xref: /openbmc/linux/kernel/sched/sched.h (revision 391e43da)
1 
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6 
7 #include "cpupri.h"
8 
9 extern __read_mostly int scheduler_running;
10 
11 /*
12  * Convert user-nice values [ -20 ... 0 ... 19 ]
13  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14  * and back.
15  */
16 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
19 
20 /*
21  * 'User priority' is the nice value converted to something we
22  * can work with better when scaling various scheduler parameters,
23  * it's a [ 0 ... 39 ] range.
24  */
25 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
28 
29 /*
30  * Helpers for converting nanosecond timing to jiffy resolution
31  */
32 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33 
34 #define NICE_0_LOAD		SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
36 
37 /*
38  * These are the 'tuning knobs' of the scheduler:
39  *
40  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
41  * Timeslices get refilled after they expire.
42  */
43 #define DEF_TIMESLICE		(100 * HZ / 1000)
44 
45 /*
46  * single value that denotes runtime == period, ie unlimited time.
47  */
48 #define RUNTIME_INF	((u64)~0ULL)
49 
50 static inline int rt_policy(int policy)
51 {
52 	if (policy == SCHED_FIFO || policy == SCHED_RR)
53 		return 1;
54 	return 0;
55 }
56 
57 static inline int task_has_rt_policy(struct task_struct *p)
58 {
59 	return rt_policy(p->policy);
60 }
61 
62 /*
63  * This is the priority-queue data structure of the RT scheduling class:
64  */
65 struct rt_prio_array {
66 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
67 	struct list_head queue[MAX_RT_PRIO];
68 };
69 
70 struct rt_bandwidth {
71 	/* nests inside the rq lock: */
72 	raw_spinlock_t		rt_runtime_lock;
73 	ktime_t			rt_period;
74 	u64			rt_runtime;
75 	struct hrtimer		rt_period_timer;
76 };
77 
78 extern struct mutex sched_domains_mutex;
79 
80 #ifdef CONFIG_CGROUP_SCHED
81 
82 #include <linux/cgroup.h>
83 
84 struct cfs_rq;
85 struct rt_rq;
86 
87 static LIST_HEAD(task_groups);
88 
89 struct cfs_bandwidth {
90 #ifdef CONFIG_CFS_BANDWIDTH
91 	raw_spinlock_t lock;
92 	ktime_t period;
93 	u64 quota, runtime;
94 	s64 hierarchal_quota;
95 	u64 runtime_expires;
96 
97 	int idle, timer_active;
98 	struct hrtimer period_timer, slack_timer;
99 	struct list_head throttled_cfs_rq;
100 
101 	/* statistics */
102 	int nr_periods, nr_throttled;
103 	u64 throttled_time;
104 #endif
105 };
106 
107 /* task group related information */
108 struct task_group {
109 	struct cgroup_subsys_state css;
110 
111 #ifdef CONFIG_FAIR_GROUP_SCHED
112 	/* schedulable entities of this group on each cpu */
113 	struct sched_entity **se;
114 	/* runqueue "owned" by this group on each cpu */
115 	struct cfs_rq **cfs_rq;
116 	unsigned long shares;
117 
118 	atomic_t load_weight;
119 #endif
120 
121 #ifdef CONFIG_RT_GROUP_SCHED
122 	struct sched_rt_entity **rt_se;
123 	struct rt_rq **rt_rq;
124 
125 	struct rt_bandwidth rt_bandwidth;
126 #endif
127 
128 	struct rcu_head rcu;
129 	struct list_head list;
130 
131 	struct task_group *parent;
132 	struct list_head siblings;
133 	struct list_head children;
134 
135 #ifdef CONFIG_SCHED_AUTOGROUP
136 	struct autogroup *autogroup;
137 #endif
138 
139 	struct cfs_bandwidth cfs_bandwidth;
140 };
141 
142 #ifdef CONFIG_FAIR_GROUP_SCHED
143 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
144 
145 /*
146  * A weight of 0 or 1 can cause arithmetics problems.
