xref: /openbmc/linux/kernel/sched/sched.h (revision 27e45f2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 struct rq;
101 struct cpuidle_state;
102 
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED	1
105 #define TASK_ON_RQ_MIGRATING	2
106 
107 extern __read_mostly int scheduler_running;
108 
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111 
112 extern unsigned int sysctl_sched_child_runs_first;
113 
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116 
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118 
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122 
123 /*
124  * Helpers for converting nanosecond timing to jiffy resolution
125  */
126 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127 
128 /*
129  * Increase resolution of nice-level calculations for 64-bit architectures.
130  * The extra resolution improves shares distribution and load balancing of
131  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132  * hierarchies, especially on larger systems. This is not a user-visible change
133  * and does not change the user-interface for setting shares/weights.
134  *
135  * We increase resolution only if we have enough bits to allow this increased
136  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137  * are pretty high and the returns do not justify the increased costs.
138  *
139  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140  * increase coverage and consistency always enable it on 64-bit platforms.
141  */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 	unsigned long __w = (w); \
148 	if (__w) \
149 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 	__w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w)		(w)
155 # define scale_load_down(w)	(w)
156 #endif
157 
158 /*
159  * Task weight (visible to users) and its load (invisible to users) have
160  * independent resolution, but they should be well calibrated. We use
161  * scale_load() and scale_load_down(w) to convert between them. The
162  * following must be true:
163  *
164  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165  *
166  */
167 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
168 
169 /*
170  * Single value that decides SCHED_DEADLINE internal math precision.
171  * 10 -> just above 1us
172  * 9  -> just above 0.5us
173  */
174 #define DL_SCALE		10
175 
176 /*
177  * Single value that denotes runtime == period, ie unlimited time.
178  */
179 #define RUNTIME_INF		((u64)~0ULL)
180 
181 static inline int idle_policy(int policy)
182 {
183 	return policy == SCHED_IDLE;
184 }
185 static inline int fair_policy(int policy)
186 {
187 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189 
190 static inline int rt_policy(int policy)
191 {
192 	return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194 
195 static inline int dl_policy(int policy)
196 {
197 	return policy == SCHED_DEADLINE;
198 }
199 static inline bool valid_policy(int policy)
200 {
201 	return idle_policy(policy) || fair_policy(policy) ||
202 		rt_policy(policy) || dl_policy(policy);
203 }
204 
205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 	return idle_policy(p->policy);
208 }
209 
210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 	return rt_policy(p->policy);
213 }
214 
215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 	return dl_policy(p->policy);
218 }
219 
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221 
222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 	s64 diff = sample - *avg;
225 	*avg += diff / 8;
226 }
227 
228 /*
229  * Shifting a value by an exponent greater *or equal* to the size of said value
230  * is UB; cap at size-1.
231  */
232 #define shr_bound(val, shift)							\
233 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234 
235 /*
236  * !! For sched_setattr_nocheck() (kernel) only !!
237  *
238  * This is actually gross. :(
239  *
240  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241  * tasks, but still be able to sleep. We need this on platforms that cannot
242  * atomically change clock frequency. Remove once fast switching will be
243  * available on such platforms.
244  *
245  * SUGOV stands for SchedUtil GOVernor.
246  */
247 #define SCHED_FLAG_SUGOV	0x10000000
248 
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250 
251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 	return false;
257 #endif
258 }
259 
260 /*
261  * Tells if entity @a should preempt entity @b.
262  */
263 static inline bool
264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
265 {
266 	return dl_entity_is_special(a) ||
267 	       dl_time_before(a->deadline, b->deadline);
268 }
269 
270 /*
271  * This is the priority-queue data structure of the RT scheduling class:
272  */
273 struct rt_prio_array {
274 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 	struct list_head queue[MAX_RT_PRIO];
276 };
277 
278 struct rt_bandwidth {
279 	/* nests inside the rq lock: */
280 	raw_spinlock_t		rt_runtime_lock;
281 	ktime_t			rt_period;
282 	u64			rt_runtime;
283 	struct hrtimer		rt_period_timer;
284 	unsigned int		rt_period_active;
285 };
286 
287 void __dl_clear_params(struct task_struct *p);
288 
289 struct dl_bandwidth {
290 	raw_spinlock_t		dl_runtime_lock;
291 	u64			dl_runtime;
292 	u64			dl_period;
293 };
294 
295 static inline int dl_bandwidth_enabled(void)
296 {
297 	return sysctl_sched_rt_runtime >= 0;
298 }
299 
300 /*
301  * To keep the bandwidth of -deadline tasks under control
302  * we need some place where:
303  *  - store the maximum -deadline bandwidth of each cpu;
304  *  - cache the fraction of bandwidth that is currently allocated in
305  *    each root domain;
306  *
307  * This is all done in the data structure below. It is similar to the
308  * one used for RT-throttling (rt_bandwidth), with the main difference
309  * that, since here we are only interested in admission control, we
310  * do not decrease any runtime while the group "executes", neither we
311  * need a timer to replenish it.
312  *
313  * With respect to SMP, bandwidth is given on a per root domain basis,
314  * meaning that:
315  *  - bw (< 100%) is the deadline bandwidth of each CPU;
316  *  - total_bw is the currently allocated bandwidth in each root domain;
317  */
318 struct dl_bw {
319 	raw_spinlock_t		lock;
320 	u64			bw;
321 	u64			total_bw;
322 };
323 
324 extern void init_dl_bw(struct dl_bw *dl_b);
325 extern int  sched_dl_global_validate(void);
326 extern void sched_dl_do_global(void);
327 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
330 extern bool __checkparam_dl(const struct sched_attr *attr);
331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
332 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
333 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
334 
335 #ifdef CONFIG_CGROUP_SCHED
336 
337 struct cfs_rq;
338 struct rt_rq;
339 
340 extern struct list_head task_groups;
341 
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 	raw_spinlock_t		lock;
345 	ktime_t			period;
346 	u64			quota;
347 	u64			runtime;
348 	u64			burst;
349 	u64			runtime_snap;
350 	s64			hierarchical_quota;
351 
352 	u8			idle;
353 	u8			period_active;
354 	u8			slack_started;
355 	struct hrtimer		period_timer;
356 	struct hrtimer		slack_timer;
357 	struct list_head	throttled_cfs_rq;
358 
359 	/* Statistics: */
360 	int			nr_periods;
361 	int			nr_throttled;
362 	int			nr_burst;
363 	u64			throttled_time;
364 	u64			burst_time;
365 #endif
366 };
367 
368 /* Task group related information */
369 struct task_group {
370 	struct cgroup_subsys_state css;
371 
372 #ifdef CONFIG_FAIR_GROUP_SCHED
373 	/* schedulable entities of this group on each CPU */
374 	struct sched_entity	**se;
375 	/* runqueue "owned" by this group on each CPU */
376 	struct cfs_rq		**cfs_rq;
377 	unsigned long		shares;
378 
379 	/* A positive value indicates that this is a SCHED_IDLE group. */
380 	int			idle;
381 
382 #ifdef	CONFIG_SMP
383 	/*
384 	 * load_avg can be heavily contended at clock tick time, so put
385 	 * it in its own cacheline separated from the fields above which
386 	 * will also be accessed at each tick.
387 	 */
388 	atomic_long_t		load_avg ____cacheline_aligned;
389 #endif
390 #endif
391 
392 #ifdef CONFIG_RT_GROUP_SCHED
393 	struct sched_rt_entity	**rt_se;
394 	struct rt_rq		**rt_rq;
395 
396 	struct rt_bandwidth	rt_bandwidth;
397 #endif
398 
399 	struct rcu_head		rcu;
400 	struct list_head	list;
401 
402 	struct task_group	*parent;
403 	struct list_head	siblings;
404 	struct list_head	children;
405 
406 #ifdef CONFIG_SCHED_AUTOGROUP
407 	struct autogroup	*autogroup;
408 #endif
409 
410 	struct cfs_bandwidth	cfs_bandwidth;
411 
412 #ifdef CONFIG_UCLAMP_TASK_GROUP
413 	/* The two decimal precision [%] value requested from user-space */
414 	unsigned int		uclamp_pct[UCLAMP_CNT];
415 	/* Clamp values requested for a task group */
416 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
417 	/* Effective clamp values used for a task group */
418 	struct uclamp_se	uclamp[UCLAMP_CNT];
419 #endif
420 
421 };
422 
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
425 
426 /*
427  * A weight of 0 or 1 can cause arithmetics problems.
428  * A weight of a cfs_rq is the sum of weights of which entities
429  * are queued on this cfs_rq, so a weight of a entity should not be
430  * too large, so as the shares value of a task group.
431  * (The default weight is 1024 - so there's no practical
432  *  limitation from this.)
433  */
434 #define MIN_SHARES		(1UL <<  1)
435 #define MAX_SHARES		(1UL << 18)
436 #endif
437 
438 typedef int (*tg_visitor)(struct task_group *, void *);
439 
440 extern int walk_tg_tree_from(struct task_group *from,
441 			     tg_visitor down, tg_visitor up, void *data);
442 
443 /*
444  * Iterate the full tree, calling @down when first entering a node and @up when
445  * leaving it for the final time.
446  *
447  * Caller must hold rcu_lock or sufficient equivalent.
448  */
449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
450 {
451 	return walk_tg_tree_from(&root_task_group, down, up, data);
452 }
453 
454 extern int tg_nop(struct task_group *tg, void *data);
455 
456 extern void free_fair_sched_group(struct task_group *tg);
457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
458 extern void online_fair_sched_group(struct task_group *tg);
459 extern void unregister_fair_sched_group(struct task_group *tg);
460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
461 			struct sched_entity *se, int cpu,
462 			struct sched_entity *parent);
463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
464 
465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
468 
469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
470 		struct sched_rt_entity *rt_se, int cpu,
471 		struct sched_rt_entity *parent);
472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
474 extern long sched_group_rt_runtime(struct task_group *tg);
475 extern long sched_group_rt_period(struct task_group *tg);
476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
477 
478 extern struct task_group *sched_create_group(struct task_group *parent);
479 extern void sched_online_group(struct task_group *tg,
480 			       struct task_group *parent);
481 extern void sched_destroy_group(struct task_group *tg);
482 extern void sched_release_group(struct task_group *tg);
483 
484 extern void sched_move_task(struct task_struct *tsk);
485 
486 #ifdef CONFIG_FAIR_GROUP_SCHED
487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
488 
489 extern int sched_group_set_idle(struct task_group *tg, long idle);
490 
491 #ifdef CONFIG_SMP
492 extern void set_task_rq_fair(struct sched_entity *se,
493 			     struct cfs_rq *prev, struct cfs_rq *next);
494 #else /* !CONFIG_SMP */
495 static inline void set_task_rq_fair(struct sched_entity *se,
496 			     struct cfs_rq *prev, struct cfs_rq *next) { }
497 #endif /* CONFIG_SMP */
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499 
500 #else /* CONFIG_CGROUP_SCHED */
501 
502 struct cfs_bandwidth { };
503 
504 #endif	/* CONFIG_CGROUP_SCHED */
505 
506 extern void unregister_rt_sched_group(struct task_group *tg);
507 extern void free_rt_sched_group(struct task_group *tg);
508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
509 
510 /*
511  * u64_u32_load/u64_u32_store
512  *
513  * Use a copy of a u64 value to protect against data race. This is only
514  * applicable for 32-bits architectures.
