1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpufreq.h> 43 #include <linux/cpuidle.h> 44 #include <linux/cpuset.h> 45 #include <linux/ctype.h> 46 #include <linux/debugfs.h> 47 #include <linux/delayacct.h> 48 #include <linux/energy_model.h> 49 #include <linux/init_task.h> 50 #include <linux/kprobes.h> 51 #include <linux/kthread.h> 52 #include <linux/membarrier.h> 53 #include <linux/migrate.h> 54 #include <linux/mmu_context.h> 55 #include <linux/nmi.h> 56 #include <linux/proc_fs.h> 57 #include <linux/prefetch.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcupdate_wait.h> 61 #include <linux/security.h> 62 #include <linux/stop_machine.h> 63 #include <linux/suspend.h> 64 #include <linux/swait.h> 65 #include <linux/syscalls.h> 66 #include <linux/task_work.h> 67 #include <linux/tsacct_kern.h> 68 69 #include <asm/tlb.h> 70 71 #ifdef CONFIG_PARAVIRT 72 # include <asm/paravirt.h> 73 #endif 74 75 #include "cpupri.h" 76 #include "cpudeadline.h" 77 78 #include <trace/events/sched.h> 79 80 #ifdef CONFIG_SCHED_DEBUG 81 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 82 #else 83 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 84 #endif 85 86 struct rq; 87 struct cpuidle_state; 88 89 /* task_struct::on_rq states: */ 90 #define TASK_ON_RQ_QUEUED 1 91 #define TASK_ON_RQ_MIGRATING 2 92 93 extern __read_mostly int scheduler_running; 94 95 extern unsigned long calc_load_update; 96 extern atomic_long_t calc_load_tasks; 97 98 extern void calc_global_load_tick(struct rq *this_rq); 99 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 100 101 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 102 /* 103 * Helpers for converting nanosecond timing to jiffy resolution 104 */ 105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 106 107 /* 108 * Increase resolution of nice-level calculations for 64-bit architectures. 109 * The extra resolution improves shares distribution and load balancing of 110 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 111 * hierarchies, especially on larger systems. This is not a user-visible change 112 * and does not change the user-interface for setting shares/weights. 113 * 114 * We increase resolution only if we have enough bits to allow this increased 115 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 116 * are pretty high and the returns do not justify the increased costs. 117 * 118 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 119 * increase coverage and consistency always enable it on 64-bit platforms. 120 */ 121 #ifdef CONFIG_64BIT 122 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 123 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 124 # define scale_load_down(w) \ 125 ({ \ 126 unsigned long __w = (w); \ 127 if (__w) \ 128 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 129 __w; \ 130 }) 131 #else 132 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 133 # define scale_load(w) (w) 134 # define scale_load_down(w) (w) 135 #endif 136 137 /* 138 * Task weight (visible to users) and its load (invisible to users) have 139 * independent resolution, but they should be well calibrated. We use 140 * scale_load() and scale_load_down(w) to convert between them. The 141 * following must be true: 142 * 143 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 144 * 145 */ 146 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 147 148 /* 149 * Single value that decides SCHED_DEADLINE internal math precision. 150 * 10 -> just above 1us 151 * 9 -> just above 0.5us 152 */ 153 #define DL_SCALE 10 154 155 /* 156 * Single value that denotes runtime == period, ie unlimited time. 157 */ 158 #define RUNTIME_INF ((u64)~0ULL) 159 160 static inline int idle_policy(int policy) 161 { 162 return policy == SCHED_IDLE; 163 } 164 static inline int fair_policy(int policy) 165 { 166 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 167 } 168 169 static inline int rt_policy(int policy) 170 { 171 return policy == SCHED_FIFO || policy == SCHED_RR; 172 } 173 174 static inline int dl_policy(int policy) 175 { 176 return policy == SCHED_DEADLINE; 177 } 178 static inline bool valid_policy(int policy) 179 { 180 return idle_policy(policy) || fair_policy(policy) || 181 