147  * A weight of a cfs_rq is the sum of weights of which entities
148  * are queued on this cfs_rq, so a weight of a entity should not be
149  * too large, so as the shares value of a task group.
150  * (The default weight is 1024 - so there's no practical
151  *  limitation from this.)
152  */
153 #define MIN_SHARES	(1UL <<  1)
154 #define MAX_SHARES	(1UL << 18)
155 #endif
156 
157 /* Default task group.
158  *	Every task in system belong to this group at bootup.
159  */
160 extern struct task_group root_task_group;
161 
162 typedef int (*tg_visitor)(struct task_group *, void *);
163 
164 extern int walk_tg_tree_from(struct task_group *from,
165 			     tg_visitor down, tg_visitor up, void *data);
166 
167 /*
168  * Iterate the full tree, calling @down when first entering a node and @up when
169  * leaving it for the final time.
170  *
171  * Caller must hold rcu_lock or sufficient equivalent.
172  */
173 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
174 {
175 	return walk_tg_tree_from(&root_task_group, down, up, data);
176 }
177 
178 extern int tg_nop(struct task_group *tg, void *data);
179 
180 extern void free_fair_sched_group(struct task_group *tg);
181 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
182 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
183 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
184 			struct sched_entity *se, int cpu,
185 			struct sched_entity *parent);
186 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
188 
189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
190 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
191 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
192 
193 extern void free_rt_sched_group(struct task_group *tg);
194 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
195 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
196 		struct sched_rt_entity *rt_se, int cpu,
197 		struct sched_rt_entity *parent);
198 
199 #else /* CONFIG_CGROUP_SCHED */
200 
201 struct cfs_bandwidth { };
202 
203 #endif	/* CONFIG_CGROUP_SCHED */
204 
205 /* CFS-related fields in a runqueue */
206 struct cfs_rq {
207 	struct load_weight load;
208 	unsigned long nr_running, h_nr_running;
209 
210 	u64 exec_clock;
211 	u64 min_vruntime;
212 #ifndef CONFIG_64BIT
213 	u64 min_vruntime_copy;
214 #endif
215 
216 	struct rb_root tasks_timeline;
217 	struct rb_node *rb_leftmost;
218 
219 	struct list_head tasks;
220 	struct list_head *balance_iterator;
221 
222 	/*
223 	 * 'curr' points to currently running entity on this cfs_rq.
224 	 * It is set to NULL otherwise (i.e when none are currently running).
225 	 */
226 	struct sched_entity *curr, *next, *last, *skip;
227 
228 #ifdef	CONFIG_SCHED_DEBUG
229 	unsigned int nr_spread_over;
230 #endif
231 
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
234 
235 	/*
236 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
237 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
238 	 * (like users, containers etc.)
239 	 *
240 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
241 	 * list is used during load balance.
242 	 */
243 	int on_list;
244 	struct list_head leaf_cfs_rq_list;
245 	struct task_group *tg;	/* group that "owns" this runqueue */
246 
247 #ifdef CONFIG_SMP
248 	/*
249 	 * the part of load.weight contributed by tasks
250 	 */
251 	unsigned long task_weight;
252 
253 	/*
254 	 *   h_load = weight * f(tg)
255 	 *
256 	 * Where f(tg) is the recursive weight fraction assigned to
257 	 * this group.
