sched_class fair_sched_class; 1410 extern const struct sched_class idle_sched_class; 1411 1412 1413 #ifdef CONFIG_SMP 1414 1415 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1416 1417 extern void trigger_load_balance(struct rq *rq); 1418 1419 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); 1420 1421 #endif 1422 1423 #ifdef CONFIG_CPU_IDLE 1424 static inline void idle_set_state(struct rq *rq, 1425 struct cpuidle_state *idle_state) 1426 { 1427 rq->idle_state = idle_state; 1428 } 1429 1430 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1431 { 1432 SCHED_WARN_ON(!rcu_read_lock_held()); 1433 return rq->idle_state; 1434 } 1435 #else 1436 static inline void idle_set_state(struct rq *rq, 1437 struct cpuidle_state *idle_state) 1438 { 1439 } 1440 1441 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1442 { 1443 return NULL; 1444 } 1445 #endif 1446 1447 extern void sysrq_sched_debug_show(void); 1448 extern void sched_init_granularity(void); 1449 extern void update_max_interval(void); 1450 1451 extern void init_sched_dl_class(void); 1452 extern void init_sched_rt_class(void); 1453 extern void init_sched_fair_class(void); 1454 1455 extern void resched_curr(struct rq *rq); 1456 extern void resched_cpu(int cpu); 1457 1458 extern struct rt_bandwidth def_rt_bandwidth; 1459 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1460 1461 extern struct dl_bandwidth def_dl_bandwidth; 1462 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1463 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1464 1465 unsigned long to_ratio(u64 period, u64 runtime); 1466 1467 extern void init_entity_runnable_average(struct sched_entity *se); 1468 extern void post_init_entity_util_avg(struct sched_entity *se); 1469 1470 #ifdef CONFIG_NO_HZ_FULL 1471 extern bool sched_can_stop_tick(struct rq *rq); 1472 1473 /* 1474 * Tick may be needed by tasks in the runqueue depending on their policy and 1475 * requirements. If tick is needed, lets send the target an IPI to kick it out of 1476 * nohz mode if necessary. 1477 */ 1478 static inline void sched_update_tick_dependency(struct rq *rq) 1479 { 1480 int cpu; 1481 1482 if (!tick_nohz_full_enabled()) 1483 return; 1484 1485 cpu = cpu_of(rq); 1486 1487 if (!tick_nohz_full_cpu(cpu)) 1488 return; 1489 1490 if (sched_can_stop_tick(rq)) 1491 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 1492 else 1493 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 1494 } 1495 #else 1496 static inline void sched_update_tick_dependency(struct rq *rq) { } 1497 #endif 1498 1499 static inline void add_nr_running(struct rq *rq, unsigned count) 1500 { 1501 unsigned prev_nr = rq->nr_running; 1502 1503 rq->nr_running = prev_nr + count; 1504 1505 if (prev_nr < 2 && rq->nr_running >= 2) { 1506 #ifdef CONFIG_SMP 1507 if (!rq->rd->overload) 1508 rq->rd->overload = true; 1509 #endif 1510 } 1511 1512 sched_update_tick_dependency(rq); 1513 } 1514 1515 static inline void sub_nr_running(struct rq *rq, unsigned count) 1516 { 1517 rq->nr_running -= count; 1518 /* Check if we still need preemption */ 1519 sched_update_tick_dependency(rq); 1520 } 1521 1522 static inline void rq_last_tick_reset(struct rq *rq) 1523 { 1524 #ifdef CONFIG_NO_HZ_FULL 1525 rq->last_sched_tick = jiffies; 1526 #endif 1527 } 1528 1529 extern void update_rq_clock(struct rq *rq); 1530 1531 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1532 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1533 1534 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1535 1536 extern const_debug unsigned int sysctl_sched_time_avg; 1537 extern const_debug unsigned int sysctl_sched_nr_migrate; 1538 extern const_debug unsigned int sysctl_sched_migration_cost; 1539 1540 static inline u64 sched_avg_period(void) 1541 { 1542 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1543 } 1544 1545 #ifdef CONFIG_SCHED_HRTICK 1546 1547 /* 1548 * Use hrtick when: 1549 * - enabled by features 1550 * - hrtimer is actually high res 1551 */ 1552 static inline int hrtick_enabled(struct rq *rq) 1553 { 1554 if (!sched_feat(HRTICK)) 1555 return 0; 1556 if (!cpu_active(cpu_of(rq))) 1557 return 0; 1558 return hrtimer_is_hres_active(&rq->hrtick_timer); 1559 } 1560 1561 void hrtick_start(struct rq *rq, u64 delay); 1562 1563 #else 1564 1565 static inline int hrtick_enabled(struct rq *rq) 1566 { 1567 return 0; 1568 } 1569 1570 #endif /* CONFIG_SCHED_HRTICK */ 1571 1572 #ifdef CONFIG_SMP 1573 extern void sched_avg_update(struct rq *rq); 1574 1575 #ifndef arch_scale_freq_capacity 1576 static __always_inline 1577 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 1578 { 1579 return SCHED_CAPACITY_SCALE; 1580 } 1581 #endif 1582 1583 #ifndef arch_scale_cpu_capacity 1584 static __always_inline 1585 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 1586 { 1587 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 1588 return sd->smt_gain / sd->span_weight; 1589 1590 return SCHED_CAPACITY_SCALE; 1591 } 1592 #endif 1593 1594 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1595 { 1596 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); 1597 sched_avg_update(rq); 1598 } 1599 #else 1600 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1601 static inline void sched_avg_update(struct rq *rq) { } 1602 #endif 1603 1604 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1605 __acquires(rq->lock); 1606 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1607 __acquires(p->pi_lock) 1608 __acquires(rq->lock); 1609 1610 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1611 __releases(rq->lock) 1612 { 1613 rq_unpin_lock(rq, rf); 1614 raw_spin_unlock(&rq->lock); 1615 } 1616 1617 static inline void 1618 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1619 __releases(rq->lock) 1620 __releases(p->pi_lock) 1621 { 1622 rq_unpin_lock(rq, rf); 1623 raw_spin_unlock(&rq->lock); 1624 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1625 } 1626 1627 #ifdef CONFIG_SMP 1628 #ifdef CONFIG_PREEMPT 1629 1630 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1631 1632 /* 1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1634 * way at the expense of forcing extra atomic operations in all 1635 * invocations. This assures that the double_lock is acquired using the 1636 * same underlying policy as the spinlock_t on this architecture, which 1637 * reduces latency compared to the unfair variant below. However, it 1638 * also adds more overhead and therefore may reduce throughput. 1639 */ 1640 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1641 __releases(this_rq->lock) 1642 __acquires(busiest->lock) 1643 __acquires(this_rq->lock) 1644 { 1645 raw_spin_unlock(&this_rq->lock); 1646 double_rq_lock(this_rq, busiest); 1647 1648 return 1; 1649 } 1650 1651 #else 1652 /* 1653 * Unfair double_lock_balance: Optimizes throughput at the expense of 1654 * latency by eliminating extra atomic operations when the locks are 1655 * already in proper order on entry. This favors lower cpu-ids and will 1656 * grant the double lock to lower cpus over higher ids under contention, 1657 * regardless of entry order into the function. 