rt_policy(policy) || dl_policy(policy); 182 } 183 184 static inline int task_has_idle_policy(struct task_struct *p) 185 { 186 return idle_policy(p->policy); 187 } 188 189 static inline int task_has_rt_policy(struct task_struct *p) 190 { 191 return rt_policy(p->policy); 192 } 193 194 static inline int task_has_dl_policy(struct task_struct *p) 195 { 196 return dl_policy(p->policy); 197 } 198 199 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 200 201 static inline void update_avg(u64 *avg, u64 sample) 202 { 203 s64 diff = sample - *avg; 204 *avg += diff / 8; 205 } 206 207 /* 208 * !! For sched_setattr_nocheck() (kernel) only !! 209 * 210 * This is actually gross. :( 211 * 212 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 213 * tasks, but still be able to sleep. We need this on platforms that cannot 214 * atomically change clock frequency. Remove once fast switching will be 215 * available on such platforms. 216 * 217 * SUGOV stands for SchedUtil GOVernor. 218 */ 219 #define SCHED_FLAG_SUGOV 0x10000000 220 221 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 222 { 223 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 224 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 225 #else 226 return false; 227 #endif 228 } 229 230 /* 231 * Tells if entity @a should preempt entity @b. 232 */ 233 static inline bool 234 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 235 { 236 return dl_entity_is_special(a) || 237 dl_time_before(a->deadline, b->deadline); 238 } 239 240 /* 241 * This is the priority-queue data structure of the RT scheduling class: 242 */ 243 struct rt_prio_array { 244 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 245 struct list_head queue[MAX_RT_PRIO]; 246 }; 247 248 struct rt_bandwidth { 249 /* nests inside the rq lock: */ 250 raw_spinlock_t rt_runtime_lock; 251 ktime_t rt_period; 252 u64 rt_runtime; 253 struct hrtimer rt_period_timer; 254 unsigned int rt_period_active; 255 }; 256 257 void __dl_clear_params(struct task_struct *p); 258 259 struct dl_bandwidth { 260 raw_spinlock_t dl_runtime_lock; 261 u64 dl_runtime; 262 u64 dl_period; 263 }; 264 265 static inline int dl_bandwidth_enabled(void) 266 { 267 return sysctl_sched_rt_runtime >= 0; 268 } 269 270 /* 271 * To keep the bandwidth of -deadline tasks under control 272 * we need some place where: 273 * - store the maximum -deadline bandwidth of each cpu; 274 * - cache the fraction of bandwidth that is currently allocated in 275 * each root domain; 276 * 277 * This is all done in the data structure below. It is similar to the 278 * one used for RT-throttling (rt_bandwidth), with the main difference 279 * that, since here we are only interested in admission control, we 280 * do not decrease any runtime while the group "executes", neither we 281 * need a timer to replenish it. 282 * 283 * With respect to SMP, bandwidth is given on a per root domain basis, 284 * meaning that: 285 * - bw (< 100%) is the deadline bandwidth of each CPU; 286 * - total_bw is the currently allocated bandwidth in each root domain; 287 */ 288 struct dl_bw { 289 raw_spinlock_t lock; 290 u64 bw; 291 u64 total_bw; 292 }; 293 294 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 295 296 static inline 297 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 298 { 299 dl_b->total_bw -= tsk_bw; 300 __dl_update(dl_b, (s32)tsk_bw / cpus); 301 } 302 303 static inline 304 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 305 { 306 dl_b->total_bw += tsk_bw; 307 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 308 } 309 310 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, 311 u64 old_bw, u64 new_bw) 312 { 313 return dl_b->bw != -1 && 314 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 315 } 316 317 /* 318 * Verify the fitness of task @p to run on @cpu taking into account the 319 * CPU original capacity and the runtime/deadline ratio of the task. 320 * 321 * The function will return true if the CPU original capacity of the 322 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 323 * task and false otherwise. 