258 	 */
259 	unsigned long h_load;
260 
261 	/*
262 	 * Maintaining per-cpu shares distribution for group scheduling
263 	 *
264 	 * load_stamp is the last time we updated the load average
265 	 * load_last is the last time we updated the load average and saw load
266 	 * load_unacc_exec_time is currently unaccounted execution time
267 	 */
268 	u64 load_avg;
269 	u64 load_period;
270 	u64 load_stamp, load_last, load_unacc_exec_time;
271 
272 	unsigned long load_contribution;
273 #endif /* CONFIG_SMP */
274 #ifdef CONFIG_CFS_BANDWIDTH
275 	int runtime_enabled;
276 	u64 runtime_expires;
277 	s64 runtime_remaining;
278 
279 	u64 throttled_timestamp;
280 	int throttled, throttle_count;
281 	struct list_head throttled_list;
282 #endif /* CONFIG_CFS_BANDWIDTH */
283 #endif /* CONFIG_FAIR_GROUP_SCHED */
284 };
285 
286 static inline int rt_bandwidth_enabled(void)
287 {
288 	return sysctl_sched_rt_runtime >= 0;
289 }
290 
291 /* Real-Time classes' related field in a runqueue: */
292 struct rt_rq {
293 	struct rt_prio_array active;
294 	unsigned long rt_nr_running;
295 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
296 	struct {
297 		int curr; /* highest queued rt task prio */
298 #ifdef CONFIG_SMP
299 		int next; /* next highest */
300 #endif
301 	} highest_prio;
302 #endif
303 #ifdef CONFIG_SMP
304 	unsigned long rt_nr_migratory;
305 	unsigned long rt_nr_total;
306 	int overloaded;
307 	struct plist_head pushable_tasks;
308 #endif
309 	int rt_throttled;
310 	u64 rt_time;
311 	u64 rt_runtime;
312 	/* Nests inside the rq lock: */
313 	raw_spinlock_t rt_runtime_lock;
314 
315 #ifdef CONFIG_RT_GROUP_SCHED
316 	unsigned long rt_nr_boosted;
317 
318 	struct rq *rq;
319 	struct list_head leaf_rt_rq_list;
320 	struct task_group *tg;
321 #endif
322 };
323 
324 #ifdef CONFIG_SMP
325 
326 /*
327  * We add the notion of a root-domain which will be used to define per-domain
328  * variables. Each exclusive cpuset essentially defines an island domain by
329  * fully partitioning the member cpus from any other cpuset. Whenever a new
330  * exclusive cpuset is created, we also create and attach a new root-domain
331  * object.
332  *
333  */
334 struct root_domain {
335 	atomic_t refcount;
336 	atomic_t rto_count;
337 	struct rcu_head rcu;
338 	cpumask_var_t span;
339 	cpumask_var_t online;
340 
341 	/*
342 	 * The "RT overload" flag: it gets set if a CPU has more than
343 	 * one runnable RT task.
344 	 */
345 	cpumask_var_t rto_mask;
346 	struct cpupri cpupri;
347 };
348 
349 extern struct root_domain def_root_domain;
350 
351 #endif /* CONFIG_SMP */
352 
353 /*
354  * This is the main, per-CPU runqueue data structure.
355  *
356  * Locking rule: those places that want to lock multiple runqueues
357  * (such as the load balancing or the thread migration code), lock
358  * acquire operations must be ordered by ascending &runqueue.
359  */
360 struct rq {
361 	/* runqueue lock: */
362 	raw_spinlock_t lock;
363 
364 	/*
365 	 * nr_running and cpu_load should be in the same cacheline because
366 	 * remote CPUs use both these fields when doing load calculation.