515  */
516 #ifdef CONFIG_64BIT
517 # define u64_u32_load_copy(var, copy)       var
518 # define u64_u32_store_copy(var, copy, val) (var = val)
519 #else
520 # define u64_u32_load_copy(var, copy)					\
521 ({									\
522 	u64 __val, __val_copy;						\
523 	do {								\
524 		__val_copy = copy;					\
525 		/*							\
526 		 * paired with u64_u32_store_copy(), ordering access	\
527 		 * to var and copy.					\
528 		 */							\
529 		smp_rmb();						\
530 		__val = var;						\
531 	} while (__val != __val_copy);					\
532 	__val;								\
533 })
534 # define u64_u32_store_copy(var, copy, val)				\
535 do {									\
536 	typeof(val) __val = (val);					\
537 	var = __val;							\
538 	/*								\
539 	 * paired with u64_u32_load_copy(), ordering access to var and	\
540 	 * copy.							\
541 	 */								\
542 	smp_wmb();							\
543 	copy = __val;							\
544 } while (0)
545 #endif
546 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
548 
549 /* CFS-related fields in a runqueue */
550 struct cfs_rq {
551 	struct load_weight	load;
552 	unsigned int		nr_running;
553 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
554 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
555 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
556 
557 	u64			exec_clock;
558 	u64			min_vruntime;
559 #ifdef CONFIG_SCHED_CORE
560 	unsigned int		forceidle_seq;
561 	u64			min_vruntime_fi;
562 #endif
563 
564 #ifndef CONFIG_64BIT
565 	u64			min_vruntime_copy;
566 #endif
567 
568 	struct rb_root_cached	tasks_timeline;
569 
570 	/*
571 	 * 'curr' points to currently running entity on this cfs_rq.
572 	 * It is set to NULL otherwise (i.e when none are currently running).
573 	 */
574 	struct sched_entity	*curr;
575 	struct sched_entity	*next;
576 	struct sched_entity	*last;
577 	struct sched_entity	*skip;
578 
579 #ifdef	CONFIG_SCHED_DEBUG
580 	unsigned int		nr_spread_over;
581 #endif
582 
583 #ifdef CONFIG_SMP
584 	/*
585 	 * CFS load tracking
586 	 */
587 	struct sched_avg	avg;
588 #ifndef CONFIG_64BIT
589 	u64			last_update_time_copy;
590 #endif
591 	struct {
592 		raw_spinlock_t	lock ____cacheline_aligned;
593 		int		nr;
594 		unsigned long	load_avg;
595 		unsigned long	util_avg;
596 		unsigned long	runnable_avg;
597 	} removed;
598 
599 #ifdef CONFIG_FAIR_GROUP_SCHED
600 	unsigned long		tg_load_avg_contrib;
601 	long			propagate;
602 	long			prop_runnable_sum;
603 
604 	/*
605 	 *   h_load = weight * f(tg)
606 	 *
607 	 * Where f(tg) is the recursive weight fraction assigned to
608 	 * this group.
609 	 */
610 	unsigned long		h_load;
611 	u64			last_h_load_update;
612 	struct sched_entity	*h_load_next;
613 #endif /* CONFIG_FAIR_GROUP_SCHED */
614 #endif /* CONFIG_SMP */
615 
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
618 
619 	/*
620 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
621 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
622 	 * (like users, containers etc.)
623 	 *
624 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
625 	 * This list is used during load balance.
626 	 */
627 	int			on_list;
628 	struct list_head	leaf_cfs_rq_list;
629 	struct task_group	*tg;	/* group that "owns" this runqueue */
630 
631 	/* Locally cached copy of our task_group's idle value */
632 	int			idle;
633 
634 #ifdef CONFIG_CFS_BANDWIDTH
635 	int			runtime_enabled;
636 	s64			runtime_remaining;
637 
638 	u64			throttled_pelt_idle;
639 #ifndef CONFIG_64BIT
640 	u64                     throttled_pelt_idle_copy;
641 #endif
642 	u64			throttled_clock;
643 	u64			throttled_clock_pelt;
644 	u64			throttled_clock_pelt_time;
645 	int			throttled;
646 	int			throttle_count;
647 	struct list_head	throttled_list;
648 #endif /* CONFIG_CFS_BANDWIDTH */
649 #endif /* CONFIG_FAIR_GROUP_SCHED */
650 };
651 
652 static inline int rt_bandwidth_enabled(void)
653 {
654 	return sysctl_sched_rt_runtime >= 0;
655 }
656 
657 /* RT IPI pull logic requires IRQ_WORK */
658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
659 # define HAVE_RT_PUSH_IPI
660 #endif
661 
662 /* Real-Time classes' related field in a runqueue: */
663 struct rt_rq {
664 	struct rt_prio_array	active;
665 	unsigned int		rt_nr_running;
666 	unsigned int		rr_nr_running;
667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
668 	struct {
669 		int		curr; /* highest queued rt task prio */
670 #ifdef CONFIG_SMP
671 		int		next; /* next highest */
672 #endif
673 	} highest_prio;
674 #endif
675 #ifdef CONFIG_SMP
676 	unsigned int		rt_nr_migratory;
677 	unsigned int		rt_nr_total;
678 	int			overloaded;
679 	struct plist_head	pushable_tasks;
680 
681 #endif /* CONFIG_SMP */
682 	int			rt_queued;
683 
684 	int			rt_throttled;
685 	u64			rt_time;
686 	u64			rt_runtime;
687 	/* Nests inside the rq lock: */
688 	raw_spinlock_t		rt_runtime_lock;
689 
690 #ifdef CONFIG_RT_GROUP_SCHED
691 	unsigned int		rt_nr_boosted;
692 
693 	struct rq		*rq;
694 	struct task_group	*tg;
695 #endif
696 };
697 
698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
699 {
700 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
701 }
702 
703 /* Deadline class' related fields in a runqueue */
704 struct dl_rq {
705 	/* runqueue is an rbtree, ordered by deadline */
706 	struct rb_root_cached	root;
707 
708 	unsigned int		dl_nr_running;
709 
710 #ifdef CONFIG_SMP
711 	/*
712 	 * Deadline values of the currently executing and the
713 	 * earliest ready task on this rq. Caching these facilitates
714 	 * the decision whether or not a ready but not running task
715 	 * should migrate somewhere else.
716 	 */
717 	struct {
718 		u64		curr;
719 		u64		next;
720 	} earliest_dl;
721 
722 	unsigned int		dl_nr_migratory;
723 	int			overloaded;
724 
725 	/*
726 	 * Tasks on this rq that can be pushed away. They are kept in
727 	 * an rb-tree, ordered by tasks' deadlines, with caching
728 	 * of the leftmost (earliest deadline) element.
729 	 */
730 	struct rb_root_cached	pushable_dl_tasks_root;
731 #else
732 	struct dl_bw		dl_bw;
733 #endif
734 	/*
735 	 * "Active utilization" for this runqueue: increased when a
736 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
737 	 * task blocks
738 	 */
739 	u64			running_bw;
740 
741 	/*
742 	 * Utilization of the tasks "assigned" to this runqueue (including
743 	 * the tasks that are in runqueue and the tasks that executed on this
744 	 * CPU and blocked). Increased when a task moves to this runqueue, and
745 	 * decreased when the task moves away (migrates, changes scheduling
746 	 * policy, or terminates).
747 	 * This is needed to compute the "inactive utilization" for the
748 	 * runqueue (inactive utilization = this_bw - running_bw).
749 	 */
750 	u64			this_bw;
751 	u64			extra_bw;
752 
753 	/*
754 	 * Inverse of the fraction of CPU utilization that can be reclaimed
755 	 * by the GRUB algorithm.
756 	 */
757 	u64			bw_ratio;
758 };
759 
760 #ifdef CONFIG_FAIR_GROUP_SCHED
761 /* An entity is a task if it doesn't "own" a runqueue */
762 #define entity_is_task(se)	(!se->my_q)
763 
764 static inline void se_update_runnable(struct sched_entity *se)
765 {
766 	if (!entity_is_task(se))
767 		se->runnable_weight = se->my_q->h_nr_running;
768 }
769 
770 static inline long se_runnable(struct sched_entity *se)
771 {
772 	if (entity_is_task(se))
773 		return !!se->on_rq;
774 	else
775 		return se->runnable_weight;
776 }
777 
778 #else
779 #define entity_is_task(se)	1
780 
781 static inline void se_update_runnable(struct sched_entity *se) {}
782 
783 static inline long se_runnable(struct sched_entity *se)
784 {
785 	return !!se->on_rq;
786 }
787 #endif
788 
789 #ifdef CONFIG_SMP
790 /*
791  * XXX we want to get rid of these helpers and use the full load resolution.
792  */
793 static inline long se_weight(struct sched_entity *se)
794 {
795 	return scale_load_down(se->load.weight);
796 }
797 
798 
799 static inline bool sched_asym_prefer(int a, int b)
800 {
801 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
802 }
803 
804 struct perf_domain {
805 	struct em_perf_domain *em_pd;
806 	struct perf_domain *next;
807 	struct rcu_head rcu;
808 };
809 
810 /* Scheduling group status flags */
811 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
812 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
813 
814 /*
815  * We add the notion of a root-domain which will be used to define per-domain
816  * variables. Each exclusive cpuset essentially defines an island domain by
817  * fully partitioning the member CPUs from any other cpuset. Whenever a new
818  * exclusive cpuset is created, we also create and attach a new root-domain
819  * object.
820  *
821  */
822 struct root_domain {
823 	atomic_t		refcount;
824 	atomic_t		rto_count;
825 	struct rcu_head		rcu;
826 	cpumask_var_t		span;
827 	cpumask_var_t		online;
828 
829 	/*
830 	 * Indicate pullable load on at least one CPU, e.g:
831 	 * - More than one runnable task
832 	 * - Running task is misfit
833 	 */
834 	int			overload;
835 
836 	/* Indicate one or more cpus over-utilized (tipping point) */
837 	int			overutilized;
838 
839 	/*
840 	 * The bit corresponding to a CPU gets set here if such CPU has more
841 	 * than one runnable -deadline task (as it is below for RT tasks).
842 	 */
843 	cpumask_var_t		dlo_mask;
844 	atomic_t		dlo_count;
845 	struct dl_bw		dl_bw;
846 	struct cpudl		cpudl;
847 
848 	/*
849 	 * Indicate whether a root_domain's dl_bw has been checked or
850 	 * updated. It's monotonously increasing value.
851 	 *
852 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
853 	 * that u64 is 'big enough'. So that shouldn't be a concern.
854 	 */
855 	u64 visit_gen;
856 
857 #ifdef HAVE_RT_PUSH_IPI
858 	/*
859 	 * For IPI pull requests, loop across the rto_mask.
860 	 */
861 	struct irq_work		rto_push_work;
862 	raw_spinlock_t		rto_lock;
863 	/* These are only updated and read within rto_lock */
864 	int			rto_loop;
865 	int			rto_cpu;
866 	/* These atomics are updated outside of a lock */
867 	atomic_t		rto_loop_next;
868 	atomic_t		rto_loop_start;
869 #endif
870 	/*
871 	 * The "RT overload" flag: it gets set if a CPU has more than
872 	 * one runnable RT task.
873 	 */
874 	cpumask_var_t		rto_mask;
875 	struct cpupri		cpupri;
876 
877 	unsigned long		max_cpu_capacity;
878 
879 	/*
880 	 * NULL-terminated list of performance domains intersecting with the
881 	 * CPUs of the rd. Protected by RCU.