1658 */ 1659 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1660 __releases(this_rq->lock) 1661 __acquires(busiest->lock) 1662 __acquires(this_rq->lock) 1663 { 1664 int ret = 0; 1665 1666 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1667 if (busiest < this_rq) { 1668 raw_spin_unlock(&this_rq->lock); 1669 raw_spin_lock(&busiest->lock); 1670 raw_spin_lock_nested(&this_rq->lock, 1671 SINGLE_DEPTH_NESTING); 1672 ret = 1; 1673 } else 1674 raw_spin_lock_nested(&busiest->lock, 1675 SINGLE_DEPTH_NESTING); 1676 } 1677 return ret; 1678 } 1679 1680 #endif /* CONFIG_PREEMPT */ 1681 1682 /* 1683 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1684 */ 1685 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1686 { 1687 if (unlikely(!irqs_disabled())) { 1688 /* printk() doesn't work good under rq->lock */ 1689 raw_spin_unlock(&this_rq->lock); 1690 BUG_ON(1); 1691 } 1692 1693 return _double_lock_balance(this_rq, busiest); 1694 } 1695 1696 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1697 __releases(busiest->lock) 1698 { 1699 raw_spin_unlock(&busiest->lock); 1700 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1701 } 1702 1703 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1704 { 1705 if (l1 > l2) 1706 swap(l1, l2); 1707 1708 spin_lock(l1); 1709 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1710 } 1711 1712 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1713 { 1714 if (l1 > l2) 1715 swap(l1, l2); 1716 1717 spin_lock_irq(l1); 1718 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1719 } 1720 1721 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1722 { 1723 if (l1 > l2) 1724 swap(l1, l2); 1725 1726 raw_spin_lock(l1); 1727 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1728 } 1729 1730 /* 1731 * double_rq_lock - safely lock two runqueues 1732 * 1733 * Note this does not disable interrupts like task_rq_lock, 1734 * you need to do so manually before calling. 1735 */ 1736 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1737 __acquires(rq1->lock) 1738 __acquires(rq2->lock) 1739 { 1740 BUG_ON(!irqs_disabled()); 1741 if (rq1 == rq2) { 1742 raw_spin_lock(&rq1->lock); 1743 __acquire(rq2->lock); /* Fake it out ;) */ 1744 } else { 1745 if (rq1 < rq2) { 1746 raw_spin_lock(&rq1->lock); 1747 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1748 } else { 1749 raw_spin_lock(&rq2->lock); 1750 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1751 } 1752 } 1753 } 1754 1755 /* 1756 * double_rq_unlock - safely unlock two runqueues 1757 * 1758 * Note this does not restore interrupts like task_rq_unlock, 1759 * you need to do so manually after calling. 1760 */ 1761 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1762 __releases(rq1->lock) 1763 __releases(rq2->lock) 1764 { 1765 raw_spin_unlock(&rq1->lock); 1766 if (rq1 != rq2) 1767 raw_spin_unlock(&rq2->lock); 1768 else 1769 __release(rq2->lock); 1770 } 1771 1772 extern void set_rq_online (struct rq *rq); 1773 extern void set_rq_offline(struct rq *rq); 1774 extern bool sched_smp_initialized; 1775 1776 #else /* CONFIG_SMP */ 1777 1778 /* 1779 * double_rq_lock - safely lock two runqueues 1780 * 1781 * Note this does not disable interrupts like task_rq_lock, 1782 * you need to do so manually before calling. 1783 */ 1784 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1785 __acquires(rq1->lock) 1786 __acquires(rq2->lock) 1787 { 1788 BUG_ON(!irqs_disabled()); 1789 BUG_ON(rq1 != rq2); 1790 raw_spin_lock(&rq1->lock); 1791 __acquire(rq2->lock); /* Fake it out ;) */ 1792 } 1793 1794 /* 1795 * double_rq_unlock - safely unlock two runqueues 1796 * 1797 * Note this does not restore interrupts like task_rq_unlock, 1798 * you need to do so manually after calling. 1799 */ 1800 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1801 __releases(rq1->lock) 1802 __releases(rq2->lock) 1803 { 1804 BUG_ON(rq1 != rq2); 1805 raw_spin_unlock(&rq1->lock); 1806 __release(rq2->lock); 1807 } 1808 1809 #endif 1810 1811 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1812 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1813 1814 #ifdef CONFIG_SCHED_DEBUG 1815 extern void print_cfs_stats(struct seq_file *m, int cpu); 1816 extern void print_rt_stats(struct seq_file *m, int cpu); 1817 extern void print_dl_stats(struct seq_file *m, int cpu); 