367 	 */
368 	unsigned long nr_running;
369 	#define CPU_LOAD_IDX_MAX 5
370 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
371 	unsigned long last_load_update_tick;
372 #ifdef CONFIG_NO_HZ
373 	u64 nohz_stamp;
374 	unsigned char nohz_balance_kick;
375 #endif
376 	int skip_clock_update;
377 
378 	/* capture load from *all* tasks on this cpu: */
379 	struct load_weight load;
380 	unsigned long nr_load_updates;
381 	u64 nr_switches;
382 
383 	struct cfs_rq cfs;
384 	struct rt_rq rt;
385 
386 #ifdef CONFIG_FAIR_GROUP_SCHED
387 	/* list of leaf cfs_rq on this cpu: */
388 	struct list_head leaf_cfs_rq_list;
389 #endif
390 #ifdef CONFIG_RT_GROUP_SCHED
391 	struct list_head leaf_rt_rq_list;
392 #endif
393 
394 	/*
395 	 * This is part of a global counter where only the total sum
396 	 * over all CPUs matters. A task can increase this counter on
397 	 * one CPU and if it got migrated afterwards it may decrease
398 	 * it on another CPU. Always updated under the runqueue lock:
399 	 */
400 	unsigned long nr_uninterruptible;
401 
402 	struct task_struct *curr, *idle, *stop;
403 	unsigned long next_balance;
404 	struct mm_struct *prev_mm;
405 
406 	u64 clock;
407 	u64 clock_task;
408 
409 	atomic_t nr_iowait;
410 
411 #ifdef CONFIG_SMP
412 	struct root_domain *rd;
413 	struct sched_domain *sd;
414 
415 	unsigned long cpu_power;
416 
417 	unsigned char idle_balance;
418 	/* For active balancing */
419 	int post_schedule;
420 	int active_balance;
421 	int push_cpu;
422 	struct cpu_stop_work active_balance_work;
423 	/* cpu of this runqueue: */
424 	int cpu;
425 	int online;
426 
427 	u64 rt_avg;
428 	u64 age_stamp;
429 	u64 idle_stamp;
430 	u64 avg_idle;
431 #endif
432 
433 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
434 	u64 prev_irq_time;
435 #endif
436 #ifdef CONFIG_PARAVIRT
437 	u64 prev_steal_time;
438 #endif
439 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
440 	u64 prev_steal_time_rq;
441 #endif
442 
443 	/* calc_load related fields */
444 	unsigned long calc_load_update;
445 	long calc_load_active;
446 
447 #ifdef CONFIG_SCHED_HRTICK
448 #ifdef CONFIG_SMP
449 	int hrtick_csd_pending;
450 	struct call_single_data hrtick_csd;
451 #endif
452 	struct hrtimer hrtick_timer;
453 #endif
454 
455 #ifdef CONFIG_SCHEDSTATS
456 	/* latency stats */
457 	struct sched_info rq_sched_info;
458 	unsigned long long rq_cpu_time;
459 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
460 
461 	/* sys_sched_yield() stats */
462 	unsigned int yld_count;
463 
464 	/* schedule() stats */
465 	unsigned int sched_switch;
466 	unsigned int sched_count;
467 	unsigned int sched_goidle;
468 
469 	/* try_to_wake_up() stats */
470 	unsigned int ttwu_count;
471 	unsigned int ttwu_local;
472 #endif
473 
474 #ifdef CONFIG_SMP
475 	struct llist_head wake_list;
476 #endif
477 };
478 
479 static inline int cpu_of(struct rq *rq)
480 {
481 #ifdef CONFIG_SMP
482 	return rq->cpu;
483 #else
484 	return 0;
485 #endif
486 }
487 
488 DECLARE_PER_CPU(struct rq, runqueues);
489 
490 #define rcu_dereference_check_sched_domain(p) \
491 	rcu_dereference_check((p), \
492 			      lockdep_is_held(&sched_domains_mutex))
493 
494 /*
495  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
496  * See detach_destroy_domains: synchronize_sched for details.
497  *
498  * The domain tree of any CPU may only be accessed from within
499  * preempt-disabled sections.
500  */
501 #define for_each_domain(cpu, __sd) \
502 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
503 
504 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
505 #define this_rq()		(&__get_cpu_var(runqueues))
506 #define task_rq(p)		cpu_rq(task_cpu(p))
507 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
508 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
509 
510 #include "stats.h"
511 #include "auto_group.h"
512 
513 #ifdef CONFIG_CGROUP_SCHED
514 
515 /*
516  * Return the group to which this tasks belongs.
517  *
518  * We use task_subsys_state_check() and extend the RCU verification with
519  * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
520  * task it moves into the cgroup. Therefore by holding either of those locks,
521  * we pin the task to the current cgroup.