882 	 */
883 	struct perf_domain __rcu *pd;
884 };
885 
886 extern void init_defrootdomain(void);
887 extern int sched_init_domains(const struct cpumask *cpu_map);
888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
889 extern void sched_get_rd(struct root_domain *rd);
890 extern void sched_put_rd(struct root_domain *rd);
891 
892 #ifdef HAVE_RT_PUSH_IPI
893 extern void rto_push_irq_work_func(struct irq_work *work);
894 #endif
895 #endif /* CONFIG_SMP */
896 
897 #ifdef CONFIG_UCLAMP_TASK
898 /*
899  * struct uclamp_bucket - Utilization clamp bucket
900  * @value: utilization clamp value for tasks on this clamp bucket
901  * @tasks: number of RUNNABLE tasks on this clamp bucket
902  *
903  * Keep track of how many tasks are RUNNABLE for a given utilization
904  * clamp value.
905  */
906 struct uclamp_bucket {
907 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
908 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
909 };
910 
911 /*
912  * struct uclamp_rq - rq's utilization clamp
913  * @value: currently active clamp values for a rq
914  * @bucket: utilization clamp buckets affecting a rq
915  *
916  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
917  * A clamp value is affecting a rq when there is at least one task RUNNABLE
918  * (or actually running) with that value.
919  *
920  * There are up to UCLAMP_CNT possible different clamp values, currently there
921  * are only two: minimum utilization and maximum utilization.
922  *
923  * All utilization clamping values are MAX aggregated, since:
924  * - for util_min: we want to run the CPU at least at the max of the minimum
925  *   utilization required by its currently RUNNABLE tasks.
926  * - for util_max: we want to allow the CPU to run up to the max of the
927  *   maximum utilization allowed by its currently RUNNABLE tasks.
928  *
929  * Since on each system we expect only a limited number of different
930  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
931  * the metrics required to compute all the per-rq utilization clamp values.
932  */
933 struct uclamp_rq {
934 	unsigned int value;
935 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
936 };
937 
938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
939 #endif /* CONFIG_UCLAMP_TASK */
940 
941 struct rq;
942 struct balance_callback {
943 	struct balance_callback *next;
944 	void (*func)(struct rq *rq);
945 };
946 
947 /*
948  * This is the main, per-CPU runqueue data structure.
949  *
950  * Locking rule: those places that want to lock multiple runqueues
951  * (such as the load balancing or the thread migration code), lock
952  * acquire operations must be ordered by ascending &runqueue.
953  */
954 struct rq {
955 	/* runqueue lock: */
956 	raw_spinlock_t		__lock;
957 
958 	/*
959 	 * nr_running and cpu_load should be in the same cacheline because
960 	 * remote CPUs use both these fields when doing load calculation.
961 	 */
962 	unsigned int		nr_running;
963 #ifdef CONFIG_NUMA_BALANCING
964 	unsigned int		nr_numa_running;
965 	unsigned int		nr_preferred_running;
966 	unsigned int		numa_migrate_on;
967 #endif
968 #ifdef CONFIG_NO_HZ_COMMON
969 #ifdef CONFIG_SMP
970 	unsigned long		last_blocked_load_update_tick;
971 	unsigned int		has_blocked_load;
972 	call_single_data_t	nohz_csd;
973 #endif /* CONFIG_SMP */
974 	unsigned int		nohz_tick_stopped;
975 	atomic_t		nohz_flags;
976 #endif /* CONFIG_NO_HZ_COMMON */
977 
978 #ifdef CONFIG_SMP
979 	unsigned int		ttwu_pending;
980 #endif
981 	u64			nr_switches;
982 
983 #ifdef CONFIG_UCLAMP_TASK
984 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
985 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
986 	unsigned int		uclamp_flags;
987 #define UCLAMP_FLAG_IDLE 0x01
988 #endif
989 
990 	struct cfs_rq		cfs;
991 	struct rt_rq		rt;
992 	struct dl_rq		dl;
993 
994 #ifdef CONFIG_FAIR_GROUP_SCHED
995 	/* list of leaf cfs_rq on this CPU: */
996 	struct list_head	leaf_cfs_rq_list;
997 	struct list_head	*tmp_alone_branch;
998 #endif /* CONFIG_FAIR_GROUP_SCHED */
999 
1000 	/*
1001 	 * This is part of a global counter where only the total sum
1002 	 * over all CPUs matters. A task can increase this counter on
1003 	 * one CPU and if it got migrated afterwards it may decrease
1004 	 * it on another CPU. Always updated under the runqueue lock:
1005 	 */
1006 	unsigned int		nr_uninterruptible;
1007 
1008 	struct task_struct __rcu	*curr;
1009 	struct task_struct	*idle;
1010 	struct task_struct	*stop;
1011 	unsigned long		next_balance;
1012 	struct mm_struct	*prev_mm;
1013 
1014 	unsigned int		clock_update_flags;
1015 	u64			clock;
1016 	/* Ensure that all clocks are in the same cache line */
1017 	u64			clock_task ____cacheline_aligned;
1018 	u64			clock_pelt;
1019 	unsigned long		lost_idle_time;
1020 	u64			clock_pelt_idle;
1021 	u64			clock_idle;
1022 #ifndef CONFIG_64BIT
1023 	u64			clock_pelt_idle_copy;
1024 	u64			clock_idle_copy;
1025 #endif
1026 
1027 	atomic_t		nr_iowait;
1028 
1029 #ifdef CONFIG_SCHED_DEBUG
1030 	u64 last_seen_need_resched_ns;
1031 	int ticks_without_resched;
1032 #endif
1033 
1034 #ifdef CONFIG_MEMBARRIER
1035 	int membarrier_state;
1036 #endif
1037 
1038 #ifdef CONFIG_SMP
1039 	struct root_domain		*rd;
1040 	struct sched_domain __rcu	*sd;
1041 
1042 	unsigned long		cpu_capacity;
1043 	unsigned long		cpu_capacity_orig;
1044 	unsigned long		cpu_capacity_inverted;
1045 
1046 	struct balance_callback *balance_callback;
1047 
1048 	unsigned char		nohz_idle_balance;
1049 	unsigned char		idle_balance;
1050 
1051 	unsigned long		misfit_task_load;
1052 
1053 	/* For active balancing */
1054 	int			active_balance;
1055 	int			push_cpu;
1056 	struct cpu_stop_work	active_balance_work;
1057 
1058 	/* CPU of this runqueue: */
1059 	int			cpu;
1060 	int			online;
1061 
1062 	struct list_head cfs_tasks;
1063 
1064 	struct sched_avg	avg_rt;
1065 	struct sched_avg	avg_dl;
1066 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1067 	struct sched_avg	avg_irq;
1068 #endif
1069 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1070 	struct sched_avg	avg_thermal;
1071 #endif
1072 	u64			idle_stamp;
1073 	u64			avg_idle;
1074 
1075 	unsigned long		wake_stamp;
1076 	u64			wake_avg_idle;
1077 
1078 	/* This is used to determine avg_idle's max value */
1079 	u64			max_idle_balance_cost;
1080 
1081 #ifdef CONFIG_HOTPLUG_CPU
1082 	struct rcuwait		hotplug_wait;
1083 #endif
1084 #endif /* CONFIG_SMP */
1085 
1086 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1087 	u64			prev_irq_time;
1088 #endif
1089 #ifdef CONFIG_PARAVIRT
1090 	u64			prev_steal_time;
1091 #endif
1092 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1093 	u64			prev_steal_time_rq;
1094 #endif
1095 
1096 	/* calc_load related fields */
1097 	unsigned long		calc_load_update;
1098 	long			calc_load_active;
1099 
1100 #ifdef CONFIG_SCHED_HRTICK
1101 #ifdef CONFIG_SMP
1102 	call_single_data_t	hrtick_csd;
1103 #endif
1104 	struct hrtimer		hrtick_timer;
1105 	ktime_t 		hrtick_time;
1106 #endif
1107 
1108 #ifdef CONFIG_SCHEDSTATS
1109 	/* latency stats */
1110 	struct sched_info	rq_sched_info;
1111 	unsigned long long	rq_cpu_time;
1112 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1113 
1114 	/* sys_sched_yield() stats */
1115 	unsigned int		yld_count;
1116 
1117 	/* schedule() stats */
1118 	unsigned int		sched_count;
1119 	unsigned int		sched_goidle;
1120 
1121 	/* try_to_wake_up() stats */
1122 	unsigned int		ttwu_count;
1123 	unsigned int		ttwu_local;
1124 #endif
1125 
1126 #ifdef CONFIG_CPU_IDLE
1127 	/* Must be inspected within a rcu lock section */
1128 	struct cpuidle_state	*idle_state;
1129 #endif
1130 
1131 #ifdef CONFIG_SMP
1132 	unsigned int		nr_pinned;
1133 #endif
1134 	unsigned int		push_busy;
1135 	struct cpu_stop_work	push_work;
1136 
1137 #ifdef CONFIG_SCHED_CORE
1138 	/* per rq */
1139 	struct rq		*core;
1140 	struct task_struct	*core_pick;
1141 	unsigned int		core_enabled;
1142 	unsigned int		core_sched_seq;
1143 	struct rb_root		core_tree;
1144 
1145 	/* shared state -- careful with sched_core_cpu_deactivate() */
1146 	unsigned int		core_task_seq;
1147 	unsigned int		core_pick_seq;
1148 	unsigned long		core_cookie;
1149 	unsigned int		core_forceidle_count;
1150 	unsigned int		core_forceidle_seq;
1151 	unsigned int		core_forceidle_occupation;
1152 	u64			core_forceidle_start;
1153 #endif
1154 
1155 	/* Scratch cpumask to be temporarily used under rq_lock */
1156 	cpumask_var_t		scratch_mask;
1157 };
1158 
1159 #ifdef CONFIG_FAIR_GROUP_SCHED
1160 
1161 /* CPU runqueue to which this cfs_rq is attached */
1162 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1163 {
1164 	return cfs_rq->rq;
1165 }
1166 
1167 #else
1168 
1169 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1170 {
1171 	return container_of(cfs_rq, struct rq, cfs);
1172 }
1173 #endif
1174 
1175 static inline int cpu_of(struct rq *rq)
1176 {
1177 #ifdef CONFIG_SMP
1178 	return rq->cpu;
1179 #else
1180 	return 0;
1181 #endif
1182 }
1183 
1184 #define MDF_PUSH	0x01
1185 
1186 static inline bool is_migration_disabled(struct task_struct *p)
1187 {
1188 #ifdef CONFIG_SMP
1189 	return p->migration_disabled;
1190 #else
1191 	return false;
1192 #endif
1193 }
1194 
1195 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1196 
1197 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1198 #define this_rq()		this_cpu_ptr(&runqueues)
1199 #define task_rq(p)		cpu_rq(task_cpu(p))
1200 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1201 #define raw_rq()		raw_cpu_ptr(&runqueues)
1202 
1203 struct sched_group;
1204 #ifdef CONFIG_SCHED_CORE
1205 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1206 
1207 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1208 
1209 static inline bool sched_core_enabled(struct rq *rq)
1210 {
1211 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1212 }
1213 
1214 static inline bool sched_core_disabled(void)
1215 {
1216 	return !static_branch_unlikely(&__sched_core_enabled);
1217 }
1218 
1219 /*
1220  * Be careful with this function; not for general use. The return value isn't
1221  * stable unless you actually hold a relevant rq->__lock.
1222  */
1223 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1224 {
1225 	if (sched_core_enabled(rq))
1226 		return &rq->core->__lock;
1227 
1228 	return &rq->__lock;
1229 }
1230 
1231 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1232 {
1233 	if (rq->core_enabled)
1234 		return &rq->core->__lock;
1235 
1236 	return &rq->__lock;
1237 }
1238 
1239 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1240 
1241 /*
1242  * Helpers to check if the CPU's core cookie matches with the task's cookie
1243  * when core scheduling is enabled.
1244  * A special case is that the task's cookie always matches with CPU's core
1245  * cookie if the CPU is in an idle core.