324 */ 325 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 326 { 327 unsigned long cap = arch_scale_cpu_capacity(cpu); 328 329 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 330 } 331 332 extern void init_dl_bw(struct dl_bw *dl_b); 333 extern int sched_dl_global_validate(void); 334 extern void sched_dl_do_global(void); 335 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 336 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 337 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 338 extern bool __checkparam_dl(const struct sched_attr *attr); 339 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 340 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 341 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 342 extern bool dl_cpu_busy(unsigned int cpu); 343 344 #ifdef CONFIG_CGROUP_SCHED 345 346 #include <linux/cgroup.h> 347 #include <linux/psi.h> 348 349 struct cfs_rq; 350 struct rt_rq; 351 352 extern struct list_head task_groups; 353 354 struct cfs_bandwidth { 355 #ifdef CONFIG_CFS_BANDWIDTH 356 raw_spinlock_t lock; 357 ktime_t period; 358 u64 quota; 359 u64 runtime; 360 s64 hierarchical_quota; 361 362 u8 idle; 363 u8 period_active; 364 u8 slack_started; 365 struct hrtimer period_timer; 366 struct hrtimer slack_timer; 367 struct list_head throttled_cfs_rq; 368 369 /* Statistics: */ 370 int nr_periods; 371 int nr_throttled; 372 u64 throttled_time; 373 #endif 374 }; 375 376 /* Task group related information */ 377 struct task_group { 378 struct cgroup_subsys_state css; 379 380 #ifdef CONFIG_FAIR_GROUP_SCHED 381 /* schedulable entities of this group on each CPU */ 382 struct sched_entity **se; 383 /* runqueue "owned" by this group on each CPU */ 384 struct cfs_rq **cfs_rq; 385 unsigned long shares; 386 387 #ifdef CONFIG_SMP 388 /* 389 * load_avg can be heavily contended at clock tick time, so put 390 * it in its own cacheline separated from the fields above which 391 * will also be accessed at each tick. 392 */ 393 atomic_long_t load_avg ____cacheline_aligned; 394 #endif 395 #endif 396 397 #ifdef CONFIG_RT_GROUP_SCHED 398 struct sched_rt_entity **rt_se; 399 struct rt_rq **rt_rq; 400 401 struct rt_bandwidth rt_bandwidth; 402 #endif 403 404 struct rcu_head rcu; 405 struct list_head list; 406 407 struct task_group *parent; 408 struct list_head siblings; 409 struct list_head children; 410 411 #ifdef CONFIG_SCHED_AUTOGROUP 412 struct autogroup *autogroup; 413 #endif 414 415 struct cfs_bandwidth cfs_bandwidth; 416 417 #ifdef CONFIG_UCLAMP_TASK_GROUP 418 /* The two decimal precision [%] value requested from user-space */ 419 unsigned int uclamp_pct[UCLAMP_CNT]; 420 /* Clamp values requested for a task group */ 421 struct uclamp_se uclamp_req[UCLAMP_CNT]; 422 /* Effective clamp values used for a task group */ 423 struct uclamp_se uclamp[UCLAMP_CNT]; 424 #endif 425 426 }; 427 428 #ifdef CONFIG_FAIR_GROUP_SCHED 429 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 430 431 /* 432 * A weight of 0 or 1 can cause arithmetics problems. 433 * A weight of a cfs_rq is the sum of weights of which entities 434 * are queued on this cfs_rq, so a weight of a entity should not be 435 * too large, so as the shares value of a task group. 436 * (The default weight is 1024 - so there's no practical 437 * limitation from this.) 438 */ 439 #define MIN_SHARES (1UL << 1) 440 #define MAX_SHARES (1UL << 18) 441 #endif 442 443 typedef int (*tg_visitor)(struct task_group *, void *); 444 445 extern int walk_tg_tree_from(struct task_group *from, 446 tg_visitor down, tg_visitor up, void *data); 447 448 /* 449 * Iterate the full tree, calling @down when first entering a node and @up when 450 * leaving it for the final time. 451 * 452 * Caller must hold rcu_lock or sufficient equivalent. 