1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/bitops.h> 40 #include <linux/blkdev.h> 41 #include <linux/compat.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpufreq.h> 44 #include <linux/cpuidle.h> 45 #include <linux/cpuset.h> 46 #include <linux/ctype.h> 47 #include <linux/debugfs.h> 48 #include <linux/delayacct.h> 49 #include <linux/energy_model.h> 50 #include <linux/init_task.h> 51 #include <linux/kprobes.h> 52 #include <linux/kthread.h> 53 #include <linux/membarrier.h> 54 #include <linux/migrate.h> 55 #include <linux/mmu_context.h> 56 #include <linux/nmi.h> 57 #include <linux/proc_fs.h> 58 #include <linux/prefetch.h> 59 #include <linux/profile.h> 60 #include <linux/psi.h> 61 #include <linux/ratelimit.h> 62 #include <linux/rcupdate_wait.h> 63 #include <linux/security.h> 64 #include <linux/stop_machine.h> 65 #include <linux/suspend.h> 66 #include <linux/swait.h> 67 #include <linux/syscalls.h> 68 #include <linux/task_work.h> 69 #include <linux/tsacct_kern.h> 70 71 #include <asm/tlb.h> 72 73 #ifdef CONFIG_PARAVIRT 74 # include <asm/paravirt.h> 75 #endif 76 77 #include "cpupri.h" 78 #include "cpudeadline.h" 79 80 #include <trace/events/sched.h> 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 84 #else 85 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 86 #endif 87 88 struct rq; 89 struct cpuidle_state; 90 91 /* task_struct::on_rq states: */ 92 #define TASK_ON_RQ_QUEUED 1 93 #define TASK_ON_RQ_MIGRATING 2 94 95 extern __read_mostly int scheduler_running; 96 97 extern unsigned long calc_load_update; 98 extern atomic_long_t calc_load_tasks; 99 100 extern void calc_global_load_tick(struct rq *this_rq); 101 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 102 103 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 104 /* 105 * Helpers for converting nanosecond timing to jiffy resolution 106 */ 107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 108 109 /* 110 * Increase resolution of nice-level calculations for 64-bit architectures. 111 * The extra resolution improves shares distribution and load balancing of 112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 113 * hierarchies, especially on larger systems. This is not a user-visible change 114 * and does not change the user-interface for setting shares/weights. 115 * 116 * We increase resolution only if we have enough bits to allow this increased 117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 118 * are pretty high and the returns do not justify the increased costs. 119 * 120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 121 * increase coverage and consistency always enable it on 64-bit platforms. 122 */ 123 #ifdef CONFIG_64BIT 124 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 125 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 126 # define scale_load_down(w) \ 127 ({ \ 128 unsigned long __w = (w); \ 129 if (__w) \ 130 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 131 __w; \ 132 }) 133 #else 134 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 135 # define scale_load(w) (w) 136 # define scale_load_down(w) (w) 137 #endif 138 139 /* 140 * Task weight (visible to users) and its load (invisible to users) have 141 * independent resolution, but they should be well calibrated. We use 142 * scale_load() and scale_load_down(w) to convert between them. The 143 * following must be true: 144 * 145 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 146 * 147 */ 148 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 149 150 /* 151 * Single value that decides SCHED_DEADLINE internal math precision. 152 * 10 -> just above 1us 153 * 9 -> just above 0.5us 154 */ 155 #define DL_SCALE 10 156 157 /* 158 * Single value that denotes runtime == period, ie unlimited time. 159 */ 160 #define RUNTIME_INF ((u64)~0ULL) 161 162 static inline int idle_policy(int policy) 163 { 164 return policy == SCHED_IDLE; 165 } 166 static inline int fair_policy(int policy) 167 { 168 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 169 } 170 171 static inline int rt_policy(int policy) 172 { 173 return policy == SCHED_FIFO || policy == SCHED_RR; 174 } 175 176 static inline int dl_policy(int policy) 177 { 178 return policy == SCHED_DEADLINE; 179 } 180 static inline bool valid_policy(int policy) 181 { 182 return idle_policy(policy) || fair_policy(policy) || 183 rt_policy(policy) || dl_policy(policy); 184 } 185 186 static inline int task_has_idle_policy(struct task_struct *p) 187 { 188 return idle_policy(p->policy); 189 } 190 191 static inline int task_has_rt_policy(struct task_struct *p) 192 { 193 return rt_policy(p->policy); 194 } 195 196 static inline int task_has_dl_policy(struct task_struct *p) 197 { 198 return dl_policy(p->policy); 199 } 200 201 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 202 203 static inline void update_avg(u64 *avg, u64 sample) 204 { 205 s64 diff = sample - *avg; 206 *avg += diff / 8; 207 } 208 209 /* 210 * Shifting a value by an exponent greater *or equal* to the size of said value 211 * is UB; cap at size-1. 212 */ 213 #define shr_bound(val, shift) \ 214 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 215 216 /* 217 * !! For sched_setattr_nocheck() (kernel) only !! 218 * 219 * This is actually gross. :( 220 * 221 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 222 * tasks, but still be able to sleep. We need this on platforms that cannot 223 * atomically change clock frequency. Remove once fast switching will be 224 * available on such platforms. 225 * 226 * SUGOV stands for SchedUtil GOVernor. 227 */ 228 #define SCHED_FLAG_SUGOV 0x10000000 229 230 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 231 { 232 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 233 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 234 #else 235 return false; 236 #endif 237 } 238 239 /* 240 * Tells if entity @a should preempt entity @b. 241 */ 242 static inline bool 243 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 244 { 245 return dl_entity_is_special(a) || 246 dl_time_before(a->deadline, b->deadline); 247 } 248 249 /* 250 * This is the priority-queue data structure of the RT scheduling class: 251 */ 252 struct rt_prio_array { 253 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 254 struct list_head queue[MAX_RT_PRIO]; 255 }; 256 257 struct rt_bandwidth { 258 /* nests inside the rq lock: */ 259 raw_spinlock_t rt_runtime_lock; 260 ktime_t rt_period; 261 u64 rt_runtime; 262 struct hrtimer rt_period_timer; 263 unsigned int rt_period_active; 264 }; 265 266 void __dl_clear_params(struct task_struct *p); 267 268 struct dl_bandwidth { 269 raw_spinlock_t dl_runtime_lock; 270 u64 dl_runtime; 271 u64 dl_period; 272 }; 273 274 static inline int dl_bandwidth_enabled(void) 275 { 276 return sysctl_sched_rt_runtime >= 0; 277 } 278 279 /* 280 * To keep the bandwidth of -deadline tasks under control 281 * we need some place where: 282 * - store the maximum -deadline bandwidth of each cpu; 283 * - cache the fraction of bandwidth that is currently allocated in 284 * each root domain; 285 * 286 * This is all done in the data structure below. It is similar to the 287 * one used for RT-throttling (rt_bandwidth), with the main difference 288 * that, since here we are only interested in admission control, we 289 * do not decrease any runtime while the group "executes", neither we 290 * need a timer to replenish it. 291 * 292 * With respect to SMP, bandwidth is given on a per root domain basis, 293 * meaning that: 294 * - bw (< 100%) is the deadline bandwidth of each CPU; 295 * - total_bw is the currently allocated bandwidth in each root domain; 296 */ 297 struct dl_bw { 298 raw_spinlock_t lock; 299 u64 bw; 300 u64 total_bw; 301 }; 302 303 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 304 305 static inline 306 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 307 { 308 dl_b->total_bw -= tsk_bw; 309 __dl_update(dl_b, (s32)tsk_bw / cpus); 310 } 311 312 static inline 313 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 314 { 315 dl_b->total_bw += tsk_bw; 316 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 317 } 318 319 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, 320 u64 old_bw, u64 new_bw) 321 { 322 return dl_b->bw != -1 && 323 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 324 } 325 326 /* 327 * Verify the fitness of task @p to run on @cpu taking into account the 328 * CPU original capacity and the runtime/deadline ratio of the task. 329 * 330 * The function will return true if the CPU original capacity of the 331 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 332 * task and false otherwise. 