1818 extern void 1819 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 1820 1821 #ifdef CONFIG_NUMA_BALANCING 1822 extern void 1823 show_numa_stats(struct task_struct *p, struct seq_file *m); 1824 extern void 1825 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 1826 unsigned long tpf, unsigned long gsf, unsigned long gpf); 1827 #endif /* CONFIG_NUMA_BALANCING */ 1828 #endif /* CONFIG_SCHED_DEBUG */ 1829 1830 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1831 extern void init_rt_rq(struct rt_rq *rt_rq); 1832 extern void init_dl_rq(struct dl_rq *dl_rq); 1833 1834 extern void cfs_bandwidth_usage_inc(void); 1835 extern void cfs_bandwidth_usage_dec(void); 1836 1837 #ifdef CONFIG_NO_HZ_COMMON 1838 enum rq_nohz_flag_bits { 1839 NOHZ_TICK_STOPPED, 1840 NOHZ_BALANCE_KICK, 1841 }; 1842 1843 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1844 1845 extern void nohz_balance_exit_idle(unsigned int cpu); 1846 #else 1847 static inline void nohz_balance_exit_idle(unsigned int cpu) { } 1848 #endif 1849 1850 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1851 struct irqtime { 1852 u64 tick_delta; 1853 u64 irq_start_time; 1854 struct u64_stats_sync sync; 1855 }; 1856 1857 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 1858 1859 static inline u64 irq_time_read(int cpu) 1860 { 1861 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 1862 u64 *cpustat = kcpustat_cpu(cpu).cpustat; 1863 unsigned int seq; 1864 u64 total; 1865 1866 do { 1867 seq = __u64_stats_fetch_begin(&irqtime->sync); 1868 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ]; 1869 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 1870 1871 return total; 1872 } 1873 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1874 1875 #ifdef CONFIG_CPU_FREQ 1876 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); 1877 1878 /** 1879 * cpufreq_update_util - Take a note about CPU utilization changes. 1880 * @rq: Runqueue to carry out the update for. 1881 * @flags: Update reason flags. 1882 * 1883 * This function is called by the scheduler on the CPU whose utilization is 1884 * being updated. 1885 * 1886 * It can only be called from RCU-sched read-side critical sections. 1887 * 1888 * The way cpufreq is currently arranged requires it to evaluate the CPU 1889 * performance state (frequency/voltage) on a regular basis to prevent it from 1890 * being stuck in a completely inadequate performance level for too long. 1891 * That is not guaranteed to happen if the updates are only triggered from CFS, 1892 * though, because they may not be coming in if RT or deadline tasks are active 1893 * all the time (or there are RT and DL tasks only). 1894 * 1895 * As a workaround for that issue, this function is called by the RT and DL 1896 * sched classes to trigger extra cpufreq updates to prevent it from stalling, 1897 * but that really is a band-aid. Going forward it should be replaced with 1898 * solutions targeted more specifically at RT and DL tasks. 1899 */ 1900 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 1901 { 1902 struct update_util_data *data; 1903 1904 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data)); 1905 if (data) 1906 data->func(data, rq_clock(rq), flags); 1907 } 1908 1909 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) 1910 { 1911 if (cpu_of(rq) == smp_processor_id()) 1912 cpufreq_update_util(rq, flags); 1913 } 1914 #else 1915 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 1916 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {} 1917 #endif /* CONFIG_CPU_FREQ */ 1918 1919 #ifdef arch_scale_freq_capacity 1920 #ifndef arch_scale_freq_invariant 1921 #define arch_scale_freq_invariant() (true) 1922 #endif 1923 #else /* arch_scale_freq_capacity */ 1924 #define arch_scale_freq_invariant() (false) 1925 #endif 1926