453 */ 454 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 455 { 456 return walk_tg_tree_from(&root_task_group, down, up, data); 457 } 458 459 extern int tg_nop(struct task_group *tg, void *data); 460 461 extern void free_fair_sched_group(struct task_group *tg); 462 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 463 extern void online_fair_sched_group(struct task_group *tg); 464 extern void unregister_fair_sched_group(struct task_group *tg); 465 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 466 struct sched_entity *se, int cpu, 467 struct sched_entity *parent); 468 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 469 470 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 471 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 472 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 473 474 extern void free_rt_sched_group(struct task_group *tg); 475 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 476 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 477 struct sched_rt_entity *rt_se, int cpu, 478 struct sched_rt_entity *parent); 479 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 480 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 481 extern long sched_group_rt_runtime(struct task_group *tg); 482 extern long sched_group_rt_period(struct task_group *tg); 483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 484 485 extern struct task_group *sched_create_group(struct task_group *parent); 486 extern void sched_online_group(struct task_group *tg, 487 struct task_group *parent); 488 extern void sched_destroy_group(struct task_group *tg); 489 extern void sched_offline_group(struct task_group *tg); 490 491 extern void sched_move_task(struct task_struct *tsk); 492 493 #ifdef CONFIG_FAIR_GROUP_SCHED 494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 495 496 #ifdef CONFIG_SMP 497 extern void set_task_rq_fair(struct sched_entity *se, 498 struct cfs_rq *prev, struct cfs_rq *next); 499 #else /* !CONFIG_SMP */ 500 static inline void set_task_rq_fair(struct sched_entity *se, 501 struct cfs_rq *prev, struct cfs_rq *next) { } 502 #endif /* CONFIG_SMP */ 503 #endif /* CONFIG_FAIR_GROUP_SCHED */ 504 505 #else /* CONFIG_CGROUP_SCHED */ 506 507 struct cfs_bandwidth { }; 508 509 #endif /* CONFIG_CGROUP_SCHED */ 510 511 /* CFS-related fields in a runqueue */ 512 struct cfs_rq { 513 struct load_weight load; 514 unsigned int nr_running; 515 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 516 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 517 518 u64 exec_clock; 519 u64 min_vruntime; 520 #ifndef CONFIG_64BIT 521 u64 min_vruntime_copy; 522 #endif 523 524 struct rb_root_cached tasks_timeline; 525 526 /* 527 * 'curr' points to currently running entity on this cfs_rq. 528 * It is set to NULL otherwise (i.e when none are currently running). 529 */ 530 struct sched_entity *curr; 531 struct sched_entity *next; 532 struct sched_entity *last; 533 struct sched_entity *skip; 534 535 #ifdef CONFIG_SCHED_DEBUG 536 unsigned int nr_spread_over; 537 #endif 538 539 #ifdef CONFIG_SMP 540 /* 541 * CFS load tracking 542 */ 543 struct sched_avg avg; 544 #ifndef CONFIG_64BIT 545 u64 load_last_update_time_copy; 546 #endif 547 struct { 548 raw_spinlock_t lock ____cacheline_aligned; 549 int nr; 550 unsigned long load_avg; 551 unsigned long util_avg; 552 unsigned long runnable_avg; 553 } removed; 554 555 #ifdef CONFIG_FAIR_GROUP_SCHED 556 unsigned long tg_load_avg_contrib; 557 long propagate; 558 long prop_runnable_sum; 559 560 /* 561 * h_load = weight * f(tg) 562 * 563 * Where f(tg) is the recursive weight fraction assigned to 564 * this group. 565 */ 566 unsigned long h_load; 567 u64 last_h_load_update; 568 struct sched_entity *h_load_next; 569 #endif /* CONFIG_FAIR_GROUP_SCHED */ 570 #endif /* CONFIG_SMP */ 571 572 #ifdef CONFIG_FAIR_GROUP_SCHED 573 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 574 575 /* 576 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 577 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 578 * (like users, containers etc.) 579 * 580 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 581 * This list is used during load balance. 