333 */ 334 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 335 { 336 unsigned long cap = arch_scale_cpu_capacity(cpu); 337 338 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 339 } 340 341 extern void init_dl_bw(struct dl_bw *dl_b); 342 extern int sched_dl_global_validate(void); 343 extern void sched_dl_do_global(void); 344 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 345 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 346 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 347 extern bool __checkparam_dl(const struct sched_attr *attr); 348 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 349 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 350 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 351 extern bool dl_cpu_busy(unsigned int cpu); 352 353 #ifdef CONFIG_CGROUP_SCHED 354 355 #include <linux/cgroup.h> 356 #include <linux/psi.h> 357 358 struct cfs_rq; 359 struct rt_rq; 360 361 extern struct list_head task_groups; 362 363 struct cfs_bandwidth { 364 #ifdef CONFIG_CFS_BANDWIDTH 365 raw_spinlock_t lock; 366 ktime_t period; 367 u64 quota; 368 u64 runtime; 369 s64 hierarchical_quota; 370 371 u8 idle; 372 u8 period_active; 373 u8 slack_started; 374 struct hrtimer period_timer; 375 struct hrtimer slack_timer; 376 struct list_head throttled_cfs_rq; 377 378 /* Statistics: */ 379 int nr_periods; 380 int nr_throttled; 381 u64 throttled_time; 382 #endif 383 }; 384 385 /* Task group related information */ 386 struct task_group { 387 struct cgroup_subsys_state css; 388 389 #ifdef CONFIG_FAIR_GROUP_SCHED 390 /* schedulable entities of this group on each CPU */ 391 struct sched_entity **se; 392 /* runqueue "owned" by this group on each CPU */ 393 struct cfs_rq **cfs_rq; 394 unsigned long shares; 395 396 #ifdef CONFIG_SMP 397 /* 398 * load_avg can be heavily contended at clock tick time, so put 399 * it in its own cacheline separated from the fields above which 400 * will also be accessed at each tick. 401 */ 402 atomic_long_t load_avg ____cacheline_aligned; 403 #endif 404 #endif 405 406 #ifdef CONFIG_RT_GROUP_SCHED 407 struct sched_rt_entity **rt_se; 408 struct rt_rq **rt_rq; 409 410 struct rt_bandwidth rt_bandwidth; 411 #endif 412 413 struct rcu_head rcu; 414 struct list_head list; 415 416 struct task_group *parent; 417 struct list_head siblings; 418 struct list_head children; 419 420 #ifdef CONFIG_SCHED_AUTOGROUP 421 struct autogroup *autogroup; 422 #endif 423 424 struct cfs_bandwidth cfs_bandwidth; 425 426 #ifdef CONFIG_UCLAMP_TASK_GROUP 427 /* The two decimal precision [%] value requested from user-space */ 428 unsigned int uclamp_pct[UCLAMP_CNT]; 429 /* Clamp values requested for a task group */ 430 struct uclamp_se uclamp_req[UCLAMP_CNT]; 431 /* Effective clamp values used for a task group */ 432 struct uclamp_se uclamp[UCLAMP_CNT]; 433 #endif 434 435 }; 436 437 #ifdef CONFIG_FAIR_GROUP_SCHED 438 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 439 440 /* 441 * A weight of 0 or 1 can cause arithmetics problems. 442 * A weight of a cfs_rq is the sum of weights of which entities 443 * are queued on this cfs_rq, so a weight of a entity should not be 444 * too large, so as the shares value of a task group. 445 * (The default weight is 1024 - so there's no practical 446 * limitation from this.) 447 */ 448 #define MIN_SHARES (1UL << 1) 449 #define MAX_SHARES (1UL << 18) 450 #endif 451 452 typedef int (*tg_visitor)(struct task_group *, void *); 453 454 extern int walk_tg_tree_from(struct task_group *from, 455 tg_visitor down, tg_visitor up, void *data); 456 457 /* 458 * Iterate the full tree, calling @down when first entering a node and @up when 459 * leaving it for the final time. 460 * 461 * Caller must hold rcu_lock or sufficient equivalent. 462 */ 463 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 464 { 465 return walk_tg_tree_from(&root_task_group, down, up, data); 466 } 467 468 extern int tg_nop(struct task_group *tg, void *data); 469 470 extern void free_fair_sched_group(struct task_group *tg); 471 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 472 extern void online_fair_sched_group(struct task_group *tg); 473 extern void unregister_fair_sched_group(struct task_group *tg); 474 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 475 struct sched_entity *se, int cpu, 476 struct sched_entity *parent); 477 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 478 479 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 480 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 481 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 482 483 extern void free_rt_sched_group(struct task_group *tg); 484 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 485 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 486 struct sched_rt_entity *rt_se, int cpu, 487 struct sched_rt_entity *parent); 488 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 489 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 490 extern long sched_group_rt_runtime(struct task_group *tg); 491 extern long sched_group_rt_period(struct task_group *tg); 492 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 493 494 extern struct task_group *sched_create_group(struct task_group *parent); 495 extern void sched_online_group(struct task_group *tg, 496 struct task_group *parent); 497 extern void sched_destroy_group(struct task_group *tg); 498 extern void sched_offline_group(struct task_group *tg); 499 500 extern void sched_move_task(struct task_struct *tsk); 501 502 #ifdef CONFIG_FAIR_GROUP_SCHED 503 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 504 505 #ifdef CONFIG_SMP 506 extern void set_task_rq_fair(struct sched_entity *se, 507 struct cfs_rq *prev, struct cfs_rq *next); 508 #else /* !CONFIG_SMP */ 509 static inline void set_task_rq_fair(struct sched_entity *se, 510 struct cfs_rq *prev, struct cfs_rq *next) { } 511 #endif /* CONFIG_SMP */ 512 #endif /* CONFIG_FAIR_GROUP_SCHED */ 513 514 #else /* CONFIG_CGROUP_SCHED */ 515 516 struct cfs_bandwidth { }; 517 518 #endif /* CONFIG_CGROUP_SCHED */ 519 520 /* CFS-related fields in a runqueue */ 521 struct cfs_rq { 522 struct load_weight load; 523 unsigned int nr_running; 524 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 525 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 526 527 u64 exec_clock; 528 u64 min_vruntime; 529 #ifndef CONFIG_64BIT 530 u64 min_vruntime_copy; 531 #endif 532 533 struct rb_root_cached tasks_timeline; 534 535 /* 536 * 'curr' points to currently running entity on this cfs_rq. 537 * It is set to NULL otherwise (i.e when none are currently running). 538 */ 539 struct sched_entity *curr; 540 struct sched_entity *next; 541 struct sched_entity *last; 542 struct sched_entity *skip; 543 544 #ifdef CONFIG_SCHED_DEBUG 545 unsigned int nr_spread_over; 546 #endif 547 548 #ifdef CONFIG_SMP 549 /* 550 * CFS load tracking 551 */ 552 struct sched_avg avg; 553 #ifndef CONFIG_64BIT 554 u64 load_last_update_time_copy; 555 #endif 556 struct { 557 raw_spinlock_t lock ____cacheline_aligned; 558 int nr; 559 unsigned long load_avg; 560 unsigned long util_avg; 561 unsigned long runnable_avg; 562 } removed; 563 564 #ifdef CONFIG_FAIR_GROUP_SCHED 565 unsigned long tg_load_avg_contrib; 566 long propagate; 567 long prop_runnable_sum; 568 569 /* 570 * h_load = weight * f(tg) 571 * 572 * Where f(tg) is the recursive weight fraction assigned to 573 * this group. 574 */ 575 unsigned long h_load; 576 u64 last_h_load_update; 577 struct sched_entity *h_load_next; 578 #endif /* CONFIG_FAIR_GROUP_SCHED */ 579 #endif /* CONFIG_SMP */ 580 581 #ifdef CONFIG_FAIR_GROUP_SCHED 582 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 583 584 /* 585 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 586 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 587 * (like users, containers etc.) 588 * 589 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 590 * This list is used during load balance. 591 */ 592 int on_list; 593 struct list_head leaf_cfs_rq_list; 594 struct task_group *tg; /* group that "owns" this runqueue */ 595 596 #ifdef CONFIG_CFS_BANDWIDTH 597 int runtime_enabled; 598 s64 runtime_remaining; 599 600 u64 throttled_clock; 601 u64 throttled_clock_task; 602 u64 throttled_clock_task_time; 603 int throttled; 604 int throttle_count; 605 struct list_head throttled_list; 606 #endif /* CONFIG_CFS_BANDWIDTH */ 607 #endif /* CONFIG_FAIR_GROUP_SCHED */ 608 }; 609 610 static inline int rt_bandwidth_enabled(void) 611 { 612 return sysctl_sched_rt_runtime >= 0; 613 } 614 615 /* RT IPI pull logic requires IRQ_WORK */ 616 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 617 # define HAVE_RT_PUSH_IPI 618 #endif 619 620 /* Real-Time classes' related field in a runqueue: */ 621 struct rt_rq { 622 struct rt_prio_array active; 623 unsigned int rt_nr_running; 624 unsigned int rr_nr_running; 625 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 626 struct { 627 int curr; /* highest queued rt task prio */ 628 #ifdef CONFIG_SMP 629 int next; /* next highest */ 630 #endif 631 } highest_prio; 632 #endif 633 #ifdef CONFIG_SMP 634 unsigned long rt_nr_migratory; 635 unsigned long rt_nr_total; 636 int overloaded; 637 struct plist_head pushable_tasks; 638 639 #endif /* CONFIG_SMP */ 640 int rt_queued; 641 642 int rt_throttled; 643 u64 rt_time; 644 u64 rt_runtime; 645 /* Nests inside the rq lock: */ 646 raw_spinlock_t rt_runtime_lock; 647 648 #ifdef CONFIG_RT_GROUP_SCHED 649 unsigned long rt_nr_boosted; 650 651 struct rq *rq; 652 struct task_group *tg; 653 #endif 654 }; 655 656 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 657 { 658 return rt_rq->rt_queued && rt_rq->rt_nr_running; 659 } 660 661 /* Deadline class' related fields in a runqueue */ 662 struct dl_rq { 663 /* runqueue is an rbtree, ordered by deadline */ 664 struct rb_root_cached root; 665 666 unsigned long dl_nr_running; 667 668 #ifdef CONFIG_SMP 669 /* 670 * Deadline values of the currently executing and the 671 * earliest ready task on this rq. Caching these facilitates 672 * the decision whether or not a ready but not running task 673 * should migrate somewhere else. 674 */ 675 struct { 676 u64 curr; 677 u64 next; 678 } earliest_dl; 679 680 unsigned long dl_nr_migratory; 681 int overloaded; 682 683 /* 684 * Tasks on this rq that can be pushed away. They are kept in 685 * an rb-tree, ordered by tasks' deadlines, with caching 686 * of the leftmost (earliest deadline) element. 687 */ 688 struct rb_root_cached pushable_dl_tasks_root; 689 #else 690 struct dl_bw dl_bw; 691 #endif 692 /* 693 * "Active utilization" for this runqueue: increased when a 694 * task wakes up (becomes TASK_RUNNING) and decreased when a 695 * task blocks 696 */ 697 u64 running_bw; 698 699 /* 700 * Utilization of the tasks "assigned" to this runqueue (including 701 * the tasks that are in runqueue and the tasks that executed on this 702 * CPU and blocked). Increased when a task moves to this runqueue, and 703 * decreased when the task moves away (migrates, changes scheduling 704 * policy, or terminates). 705 * This is needed to compute the "inactive utilization" for the 706 * runqueue (inactive utilization = this_bw - running_bw). 