1246  */
1247 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1248 {
1249 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1250 	if (!sched_core_enabled(rq))
1251 		return true;
1252 
1253 	return rq->core->core_cookie == p->core_cookie;
1254 }
1255 
1256 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1257 {
1258 	bool idle_core = true;
1259 	int cpu;
1260 
1261 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1262 	if (!sched_core_enabled(rq))
1263 		return true;
1264 
1265 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1266 		if (!available_idle_cpu(cpu)) {
1267 			idle_core = false;
1268 			break;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * A CPU in an idle core is always the best choice for tasks with
1274 	 * cookies.
1275 	 */
1276 	return idle_core || rq->core->core_cookie == p->core_cookie;
1277 }
1278 
1279 static inline bool sched_group_cookie_match(struct rq *rq,
1280 					    struct task_struct *p,
1281 					    struct sched_group *group)
1282 {
1283 	int cpu;
1284 
1285 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1286 	if (!sched_core_enabled(rq))
1287 		return true;
1288 
1289 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1290 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1291 			return true;
1292 	}
1293 	return false;
1294 }
1295 
1296 static inline bool sched_core_enqueued(struct task_struct *p)
1297 {
1298 	return !RB_EMPTY_NODE(&p->core_node);
1299 }
1300 
1301 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1302 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1303 
1304 extern void sched_core_get(void);
1305 extern void sched_core_put(void);
1306 
1307 #else /* !CONFIG_SCHED_CORE */
1308 
1309 static inline bool sched_core_enabled(struct rq *rq)
1310 {
1311 	return false;
1312 }
1313 
1314 static inline bool sched_core_disabled(void)
1315 {
1316 	return true;
1317 }
1318 
1319 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1320 {
1321 	return &rq->__lock;
1322 }
1323 
1324 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1325 {
1326 	return &rq->__lock;
1327 }
1328 
1329 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1330 {
1331 	return true;
1332 }
1333 
1334 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1335 {
1336 	return true;
1337 }
1338 
1339 static inline bool sched_group_cookie_match(struct rq *rq,
1340 					    struct task_struct *p,
1341 					    struct sched_group *group)
1342 {
1343 	return true;
1344 }
1345 #endif /* CONFIG_SCHED_CORE */
1346 
1347 static inline void lockdep_assert_rq_held(struct rq *rq)
1348 {
1349 	lockdep_assert_held(__rq_lockp(rq));
1350 }
1351 
1352 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1353 extern bool raw_spin_rq_trylock(struct rq *rq);
1354 extern void raw_spin_rq_unlock(struct rq *rq);
1355 
1356 static inline void raw_spin_rq_lock(struct rq *rq)
1357 {
1358 	raw_spin_rq_lock_nested(rq, 0);
1359 }
1360 
1361 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1362 {
1363 	local_irq_disable();
1364 	raw_spin_rq_lock(rq);
1365 }
1366 
1367 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1368 {
1369 	raw_spin_rq_unlock(rq);
1370 	local_irq_enable();
1371 }
1372 
1373 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1374 {
1375 	unsigned long flags;
1376 	local_irq_save(flags);
1377 	raw_spin_rq_lock(rq);
1378 	return flags;
1379 }
1380 
1381 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1382 {
1383 	raw_spin_rq_unlock(rq);
1384 	local_irq_restore(flags);
1385 }
1386 
1387 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1388 do {						\
1389 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1390 } while (0)
1391 
1392 #ifdef CONFIG_SCHED_SMT
1393 extern void __update_idle_core(struct rq *rq);
1394 
1395 static inline void update_idle_core(struct rq *rq)
1396 {
1397 	if (static_branch_unlikely(&sched_smt_present))
1398 		__update_idle_core(rq);
1399 }
1400 
1401 #else
1402 static inline void update_idle_core(struct rq *rq) { }
1403 #endif
1404 
1405 #ifdef CONFIG_FAIR_GROUP_SCHED
1406 static inline struct task_struct *task_of(struct sched_entity *se)
1407 {
1408 	SCHED_WARN_ON(!entity_is_task(se));
1409 	return container_of(se, struct task_struct, se);
1410 }
1411 
1412 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1413 {
1414 	return p->se.cfs_rq;
1415 }
1416 
1417 /* runqueue on which this entity is (to be) queued */
1418 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1419 {
1420 	return se->cfs_rq;
1421 }
1422 
1423 /* runqueue "owned" by this group */
1424 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1425 {
1426 	return grp->my_q;
1427 }
1428 
1429 #else
1430 
1431 static inline struct task_struct *task_of(struct sched_entity *se)
1432 {
1433 	return container_of(se, struct task_struct, se);
1434 }
1435 
1436 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1437 {
1438 	return &task_rq(p)->cfs;
1439 }
1440 
1441 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1442 {
1443 	struct task_struct *p = task_of(se);
1444 	struct rq *rq = task_rq(p);
1445 
1446 	return &rq->cfs;
1447 }
1448 
1449 /* runqueue "owned" by this group */
1450 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1451 {
1452 	return NULL;
1453 }
1454 #endif
1455 
1456 extern void update_rq_clock(struct rq *rq);
1457 
1458 /*
1459  * rq::clock_update_flags bits
1460  *
1461  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1462  *  call to __schedule(). This is an optimisation to avoid
1463  *  neighbouring rq clock updates.
1464  *
1465  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1466  *  in effect and calls to update_rq_clock() are being ignored.
1467  *
1468  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1469  *  made to update_rq_clock() since the last time rq::lock was pinned.
1470  *
1471  * If inside of __schedule(), clock_update_flags will have been
1472  * shifted left (a left shift is a cheap operation for the fast path
1473  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1474  *
1475  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1476  *
1477  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1478  * one position though, because the next rq_unpin_lock() will shift it
1479  * back.
1480  */
1481 #define RQCF_REQ_SKIP		0x01
1482 #define RQCF_ACT_SKIP		0x02
1483 #define RQCF_UPDATED		0x04
1484 
1485 static inline void assert_clock_updated(struct rq *rq)
1486 {
1487 	/*
1488 	 * The only reason for not seeing a clock update since the
1489 	 * last rq_pin_lock() is if we're currently skipping updates.
1490 	 */
1491 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1492 }
1493 
1494 static inline u64 rq_clock(struct rq *rq)
1495 {
1496 	lockdep_assert_rq_held(rq);
1497 	assert_clock_updated(rq);
1498 
1499 	return rq->clock;
1500 }
1501 
1502 static inline u64 rq_clock_task(struct rq *rq)
1503 {
1504 	lockdep_assert_rq_held(rq);
1505 	assert_clock_updated(rq);
1506 
1507 	return rq->clock_task;
1508 }
1509 
1510 /**
1511  * By default the decay is the default pelt decay period.
1512  * The decay shift can change the decay period in
1513  * multiples of 32.
1514  *  Decay shift		Decay period(ms)
1515  *	0			32
1516  *	1			64
1517  *	2			128
1518  *	3			256
1519  *	4			512
1520  */
1521 extern int sched_thermal_decay_shift;
1522 
1523 static inline u64 rq_clock_thermal(struct rq *rq)
1524 {
1525 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1526 }
1527 
1528 static inline void rq_clock_skip_update(struct rq *rq)
1529 {
1530 	lockdep_assert_rq_held(rq);
1531 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1532 }
1533 
1534 /*
1535  * See rt task throttling, which is the only time a skip
1536  * request is canceled.
1537  */
1538 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1539 {
1540 	lockdep_assert_rq_held(rq);
1541 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1542 }
1543 
1544 struct rq_flags {
1545 	unsigned long flags;
1546 	struct pin_cookie cookie;
1547 #ifdef CONFIG_SCHED_DEBUG
1548 	/*
1549 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1550 	 * current pin context is stashed here in case it needs to be
1551 	 * restored in rq_repin_lock().
1552 	 */
1553 	unsigned int clock_update_flags;
1554 #endif
1555 };
1556 
1557 extern struct balance_callback balance_push_callback;
1558 
1559 /*
1560  * Lockdep annotation that avoids accidental unlocks; it's like a
1561  * sticky/continuous lockdep_assert_held().
1562  *
1563  * This avoids code that has access to 'struct rq *rq' (basically everything in
1564  * the scheduler) from accidentally unlocking the rq if they do not also have a
1565  * copy of the (on-stack) 'struct rq_flags rf'.
1566  *
1567  * Also see Documentation/locking/lockdep-design.rst.
1568  */
1569 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1570 {
1571 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1572 
1573 #ifdef CONFIG_SCHED_DEBUG
1574 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1575 	rf->clock_update_flags = 0;
1576 #ifdef CONFIG_SMP
1577 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1578 #endif
1579 #endif
1580 }
1581 
1582 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1583 {
1584 #ifdef CONFIG_SCHED_DEBUG
1585 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1586 		rf->clock_update_flags = RQCF_UPDATED;
1587 #endif
1588 
1589 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1590 }
1591 
1592 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1593 {
1594 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1595 
1596 #ifdef CONFIG_SCHED_DEBUG
1597 	/*
1598 	 * Restore the value we stashed in @rf for this pin context.
1599 	 */
1600 	rq->clock_update_flags |= rf->clock_update_flags;
1601 #endif
1602 }
1603 
1604 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1605 	__acquires(rq->lock);
1606 
1607 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1608 	__acquires(p->pi_lock)
1609 	__acquires(rq->lock);
1610 
1611 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1612 	__releases(rq->lock)
1613 {
1614 	rq_unpin_lock(rq, rf);
1615 	raw_spin_rq_unlock(rq);
1616 }
1617 
1618 static inline void
1619 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1620 	__releases(rq->lock)
1621 	__releases(p->pi_lock)
1622 {
1623 	rq_unpin_lock(rq, rf);
1624 	raw_spin_rq_unlock(rq);
1625 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1626 }
1627 
1628 static inline void
1629 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1630 	__acquires(rq->lock)
1631 {
1632 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1633 	rq_pin_lock(rq, rf);
1634 }
1635 
1636 static inline void
1637 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1638 	__acquires(rq->lock)
1639 {
1640 	raw_spin_rq_lock_irq(rq);
1641 	rq_pin_lock(rq, rf);
1642 }
1643 
1644 static inline void
1645 rq_lock(struct rq *rq, struct rq_flags *rf)
1646 	__acquires(rq->lock)
1647 {
1648 	raw_spin_rq_lock(rq);
1649 	rq_pin_lock(rq, rf);
1650 }
1651 
1652 static inline void
1653 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1654 	__releases(rq->lock)
1655 {
1656 	rq_unpin_lock(rq, rf);
1657 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1658 }
1659 
1660 static inline void
1661 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1662 	__releases(rq->lock)
1663 {
1664 	rq_unpin_lock(rq, rf);
1665 	raw_spin_rq_unlock_irq(rq);
1666 }
1667 
1668 static inline void
1669 rq_unlock(struct rq *rq, struct rq_flags *rf)
1670 	__releases(rq->lock)
1671 {
1672 	rq_unpin_lock(rq, rf);
1673 	raw_spin_rq_unlock(rq);
1674 }
1675 
1676 static inline struct rq *
1677 this_rq_lock_irq(struct rq_flags *rf)
1678 	__acquires(rq->lock)
1679 {
1680 	struct rq *rq;
1681 
1682 	local_irq_disable();
1683 	rq = this_rq();
1684 	rq_lock(rq, rf);
1685 	return rq;
1686 }
1687 
1688 #ifdef CONFIG_NUMA
1689 enum numa_topology_type {
1690 	NUMA_DIRECT,
1691 	NUMA_GLUELESS_MESH,
1692 	NUMA_BACKPLANE,
1693 };
1694 extern enum numa_topology_type sched_numa_topology_type;
1695 extern int sched_max_numa_distance;
1696 extern bool find_numa_distance(int distance);
1697 extern void sched_init_numa(int offline_node);
1698 extern void sched_update_numa(int cpu, bool online);
1699 extern void sched_domains_numa_masks_set(unsigned int cpu);
1700 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1701 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1702 #else
1703 static inline void sched_init_numa(int offline_node) { }
1704 static inline void sched_update_numa(int cpu, bool online) { }
1705 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1706 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1707 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1708 {
1709 	return nr_cpu_ids;
1710 }
1711 #endif
1712 
1713 #ifdef CONFIG_NUMA_BALANCING
1714 /* The regions in numa_faults array from task_struct */
1715 enum numa_faults_stats {
1716 	NUMA_MEM = 0,
1717 	NUMA_CPU,
1718 	NUMA_MEMBUF,
1719 	NUMA_CPUBUF
1720 };
1721 extern void sched_setnuma(struct task_struct *p, int node);
1722 extern int migrate_task_to(struct task_struct *p, int cpu);
1723 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1724 			int cpu, int scpu);
1725 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1726 #else
1727 static inline void
1728 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1729 {
1730 }
1731 #endif /* CONFIG_NUMA_BALANCING */
1732 
1733 #ifdef CONFIG_SMP
1734 
1735 static inline void
1736 queue_balance_callback(struct rq *rq,
1737 		       struct balance_callback *head,
1738 		       void (*func)(struct rq *rq))
1739 {
1740 	lockdep_assert_rq_held(rq);
1741 
1742 	/*
1743 	 * Don't (re)queue an already queued item; nor queue anything when
1744 	 * balance_push() is active, see the comment with
1745 	 * balance_push_callback.