582 */ 583 int on_list; 584 struct list_head leaf_cfs_rq_list; 585 struct task_group *tg; /* group that "owns" this runqueue */ 586 587 #ifdef CONFIG_CFS_BANDWIDTH 588 int runtime_enabled; 589 s64 runtime_remaining; 590 591 u64 throttled_clock; 592 u64 throttled_clock_task; 593 u64 throttled_clock_task_time; 594 int throttled; 595 int throttle_count; 596 struct list_head throttled_list; 597 #endif /* CONFIG_CFS_BANDWIDTH */ 598 #endif /* CONFIG_FAIR_GROUP_SCHED */ 599 }; 600 601 static inline int rt_bandwidth_enabled(void) 602 { 603 return sysctl_sched_rt_runtime >= 0; 604 } 605 606 /* RT IPI pull logic requires IRQ_WORK */ 607 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 608 # define HAVE_RT_PUSH_IPI 609 #endif 610 611 /* Real-Time classes' related field in a runqueue: */ 612 struct rt_rq { 613 struct rt_prio_array active; 614 unsigned int rt_nr_running; 615 unsigned int rr_nr_running; 616 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 617 struct { 618 int curr; /* highest queued rt task prio */ 619 #ifdef CONFIG_SMP 620 int next; /* next highest */ 621 #endif 622 } highest_prio; 623 #endif 624 #ifdef CONFIG_SMP 625 unsigned long rt_nr_migratory; 626 unsigned long rt_nr_total; 627 int overloaded; 628 struct plist_head pushable_tasks; 629 630 #endif /* CONFIG_SMP */ 631 int rt_queued; 632 633 int rt_throttled; 634 u64 rt_time; 635 u64 rt_runtime; 636 /* Nests inside the rq lock: */ 637 raw_spinlock_t rt_runtime_lock; 638 639 #ifdef CONFIG_RT_GROUP_SCHED 640 unsigned long rt_nr_boosted; 641 642 struct rq *rq; 643 struct task_group *tg; 644 #endif 645 }; 646 647 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 648 { 649 return rt_rq->rt_queued && rt_rq->rt_nr_running; 650 } 651 652 /* Deadline class' related fields in a runqueue */ 653 struct dl_rq { 654 /* runqueue is an rbtree, ordered by deadline */ 655 struct rb_root_cached root; 656 657 unsigned long dl_nr_running; 658 659 #ifdef CONFIG_SMP 660 /* 661 * Deadline values of the currently executing and the 662 * earliest ready task on this rq. Caching these facilitates 663 * the decision whether or not a ready but not running task 664 * should migrate somewhere else. 665 */ 666 struct { 667 u64 curr; 668 u64 next; 669 } earliest_dl; 670 671 unsigned long dl_nr_migratory; 672 int overloaded; 673 674 /* 675 * Tasks on this rq that can be pushed away. They are kept in 676 * an rb-tree, ordered by tasks' deadlines, with caching 677 * of the leftmost (earliest deadline) element. 678 */ 679 struct rb_root_cached pushable_dl_tasks_root; 680 #else 681 struct dl_bw dl_bw; 682 #endif 683 /* 684 * "Active utilization" for this runqueue: increased when a 685 * task wakes up (becomes TASK_RUNNING) and decreased when a 686 * task blocks 687 */ 688 u64 running_bw; 689 690 /* 691 * Utilization of the tasks "assigned" to this runqueue (including 692 * the tasks that are in runqueue and the tasks that executed on this 693 * CPU and blocked). Increased when a task moves to this runqueue, and 694 * decreased when the task moves away (migrates, changes scheduling 695 * policy, or terminates). 696 * This is needed to compute the "inactive utilization" for the 697 * runqueue (inactive utilization = this_bw - running_bw). 698 */ 699 u64 this_bw; 700 u64 extra_bw; 701 702 /* 703 * Inverse of the fraction of CPU utilization that can be reclaimed 704 * by the GRUB algorithm. 705 */ 706 u64 bw_ratio; 707 }; 708 709 #ifdef CONFIG_FAIR_GROUP_SCHED 710 /* An entity is a task if it doesn't "own" a runqueue */ 711 #define entity_is_task(se) (!se->my_q) 712 713 static inline void se_update_runnable(struct sched_entity *se) 714 { 715 if (!entity_is_task(se)) 716 se->runnable_weight = se->my_q->h_nr_running; 717 } 718 719 static inline long se_runnable(struct sched_entity *se) 720 { 721 if (entity_is_task(se)) 722 return !!se->on_rq; 723 else 724 return se->runnable_weight; 725 } 726 727 #else 728 #define entity_is_task(se) 1 729 730 static inline void se_update_runnable(struct sched_entity *se) {} 731 732 static inline long se_runnable(struct sched_entity *se) 733 { 734 return !!se->on_rq; 735 } 736 #endif 737 738 #ifdef CONFIG_SMP 739 /* 740 * XXX we want to get rid of these helpers and use the full load resolution. 741 */ 742 static inline long se_weight(struct sched_entity *se) 743 { 744 return scale_load_down(se->load.weight); 745 } 746 747 748 static inline bool sched_asym_prefer(int a, int b) 749 { 750 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 751 } 752 753 struct perf_domain { 754 struct em_perf_domain *em_pd; 755 struct perf_domain *next; 756 struct rcu_head rcu; 757 }; 758 759 /* Scheduling group status flags */ 760 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 761 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 762 763 /* 764 * We add the notion of a root-domain which will be used to define per-domain 765 * variables. Each exclusive cpuset essentially defines an island domain by 766 * fully partitioning the member CPUs from any other cpuset. Whenever a new 767 * exclusive cpuset is created, we also create and attach a new root-domain 768 * object. 