707 */ 708 u64 this_bw; 709 u64 extra_bw; 710 711 /* 712 * Inverse of the fraction of CPU utilization that can be reclaimed 713 * by the GRUB algorithm. 714 */ 715 u64 bw_ratio; 716 }; 717 718 #ifdef CONFIG_FAIR_GROUP_SCHED 719 /* An entity is a task if it doesn't "own" a runqueue */ 720 #define entity_is_task(se) (!se->my_q) 721 722 static inline void se_update_runnable(struct sched_entity *se) 723 { 724 if (!entity_is_task(se)) 725 se->runnable_weight = se->my_q->h_nr_running; 726 } 727 728 static inline long se_runnable(struct sched_entity *se) 729 { 730 if (entity_is_task(se)) 731 return !!se->on_rq; 732 else 733 return se->runnable_weight; 734 } 735 736 #else 737 #define entity_is_task(se) 1 738 739 static inline void se_update_runnable(struct sched_entity *se) {} 740 741 static inline long se_runnable(struct sched_entity *se) 742 { 743 return !!se->on_rq; 744 } 745 #endif 746 747 #ifdef CONFIG_SMP 748 /* 749 * XXX we want to get rid of these helpers and use the full load resolution. 750 */ 751 static inline long se_weight(struct sched_entity *se) 752 { 753 return scale_load_down(se->load.weight); 754 } 755 756 757 static inline bool sched_asym_prefer(int a, int b) 758 { 759 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 760 } 761 762 struct perf_domain { 763 struct em_perf_domain *em_pd; 764 struct perf_domain *next; 765 struct rcu_head rcu; 766 }; 767 768 /* Scheduling group status flags */ 769 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 770 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 771 772 /* 773 * We add the notion of a root-domain which will be used to define per-domain 774 * variables. Each exclusive cpuset essentially defines an island domain by 775 * fully partitioning the member CPUs from any other cpuset. Whenever a new 776 * exclusive cpuset is created, we also create and attach a new root-domain 777 * object. 778 * 779 */ 780 struct root_domain { 781 atomic_t refcount; 782 atomic_t rto_count; 783 struct rcu_head rcu; 784 cpumask_var_t span; 785 cpumask_var_t online; 786 787 /* 788 * Indicate pullable load on at least one CPU, e.g: 789 * - More than one runnable task 790 * - Running task is misfit 791 */ 792 int overload; 793 794 /* Indicate one or more cpus over-utilized (tipping point) */ 795 int overutilized; 796 797 /* 798 * The bit corresponding to a CPU gets set here if such CPU has more 799 * than one runnable -deadline task (as it is below for RT tasks). 800 */ 801 cpumask_var_t dlo_mask; 802 atomic_t dlo_count; 803 struct dl_bw dl_bw; 804 struct cpudl cpudl; 805 806 /* 807 * Indicate whether a root_domain's dl_bw has been checked or 808 * updated. It's monotonously increasing value. 809 * 810 * Also, some corner cases, like 'wrap around' is dangerous, but given 811 * that u64 is 'big enough'. So that shouldn't be a concern. 812 */ 813 u64 visit_gen; 814 815 #ifdef HAVE_RT_PUSH_IPI 816 /* 817 * For IPI pull requests, loop across the rto_mask. 818 */ 819 struct irq_work rto_push_work; 820 raw_spinlock_t rto_lock; 821 /* These are only updated and read within rto_lock */ 822 int rto_loop; 823 int rto_cpu; 824 /* These atomics are updated outside of a lock */ 825 atomic_t rto_loop_next; 826 atomic_t rto_loop_start; 827 #endif 828 /* 829 * The "RT overload" flag: it gets set if a CPU has more than 830 * one runnable RT task. 831 */ 832 cpumask_var_t rto_mask; 833 struct cpupri cpupri; 834 835 unsigned long max_cpu_capacity; 836 837 /* 838 * NULL-terminated list of performance domains intersecting with the 839 * CPUs of the rd. Protected by RCU. 840 */ 841 struct perf_domain __rcu *pd; 842 }; 843 844 extern void init_defrootdomain(void); 845 extern int sched_init_domains(const struct cpumask *cpu_map); 846 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 847 extern void sched_get_rd(struct root_domain *rd); 848 extern void sched_put_rd(struct root_domain *rd); 849 850 #ifdef HAVE_RT_PUSH_IPI 851 extern void rto_push_irq_work_func(struct irq_work *work); 852 #endif 853 #endif /* CONFIG_SMP */ 854 855 #ifdef CONFIG_UCLAMP_TASK 856 /* 857 * struct uclamp_bucket - Utilization clamp bucket 858 * @value: utilization clamp value for tasks on this clamp bucket 859 * @tasks: number of RUNNABLE tasks on this clamp bucket 860 * 861 * Keep track of how many tasks are RUNNABLE for a given utilization 862 * clamp value. 863 */ 864 struct uclamp_bucket { 865 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 866 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 867 }; 868 869 /* 870 * struct uclamp_rq - rq's utilization clamp 871 * @value: currently active clamp values for a rq 872 * @bucket: utilization clamp buckets affecting a rq 873 * 874 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 875 * A clamp value is affecting a rq when there is at least one task RUNNABLE 876 * (or actually running) with that value. 877 * 878 * There are up to UCLAMP_CNT possible different clamp values, currently there 879 * are only two: minimum utilization and maximum utilization. 880 * 881 * All utilization clamping values are MAX aggregated, since: 882 * - for util_min: we want to run the CPU at least at the max of the minimum 883 * utilization required by its currently RUNNABLE tasks. 884 * - for util_max: we want to allow the CPU to run up to the max of the 885 * maximum utilization allowed by its currently RUNNABLE tasks. 886 * 887 * Since on each system we expect only a limited number of different 888 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 889 * the metrics required to compute all the per-rq utilization clamp values. 890 */ 891 struct uclamp_rq { 892 unsigned int value; 893 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 894 }; 895 896 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 897 #endif /* CONFIG_UCLAMP_TASK */ 898 899 /* 900 * This is the main, per-CPU runqueue data structure. 901 * 902 * Locking rule: those places that want to lock multiple runqueues 903 * (such as the load balancing or the thread migration code), lock 904 * acquire operations must be ordered by ascending &runqueue. 905 */ 906 struct rq { 907 /* runqueue lock: */ 908 raw_spinlock_t lock; 909 910 /* 911 * nr_running and cpu_load should be in the same cacheline because 912 * remote CPUs use both these fields when doing load calculation. 913 */ 914 unsigned int nr_running; 915 #ifdef CONFIG_NUMA_BALANCING 916 unsigned int nr_numa_running; 917 unsigned int nr_preferred_running; 918 unsigned int numa_migrate_on; 919 #endif 920 #ifdef CONFIG_NO_HZ_COMMON 921 #ifdef CONFIG_SMP 922 unsigned long last_blocked_load_update_tick; 923 unsigned int has_blocked_load; 924 call_single_data_t nohz_csd; 925 #endif /* CONFIG_SMP */ 926 unsigned int nohz_tick_stopped; 927 atomic_t nohz_flags; 928 #endif /* CONFIG_NO_HZ_COMMON */ 929 930 #ifdef CONFIG_SMP 931 unsigned int ttwu_pending; 932 #endif 933 u64 nr_switches; 934 935 #ifdef CONFIG_UCLAMP_TASK 936 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 937 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 938 unsigned int uclamp_flags; 939 #define UCLAMP_FLAG_IDLE 0x01 940 #endif 941 942 struct cfs_rq cfs; 943 struct rt_rq rt; 944 struct dl_rq dl; 945 946 #ifdef CONFIG_FAIR_GROUP_SCHED 947 /* list of leaf cfs_rq on this CPU: */ 948 struct list_head leaf_cfs_rq_list; 949 struct list_head *tmp_alone_branch; 950 #endif /* CONFIG_FAIR_GROUP_SCHED */ 951 952 /* 953 * This is part of a global counter where only the total sum 954 * over all CPUs matters. A task can increase this counter on 955 * one CPU and if it got migrated afterwards it may decrease 956 * it on another CPU. Always updated under the runqueue lock: 957 */ 958 unsigned long nr_uninterruptible; 959 960 struct task_struct __rcu *curr; 961 struct task_struct *idle; 962 struct task_struct *stop; 963 unsigned long next_balance; 964 struct mm_struct *prev_mm; 965 966 unsigned int clock_update_flags; 967 u64 clock; 968 /* Ensure that all clocks are in the same cache line */ 969 u64 clock_task ____cacheline_aligned; 970 u64 clock_pelt; 971 unsigned long lost_idle_time; 972 973 atomic_t nr_iowait; 974 975 #ifdef CONFIG_SCHED_DEBUG 976 u64 last_seen_need_resched_ns; 977 int ticks_without_resched; 978 #endif 979 980 #ifdef CONFIG_MEMBARRIER 981 int membarrier_state; 982 #endif 983 984 #ifdef CONFIG_SMP 985 struct root_domain *rd; 986 struct sched_domain __rcu *sd; 987 988 unsigned long cpu_capacity; 989 unsigned long cpu_capacity_orig; 990 991 struct callback_head *balance_callback; 992 993 unsigned char nohz_idle_balance; 994 unsigned char idle_balance; 995 996 unsigned long misfit_task_load; 997 998 /* For active balancing */ 999 int active_balance; 1000 int push_cpu; 1001 struct cpu_stop_work active_balance_work; 1002 1003 /* CPU of this runqueue: */ 1004 int cpu; 1005 int online; 1006 1007 struct list_head cfs_tasks; 1008 1009 struct sched_avg avg_rt; 1010 struct sched_avg avg_dl; 1011 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1012 struct sched_avg avg_irq; 1013 #endif 1014 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1015 struct sched_avg avg_thermal; 1016 #endif 1017 u64 idle_stamp; 1018 u64 avg_idle; 1019 1020 /* This is used to determine avg_idle's max value */ 1021 u64 max_idle_balance_cost; 1022 1023 #ifdef CONFIG_HOTPLUG_CPU 1024 struct rcuwait hotplug_wait; 1025 #endif 1026 #endif /* CONFIG_SMP */ 1027 1028 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1029 u64 prev_irq_time; 1030 #endif 1031 #ifdef CONFIG_PARAVIRT 1032 u64 prev_steal_time; 1033 #endif 1034 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1035 u64 prev_steal_time_rq; 1036 #endif 1037 1038 /* calc_load related fields */ 1039 unsigned long calc_load_update; 1040 long calc_load_active; 1041 1042 #ifdef CONFIG_SCHED_HRTICK 1043 #ifdef CONFIG_SMP 1044 call_single_data_t hrtick_csd; 