522  */
523 static inline struct task_group *task_group(struct task_struct *p)
524 {
525 	struct task_group *tg;
526 	struct cgroup_subsys_state *css;
527 
528 	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
529 			lockdep_is_held(&p->pi_lock) ||
530 			lockdep_is_held(&task_rq(p)->lock));
531 	tg = container_of(css, struct task_group, css);
532 
533 	return autogroup_task_group(p, tg);
534 }
535 
536 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
537 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
538 {
539 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
540 	struct task_group *tg = task_group(p);
541 #endif
542 
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 	p->se.cfs_rq = tg->cfs_rq[cpu];
545 	p->se.parent = tg->se[cpu];
546 #endif
547 
548 #ifdef CONFIG_RT_GROUP_SCHED
549 	p->rt.rt_rq  = tg->rt_rq[cpu];
550 	p->rt.parent = tg->rt_se[cpu];
551 #endif
552 }
553 
554 #else /* CONFIG_CGROUP_SCHED */
555 
556 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
557 static inline struct task_group *task_group(struct task_struct *p)
558 {
559 	return NULL;
560 }
561 
562 #endif /* CONFIG_CGROUP_SCHED */
563 
564 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
565 {
566 	set_task_rq(p, cpu);
567 #ifdef CONFIG_SMP
568 	/*
569 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
570 	 * successfuly executed on another CPU. We must ensure that updates of
571 	 * per-task data have been completed by this moment.
572 	 */
573 	smp_wmb();
574 	task_thread_info(p)->cpu = cpu;
575 #endif
576 }
577 
578 /*
579  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
580  */
581 #ifdef CONFIG_SCHED_DEBUG
582 # define const_debug __read_mostly
583 #else
584 # define const_debug const
585 #endif
586 
587 extern const_debug unsigned int sysctl_sched_features;
588 
589 #define SCHED_FEAT(name, enabled)	\
590 	__SCHED_FEAT_##name ,
591 
592 enum {
593 #include "features.h"
594 };
595 
596 #undef SCHED_FEAT
597 
598 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
599 
600 static inline u64 global_rt_period(void)
601 {
602 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
603 }
604 
605 static inline u64 global_rt_runtime(void)
606 {
607 	if (sysctl_sched_rt_runtime < 0)
608 		return RUNTIME_INF;
609 
610 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
611 }
612 
613 
614 
615 static inline int task_current(struct rq *rq, struct task_struct *p)
616 {
617 	return rq->curr == p;
618 }
619 
620 static inline int task_running(struct rq *rq, struct task_struct *p)
621 {
622 #ifdef CONFIG_SMP
623 	return p->on_cpu;
624 #else
625 	return task_current(rq, p);
626 #endif
627 }
628 
629 
630 #ifndef prepare_arch_switch
631 # define prepare_arch_switch(next)	do { } while (0)
632 #endif
633 #ifndef finish_arch_switch
634 # define finish_arch_switch(prev)	do { } while (0)
635 #endif
636 
637 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
638 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
639 {
640 #ifdef CONFIG_SMP
641 	/*
642 	 * We can optimise this out completely for !SMP, because the
643 	 * SMP rebalancing from interrupt is the only thing that cares
644 	 * here.
645 	 */
646 	next->on_cpu = 1;
647 #endif
648 }
649 
650 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
651 {
652 #ifdef CONFIG_SMP
653 	/*
654 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
655 	 * We must ensure this doesn't happen until the switch is completely
656 	 * finished.
657 	 */
658 	smp_wmb();
659 	prev->on_cpu = 0;
660 #endif
661 #ifdef CONFIG_DEBUG_SPINLOCK
662 	/* this is a valid case when another task releases the spinlock */
663 	rq->lock.owner = current;
664 #endif
665 	/*
666 	 * If we are tracking spinlock dependencies then we have to
667 	 * fix up the runqueue lock - which gets 'carried over' from
668 	 * prev into current:
669 	 */
670 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
671 
672 	raw_spin_unlock_irq(&rq->lock);
673 }
674 
675 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
676 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
677 {
678 #ifdef CONFIG_SMP
679 	/*
680 	 * We can optimise this out completely for !SMP, because the
681 	 * SMP rebalancing from interrupt is the only thing that cares
682 	 * here.