1746 	 */
1747 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1748 		return;
1749 
1750 	head->func = func;
1751 	head->next = rq->balance_callback;
1752 	rq->balance_callback = head;
1753 }
1754 
1755 #define rcu_dereference_check_sched_domain(p) \
1756 	rcu_dereference_check((p), \
1757 			      lockdep_is_held(&sched_domains_mutex))
1758 
1759 /*
1760  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1761  * See destroy_sched_domains: call_rcu for details.
1762  *
1763  * The domain tree of any CPU may only be accessed from within
1764  * preempt-disabled sections.
1765  */
1766 #define for_each_domain(cpu, __sd) \
1767 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1768 			__sd; __sd = __sd->parent)
1769 
1770 /**
1771  * highest_flag_domain - Return highest sched_domain containing flag.
1772  * @cpu:	The CPU whose highest level of sched domain is to
1773  *		be returned.
1774  * @flag:	The flag to check for the highest sched_domain
1775  *		for the given CPU.
1776  *
1777  * Returns the highest sched_domain of a CPU which contains the given flag.
1778  */
1779 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1780 {
1781 	struct sched_domain *sd, *hsd = NULL;
1782 
1783 	for_each_domain(cpu, sd) {
1784 		if (!(sd->flags & flag))
1785 			break;
1786 		hsd = sd;
1787 	}
1788 
1789 	return hsd;
1790 }
1791 
1792 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1793 {
1794 	struct sched_domain *sd;
1795 
1796 	for_each_domain(cpu, sd) {
1797 		if (sd->flags & flag)
1798 			break;
1799 	}
1800 
1801 	return sd;
1802 }
1803 
1804 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1805 DECLARE_PER_CPU(int, sd_llc_size);
1806 DECLARE_PER_CPU(int, sd_llc_id);
1807 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1808 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1809 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1810 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1811 extern struct static_key_false sched_asym_cpucapacity;
1812 
1813 static __always_inline bool sched_asym_cpucap_active(void)
1814 {
1815 	return static_branch_unlikely(&sched_asym_cpucapacity);
1816 }
1817 
1818 struct sched_group_capacity {
1819 	atomic_t		ref;
1820 	/*
1821 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1822 	 * for a single CPU.
1823 	 */
1824 	unsigned long		capacity;
1825 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1826 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1827 	unsigned long		next_update;
1828 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1829 
1830 #ifdef CONFIG_SCHED_DEBUG
1831 	int			id;
1832 #endif
1833 
1834 	unsigned long		cpumask[];		/* Balance mask */
1835 };
1836 
1837 struct sched_group {
1838 	struct sched_group	*next;			/* Must be a circular list */
1839 	atomic_t		ref;
1840 
1841 	unsigned int		group_weight;
1842 	struct sched_group_capacity *sgc;
1843 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1844 	int			flags;
1845 
1846 	/*
1847 	 * The CPUs this group covers.
1848 	 *
1849 	 * NOTE: this field is variable length. (Allocated dynamically
1850 	 * by attaching extra space to the end of the structure,
1851 	 * depending on how many CPUs the kernel has booted up with)
1852 	 */
1853 	unsigned long		cpumask[];
1854 };
1855 
1856 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1857 {
1858 	return to_cpumask(sg->cpumask);
1859 }
1860 
1861 /*
1862  * See build_balance_mask().
1863  */
1864 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1865 {
1866 	return to_cpumask(sg->sgc->cpumask);
1867 }
1868 
1869 extern int group_balance_cpu(struct sched_group *sg);
1870 
1871 #ifdef CONFIG_SCHED_DEBUG
1872 void update_sched_domain_debugfs(void);
1873 void dirty_sched_domain_sysctl(int cpu);
1874 #else
1875 static inline void update_sched_domain_debugfs(void)
1876 {
1877 }
1878 static inline void dirty_sched_domain_sysctl(int cpu)
1879 {
1880 }
1881 #endif
1882 
1883 extern int sched_update_scaling(void);
1884 
1885 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1886 {
1887 	if (!p->user_cpus_ptr)
1888 		return cpu_possible_mask; /* &init_task.cpus_mask */
1889 	return p->user_cpus_ptr;
1890 }
1891 #endif /* CONFIG_SMP */
1892 
1893 #include "stats.h"
1894 
1895 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1896 
1897 extern void __sched_core_account_forceidle(struct rq *rq);
1898 
1899 static inline void sched_core_account_forceidle(struct rq *rq)
1900 {
1901 	if (schedstat_enabled())
1902 		__sched_core_account_forceidle(rq);
1903 }
1904 
1905 extern void __sched_core_tick(struct rq *rq);
1906 
1907 static inline void sched_core_tick(struct rq *rq)
1908 {
1909 	if (sched_core_enabled(rq) && schedstat_enabled())
1910 		__sched_core_tick(rq);
1911 }
1912 
1913 #else
1914 
1915 static inline void sched_core_account_forceidle(struct rq *rq) {}
1916 
1917 static inline void sched_core_tick(struct rq *rq) {}
1918 
1919 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1920 
1921 #ifdef CONFIG_CGROUP_SCHED
1922 
1923 /*
1924  * Return the group to which this tasks belongs.
1925  *
1926  * We cannot use task_css() and friends because the cgroup subsystem
1927  * changes that value before the cgroup_subsys::attach() method is called,
1928  * therefore we cannot pin it and might observe the wrong value.
1929  *
1930  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1931  * core changes this before calling sched_move_task().
1932  *
1933  * Instead we use a 'copy' which is updated from sched_move_task() while
1934  * holding both task_struct::pi_lock and rq::lock.
1935  */
1936 static inline struct task_group *task_group(struct task_struct *p)
1937 {
1938 	return p->sched_task_group;
1939 }
1940 
1941 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1942 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1943 {
1944 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1945 	struct task_group *tg = task_group(p);
1946 #endif
1947 
1948 #ifdef CONFIG_FAIR_GROUP_SCHED
1949 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1950 	p->se.cfs_rq = tg->cfs_rq[cpu];
1951 	p->se.parent = tg->se[cpu];
1952 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1953 #endif
1954 
1955 #ifdef CONFIG_RT_GROUP_SCHED
1956 	p->rt.rt_rq  = tg->rt_rq[cpu];
1957 	p->rt.parent = tg->rt_se[cpu];
1958 #endif
1959 }
1960 
1961 #else /* CONFIG_CGROUP_SCHED */
1962 
1963 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1964 static inline struct task_group *task_group(struct task_struct *p)
1965 {
1966 	return NULL;
1967 }
1968 
1969 #endif /* CONFIG_CGROUP_SCHED */
1970 
1971 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1972 {
1973 	set_task_rq(p, cpu);
1974 #ifdef CONFIG_SMP
1975 	/*
1976 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1977 	 * successfully executed on another CPU. We must ensure that updates of
1978 	 * per-task data have been completed by this moment.
1979 	 */
1980 	smp_wmb();
1981 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1982 	p->wake_cpu = cpu;
1983 #endif
1984 }
1985 
1986 /*
1987  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1988  */
1989 #ifdef CONFIG_SCHED_DEBUG
1990 # define const_debug __read_mostly
1991 #else
1992 # define const_debug const
1993 #endif
1994 
1995 #define SCHED_FEAT(name, enabled)	\
1996 	__SCHED_FEAT_##name ,
1997 
1998 enum {
1999 #include "features.h"
2000 	__SCHED_FEAT_NR,
2001 };
2002 
2003 #undef SCHED_FEAT
2004 
2005 #ifdef CONFIG_SCHED_DEBUG
2006 
2007 /*
2008  * To support run-time toggling of sched features, all the translation units
2009  * (but core.c) reference the sysctl_sched_features defined in core.c.
2010  */
2011 extern const_debug unsigned int sysctl_sched_features;
2012 
2013 #ifdef CONFIG_JUMP_LABEL
2014 #define SCHED_FEAT(name, enabled)					\
2015 static __always_inline bool static_branch_##name(struct static_key *key) \
2016 {									\
2017 	return static_key_##enabled(key);				\
2018 }
2019 
2020 #include "features.h"
2021 #undef SCHED_FEAT
2022 
2023 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2024 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2025 
2026 #else /* !CONFIG_JUMP_LABEL */
2027 
2028 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2029 
2030 #endif /* CONFIG_JUMP_LABEL */
2031 
2032 #else /* !SCHED_DEBUG */
2033 
2034 /*
2035  * Each translation unit has its own copy of sysctl_sched_features to allow
2036  * constants propagation at compile time and compiler optimization based on
2037  * features default.
2038  */
2039 #define SCHED_FEAT(name, enabled)	\
2040 	(1UL << __SCHED_FEAT_##name) * enabled |
2041 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2042 #include "features.h"
2043 	0;
2044 #undef SCHED_FEAT
2045 
2046 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2047 
2048 #endif /* SCHED_DEBUG */
2049 
2050 extern struct static_key_false sched_numa_balancing;
2051 extern struct static_key_false sched_schedstats;
2052 
2053 static inline u64 global_rt_period(void)
2054 {
2055 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2056 }
2057 
2058 static inline u64 global_rt_runtime(void)
2059 {
2060 	if (sysctl_sched_rt_runtime < 0)
2061 		return RUNTIME_INF;
2062 
2063 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2064 }
2065 
2066 static inline int task_current(struct rq *rq, struct task_struct *p)
2067 {
2068 	return rq->curr == p;
2069 }
2070 
2071 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2072 {
2073 #ifdef CONFIG_SMP
2074 	return p->on_cpu;
2075 #else
2076 	return task_current(rq, p);
2077 #endif
2078 }
2079 
2080 static inline int task_on_rq_queued(struct task_struct *p)
2081 {
2082 	return p->on_rq == TASK_ON_RQ_QUEUED;
2083 }
2084 
2085 static inline int task_on_rq_migrating(struct task_struct *p)
2086 {
2087 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2088 }
2089 
2090 /* Wake flags. The first three directly map to some SD flag value */
2091 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2092 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2093 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2094 
2095 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2096 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2097 
2098 #ifdef CONFIG_SMP
2099 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2100 static_assert(WF_FORK == SD_BALANCE_FORK);
2101 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2102 #endif
2103 
2104 /*
2105  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2106  * of tasks with abnormal "nice" values across CPUs the contribution that
2107  * each task makes to its run queue's load is weighted according to its
2108  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2109  * scaled version of the new time slice allocation that they receive on time
2110  * slice expiry etc.