1045 #endif 1046 struct hrtimer hrtick_timer; 1047 ktime_t hrtick_time; 1048 #endif 1049 1050 #ifdef CONFIG_SCHEDSTATS 1051 /* latency stats */ 1052 struct sched_info rq_sched_info; 1053 unsigned long long rq_cpu_time; 1054 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1055 1056 /* sys_sched_yield() stats */ 1057 unsigned int yld_count; 1058 1059 /* schedule() stats */ 1060 unsigned int sched_count; 1061 unsigned int sched_goidle; 1062 1063 /* try_to_wake_up() stats */ 1064 unsigned int ttwu_count; 1065 unsigned int ttwu_local; 1066 #endif 1067 1068 #ifdef CONFIG_CPU_IDLE 1069 /* Must be inspected within a rcu lock section */ 1070 struct cpuidle_state *idle_state; 1071 #endif 1072 1073 #ifdef CONFIG_SMP 1074 unsigned int nr_pinned; 1075 #endif 1076 unsigned int push_busy; 1077 struct cpu_stop_work push_work; 1078 }; 1079 1080 #ifdef CONFIG_FAIR_GROUP_SCHED 1081 1082 /* CPU runqueue to which this cfs_rq is attached */ 1083 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1084 { 1085 return cfs_rq->rq; 1086 } 1087 1088 #else 1089 1090 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1091 { 1092 return container_of(cfs_rq, struct rq, cfs); 1093 } 1094 #endif 1095 1096 static inline int cpu_of(struct rq *rq) 1097 { 1098 #ifdef CONFIG_SMP 1099 return rq->cpu; 1100 #else 1101 return 0; 1102 #endif 1103 } 1104 1105 #define MDF_PUSH 0x01 1106 1107 static inline bool is_migration_disabled(struct task_struct *p) 1108 { 1109 #ifdef CONFIG_SMP 1110 return p->migration_disabled; 1111 #else 1112 return false; 1113 #endif 1114 } 1115 1116 #ifdef CONFIG_SCHED_SMT 1117 extern void __update_idle_core(struct rq *rq); 1118 1119 static inline void update_idle_core(struct rq *rq) 1120 { 1121 if (static_branch_unlikely(&sched_smt_present)) 1122 __update_idle_core(rq); 1123 } 1124 1125 #else 1126 static inline void update_idle_core(struct rq *rq) { } 1127 #endif 1128 1129 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1130 1131 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1132 #define this_rq() this_cpu_ptr(&runqueues) 1133 #define task_rq(p) cpu_rq(task_cpu(p)) 1134 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1135 #define raw_rq() raw_cpu_ptr(&runqueues) 1136 1137 extern void update_rq_clock(struct rq *rq); 1138 1139 static inline u64 __rq_clock_broken(struct rq *rq) 1140 { 1141 return READ_ONCE(rq->clock); 1142 } 1143 1144 /* 1145 * rq::clock_update_flags bits 1146 * 1147 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1148 * call to __schedule(). This is an optimisation to avoid 1149 * neighbouring rq clock updates. 1150 * 1151 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1152 * in effect and calls to update_rq_clock() are being ignored. 1153 * 1154 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1155 * made to update_rq_clock() since the last time rq::lock was pinned. 1156 * 1157 * If inside of __schedule(), clock_update_flags will have been 1158 * shifted left (a left shift is a cheap operation for the fast path 1159 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1160 * 1161 * if (rq-clock_update_flags >= RQCF_UPDATED) 1162 * 1163 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1164 * one position though, because the next rq_unpin_lock() will shift it 1165 * back. 1166 */ 1167 #define RQCF_REQ_SKIP 0x01 1168 #define RQCF_ACT_SKIP 0x02 1169 #define RQCF_UPDATED 0x04 1170 1171 static inline void assert_clock_updated(struct rq *rq) 1172 { 1173 /* 1174 * The only reason for not seeing a clock update since the 1175 * last rq_pin_lock() is if we're currently skipping updates. 1176 */ 1177 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1178 } 1179 1180 static inline u64 rq_clock(struct rq *rq) 1181 { 1182 lockdep_assert_held(&rq->lock); 1183 assert_clock_updated(rq); 1184 1185 return rq->clock; 1186 } 1187 1188 static inline u64 rq_clock_task(struct rq *rq) 1189 { 1190 lockdep_assert_held(&rq->lock); 1191 assert_clock_updated(rq); 1192 1193 return rq->clock_task; 1194 } 1195 1196 /** 1197 * By default the decay is the default pelt decay period. 1198 * The decay shift can change the decay period in 1199 * multiples of 32. 1200 * Decay shift Decay period(ms) 1201 * 0 32 1202 * 1 64 1203 * 2 128 1204 * 3 256 1205 * 4 512 1206 */ 1207 extern int sched_thermal_decay_shift; 1208 1209 static inline u64 rq_clock_thermal(struct rq *rq) 1210 { 1211 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1212 } 1213 1214 static inline void rq_clock_skip_update(struct rq *rq) 1215 { 1216 lockdep_assert_held(&rq->lock); 1217 rq->clock_update_flags |= RQCF_REQ_SKIP; 1218 } 1219 1220 /* 1221 * See rt task throttling, which is the only time a skip 1222 * request is canceled. 1223 */ 1224 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1225 { 1226 lockdep_assert_held(&rq->lock); 1227 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1228 } 1229 1230 struct rq_flags { 1231 unsigned long flags; 1232 struct pin_cookie cookie; 1233 #ifdef CONFIG_SCHED_DEBUG 1234 /* 1235 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1236 * current pin context is stashed here in case it needs to be 1237 * restored in rq_repin_lock(). 1238 */ 1239 unsigned int clock_update_flags; 1240 #endif 1241 }; 1242 1243 extern struct callback_head balance_push_callback; 1244 1245 /* 1246 * Lockdep annotation that avoids accidental unlocks; it's like a 1247 * sticky/continuous lockdep_assert_held(). 1248 * 1249 * This avoids code that has access to 'struct rq *rq' (basically everything in 1250 * the scheduler) from accidentally unlocking the rq if they do not also have a 1251 * copy of the (on-stack) 'struct rq_flags rf'. 1252 * 1253 * Also see Documentation/locking/lockdep-design.rst. 1254 */ 1255 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1256 { 1257 rf->cookie = lockdep_pin_lock(&rq->lock); 1258 1259 #ifdef CONFIG_SCHED_DEBUG 1260 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1261 rf->clock_update_flags = 0; 1262 #ifdef CONFIG_SMP 1263 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1264 #endif 1265 #endif 1266 } 1267 1268 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1269 { 1270 #ifdef CONFIG_SCHED_DEBUG 1271 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1272 rf->clock_update_flags = RQCF_UPDATED; 1273 #endif 1274 1275 lockdep_unpin_lock(&rq->lock, rf->cookie); 1276 } 1277 1278 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1279 { 1280 lockdep_repin_lock(&rq->lock, rf->cookie); 1281 1282 #ifdef CONFIG_SCHED_DEBUG 1283 /* 1284 * Restore the value we stashed in @rf for this pin context. 1285 */ 1286 rq->clock_update_flags |= rf->clock_update_flags; 1287 #endif 1288 } 1289 1290 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1291 __acquires(rq->lock); 1292 1293 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1294 __acquires(p->pi_lock) 1295 __acquires(rq->lock); 1296 1297 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1298 __releases(rq->lock) 1299 { 1300 rq_unpin_lock(rq, rf); 1301 raw_spin_unlock(&rq->lock); 1302 } 1303 1304 static inline void 1305 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1306 __releases(rq->lock) 1307 __releases(p->pi_lock) 1308 { 1309 rq_unpin_lock(rq, rf); 1310 raw_spin_unlock(&rq->lock); 1311 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1312 } 1313 1314 static inline void 1315 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1316 __acquires(rq->lock) 1317 { 1318 raw_spin_lock_irqsave(&rq->lock, rf->flags); 1319 rq_pin_lock(rq, rf); 1320 } 1321 1322 static inline void 1323 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1324 __acquires(rq->lock) 1325 { 1326 raw_spin_lock_irq(&rq->lock); 1327 rq_pin_lock(rq, rf); 1328 } 1329 1330 static inline void 1331 rq_lock(struct rq *rq, struct rq_flags *rf) 1332 __acquires(rq->lock) 1333 { 1334 raw_spin_lock(&rq->lock); 1335 rq_pin_lock(rq, rf); 1336 } 1337 1338 static inline void 1339 rq_relock(struct rq *rq, struct rq_flags *rf) 1340 __acquires(rq->lock) 1341 { 1342 raw_spin_lock(&rq->lock); 1343 rq_repin_lock(rq, rf); 1344 } 1345 1346 static inline void 1347 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1348 __releases(rq->lock) 1349 { 1350 rq_unpin_lock(rq, rf); 1351 raw_spin_unlock_irqrestore(&rq->lock, rf->flags); 1352 } 1353 1354 static inline void 1355 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1356 __releases(rq->lock) 1357 { 1358 rq_unpin_lock(rq, rf); 1359 raw_spin_unlock_irq(&rq->lock); 1360 } 1361 1362 static inline void 1363 rq_unlock(struct rq *rq, struct rq_flags *rf) 1364 __releases(rq->lock) 1365 { 1366 rq_unpin_lock(rq, rf); 1367 raw_spin_unlock(&rq->lock); 1368 } 1369 1370 static inline struct rq * 1371 this_rq_lock_irq(struct rq_flags *rf) 1372 __acquires(rq->lock) 1373 { 1374 struct rq *rq; 1375 1376 local_irq_disable(); 1377 rq = this_rq(); 1378 rq_lock(rq, rf); 1379 return rq; 1380 } 1381 1382 #ifdef CONFIG_NUMA 1383 enum numa_topology_type { 1384 NUMA_DIRECT, 1385 NUMA_GLUELESS_MESH, 1386 NUMA_BACKPLANE, 1387 }; 1388 extern enum numa_topology_type sched_numa_topology_type; 1389 extern int sched_max_numa_distance; 1390 extern bool find_numa_distance(int distance); 1391 extern void sched_init_numa(void); 1392 extern void sched_domains_numa_masks_set(unsigned int cpu); 1393 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1394 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1395 #else 1396 static inline void sched_init_numa(void) { } 1397 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1398 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1399 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1400 { 1401 return nr_cpu_ids; 1402 } 1403 #endif 1404 1405 #ifdef CONFIG_NUMA_BALANCING 1406 /* The regions in numa_faults array from task_struct */ 1407 enum numa_faults_stats { 1408 NUMA_MEM = 0, 1409 NUMA_CPU, 1410 NUMA_MEMBUF, 1411 NUMA_CPUBUF 1412 }; 1413 extern void sched_setnuma(struct task_struct *p, int node); 1414 extern int migrate_task_to(struct task_struct *p, int cpu); 1415 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1416 int cpu, int scpu); 1417 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1418 #else 1419 static inline void 1420 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1421 { 1422 } 1423 #endif /* CONFIG_NUMA_BALANCING */ 1424 1425 #ifdef CONFIG_SMP 1426 1427 static inline void 1428 queue_balance_callback(struct rq *rq, 1429 struct callback_head *head, 1430 void (*func)(struct rq *rq)) 1431 { 1432 lockdep_assert_held(&rq->lock); 1433 1434 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1435 return; 1436 1437 head->func = (void (*)(struct callback_head *))func; 1438 head->next = rq->balance_callback; 1439 rq->balance_callback = head; 1440 } 1441 1442 #define rcu_dereference_check_sched_domain(p) \ 1443 rcu_dereference_check((p), \ 1444 lockdep_is_held(&sched_domains_mutex)) 1445 1446 /* 1447 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1448 * See destroy_sched_domains: call_rcu for details. 