769 * 770 */ 771 struct root_domain { 772 atomic_t refcount; 773 atomic_t rto_count; 774 struct rcu_head rcu; 775 cpumask_var_t span; 776 cpumask_var_t online; 777 778 /* 779 * Indicate pullable load on at least one CPU, e.g: 780 * - More than one runnable task 781 * - Running task is misfit 782 */ 783 int overload; 784 785 /* Indicate one or more cpus over-utilized (tipping point) */ 786 int overutilized; 787 788 /* 789 * The bit corresponding to a CPU gets set here if such CPU has more 790 * than one runnable -deadline task (as it is below for RT tasks). 791 */ 792 cpumask_var_t dlo_mask; 793 atomic_t dlo_count; 794 struct dl_bw dl_bw; 795 struct cpudl cpudl; 796 797 /* 798 * Indicate whether a root_domain's dl_bw has been checked or 799 * updated. It's monotonously increasing value. 800 * 801 * Also, some corner cases, like 'wrap around' is dangerous, but given 802 * that u64 is 'big enough'. So that shouldn't be a concern. 803 */ 804 u64 visit_gen; 805 806 #ifdef HAVE_RT_PUSH_IPI 807 /* 808 * For IPI pull requests, loop across the rto_mask. 809 */ 810 struct irq_work rto_push_work; 811 raw_spinlock_t rto_lock; 812 /* These are only updated and read within rto_lock */ 813 int rto_loop; 814 int rto_cpu; 815 /* These atomics are updated outside of a lock */ 816 atomic_t rto_loop_next; 817 atomic_t rto_loop_start; 818 #endif 819 /* 820 * The "RT overload" flag: it gets set if a CPU has more than 821 * one runnable RT task. 822 */ 823 cpumask_var_t rto_mask; 824 struct cpupri cpupri; 825 826 unsigned long max_cpu_capacity; 827 828 /* 829 * NULL-terminated list of performance domains intersecting with the 830 * CPUs of the rd. Protected by RCU. 831 */ 832 struct perf_domain __rcu *pd; 833 }; 834 835 extern void init_defrootdomain(void); 836 extern int sched_init_domains(const struct cpumask *cpu_map); 837 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 838 extern void sched_get_rd(struct root_domain *rd); 839 extern void sched_put_rd(struct root_domain *rd); 840 841 #ifdef HAVE_RT_PUSH_IPI 842 extern void rto_push_irq_work_func(struct irq_work *work); 843 #endif 844 #endif /* CONFIG_SMP */ 845 846 #ifdef CONFIG_UCLAMP_TASK 847 /* 848 * struct uclamp_bucket - Utilization clamp bucket 849 * @value: utilization clamp value for tasks on this clamp bucket 850 * @tasks: number of RUNNABLE tasks on this clamp bucket 851 * 852 * Keep track of how many tasks are RUNNABLE for a given utilization 853 * clamp value. 854 */ 855 struct uclamp_bucket { 856 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 857 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 858 }; 859 860 /* 861 * struct uclamp_rq - rq's utilization clamp 862 * @value: currently active clamp values for a rq 863 * @bucket: utilization clamp buckets affecting a rq 864 * 865 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 866 * A clamp value is affecting a rq when there is at least one task RUNNABLE 867 * (or actually running) with that value. 868 * 869 * There are up to UCLAMP_CNT possible different clamp values, currently there 870 * are only two: minimum utilization and maximum utilization. 871 * 872 * All utilization clamping values are MAX aggregated, since: 873 * - for util_min: we want to run the CPU at least at the max of the minimum 874 * utilization required by its currently RUNNABLE tasks. 875 * - for util_max: we want to allow the CPU to run up to the max of the 876 * maximum utilization allowed by its currently RUNNABLE tasks. 877 * 878 * Since on each system we expect only a limited number of different 879 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 880 * the metrics required to compute all the per-rq utilization clamp values. 881 */ 882 struct uclamp_rq { 883 unsigned int value; 884 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 885 }; 886 887 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 888 #endif /* CONFIG_UCLAMP_TASK */ 889 890 /* 891 * This is the main, per-CPU runqueue data structure. 