2111  */
2112 
2113 #define WEIGHT_IDLEPRIO		3
2114 #define WMULT_IDLEPRIO		1431655765
2115 
2116 extern const int		sched_prio_to_weight[40];
2117 extern const u32		sched_prio_to_wmult[40];
2118 
2119 /*
2120  * {de,en}queue flags:
2121  *
2122  * DEQUEUE_SLEEP  - task is no longer runnable
2123  * ENQUEUE_WAKEUP - task just became runnable
2124  *
2125  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2126  *                are in a known state which allows modification. Such pairs
2127  *                should preserve as much state as possible.
2128  *
2129  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2130  *        in the runqueue.
2131  *
2132  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2133  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2134  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2135  *
2136  */
2137 
2138 #define DEQUEUE_SLEEP		0x01
2139 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2140 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2141 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2142 
2143 #define ENQUEUE_WAKEUP		0x01
2144 #define ENQUEUE_RESTORE		0x02
2145 #define ENQUEUE_MOVE		0x04
2146 #define ENQUEUE_NOCLOCK		0x08
2147 
2148 #define ENQUEUE_HEAD		0x10
2149 #define ENQUEUE_REPLENISH	0x20
2150 #ifdef CONFIG_SMP
2151 #define ENQUEUE_MIGRATED	0x40
2152 #else
2153 #define ENQUEUE_MIGRATED	0x00
2154 #endif
2155 
2156 #define RETRY_TASK		((void *)-1UL)
2157 
2158 struct affinity_context {
2159 	const struct cpumask *new_mask;
2160 	struct cpumask *user_mask;
2161 	unsigned int flags;
2162 };
2163 
2164 struct sched_class {
2165 
2166 #ifdef CONFIG_UCLAMP_TASK
2167 	int uclamp_enabled;
2168 #endif
2169 
2170 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2171 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2172 	void (*yield_task)   (struct rq *rq);
2173 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2174 
2175 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2176 
2177 	struct task_struct *(*pick_next_task)(struct rq *rq);
2178 
2179 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2180 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2181 
2182 #ifdef CONFIG_SMP
2183 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2184 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2185 
2186 	struct task_struct * (*pick_task)(struct rq *rq);
2187 
2188 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2189 
2190 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2191 
2192 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2193 
2194 	void (*rq_online)(struct rq *rq);
2195 	void (*rq_offline)(struct rq *rq);
2196 
2197 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2198 #endif
2199 
2200 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2201 	void (*task_fork)(struct task_struct *p);
2202 	void (*task_dead)(struct task_struct *p);
2203 
2204 	/*
2205 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2206 	 * cannot assume the switched_from/switched_to pair is serialized by
2207 	 * rq->lock. They are however serialized by p->pi_lock.
2208 	 */
2209 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2210 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2211 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2212 			      int oldprio);
2213 
2214 	unsigned int (*get_rr_interval)(struct rq *rq,
2215 					struct task_struct *task);
2216 
2217 	void (*update_curr)(struct rq *rq);
2218 
2219 #ifdef CONFIG_FAIR_GROUP_SCHED
2220 	void (*task_change_group)(struct task_struct *p);
2221 #endif
2222 };
2223 
2224 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2225 {
2226 	WARN_ON_ONCE(rq->curr != prev);
2227 	prev->sched_class->put_prev_task(rq, prev);
2228 }
2229 
2230 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2231 {
2232 	next->sched_class->set_next_task(rq, next, false);
2233 }
2234 
2235 
2236 /*
2237  * Helper to define a sched_class instance; each one is placed in a separate
2238  * section which is ordered by the linker script:
2239  *
2240  *   include/asm-generic/vmlinux.lds.h
2241  *
2242  * *CAREFUL* they are laid out in *REVERSE* order!!!
2243  *
2244  * Also enforce alignment on the instance, not the type, to guarantee layout.
2245  */
2246 #define DEFINE_SCHED_CLASS(name) \
2247 const struct sched_class name##_sched_class \
2248 	__aligned(__alignof__(struct sched_class)) \
2249 	__section("__" #name "_sched_class")
2250 
2251 /* Defined in include/asm-generic/vmlinux.lds.h */
2252 extern struct sched_class __sched_class_highest[];
2253 extern struct sched_class __sched_class_lowest[];
2254 
2255 #define for_class_range(class, _from, _to) \
2256 	for (class = (_from); class < (_to); class++)
2257 
2258 #define for_each_class(class) \
2259 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2260 
2261 #define sched_class_above(_a, _b)	((_a) < (_b))
2262 
2263 extern const struct sched_class stop_sched_class;
2264 extern const struct sched_class dl_sched_class;
2265 extern const struct sched_class rt_sched_class;
2266 extern const struct sched_class fair_sched_class;
2267 extern const struct sched_class idle_sched_class;
2268 
2269 static inline bool sched_stop_runnable(struct rq *rq)
2270 {
2271 	return rq->stop && task_on_rq_queued(rq->stop);
2272 }
2273 
2274 static inline bool sched_dl_runnable(struct rq *rq)
2275 {
2276 	return rq->dl.dl_nr_running > 0;
2277 }
2278 
2279 static inline bool sched_rt_runnable(struct rq *rq)
2280 {
2281 	return rq->rt.rt_queued > 0;
2282 }
2283 
2284 static inline bool sched_fair_runnable(struct rq *rq)
2285 {
2286 	return rq->cfs.nr_running > 0;
2287 }
2288 
2289 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2290 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2291 
2292 #define SCA_CHECK		0x01
2293 #define SCA_MIGRATE_DISABLE	0x02
2294 #define SCA_MIGRATE_ENABLE	0x04
2295 #define SCA_USER		0x08
2296 
2297 #ifdef CONFIG_SMP
2298 
2299 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2300 
2301 extern void trigger_load_balance(struct rq *rq);
2302 
2303 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2304 
2305 static inline struct task_struct *get_push_task(struct rq *rq)
2306 {
2307 	struct task_struct *p = rq->curr;
2308 
2309 	lockdep_assert_rq_held(rq);
2310 
2311 	if (rq->push_busy)
2312 		return NULL;
2313 
2314 	if (p->nr_cpus_allowed == 1)
2315 		return NULL;
2316 
2317 	if (p->migration_disabled)
2318 		return NULL;
2319 
2320 	rq->push_busy = true;
2321 	return get_task_struct(p);
2322 }
2323 
2324 extern int push_cpu_stop(void *arg);
2325 
2326 #endif
2327 
2328 #ifdef CONFIG_CPU_IDLE
2329 static inline void idle_set_state(struct rq *rq,
2330 				  struct cpuidle_state *idle_state)
2331 {
2332 	rq->idle_state = idle_state;
2333 }
2334 
2335 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2336 {
2337 	SCHED_WARN_ON(!rcu_read_lock_held());
2338 
2339 	return rq->idle_state;
2340 }
2341 #else
2342 static inline void idle_set_state(struct rq *rq,
2343 				  struct cpuidle_state *idle_state)
2344 {
2345 }
2346 
2347 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2348 {
2349 	return NULL;
2350 }
2351 #endif
2352 
2353 extern void schedule_idle(void);
2354 
2355 extern void sysrq_sched_debug_show(void);
2356 extern void sched_init_granularity(void);
2357 extern void update_max_interval(void);
2358 
2359 extern void init_sched_dl_class(void);
2360 extern void init_sched_rt_class(void);
2361 extern void init_sched_fair_class(void);
2362 
2363 extern void reweight_task(struct task_struct *p, int prio);
2364 
2365 extern void resched_curr(struct rq *rq);
2366 extern void resched_cpu(int cpu);
2367 
2368 extern struct rt_bandwidth def_rt_bandwidth;
2369 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2370 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2371 
2372 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2373 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2374 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2375 
2376 #define BW_SHIFT		20
2377 #define BW_UNIT			(1 << BW_SHIFT)
2378 #define RATIO_SHIFT		8
2379 #define MAX_BW_BITS		(64 - BW_SHIFT)
2380 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2381 unsigned long to_ratio(u64 period, u64 runtime);
2382 
2383 extern void init_entity_runnable_average(struct sched_entity *se);
2384 extern void post_init_entity_util_avg(struct task_struct *p);
2385 
2386 #ifdef CONFIG_NO_HZ_FULL
2387 extern bool sched_can_stop_tick(struct rq *rq);
2388 extern int __init sched_tick_offload_init(void);
2389 
2390 /*
2391  * Tick may be needed by tasks in the runqueue depending on their policy and
2392  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2393  * nohz mode if necessary.
2394  */
2395 static inline void sched_update_tick_dependency(struct rq *rq)
2396 {
2397 	int cpu = cpu_of(rq);
2398 
2399 	if (!tick_nohz_full_cpu(cpu))
2400 		return;
2401 
2402 	if (sched_can_stop_tick(rq))
2403 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2404 	else
2405 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2406 }
2407 #else
2408 static inline int sched_tick_offload_init(void) { return 0; }
2409 static inline void sched_update_tick_dependency(struct rq *rq) { }
2410 #endif
2411 
2412 static inline void add_nr_running(struct rq *rq, unsigned count)
2413 {
2414 	unsigned prev_nr = rq->nr_running;
2415 
2416 	rq->nr_running = prev_nr + count;
2417 	if (trace_sched_update_nr_running_tp_enabled()) {
2418 		call_trace_sched_update_nr_running(rq, count);
2419 	}
2420 
2421 #ifdef CONFIG_SMP
2422 	if (prev_nr < 2 && rq->nr_running >= 2) {
2423 		if (!READ_ONCE(rq->rd->overload))
2424 			WRITE_ONCE(rq->rd->overload, 1);
2425 	}
2426 #endif
2427 
2428 	sched_update_tick_dependency(rq);
2429 }
2430 
2431 static inline void sub_nr_running(struct rq *rq, unsigned count)
2432 {
2433 	rq->nr_running -= count;
2434 	if (trace_sched_update_nr_running_tp_enabled()) {
2435 		call_trace_sched_update_nr_running(rq, -count);
2436 	}
2437 
2438 	/* Check if we still need preemption */
2439 	sched_update_tick_dependency(rq);
2440 }
2441 
2442 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2443 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2444 
2445 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2446 
2447 #ifdef CONFIG_PREEMPT_RT
2448 #define SCHED_NR_MIGRATE_BREAK 8
2449 #else
2450 #define SCHED_NR_MIGRATE_BREAK 32
2451 #endif
2452 
2453 extern const_debug unsigned int sysctl_sched_nr_migrate;
2454 extern const_debug unsigned int sysctl_sched_migration_cost;
2455 
2456 #ifdef CONFIG_SCHED_DEBUG
2457 extern unsigned int sysctl_sched_latency;
2458 extern unsigned int sysctl_sched_min_granularity;
2459 extern unsigned int sysctl_sched_idle_min_granularity;
2460 extern unsigned int sysctl_sched_wakeup_granularity;
2461 extern int sysctl_resched_latency_warn_ms;
2462 extern int sysctl_resched_latency_warn_once;
2463 
2464 extern unsigned int sysctl_sched_tunable_scaling;
2465 
2466 extern unsigned int sysctl_numa_balancing_scan_delay;
2467 extern unsigned int sysctl_numa_balancing_scan_period_min;
2468 extern unsigned int sysctl_numa_balancing_scan_period_max;
2469 extern unsigned int sysctl_numa_balancing_scan_size;
2470 extern unsigned int sysctl_numa_balancing_hot_threshold;
2471 #endif
2472 
2473 #ifdef CONFIG_SCHED_HRTICK
2474 
2475 /*
2476  * Use hrtick when:
2477  *  - enabled by features
2478  *  - hrtimer is actually high res
2479  */
2480 static inline int hrtick_enabled(struct rq *rq)
2481 {
2482 	if (!cpu_active(cpu_of(rq)))
2483 		return 0;
2484 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2485 }
2486 
2487 static inline int hrtick_enabled_fair(struct rq *rq)
2488 {
2489 	if (!sched_feat(HRTICK))
2490 		return 0;
2491 	return hrtick_enabled(rq);
2492 }
2493 
2494 static inline int hrtick_enabled_dl(struct rq *rq)
2495 {
2496 	if (!sched_feat(HRTICK_DL))
2497 		return 0;
2498 	return hrtick_enabled(rq);
2499 }
2500 
2501 void hrtick_start(struct rq *rq, u64 delay);
2502 
2503 #else
2504 
2505 static inline int hrtick_enabled_fair(struct rq *rq)
2506 {
2507 	return 0;
2508 }
2509 
2510 static inline int hrtick_enabled_dl(struct rq *rq)
2511 {
2512 	return 0;
2513 }
2514 
2515 static inline int hrtick_enabled(struct rq *rq)
2516 {
2517 	return 0;
2518 }
2519 
2520 #endif /* CONFIG_SCHED_HRTICK */
2521 
2522 #ifndef arch_scale_freq_tick
2523 static __always_inline
2524 void arch_scale_freq_tick(void)
2525 {
2526 }
2527 #endif
2528 
2529 #ifndef arch_scale_freq_capacity
2530 /**
2531  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2532  * @cpu: the CPU in question.