1449 * 1450 * The domain tree of any CPU may only be accessed from within 1451 * preempt-disabled sections. 1452 */ 1453 #define for_each_domain(cpu, __sd) \ 1454 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1455 __sd; __sd = __sd->parent) 1456 1457 /** 1458 * highest_flag_domain - Return highest sched_domain containing flag. 1459 * @cpu: The CPU whose highest level of sched domain is to 1460 * be returned. 1461 * @flag: The flag to check for the highest sched_domain 1462 * for the given CPU. 1463 * 1464 * Returns the highest sched_domain of a CPU which contains the given flag. 1465 */ 1466 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1467 { 1468 struct sched_domain *sd, *hsd = NULL; 1469 1470 for_each_domain(cpu, sd) { 1471 if (!(sd->flags & flag)) 1472 break; 1473 hsd = sd; 1474 } 1475 1476 return hsd; 1477 } 1478 1479 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1480 { 1481 struct sched_domain *sd; 1482 1483 for_each_domain(cpu, sd) { 1484 if (sd->flags & flag) 1485 break; 1486 } 1487 1488 return sd; 1489 } 1490 1491 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1492 DECLARE_PER_CPU(int, sd_llc_size); 1493 DECLARE_PER_CPU(int, sd_llc_id); 1494 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1495 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1496 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1497 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1498 extern struct static_key_false sched_asym_cpucapacity; 1499 1500 struct sched_group_capacity { 1501 atomic_t ref; 1502 /* 1503 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1504 * for a single CPU. 1505 */ 1506 unsigned long capacity; 1507 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1508 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1509 unsigned long next_update; 1510 int imbalance; /* XXX unrelated to capacity but shared group state */ 1511 1512 #ifdef CONFIG_SCHED_DEBUG 1513 int id; 1514 #endif 1515 1516 unsigned long cpumask[]; /* Balance mask */ 1517 }; 1518 1519 struct sched_group { 1520 struct sched_group *next; /* Must be a circular list */ 1521 atomic_t ref; 1522 1523 unsigned int group_weight; 1524 struct sched_group_capacity *sgc; 1525 int asym_prefer_cpu; /* CPU of highest priority in group */ 1526 1527 /* 1528 * The CPUs this group covers. 1529 * 1530 * NOTE: this field is variable length. (Allocated dynamically 1531 * by attaching extra space to the end of the structure, 1532 * depending on how many CPUs the kernel has booted up with) 1533 */ 1534 unsigned long cpumask[]; 1535 }; 1536 1537 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1538 { 1539 return to_cpumask(sg->cpumask); 1540 } 1541 1542 /* 1543 * See build_balance_mask(). 1544 */ 1545 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1546 { 1547 return to_cpumask(sg->sgc->cpumask); 1548 } 1549 1550 /** 1551 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1552 * @group: The group whose first CPU is to be returned. 1553 */ 1554 static inline unsigned int group_first_cpu(struct sched_group *group) 1555 { 1556 return cpumask_first(sched_group_span(group)); 1557 } 1558 1559 extern int group_balance_cpu(struct sched_group *sg); 1560 1561 #ifdef CONFIG_SCHED_DEBUG 1562 void update_sched_domain_debugfs(void); 1563 void dirty_sched_domain_sysctl(int cpu); 1564 #else 1565 static inline void update_sched_domain_debugfs(void) 1566 { 1567 } 1568 static inline void dirty_sched_domain_sysctl(int cpu) 1569 { 1570 } 1571 #endif 1572 1573 extern int sched_update_scaling(void); 1574 1575 extern void flush_smp_call_function_from_idle(void); 1576 1577 #else /* !CONFIG_SMP: */ 1578 static inline void flush_smp_call_function_from_idle(void) { } 1579 #endif 1580 1581 #include "stats.h" 1582 #include "autogroup.h" 1583 1584 #ifdef CONFIG_CGROUP_SCHED 1585 1586 /* 1587 * Return the group to which this tasks belongs. 1588 * 1589 * We cannot use task_css() and friends because the cgroup subsystem 1590 * changes that value before the cgroup_subsys::attach() method is called, 1591 * therefore we cannot pin it and might observe the wrong value. 1592 * 1593 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1594 * core changes this before calling sched_move_task(). 1595 * 1596 * Instead we use a 'copy' which is updated from sched_move_task() while 1597 * holding both task_struct::pi_lock and rq::lock. 1598 */ 1599 static inline struct task_group *task_group(struct task_struct *p) 1600 { 1601 return p->sched_task_group; 1602 } 1603 1604 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1605 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1606 { 1607 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1608 struct task_group *tg = task_group(p); 1609 #endif 1610 1611 #ifdef CONFIG_FAIR_GROUP_SCHED 1612 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1613 p->se.cfs_rq = tg->cfs_rq[cpu]; 1614 p->se.parent = tg->se[cpu]; 1615 #endif 1616 1617 #ifdef CONFIG_RT_GROUP_SCHED 1618 p->rt.rt_rq = tg->rt_rq[cpu]; 1619 p->rt.parent = tg->rt_se[cpu]; 1620 #endif 1621 } 1622 1623 #else /* CONFIG_CGROUP_SCHED */ 1624 1625 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1626 static inline struct task_group *task_group(struct task_struct *p) 1627 { 1628 return NULL; 1629 } 1630 1631 #endif /* CONFIG_CGROUP_SCHED */ 1632 1633 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1634 { 1635 set_task_rq(p, cpu); 1636 #ifdef CONFIG_SMP 1637 /* 1638 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1639 * successfully executed on another CPU. We must ensure that updates of 1640 * per-task data have been completed by this moment. 1641 */ 1642 smp_wmb(); 1643 #ifdef CONFIG_THREAD_INFO_IN_TASK 1644 WRITE_ONCE(p->cpu, cpu); 1645 #else 1646 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1647 #endif 1648 p->wake_cpu = cpu; 1649 #endif 1650 } 1651 1652 /* 1653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1654 */ 1655 #ifdef CONFIG_SCHED_DEBUG 1656 # include <linux/static_key.h> 1657 # define const_debug __read_mostly 1658 #else 1659 # define const_debug const 1660 #endif 1661 1662 #define SCHED_FEAT(name, enabled) \ 1663 __SCHED_FEAT_##name , 1664 1665 enum { 1666 #include "features.h" 1667 __SCHED_FEAT_NR, 1668 }; 1669 1670 #undef SCHED_FEAT 1671 1672 #ifdef CONFIG_SCHED_DEBUG 1673 1674 /* 1675 * To support run-time toggling of sched features, all the translation units 1676 * (but core.c) reference the sysctl_sched_features defined in core.c. 1677 */ 1678 extern const_debug unsigned int sysctl_sched_features; 1679 1680 #ifdef CONFIG_JUMP_LABEL 1681 #define SCHED_FEAT(name, enabled) \ 1682 static __always_inline bool static_branch_##name(struct static_key *key) \ 1683 { \ 1684 return static_key_##enabled(key); \ 1685 } 1686 1687 #include "features.h" 1688 #undef SCHED_FEAT 1689 1690 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1691 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1692 1693 #else /* !CONFIG_JUMP_LABEL */ 1694 1695 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1696 1697 #endif /* CONFIG_JUMP_LABEL */ 1698 1699 #else /* !SCHED_DEBUG */ 1700 1701 /* 1702 * Each translation unit has its own copy of sysctl_sched_features to allow 1703 * constants propagation at compile time and compiler optimization based on 1704 * features default. 1705 */ 1706 #define SCHED_FEAT(name, enabled) \ 1707 (1UL << __SCHED_FEAT_##name) * enabled | 1708 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1709 #include "features.h" 1710 0; 1711 #undef SCHED_FEAT 1712 1713 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1714 1715 #endif /* SCHED_DEBUG */ 1716 1717 extern struct static_key_false sched_numa_balancing; 1718 extern struct static_key_false sched_schedstats; 1719 1720 static inline u64 global_rt_period(void) 1721 { 1722 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1723 } 1724 1725 static inline u64 global_rt_runtime(void) 1726 { 1727 if (sysctl_sched_rt_runtime < 0) 1728 return RUNTIME_INF; 1729 1730 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1731 } 1732 1733 static inline int task_current(struct rq *rq, struct task_struct *p) 1734 { 1735 return rq->curr == p; 1736 } 1737 1738 static inline int task_running(struct rq *rq, struct task_struct *p) 1739 { 1740 #ifdef CONFIG_SMP 1741 return p->on_cpu; 1742 #else 1743 return task_current(rq, p); 1744 #endif 1745 } 1746 1747 static inline int task_on_rq_queued(struct task_struct *p) 1748 { 1749 return p->on_rq == TASK_ON_RQ_QUEUED; 1750 } 1751 1752 static inline int task_on_rq_migrating(struct task_struct *p) 1753 { 1754 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 1755 } 1756 1757 /* Wake flags. The first three directly map to some SD flag value */ 1758 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 1759 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 1760 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 1761 1762 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 1763 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 1764 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 1765 1766 #ifdef CONFIG_SMP 1767 static_assert(WF_EXEC == SD_BALANCE_EXEC); 1768 static_assert(WF_FORK == SD_BALANCE_FORK); 1769 static_assert(WF_TTWU == SD_BALANCE_WAKE); 1770 #endif 1771 1772 /* 1773 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1774 * of tasks with abnormal "nice" values across CPUs the contribution that 1775 * each task makes to its run queue's load is weighted according to its 1776 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1777 * scaled version of the new time slice allocation that they receive on time 1778 * slice expiry etc. 1779 */ 1780 1781 #define WEIGHT_IDLEPRIO 3 1782 #define WMULT_IDLEPRIO 1431655765 1783 1784 extern const int sched_prio_to_weight[40]; 1785 extern const u32 sched_prio_to_wmult[40]; 1786 1787 /* 1788 * {de,en}queue flags: 1789 * 1790 * DEQUEUE_SLEEP - task is no longer runnable 1791 * ENQUEUE_WAKEUP - task just became runnable 1792 * 1793 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1794 * are in a known state which allows modification. Such pairs 1795 * should preserve as much state as possible. 