683 	 */
684 	next->on_cpu = 1;
685 #endif
686 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
687 	raw_spin_unlock_irq(&rq->lock);
688 #else
689 	raw_spin_unlock(&rq->lock);
690 #endif
691 }
692 
693 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
694 {
695 #ifdef CONFIG_SMP
696 	/*
697 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
698 	 * We must ensure this doesn't happen until the switch is completely
699 	 * finished.
700 	 */
701 	smp_wmb();
702 	prev->on_cpu = 0;
703 #endif
704 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
705 	local_irq_enable();
706 #endif
707 }
708 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
709 
710 
711 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
712 {
713 	lw->weight += inc;
714 	lw->inv_weight = 0;
715 }
716 
717 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
718 {
719 	lw->weight -= dec;
720 	lw->inv_weight = 0;
721 }
722 
723 static inline void update_load_set(struct load_weight *lw, unsigned long w)
724 {
725 	lw->weight = w;
726 	lw->inv_weight = 0;
727 }
728 
729 /*
730  * To aid in avoiding the subversion of "niceness" due to uneven distribution
731  * of tasks with abnormal "nice" values across CPUs the contribution that
732  * each task makes to its run queue's load is weighted according to its
733  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
734  * scaled version of the new time slice allocation that they receive on time
735  * slice expiry etc.
736  */
737 
738 #define WEIGHT_IDLEPRIO                3
739 #define WMULT_IDLEPRIO         1431655765
740 
741 /*
742  * Nice levels are multiplicative, with a gentle 10% change for every
743  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
744  * nice 1, it will get ~10% less CPU time than another CPU-bound task
745  * that remained on nice 0.
746  *
747  * The "10% effect" is relative and cumulative: from _any_ nice level,
748  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
749  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
750  * If a task goes up by ~10% and another task goes down by ~10% then
751  * the relative distance between them is ~25%.)
752  */
753 static const int prio_to_weight[40] = {
754  /* -20 */     88761,     71755,     56483,     46273,     36291,
755  /* -15 */     29154,     23254,     18705,     14949,     11916,
756  /* -10 */      9548,      7620,      6100,      4904,      3906,
757  /*  -5 */      3121,      2501,      1991,      1586,      1277,
758  /*   0 */      1024,       820,       655,       526,       423,
759  /*   5 */       335,       272,       215,       172,       137,
760  /*  10 */       110,        87,        70,        56,        45,
761  /*  15 */        36,        29,        23,        18,        15,
762 };
763 
764 /*
765  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
766  *
767  * In cases where the weight does not change often, we can use the
768  * precalculated inverse to speed up arithmetics by turning divisions
769  * into multiplications:
770  */
771 static const u32 prio_to_wmult[40] = {
772  /* -20 */     48388,     59856,     76040,     92818,    118348,
773  /* -15 */    147320,    184698,    229616,    287308,    360437,
774  /* -10 */    449829,    563644,    704093,    875809,   1099582,
775  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
776  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
777  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
778  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
779  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
780 };
781 
782 /* Time spent by the tasks of the cpu accounting group executing in ... */
783 enum cpuacct_stat_index {
784 	CPUACCT_STAT_USER,	/* ... user mode */
785 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
786 
787 	CPUACCT_STAT_NSTATS,
788 };
789 
790 
791 #define sched_class_highest (&stop_sched_class)
792 #define for_each_class(class) \
793    for (class = sched_class_highest; class; class = class->next)
794 
795 extern const struct sched_class stop_sched_class;
796 extern const struct sched_class rt_sched_class;
797 extern const struct sched_class fair_sched_class;
798 extern const struct sched_class idle_sched_class;