2533  *
2534  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2535  *
2536  *     f_curr
2537  *     ------ * SCHED_CAPACITY_SCALE
2538  *     f_max
2539  */
2540 static __always_inline
2541 unsigned long arch_scale_freq_capacity(int cpu)
2542 {
2543 	return SCHED_CAPACITY_SCALE;
2544 }
2545 #endif
2546 
2547 #ifdef CONFIG_SCHED_DEBUG
2548 /*
2549  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2550  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2551  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2552  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2553  */
2554 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2555 {
2556 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2557 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2558 #ifdef CONFIG_SMP
2559 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2560 #endif
2561 }
2562 #else
2563 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2564 #endif
2565 
2566 #ifdef CONFIG_SMP
2567 
2568 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2569 {
2570 #ifdef CONFIG_SCHED_CORE
2571 	/*
2572 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2573 	 * order by core-id first and cpu-id second.
2574 	 *
2575 	 * Notably:
2576 	 *
2577 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2578 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2579 	 *
2580 	 * when only cpu-id is considered.
2581 	 */
2582 	if (rq1->core->cpu < rq2->core->cpu)
2583 		return true;
2584 	if (rq1->core->cpu > rq2->core->cpu)
2585 		return false;
2586 
2587 	/*
2588 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2589 	 */
2590 #endif
2591 	return rq1->cpu < rq2->cpu;
2592 }
2593 
2594 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2595 
2596 #ifdef CONFIG_PREEMPTION
2597 
2598 /*
2599  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2600  * way at the expense of forcing extra atomic operations in all
2601  * invocations.  This assures that the double_lock is acquired using the
2602  * same underlying policy as the spinlock_t on this architecture, which
2603  * reduces latency compared to the unfair variant below.  However, it
2604  * also adds more overhead and therefore may reduce throughput.
2605  */
2606 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2607 	__releases(this_rq->lock)
2608 	__acquires(busiest->lock)
2609 	__acquires(this_rq->lock)
2610 {
2611 	raw_spin_rq_unlock(this_rq);
2612 	double_rq_lock(this_rq, busiest);
2613 
2614 	return 1;
2615 }
2616 
2617 #else
2618 /*
2619  * Unfair double_lock_balance: Optimizes throughput at the expense of
2620  * latency by eliminating extra atomic operations when the locks are
2621  * already in proper order on entry.  This favors lower CPU-ids and will
2622  * grant the double lock to lower CPUs over higher ids under contention,
2623  * regardless of entry order into the function.
2624  */
2625 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2626 	__releases(this_rq->lock)
2627 	__acquires(busiest->lock)
2628 	__acquires(this_rq->lock)
2629 {
2630 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2631 	    likely(raw_spin_rq_trylock(busiest))) {
2632 		double_rq_clock_clear_update(this_rq, busiest);
2633 		return 0;
2634 	}
2635 
2636 	if (rq_order_less(this_rq, busiest)) {
2637 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2638 		double_rq_clock_clear_update(this_rq, busiest);
2639 		return 0;
2640 	}
2641 
2642 	raw_spin_rq_unlock(this_rq);
2643 	double_rq_lock(this_rq, busiest);
2644 
2645 	return 1;
2646 }
2647 
2648 #endif /* CONFIG_PREEMPTION */
2649 
2650 /*
2651  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2652  */
2653 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2654 {
2655 	lockdep_assert_irqs_disabled();
2656 
2657 	return _double_lock_balance(this_rq, busiest);
2658 }
2659 
2660 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2661 	__releases(busiest->lock)
2662 {
2663 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2664 		raw_spin_rq_unlock(busiest);
2665 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2666 }
2667 
2668 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2669 {
2670 	if (l1 > l2)
2671 		swap(l1, l2);
2672 
2673 	spin_lock(l1);
2674 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2675 }
2676 
2677 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2678 {
2679 	if (l1 > l2)
2680 		swap(l1, l2);
2681 
2682 	spin_lock_irq(l1);
2683 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2684 }
2685 
2686 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2687 {
2688 	if (l1 > l2)
2689 		swap(l1, l2);
2690 
2691 	raw_spin_lock(l1);
2692 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2693 }
2694 
2695 /*
2696  * double_rq_unlock - safely unlock two runqueues
2697  *
2698  * Note this does not restore interrupts like task_rq_unlock,
2699  * you need to do so manually after calling.
2700  */
2701 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2702 	__releases(rq1->lock)
2703 	__releases(rq2->lock)
2704 {
2705 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2706 		raw_spin_rq_unlock(rq2);
2707 	else
2708 		__release(rq2->lock);
2709 	raw_spin_rq_unlock(rq1);
2710 }
2711 
2712 extern void set_rq_online (struct rq *rq);
2713 extern void set_rq_offline(struct rq *rq);
2714 extern bool sched_smp_initialized;
2715 
2716 #else /* CONFIG_SMP */
2717 
2718 /*
2719  * double_rq_lock - safely lock two runqueues
2720  *
2721  * Note this does not disable interrupts like task_rq_lock,
2722  * you need to do so manually before calling.
2723  */
2724 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2725 	__acquires(rq1->lock)
2726 	__acquires(rq2->lock)
2727 {
2728 	WARN_ON_ONCE(!irqs_disabled());
2729 	WARN_ON_ONCE(rq1 != rq2);
2730 	raw_spin_rq_lock(rq1);
2731 	__acquire(rq2->lock);	/* Fake it out ;) */
2732 	double_rq_clock_clear_update(rq1, rq2);
2733 }
2734 
2735 /*
2736  * double_rq_unlock - safely unlock two runqueues
2737  *
2738  * Note this does not restore interrupts like task_rq_unlock,
2739  * you need to do so manually after calling.
2740  */
2741 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2742 	__releases(rq1->lock)
2743 	__releases(rq2->lock)
2744 {
2745 	WARN_ON_ONCE(rq1 != rq2);
2746 	raw_spin_rq_unlock(rq1);
2747 	__release(rq2->lock);
2748 }
2749 
2750 #endif
2751 
2752 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2753 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2754 
2755 #ifdef	CONFIG_SCHED_DEBUG
2756 extern bool sched_debug_verbose;
2757 
2758 extern void print_cfs_stats(struct seq_file *m, int cpu);
2759 extern void print_rt_stats(struct seq_file *m, int cpu);
2760 extern void print_dl_stats(struct seq_file *m, int cpu);
2761 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2762 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2763 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2764 
2765 extern void resched_latency_warn(int cpu, u64 latency);
2766 #ifdef CONFIG_NUMA_BALANCING
2767 extern void
2768 show_numa_stats(struct task_struct *p, struct seq_file *m);
2769 extern void
2770 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2771 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2772 #endif /* CONFIG_NUMA_BALANCING */
2773 #else
2774 static inline void resched_latency_warn(int cpu, u64 latency) {}
2775 #endif /* CONFIG_SCHED_DEBUG */
2776 
2777 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2778 extern void init_rt_rq(struct rt_rq *rt_rq);
2779 extern void init_dl_rq(struct dl_rq *dl_rq);
2780 
2781 extern void cfs_bandwidth_usage_inc(void);
2782 extern void cfs_bandwidth_usage_dec(void);
2783 
2784 #ifdef CONFIG_NO_HZ_COMMON
2785 #define NOHZ_BALANCE_KICK_BIT	0
2786 #define NOHZ_STATS_KICK_BIT	1
2787 #define NOHZ_NEWILB_KICK_BIT	2
2788 #define NOHZ_NEXT_KICK_BIT	3
2789 
2790 /* Run rebalance_domains() */
2791 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2792 /* Update blocked load */
2793 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2794 /* Update blocked load when entering idle */
2795 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2796 /* Update nohz.next_balance */
2797 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2798 
2799 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2800 
2801 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2802 
2803 extern void nohz_balance_exit_idle(struct rq *rq);
2804 #else
2805 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2806 #endif
2807 
2808 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2809 extern void nohz_run_idle_balance(int cpu);
2810 #else
2811 static inline void nohz_run_idle_balance(int cpu) { }
2812 #endif
2813 
2814 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2815 struct irqtime {
2816 	u64			total;
2817 	u64			tick_delta;
2818 	u64			irq_start_time;
2819 	struct u64_stats_sync	sync;
2820 };
2821 
2822 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2823 
2824 /*
2825  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2826  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2827  * and never move forward.
2828  */
2829 static inline u64 irq_time_read(int cpu)
2830 {
2831 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2832 	unsigned int seq;
2833 	u64 total;
2834 
2835 	do {
2836 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2837 		total = irqtime->total;
2838 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2839 
2840 	return total;
2841 }
2842 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2843 
2844 #ifdef CONFIG_CPU_FREQ
2845 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2846 
2847 /**
2848  * cpufreq_update_util - Take a note about CPU utilization changes.
2849  * @rq: Runqueue to carry out the update for.
2850  * @flags: Update reason flags.
2851  *
2852  * This function is called by the scheduler on the CPU whose utilization is
2853  * being updated.
2854  *
2855  * It can only be called from RCU-sched read-side critical sections.
2856  *
2857  * The way cpufreq is currently arranged requires it to evaluate the CPU
2858  * performance state (frequency/voltage) on a regular basis to prevent it from
2859  * being stuck in a completely inadequate performance level for too long.
2860  * That is not guaranteed to happen if the updates are only triggered from CFS
2861  * and DL, though, because they may not be coming in if only RT tasks are
2862  * active all the time (or there are RT tasks only).
2863  *
2864  * As a workaround for that issue, this function is called periodically by the
2865  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2866  * but that really is a band-aid.  Going forward it should be replaced with
2867  * solutions targeted more specifically at RT tasks.