1796 * 1797 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1798 * in the runqueue. 1799 * 1800 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1801 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1802 * ENQUEUE_MIGRATED - the task was migrated during wakeup 1803 * 1804 */ 1805 1806 #define DEQUEUE_SLEEP 0x01 1807 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 1808 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 1809 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 1810 1811 #define ENQUEUE_WAKEUP 0x01 1812 #define ENQUEUE_RESTORE 0x02 1813 #define ENQUEUE_MOVE 0x04 1814 #define ENQUEUE_NOCLOCK 0x08 1815 1816 #define ENQUEUE_HEAD 0x10 1817 #define ENQUEUE_REPLENISH 0x20 1818 #ifdef CONFIG_SMP 1819 #define ENQUEUE_MIGRATED 0x40 1820 #else 1821 #define ENQUEUE_MIGRATED 0x00 1822 #endif 1823 1824 #define RETRY_TASK ((void *)-1UL) 1825 1826 struct sched_class { 1827 1828 #ifdef CONFIG_UCLAMP_TASK 1829 int uclamp_enabled; 1830 #endif 1831 1832 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1833 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1834 void (*yield_task) (struct rq *rq); 1835 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 1836 1837 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 1838 1839 struct task_struct *(*pick_next_task)(struct rq *rq); 1840 1841 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 1842 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 1843 1844 #ifdef CONFIG_SMP 1845 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 1846 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 1847 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 1848 1849 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 1850 1851 void (*set_cpus_allowed)(struct task_struct *p, 1852 const struct cpumask *newmask, 1853 u32 flags); 1854 1855 void (*rq_online)(struct rq *rq); 1856 void (*rq_offline)(struct rq *rq); 1857 1858 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 1859 #endif 1860 1861 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 1862 void (*task_fork)(struct task_struct *p); 1863 void (*task_dead)(struct task_struct *p); 1864 1865 /* 1866 * The switched_from() call is allowed to drop rq->lock, therefore we 1867 * cannot assume the switched_from/switched_to pair is serialized by 1868 * rq->lock. They are however serialized by p->pi_lock. 1869 */ 1870 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 1871 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1872 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1873 int oldprio); 1874 1875 unsigned int (*get_rr_interval)(struct rq *rq, 1876 struct task_struct *task); 1877 1878 void (*update_curr)(struct rq *rq); 1879 1880 #define TASK_SET_GROUP 0 1881 #define TASK_MOVE_GROUP 1 1882 1883 #ifdef CONFIG_FAIR_GROUP_SCHED 1884 void (*task_change_group)(struct task_struct *p, int type); 1885 #endif 1886 }; 1887 1888 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1889 { 1890 WARN_ON_ONCE(rq->curr != prev); 1891 prev->sched_class->put_prev_task(rq, prev); 1892 } 1893 1894 static inline void set_next_task(struct rq *rq, struct task_struct *next) 1895 { 1896 WARN_ON_ONCE(rq->curr != next); 1897 next->sched_class->set_next_task(rq, next, false); 1898 } 1899 1900 1901 /* 1902 * Helper to define a sched_class instance; each one is placed in a separate 1903 * section which is ordered by the linker script: 1904 * 1905 * include/asm-generic/vmlinux.lds.h 1906 * 1907 * Also enforce alignment on the instance, not the type, to guarantee layout. 1908 */ 1909 #define DEFINE_SCHED_CLASS(name) \ 1910 const struct sched_class name##_sched_class \ 1911 __aligned(__alignof__(struct sched_class)) \ 1912 __section("__" #name "_sched_class") 1913 1914 /* Defined in include/asm-generic/vmlinux.lds.h */ 1915 extern struct sched_class __begin_sched_classes[]; 1916 extern struct sched_class __end_sched_classes[]; 1917 1918 #define sched_class_highest (__end_sched_classes - 1) 1919 #define sched_class_lowest (__begin_sched_classes - 1) 1920 1921 #define for_class_range(class, _from, _to) \ 1922 for (class = (_from); class != (_to); class--) 1923 1924 #define for_each_class(class) \ 1925 for_class_range(class, sched_class_highest, sched_class_lowest) 1926 1927 extern const struct sched_class stop_sched_class; 1928 extern const struct sched_class dl_sched_class; 1929 extern const struct sched_class rt_sched_class; 1930 extern const struct sched_class fair_sched_class; 1931 extern const struct sched_class idle_sched_class; 1932 1933 static inline bool sched_stop_runnable(struct rq *rq) 1934 { 1935 return rq->stop && task_on_rq_queued(rq->stop); 1936 } 1937 1938 static inline bool sched_dl_runnable(struct rq *rq) 1939 { 1940 return rq->dl.dl_nr_running > 0; 1941 } 1942 1943 static inline bool sched_rt_runnable(struct rq *rq) 1944 { 1945 return rq->rt.rt_queued > 0; 1946 } 1947 1948 static inline bool sched_fair_runnable(struct rq *rq) 1949 { 1950 return rq->cfs.nr_running > 0; 1951 } 1952 1953 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 1954 extern struct task_struct *pick_next_task_idle(struct rq *rq); 1955 1956 #define SCA_CHECK 0x01 1957 #define SCA_MIGRATE_DISABLE 0x02 1958 #define SCA_MIGRATE_ENABLE 0x04 1959 1960 #ifdef CONFIG_SMP 1961 1962 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1963 1964 extern void trigger_load_balance(struct rq *rq); 1965 1966 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1967 1968 static inline struct task_struct *get_push_task(struct rq *rq) 1969 { 1970 struct task_struct *p = rq->curr; 1971 1972 lockdep_assert_held(&rq->lock); 1973 1974 if (rq->push_busy) 1975 return NULL; 1976 1977 if (p->nr_cpus_allowed == 1) 1978 return NULL; 1979 1980 rq->push_busy = true; 1981 return get_task_struct(p); 1982 } 1983 1984 extern int push_cpu_stop(void *arg); 1985 1986 #endif 1987 1988 #ifdef CONFIG_CPU_IDLE 1989 static inline void idle_set_state(struct rq *rq, 1990 struct cpuidle_state *idle_state) 1991 { 1992 rq->idle_state = idle_state; 1993 } 1994 1995 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1996 { 1997 SCHED_WARN_ON(!rcu_read_lock_held()); 1998 1999 return rq->idle_state; 2000 } 2001 #else 2002 static inline void idle_set_state(struct rq *rq, 2003 struct cpuidle_state *idle_state) 2004 { 2005 } 2006 2007 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2008 { 2009 return NULL; 2010 } 2011 #endif 2012 2013 extern void schedule_idle(void); 2014 2015 extern void sysrq_sched_debug_show(void); 2016 extern void sched_init_granularity(void); 2017 extern void update_max_interval(void); 2018 2019 extern void init_sched_dl_class(void); 2020 extern void init_sched_rt_class(void); 2021 extern void init_sched_fair_class(void); 2022 2023 extern void reweight_task(struct task_struct *p, int prio); 2024 2025 extern void resched_curr(struct rq *rq); 2026 extern void resched_cpu(int cpu); 2027 2028 extern struct rt_bandwidth def_rt_bandwidth; 2029 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2030 2031 extern struct dl_bandwidth def_dl_bandwidth; 2032 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2033 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2034 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2035 2036 #define BW_SHIFT 20 2037 #define BW_UNIT (1 << BW_SHIFT) 2038 #define RATIO_SHIFT 8 2039 #define MAX_BW_BITS (64 - BW_SHIFT) 2040 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2041 unsigned long to_ratio(u64 period, u64 runtime); 2042 2043 extern void init_entity_runnable_average(struct sched_entity *se); 2044 extern void post_init_entity_util_avg(struct task_struct *p); 2045 2046 #ifdef CONFIG_NO_HZ_FULL 2047 extern bool sched_can_stop_tick(struct rq *rq); 2048 extern int __init sched_tick_offload_init(void); 2049 2050 /* 2051 * Tick may be needed by tasks in the runqueue depending on their policy and 2052 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2053 * nohz mode if necessary. 