799 
800 
801 #ifdef CONFIG_SMP
802 
803 extern void trigger_load_balance(struct rq *rq, int cpu);
804 extern void idle_balance(int this_cpu, struct rq *this_rq);
805 
806 #else	/* CONFIG_SMP */
807 
808 static inline void idle_balance(int cpu, struct rq *rq)
809 {
810 }
811 
812 #endif
813 
814 extern void sysrq_sched_debug_show(void);
815 extern void sched_init_granularity(void);
816 extern void update_max_interval(void);
817 extern void update_group_power(struct sched_domain *sd, int cpu);
818 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
819 extern void init_sched_rt_class(void);
820 extern void init_sched_fair_class(void);
821 
822 extern void resched_task(struct task_struct *p);
823 extern void resched_cpu(int cpu);
824 
825 extern struct rt_bandwidth def_rt_bandwidth;
826 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
827 
828 extern void update_cpu_load(struct rq *this_rq);
829 
830 #ifdef CONFIG_CGROUP_CPUACCT
831 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
832 extern void cpuacct_update_stats(struct task_struct *tsk,
833 		enum cpuacct_stat_index idx, cputime_t val);
834 #else
835 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
836 static inline void cpuacct_update_stats(struct task_struct *tsk,
837 		enum cpuacct_stat_index idx, cputime_t val) {}
838 #endif
839 
840 static inline void inc_nr_running(struct rq *rq)
841 {
842 	rq->nr_running++;
843 }
844 
845 static inline void dec_nr_running(struct rq *rq)
846 {
847 	rq->nr_running--;
848 }
849 
850 extern void update_rq_clock(struct rq *rq);
851 
852 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
853 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
854 
855 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
856 
857 extern const_debug unsigned int sysctl_sched_time_avg;
858 extern const_debug unsigned int sysctl_sched_nr_migrate;
859 extern const_debug unsigned int sysctl_sched_migration_cost;
860 
861 static inline u64 sched_avg_period(void)
862 {
863 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
864 }
865 
866 void calc_load_account_idle(struct rq *this_rq);
867 
868 #ifdef CONFIG_SCHED_HRTICK
869 
870 /*
871  * Use hrtick when:
872  *  - enabled by features
873  *  - hrtimer is actually high res
874  */
875 static inline int hrtick_enabled(struct rq *rq)
876 {
877 	if (!sched_feat(HRTICK))
878 		return 0;
879 	if (!cpu_active(cpu_of(rq)))
880 		return 0;
881 	return hrtimer_is_hres_active(&rq->hrtick_timer);
882 }
883 
884 void hrtick_start(struct rq *rq, u64 delay);
885 
886 #endif /* CONFIG_SCHED_HRTICK */
887 
888 #ifdef CONFIG_SMP
889 extern void sched_avg_update(struct rq *rq);
890 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
891 {
892 	rq->rt_avg += rt_delta;
893 	sched_avg_update(rq);
894 }
895 #else
896 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
897 static inline void sched_avg_update(struct rq *rq) { }
898 #endif
899 
900 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
901 
902 #ifdef CONFIG_SMP
903 #ifdef CONFIG_PREEMPT
904 
905 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
906 
907 /*
908  * fair double_lock_balance: Safely acquires both rq->locks in a fair
909  * way at the expense of forcing extra atomic operations in all
910  * invocations.  This assures that the double_lock is acquired using the
911  * same underlying policy as the spinlock_t on this architecture, which
912  * reduces latency compared to the unfair variant below.  However, it
913  * also adds more overhead and therefore may reduce throughput.
914  */
915 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
916 	__releases(this_rq->lock)
917 	__acquires(busiest->lock)
918 	__acquires(this_rq->lock)
919 {
920 	raw_spin_unlock(&this_rq->lock);
921 	double_rq_lock(this_rq, busiest);
922 
923 	return 1;
924 }
925 
926 #else
927 /*
928  * Unfair double_lock_balance: Optimizes throughput at the expense of
929  * latency by eliminating extra atomic operations when the locks are
930  * already in proper order on entry.  This favors lower cpu-ids and will
931  * grant the double lock to lower cpus over higher ids under contention,
932  * regardless of entry order into the function.