2868  */
2869 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2870 {
2871 	struct update_util_data *data;
2872 
2873 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2874 						  cpu_of(rq)));
2875 	if (data)
2876 		data->func(data, rq_clock(rq), flags);
2877 }
2878 #else
2879 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2880 #endif /* CONFIG_CPU_FREQ */
2881 
2882 #ifdef arch_scale_freq_capacity
2883 # ifndef arch_scale_freq_invariant
2884 #  define arch_scale_freq_invariant()	true
2885 # endif
2886 #else
2887 # define arch_scale_freq_invariant()	false
2888 #endif
2889 
2890 #ifdef CONFIG_SMP
2891 static inline unsigned long capacity_orig_of(int cpu)
2892 {
2893 	return cpu_rq(cpu)->cpu_capacity_orig;
2894 }
2895 
2896 /*
2897  * Returns inverted capacity if the CPU is in capacity inversion state.
2898  * 0 otherwise.
2899  *
2900  * Capacity inversion detection only considers thermal impact where actual
2901  * performance points (OPPs) gets dropped.
2902  *
2903  * Capacity inversion state happens when another performance domain that has
2904  * equal or lower capacity_orig_of() becomes effectively larger than the perf
2905  * domain this CPU belongs to due to thermal pressure throttling it hard.
2906  *
2907  * See comment in update_cpu_capacity().
2908  */
2909 static inline unsigned long cpu_in_capacity_inversion(int cpu)
2910 {
2911 	return cpu_rq(cpu)->cpu_capacity_inverted;
2912 }
2913 
2914 /**
2915  * enum cpu_util_type - CPU utilization type
2916  * @FREQUENCY_UTIL:	Utilization used to select frequency
2917  * @ENERGY_UTIL:	Utilization used during energy calculation
2918  *
2919  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2920  * need to be aggregated differently depending on the usage made of them. This
2921  * enum is used within effective_cpu_util() to differentiate the types of
2922  * utilization expected by the callers, and adjust the aggregation accordingly.
2923  */
2924 enum cpu_util_type {
2925 	FREQUENCY_UTIL,
2926 	ENERGY_UTIL,
2927 };
2928 
2929 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2930 				 enum cpu_util_type type,
2931 				 struct task_struct *p);
2932 
2933 /*
2934  * Verify the fitness of task @p to run on @cpu taking into account the
2935  * CPU original capacity and the runtime/deadline ratio of the task.
2936  *
2937  * The function will return true if the original capacity of @cpu is
2938  * greater than or equal to task's deadline density right shifted by
2939  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2940  */
2941 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2942 {
2943 	unsigned long cap = arch_scale_cpu_capacity(cpu);
2944 
2945 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2946 }
2947 
2948 static inline unsigned long cpu_bw_dl(struct rq *rq)
2949 {
2950 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2951 }
2952 
2953 static inline unsigned long cpu_util_dl(struct rq *rq)
2954 {
2955 	return READ_ONCE(rq->avg_dl.util_avg);
2956 }
2957 
2958 /**
2959  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2960  * @cpu: the CPU to get the utilization for.
2961  *
2962  * The unit of the return value must be the same as the one of CPU capacity
2963  * so that CPU utilization can be compared with CPU capacity.
2964  *
2965  * CPU utilization is the sum of running time of runnable tasks plus the
2966  * recent utilization of currently non-runnable tasks on that CPU.
2967  * It represents the amount of CPU capacity currently used by CFS tasks in
2968  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2969  * capacity at f_max.
2970  *
2971  * The estimated CPU utilization is defined as the maximum between CPU
2972  * utilization and sum of the estimated utilization of the currently
2973  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2974  * previously-executed tasks, which helps better deduce how busy a CPU will
2975  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2976  * of such a task would be significantly decayed at this point of time.
2977  *
2978  * CPU utilization can be higher than the current CPU capacity
2979  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2980  * of rounding errors as well as task migrations or wakeups of new tasks.
2981  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2982  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2983  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2984  * capacity. CPU utilization is allowed to overshoot current CPU capacity
2985  * though since this is useful for predicting the CPU capacity required
2986  * after task migrations (scheduler-driven DVFS).
2987  *
2988  * Return: (Estimated) utilization for the specified CPU.
2989  */
2990 static inline unsigned long cpu_util_cfs(int cpu)
2991 {
2992 	struct cfs_rq *cfs_rq;
2993 	unsigned long util;
2994 
2995 	cfs_rq = &cpu_rq(cpu)->cfs;
2996 	util = READ_ONCE(cfs_rq->avg.util_avg);
2997 
2998 	if (sched_feat(UTIL_EST)) {
2999 		util = max_t(unsigned long, util,
3000 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
3001 	}
3002 
3003 	return min(util, capacity_orig_of(cpu));
3004 }
3005 
3006 static inline unsigned long cpu_util_rt(struct rq *rq)
3007 {
3008 	return READ_ONCE(rq->avg_rt.util_avg);
3009 }
3010 #endif
3011 
3012 #ifdef CONFIG_UCLAMP_TASK
3013 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3014 
3015 static inline unsigned long uclamp_rq_get(struct rq *rq,
3016 					  enum uclamp_id clamp_id)
3017 {
3018 	return READ_ONCE(rq->uclamp[clamp_id].value);
3019 }
3020 
3021 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3022 				 unsigned int value)
3023 {
3024 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3025 }
3026 
3027 static inline bool uclamp_rq_is_idle(struct rq *rq)
3028 {
3029 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3030 }
3031 
3032 /**
3033  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3034  * @rq:		The rq to clamp against. Must not be NULL.
3035  * @util:	The util value to clamp.
3036  * @p:		The task to clamp against. Can be NULL if you want to clamp
3037  *		against @rq only.
3038  *
3039  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3040  *
3041  * If sched_uclamp_used static key is disabled, then just return the util
3042  * without any clamping since uclamp aggregation at the rq level in the fast
3043  * path is disabled, rendering this operation a NOP.
3044  *
3045  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3046  * will return the correct effective uclamp value of the task even if the
3047  * static key is disabled.
3048  */
3049 static __always_inline
3050 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3051 				  struct task_struct *p)
3052 {
3053 	unsigned long min_util = 0;
3054 	unsigned long max_util = 0;
3055 
3056 	if (!static_branch_likely(&sched_uclamp_used))
3057 		return util;
3058 
3059 	if (p) {
3060 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3061 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3062 
3063 		/*
3064 		 * Ignore last runnable task's max clamp, as this task will
3065 		 * reset it. Similarly, no need to read the rq's min clamp.
3066 		 */
3067 		if (uclamp_rq_is_idle(rq))
3068 			goto out;
3069 	}
3070 
3071 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3072 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3073 out:
3074 	/*
3075 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3076 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3077 	 * inversion. Fix it now when the clamps are applied.
3078 	 */
3079 	if (unlikely(min_util >= max_util))
3080 		return min_util;
3081 
3082 	return clamp(util, min_util, max_util);
3083 }
3084 
3085 /* Is the rq being capped/throttled by uclamp_max? */
3086 static inline bool uclamp_rq_is_capped(struct rq *rq)
3087 {
3088 	unsigned long rq_util;
3089 	unsigned long max_util;
3090 
3091 	if (!static_branch_likely(&sched_uclamp_used))
3092 		return false;
3093 
3094 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3095 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3096 
3097 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3098 }
3099 
3100 /*
3101  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3102  * by default in the fast path and only gets turned on once userspace performs
3103  * an operation that requires it.
3104  *
3105  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3106  * hence is active.
3107  */
3108 static inline bool uclamp_is_used(void)
3109 {
3110 	return static_branch_likely(&sched_uclamp_used);
3111 }
3112 #else /* CONFIG_UCLAMP_TASK */
3113 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3114 					     enum uclamp_id clamp_id)
3115 {
3116 	if (clamp_id == UCLAMP_MIN)
3117 		return 0;
3118 
3119 	return SCHED_CAPACITY_SCALE;
3120 }
3121 
3122 static inline
3123 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3124 				  struct task_struct *p)
3125 {
3126 	return util;
3127 }
3128 
3129 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3130 
3131 static inline bool uclamp_is_used(void)
3132 {
3133 	return false;
3134 }
3135 
3136 static inline unsigned long uclamp_rq_get(struct rq *rq,
3137 					  enum uclamp_id clamp_id)
3138 {
3139 	if (clamp_id == UCLAMP_MIN)
3140 		return 0;
3141 
3142 	return SCHED_CAPACITY_SCALE;
3143 }
3144 
3145 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3146 				 unsigned int value)
3147 {
3148 }
3149 
3150 static inline bool uclamp_rq_is_idle(struct rq *rq)
3151 {
3152 	return false;
3153 }
3154 #endif /* CONFIG_UCLAMP_TASK */
3155 
3156 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3157 static inline unsigned long cpu_util_irq(struct rq *rq)
3158 {
3159 	return rq->avg_irq.util_avg;
3160 }
3161 
3162 static inline
3163 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3164 {
3165 	util *= (max - irq);
3166 	util /= max;
3167 
3168 	return util;
3169 
3170 }
3171 #else
3172 static inline unsigned long cpu_util_irq(struct rq *rq)
3173 {
3174 	return 0;
3175 }
3176 
3177 static inline
3178 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3179 {
3180 	return util;
3181 }
3182 #endif
3183 
3184 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3185 
3186 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3187 
3188 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3189 
3190 static inline bool sched_energy_enabled(void)
3191 {
3192 	return static_branch_unlikely(&sched_energy_present);
3193 }
3194 
3195 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3196 
3197 #define perf_domain_span(pd) NULL
3198 static inline bool sched_energy_enabled(void) { return false; }
3199 
3200 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3201 
3202 #ifdef CONFIG_MEMBARRIER
3203 /*
3204  * The scheduler provides memory barriers required by membarrier between:
3205  * - prior user-space memory accesses and store to rq->membarrier_state,
3206  * - store to rq->membarrier_state and following user-space memory accesses.
3207  * In the same way it provides those guarantees around store to rq->curr.
3208  */
3209 static inline void membarrier_switch_mm(struct rq *rq,
3210 					struct mm_struct *prev_mm,
3211 					struct mm_struct *next_mm)
3212 {
3213 	int membarrier_state;
3214 
3215 	if (prev_mm == next_mm)
3216 		return;
3217 
3218 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3219 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3220 		return;
3221 
3222 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3223 }
3224 #else
3225 static inline void membarrier_switch_mm(struct rq *rq,
3226 					struct mm_struct *prev_mm,
3227 					struct mm_struct *next_mm)
3228 {
3229 }
3230 #endif
3231 
3232 #ifdef CONFIG_SMP
3233 static inline bool is_per_cpu_kthread(struct task_struct *p)
3234 {
3235 	if (!(p->flags & PF_KTHREAD))
3236 		return false;
3237 
3238 	if (p->nr_cpus_allowed != 1)
3239 		return false;
3240 
3241 	return true;
3242 }
3243 #endif
3244 
3245 extern void swake_up_all_locked(struct swait_queue_head *q);
3246 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3247 
3248 #ifdef CONFIG_PREEMPT_DYNAMIC
3249 extern int preempt_dynamic_mode;
3250 extern int sched_dynamic_mode(const char *str);
3251 extern void sched_dynamic_update(int mode);
3252 #endif
3253 
3254 static inline void update_current_exec_runtime(struct task_struct *curr,
3255 						u64 now, u64 delta_exec)
3256 {
3257 	curr->se.sum_exec_runtime += delta_exec;
3258 	account_group_exec_runtime(curr, delta_exec);
3259 
3260 	curr->se.exec_start = now;
3261 	cgroup_account_cputime(curr, delta_exec);
3262 }
3263 
3264 #endif /* _KERNEL_SCHED_SCHED_H */
3265