2054 */ 2055 static inline void sched_update_tick_dependency(struct rq *rq) 2056 { 2057 int cpu = cpu_of(rq); 2058 2059 if (!tick_nohz_full_cpu(cpu)) 2060 return; 2061 2062 if (sched_can_stop_tick(rq)) 2063 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2064 else 2065 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2066 } 2067 #else 2068 static inline int sched_tick_offload_init(void) { return 0; } 2069 static inline void sched_update_tick_dependency(struct rq *rq) { } 2070 #endif 2071 2072 static inline void add_nr_running(struct rq *rq, unsigned count) 2073 { 2074 unsigned prev_nr = rq->nr_running; 2075 2076 rq->nr_running = prev_nr + count; 2077 if (trace_sched_update_nr_running_tp_enabled()) { 2078 call_trace_sched_update_nr_running(rq, count); 2079 } 2080 2081 #ifdef CONFIG_SMP 2082 if (prev_nr < 2 && rq->nr_running >= 2) { 2083 if (!READ_ONCE(rq->rd->overload)) 2084 WRITE_ONCE(rq->rd->overload, 1); 2085 } 2086 #endif 2087 2088 sched_update_tick_dependency(rq); 2089 } 2090 2091 static inline void sub_nr_running(struct rq *rq, unsigned count) 2092 { 2093 rq->nr_running -= count; 2094 if (trace_sched_update_nr_running_tp_enabled()) { 2095 call_trace_sched_update_nr_running(rq, -count); 2096 } 2097 2098 /* Check if we still need preemption */ 2099 sched_update_tick_dependency(rq); 2100 } 2101 2102 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2103 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2104 2105 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2106 2107 extern const_debug unsigned int sysctl_sched_nr_migrate; 2108 extern const_debug unsigned int sysctl_sched_migration_cost; 2109 2110 #ifdef CONFIG_SCHED_HRTICK 2111 2112 /* 2113 * Use hrtick when: 2114 * - enabled by features 2115 * - hrtimer is actually high res 2116 */ 2117 static inline int hrtick_enabled(struct rq *rq) 2118 { 2119 if (!cpu_active(cpu_of(rq))) 2120 return 0; 2121 return hrtimer_is_hres_active(&rq->hrtick_timer); 2122 } 2123 2124 static inline int hrtick_enabled_fair(struct rq *rq) 2125 { 2126 if (!sched_feat(HRTICK)) 2127 return 0; 2128 return hrtick_enabled(rq); 2129 } 2130 2131 static inline int hrtick_enabled_dl(struct rq *rq) 2132 { 2133 if (!sched_feat(HRTICK_DL)) 2134 return 0; 2135 return hrtick_enabled(rq); 2136 } 2137 2138 void hrtick_start(struct rq *rq, u64 delay); 2139 2140 #else 2141 2142 static inline int hrtick_enabled_fair(struct rq *rq) 2143 { 2144 return 0; 2145 } 2146 2147 static inline int hrtick_enabled_dl(struct rq *rq) 2148 { 2149 return 0; 2150 } 2151 2152 static inline int hrtick_enabled(struct rq *rq) 2153 { 2154 return 0; 2155 } 2156 2157 #endif /* CONFIG_SCHED_HRTICK */ 2158 2159 #ifndef arch_scale_freq_tick 2160 static __always_inline 2161 void arch_scale_freq_tick(void) 2162 { 2163 } 2164 #endif 2165 2166 #ifndef arch_scale_freq_capacity 2167 /** 2168 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2169 * @cpu: the CPU in question. 2170 * 2171 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2172 * 2173 * f_curr 2174 * ------ * SCHED_CAPACITY_SCALE 2175 * f_max 2176 */ 2177 static __always_inline 2178 unsigned long arch_scale_freq_capacity(int cpu) 2179 { 2180 return SCHED_CAPACITY_SCALE; 2181 } 2182 #endif 2183 2184 #ifdef CONFIG_SMP 2185 #ifdef CONFIG_PREEMPTION 2186 2187 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 2188 2189 /* 2190 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2191 * way at the expense of forcing extra atomic operations in all 2192 * invocations. This assures that the double_lock is acquired using the 2193 * same underlying policy as the spinlock_t on this architecture, which 2194 * reduces latency compared to the unfair variant below. However, it 2195 * also adds more overhead and therefore may reduce throughput. 2196 */ 2197 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2198 __releases(this_rq->lock) 2199 __acquires(busiest->lock) 2200 __acquires(this_rq->lock) 2201 { 2202 raw_spin_unlock(&this_rq->lock); 2203 double_rq_lock(this_rq, busiest); 2204 2205 return 1; 2206 } 2207 2208 #else 2209 /* 2210 * Unfair double_lock_balance: Optimizes throughput at the expense of 2211 * latency by eliminating extra atomic operations when the locks are 2212 * already in proper order on entry. This favors lower CPU-ids and will 2213 * grant the double lock to lower CPUs over higher ids under contention, 2214 * regardless of entry order into the function. 2215 */ 2216 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2217 __releases(this_rq->lock) 2218 __acquires(busiest->lock) 2219 __acquires(this_rq->lock) 2220 { 2221 int ret = 0; 2222 2223 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 2224 if (busiest < this_rq) { 2225 raw_spin_unlock(&this_rq->lock); 2226 raw_spin_lock(&busiest->lock); 2227 raw_spin_lock_nested(&this_rq->lock, 2228 SINGLE_DEPTH_NESTING); 2229 ret = 1; 2230 } else 2231 raw_spin_lock_nested(&busiest->lock, 2232 SINGLE_DEPTH_NESTING); 2233 } 2234 return ret; 2235 } 2236 2237 #endif /* CONFIG_PREEMPTION */ 2238 2239 /* 2240 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2241 */ 2242 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2243 { 2244 if (unlikely(!irqs_disabled())) { 2245 /* printk() doesn't work well under rq->lock */ 2246 raw_spin_unlock(&this_rq->lock); 2247 BUG_ON(1); 2248 } 2249 2250 return _double_lock_balance(this_rq, busiest); 2251 } 2252 2253 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2254 __releases(busiest->lock) 2255 { 2256 raw_spin_unlock(&busiest->lock); 2257 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 2258 } 2259 2260 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2261 { 2262 if (l1 > l2) 2263 swap(l1, l2); 2264 2265 spin_lock(l1); 2266 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2267 } 2268 2269 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2270 { 2271 if (l1 > l2) 2272 swap(l1, l2); 2273 2274 spin_lock_irq(l1); 2275 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2276 } 2277 2278 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2279 { 2280 if (l1 > l2) 2281 swap(l1, l2); 2282 2283 raw_spin_lock(l1); 2284 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2285 } 2286 2287 /* 2288 * double_rq_lock - safely lock two runqueues 2289 * 2290 * Note this does not disable interrupts like task_rq_lock, 2291 * you need to do so manually before calling. 2292 */ 2293 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2294 __acquires(rq1->lock) 2295 __acquires(rq2->lock) 2296 { 2297 BUG_ON(!irqs_disabled()); 2298 if (rq1 == rq2) { 2299 raw_spin_lock(&rq1->lock); 2300 __acquire(rq2->lock); /* Fake it out ;) */ 2301 } else { 2302 if (rq1 < rq2) { 2303 raw_spin_lock(&rq1->lock); 2304 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 2305 } else { 2306 raw_spin_lock(&rq2->lock); 2307 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 2308 } 2309 } 2310 } 2311 2312 /* 2313 * double_rq_unlock - safely unlock two runqueues 2314 * 2315 * Note this does not restore interrupts like task_rq_unlock, 2316 * you need to do so manually after calling. 2317 */ 2318 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2319 __releases(rq1->lock) 2320 __releases(rq2->lock) 2321 { 2322 raw_spin_unlock(&rq1->lock); 2323 if (rq1 != rq2) 2324 raw_spin_unlock(&rq2->lock); 2325 else 2326 __release(rq2->lock); 2327 } 2328 2329 extern void set_rq_online (struct rq *rq); 2330 extern void set_rq_offline(struct rq *rq); 2331 extern bool sched_smp_initialized; 2332 2333 #else /* CONFIG_SMP */ 2334 2335 /* 2336 * double_rq_lock - safely lock two runqueues 2337 * 2338 * Note this does not disable interrupts like task_rq_lock, 2339 * you need to do so manually before calling. 2340 */ 2341 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2342 __acquires(rq1->lock) 2343 __acquires(rq2->lock) 2344 { 2345 BUG_ON(!irqs_disabled()); 2346 BUG_ON(rq1 != rq2); 2347 raw_spin_lock(&rq1->lock); 2348 __acquire(rq2->lock); /* Fake it out ;) */ 2349 } 2350 2351 /* 2352 * double_rq_unlock - safely unlock two runqueues 2353 * 2354 * Note this does not restore interrupts like task_rq_unlock, 2355 * you need to do so manually after calling. 2356 */ 2357 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2358 __releases(rq1->lock) 2359 __releases(rq2->lock) 2360 { 2361 BUG_ON(rq1 != rq2); 2362 raw_spin_unlock(&rq1->lock); 2363 __release(rq2->lock); 2364 } 2365 2366 #endif 2367 2368 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2369 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2370 2371 #ifdef CONFIG_SCHED_DEBUG 2372 extern bool sched_debug_verbose; 2373 2374 extern void print_cfs_stats(struct seq_file *m, int cpu); 2375 extern void print_rt_stats(struct seq_file *m, int cpu); 2376 extern void print_dl_stats(struct seq_file *m, int cpu); 2377 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2378 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2379 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2380 2381 extern void resched_latency_warn(int cpu, u64 latency); 2382 #ifdef CONFIG_NUMA_BALANCING 2383 extern void 2384 show_numa_stats(struct task_struct *p, struct seq_file *m); 2385 extern void 2386 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2387 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2388 #endif /* CONFIG_NUMA_BALANCING */ 2389 #else 2390 static inline void resched_latency_warn(int cpu, u64 latency) {} 2391 #endif /* CONFIG_SCHED_DEBUG */ 2392 2393 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2394 extern void init_rt_rq(struct rt_rq *rt_rq); 2395 extern void init_dl_rq(struct dl_rq *dl_rq); 2396 2397 extern void cfs_bandwidth_usage_inc(void); 2398 extern void cfs_bandwidth_usage_dec(void); 2399 2400 #ifdef CONFIG_NO_HZ_COMMON 2401 #define NOHZ_BALANCE_KICK_BIT 0 2402 #define NOHZ_STATS_KICK_BIT 1 2403 #define NOHZ_NEWILB_KICK_BIT 2 2404 2405 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2406 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2407 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2408 2409 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) 2410 2411 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2412 2413 extern void nohz_balance_exit_idle(struct rq *rq); 2414 #else 2415 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2416 #endif 2417 2418 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2419 extern void nohz_run_idle_balance(int cpu); 2420 #else 2421 static inline void nohz_run_idle_balance(int cpu) { } 2422 #endif 2423 2424 #ifdef CONFIG_SMP 2425 static inline 2426 void __dl_update(struct dl_bw *dl_b, s64 bw) 2427 { 2428 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2429 int i; 2430 2431 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2432 "sched RCU must be held"); 2433 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2434 struct rq *rq = cpu_rq(i); 2435 2436 rq->dl.extra_bw += bw; 2437 } 2438 } 2439 #else 2440 static inline 2441 void __dl_update(struct dl_bw *dl_b, s64 bw) 2442 { 2443 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2444 2445 dl->extra_bw += bw; 2446 } 2447 #endif 2448 2449 2450 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2451 struct irqtime { 2452 u64 total; 2453 u64 tick_delta; 2454 u64 irq_start_time; 2455 struct u64_stats_sync sync; 2456 }; 2457 2458 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2459 2460 /* 2461 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2462 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2463 * and never move forward. 