933  */
934 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
935 	__releases(this_rq->lock)
936 	__acquires(busiest->lock)
937 	__acquires(this_rq->lock)
938 {
939 	int ret = 0;
940 
941 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
942 		if (busiest < this_rq) {
943 			raw_spin_unlock(&this_rq->lock);
944 			raw_spin_lock(&busiest->lock);
945 			raw_spin_lock_nested(&this_rq->lock,
946 					      SINGLE_DEPTH_NESTING);
947 			ret = 1;
948 		} else
949 			raw_spin_lock_nested(&busiest->lock,
950 					      SINGLE_DEPTH_NESTING);
951 	}
952 	return ret;
953 }
954 
955 #endif /* CONFIG_PREEMPT */
956 
957 /*
958  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
959  */
960 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
961 {
962 	if (unlikely(!irqs_disabled())) {
963 		/* printk() doesn't work good under rq->lock */
964 		raw_spin_unlock(&this_rq->lock);
965 		BUG_ON(1);
966 	}
967 
968 	return _double_lock_balance(this_rq, busiest);
969 }
970 
971 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
972 	__releases(busiest->lock)
973 {
974 	raw_spin_unlock(&busiest->lock);
975 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
976 }
977 
978 /*
979  * double_rq_lock - safely lock two runqueues
980  *
981  * Note this does not disable interrupts like task_rq_lock,
982  * you need to do so manually before calling.
983  */
984 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
985 	__acquires(rq1->lock)
986 	__acquires(rq2->lock)
987 {
988 	BUG_ON(!irqs_disabled());
989 	if (rq1 == rq2) {
990 		raw_spin_lock(&rq1->lock);
991 		__acquire(rq2->lock);	/* Fake it out ;) */
992 	} else {
993 		if (rq1 < rq2) {
994 			raw_spin_lock(&rq1->lock);
995 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
996 		} else {
997 			raw_spin_lock(&rq2->lock);
998 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
999 		}
1000 	}
1001 }
1002 
1003 /*
1004  * double_rq_unlock - safely unlock two runqueues
1005  *
1006  * Note this does not restore interrupts like task_rq_unlock,
1007  * you need to do so manually after calling.
1008  */
1009 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1010 	__releases(rq1->lock)
1011 	__releases(rq2->lock)
1012 {
1013 	raw_spin_unlock(&rq1->lock);
1014 	if (rq1 != rq2)
1015 		raw_spin_unlock(&rq2->lock);
1016 	else
1017 		__release(rq2->lock);
1018 }
1019 
1020 #else /* CONFIG_SMP */
1021 
1022 /*
1023  * double_rq_lock - safely lock two runqueues
1024  *
1025  * Note this does not disable interrupts like task_rq_lock,
1026  * you need to do so manually before calling.
1027  */
1028 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1029 	__acquires(rq1->lock)
1030 	__acquires(rq2->lock)
1031 {
1032 	BUG_ON(!irqs_disabled());
1033 	BUG_ON(rq1 != rq2);
1034 	raw_spin_lock(&rq1->lock);
1035 	__acquire(rq2->lock);	/* Fake it out ;) */
1036 }
1037 
1038 /*
1039  * double_rq_unlock - safely unlock two runqueues
1040  *
1041  * Note this does not restore interrupts like task_rq_unlock,
1042  * you need to do so manually after calling.
1043  */
1044 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1045 	__releases(rq1->lock)
1046 	__releases(rq2->lock)
1047 {
1048 	BUG_ON(rq1 != rq2);
1049 	raw_spin_unlock(&rq1->lock);
1050 	__release(rq2->lock);
1051 }
1052 
1053 #endif
1054 
1055 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1056 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1057 extern void print_cfs_stats(struct seq_file *m, int cpu);
1058 extern void print_rt_stats(struct seq_file *m, int cpu);
1059 
1060 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1061 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1062 extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1063 
1064 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1065