2464 */ 2465 static inline u64 irq_time_read(int cpu) 2466 { 2467 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2468 unsigned int seq; 2469 u64 total; 2470 2471 do { 2472 seq = __u64_stats_fetch_begin(&irqtime->sync); 2473 total = irqtime->total; 2474 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2475 2476 return total; 2477 } 2478 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2479 2480 #ifdef CONFIG_CPU_FREQ 2481 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2482 2483 /** 2484 * cpufreq_update_util - Take a note about CPU utilization changes. 2485 * @rq: Runqueue to carry out the update for. 2486 * @flags: Update reason flags. 2487 * 2488 * This function is called by the scheduler on the CPU whose utilization is 2489 * being updated. 2490 * 2491 * It can only be called from RCU-sched read-side critical sections. 2492 * 2493 * The way cpufreq is currently arranged requires it to evaluate the CPU 2494 * performance state (frequency/voltage) on a regular basis to prevent it from 2495 * being stuck in a completely inadequate performance level for too long. 2496 * That is not guaranteed to happen if the updates are only triggered from CFS 2497 * and DL, though, because they may not be coming in if only RT tasks are 2498 * active all the time (or there are RT tasks only). 2499 * 2500 * As a workaround for that issue, this function is called periodically by the 2501 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2502 * but that really is a band-aid. Going forward it should be replaced with 2503 * solutions targeted more specifically at RT tasks. 2504 */ 2505 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2506 { 2507 struct update_util_data *data; 2508 2509 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2510 cpu_of(rq))); 2511 if (data) 2512 data->func(data, rq_clock(rq), flags); 2513 } 2514 #else 2515 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2516 #endif /* CONFIG_CPU_FREQ */ 2517 2518 #ifdef CONFIG_UCLAMP_TASK 2519 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2520 2521 /** 2522 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2523 * @rq: The rq to clamp against. Must not be NULL. 2524 * @util: The util value to clamp. 2525 * @p: The task to clamp against. Can be NULL if you want to clamp 2526 * against @rq only. 2527 * 2528 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2529 * 2530 * If sched_uclamp_used static key is disabled, then just return the util 2531 * without any clamping since uclamp aggregation at the rq level in the fast 2532 * path is disabled, rendering this operation a NOP. 2533 * 2534 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2535 * will return the correct effective uclamp value of the task even if the 2536 * static key is disabled. 2537 */ 2538 static __always_inline 2539 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2540 struct task_struct *p) 2541 { 2542 unsigned long min_util; 2543 unsigned long max_util; 2544 2545 if (!static_branch_likely(&sched_uclamp_used)) 2546 return util; 2547 2548 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value); 2549 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 2550 2551 if (p) { 2552 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN)); 2553 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX)); 2554 } 2555 2556 /* 2557 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2558 * RUNNABLE tasks with _different_ clamps, we can end up with an 2559 * inversion. Fix it now when the clamps are applied. 2560 */ 2561 if (unlikely(min_util >= max_util)) 2562 return min_util; 2563 2564 return clamp(util, min_util, max_util); 2565 } 2566 2567 /* 2568 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2569 * by default in the fast path and only gets turned on once userspace performs 2570 * an operation that requires it. 2571 * 2572 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2573 * hence is active. 2574 */ 2575 static inline bool uclamp_is_used(void) 2576 { 2577 return static_branch_likely(&sched_uclamp_used); 2578 } 2579 #else /* CONFIG_UCLAMP_TASK */ 2580 static inline 2581 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2582 struct task_struct *p) 2583 { 2584 return util; 2585 } 2586 2587 static inline bool uclamp_is_used(void) 2588 { 2589 return false; 2590 } 2591 #endif /* CONFIG_UCLAMP_TASK */ 2592 2593 #ifdef arch_scale_freq_capacity 2594 # ifndef arch_scale_freq_invariant 2595 # define arch_scale_freq_invariant() true 2596 # endif 2597 #else 2598 # define arch_scale_freq_invariant() false 2599 #endif 2600 2601 #ifdef CONFIG_SMP 2602 static inline unsigned long capacity_orig_of(int cpu) 2603 { 2604 return cpu_rq(cpu)->cpu_capacity_orig; 2605 } 2606 2607 /** 2608 * enum cpu_util_type - CPU utilization type 2609 * @FREQUENCY_UTIL: Utilization used to select frequency 2610 * @ENERGY_UTIL: Utilization used during energy calculation 2611 * 2612 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2613 * need to be aggregated differently depending on the usage made of them. This 2614 * enum is used within effective_cpu_util() to differentiate the types of 2615 * utilization expected by the callers, and adjust the aggregation accordingly. 2616 */ 2617 enum cpu_util_type { 2618 FREQUENCY_UTIL, 2619 ENERGY_UTIL, 2620 }; 2621 2622 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2623 unsigned long max, enum cpu_util_type type, 2624 struct task_struct *p); 2625 2626 static inline unsigned long cpu_bw_dl(struct rq *rq) 2627 { 2628 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2629 } 2630 2631 static inline unsigned long cpu_util_dl(struct rq *rq) 2632 { 2633 return READ_ONCE(rq->avg_dl.util_avg); 2634 } 2635 2636 static inline unsigned long cpu_util_cfs(struct rq *rq) 2637 { 2638 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2639 2640 if (sched_feat(UTIL_EST)) { 2641 util = max_t(unsigned long, util, 2642 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2643 } 2644 2645 return util; 2646 } 2647 2648 static inline unsigned long cpu_util_rt(struct rq *rq) 2649 { 2650 return READ_ONCE(rq->avg_rt.util_avg); 2651 } 2652 #endif 2653 2654 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2655 static inline unsigned long cpu_util_irq(struct rq *rq) 2656 { 2657 return rq->avg_irq.util_avg; 2658 } 2659 2660 static inline 2661 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2662 { 2663 util *= (max - irq); 2664 util /= max; 2665 2666 return util; 2667 2668 } 2669 #else 2670 static inline unsigned long cpu_util_irq(struct rq *rq) 2671 { 2672 return 0; 2673 } 2674 2675 static inline 2676 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2677 { 2678 return util; 2679 } 2680 #endif 2681 2682 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2683 2684 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 2685 2686 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 2687 2688 static inline bool sched_energy_enabled(void) 2689 { 2690 return static_branch_unlikely(&sched_energy_present); 2691 } 2692 2693 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 2694 2695 #define perf_domain_span(pd) NULL 2696 static inline bool sched_energy_enabled(void) { return false; } 2697 2698 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2699 2700 #ifdef CONFIG_MEMBARRIER 2701 /* 2702 * The scheduler provides memory barriers required by membarrier between: 2703 * - prior user-space memory accesses and store to rq->membarrier_state, 2704 * - store to rq->membarrier_state and following user-space memory accesses. 2705 * In the same way it provides those guarantees around store to rq->curr. 2706 */ 2707 static inline void membarrier_switch_mm(struct rq *rq, 2708 struct mm_struct *prev_mm, 2709 struct mm_struct *next_mm) 2710 { 2711 int membarrier_state; 2712 2713 if (prev_mm == next_mm) 2714 return; 2715 2716 membarrier_state = atomic_read(&next_mm->membarrier_state); 2717 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 2718 return; 2719 2720 WRITE_ONCE(rq->membarrier_state, membarrier_state); 2721 } 2722 #else 2723 static inline void membarrier_switch_mm(struct rq *rq, 2724 struct mm_struct *prev_mm, 2725 struct mm_struct *next_mm) 2726 { 2727 } 2728 #endif 2729 2730 #ifdef CONFIG_SMP 2731 static inline bool is_per_cpu_kthread(struct task_struct *p) 2732 { 2733 if (!(p->flags & PF_KTHREAD)) 2734 return false; 2735 2736 if (p->nr_cpus_allowed != 1) 2737 return false; 2738 2739 return true; 2740 } 2741 #endif 2742 2743 extern void swake_up_all_locked(struct swait_queue_head *q); 2744 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 2745 2746 #ifdef CONFIG_PREEMPT_DYNAMIC 2747 extern int preempt_dynamic_mode; 2748 extern int sched_dynamic_mode(const char *str); 2749 extern void sched_dynamic_update(int mode); 2750 #endif 2751 2752