892 * 893 * Locking rule: those places that want to lock multiple runqueues 894 * (such as the load balancing or the thread migration code), lock 895 * acquire operations must be ordered by ascending &runqueue. 896 */ 897 struct rq { 898 /* runqueue lock: */ 899 raw_spinlock_t lock; 900 901 /* 902 * nr_running and cpu_load should be in the same cacheline because 903 * remote CPUs use both these fields when doing load calculation. 904 */ 905 unsigned int nr_running; 906 #ifdef CONFIG_NUMA_BALANCING 907 unsigned int nr_numa_running; 908 unsigned int nr_preferred_running; 909 unsigned int numa_migrate_on; 910 #endif 911 #ifdef CONFIG_NO_HZ_COMMON 912 #ifdef CONFIG_SMP 913 unsigned long last_blocked_load_update_tick; 914 unsigned int has_blocked_load; 915 call_single_data_t nohz_csd; 916 #endif /* CONFIG_SMP */ 917 unsigned int nohz_tick_stopped; 918 atomic_t nohz_flags; 919 #endif /* CONFIG_NO_HZ_COMMON */ 920 921 #ifdef CONFIG_SMP 922 unsigned int ttwu_pending; 923 #endif 924 u64 nr_switches; 925 926 #ifdef CONFIG_UCLAMP_TASK 927 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 928 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 929 unsigned int uclamp_flags; 930 #define UCLAMP_FLAG_IDLE 0x01 931 #endif 932 933 struct cfs_rq cfs; 934 struct rt_rq rt; 935 struct dl_rq dl; 936 937 #ifdef CONFIG_FAIR_GROUP_SCHED 938 /* list of leaf cfs_rq on this CPU: */ 939 struct list_head leaf_cfs_rq_list; 940 struct list_head *tmp_alone_branch; 941 #endif /* CONFIG_FAIR_GROUP_SCHED */ 942 943 /* 944 * This is part of a global counter where only the total sum 945 * over all CPUs matters. A task can increase this counter on 946 * one CPU and if it got migrated afterwards it may decrease 947 * it on another CPU. Always updated under the runqueue lock: 948 */ 949 unsigned long nr_uninterruptible; 950 951 struct task_struct __rcu *curr; 952 struct task_struct *idle; 953 struct task_struct *stop; 954 unsigned long next_balance; 955 struct mm_struct *prev_mm; 956 957 unsigned int clock_update_flags; 958 u64 clock; 959 /* Ensure that all clocks are in the same cache line */ 960 u64 clock_task ____cacheline_aligned; 961 u64 clock_pelt; 962 unsigned long lost_idle_time; 963 964 atomic_t nr_iowait; 965 966 #ifdef CONFIG_MEMBARRIER 967 int membarrier_state; 968 #endif 969 970 #ifdef CONFIG_SMP 971 struct root_domain *rd; 972 struct sched_domain __rcu *sd; 973 974 unsigned long cpu_capacity; 975 unsigned long cpu_capacity_orig; 976 977 struct callback_head *balance_callback; 978 unsigned char balance_push; 979 980 unsigned char nohz_idle_balance; 981 unsigned char idle_balance; 982 983 unsigned long misfit_task_load; 984 985 /* For active balancing */ 986 int active_balance; 987 int push_cpu; 988 struct cpu_stop_work active_balance_work; 989 990 /* CPU of this runqueue: */ 991 int cpu; 992 int online; 993 994 struct list_head cfs_tasks; 995 996 struct sched_avg avg_rt; 997 struct sched_avg avg_dl; 998 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 999 struct sched_avg avg_irq; 1000 #endif 1001 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1002 struct sched_avg avg_thermal; 1003 #endif 1004 u64 idle_stamp; 1005 u64 avg_idle; 1006 1007 /* This is used to determine avg_idle's max value */ 1008 u64 max_idle_balance_cost; 1009 1010 #ifdef CONFIG_HOTPLUG_CPU 1011 struct rcuwait hotplug_wait; 1012 #endif 1013 #endif /* CONFIG_SMP */ 1014 1015 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1016 u64 prev_irq_time; 1017 #endif 1018 #ifdef CONFIG_PARAVIRT 1019 u64 prev_steal_time; 1020 #endif 1021 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1022 u64 prev_steal_time_rq; 1023 #endif 1024 1025 /* calc_load related fields */ 1026 unsigned long calc_load_update; 1027 long calc_load_active; 1028 1029 #ifdef CONFIG_SCHED_HRTICK 1030 #ifdef CONFIG_SMP 1031 call_single_data_t hrtick_csd; 1032 #endif 1033 struct hrtimer hrtick_timer; 1034 ktime_t hrtick_time; 1035 #endif 1036 1037 #ifdef CONFIG_SCHEDSTATS 1038 /* latency stats */ 1039 struct sched_info rq_sched_info; 1040 unsigned long long rq_cpu_time; 1041 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1042 1043 /* sys_sched_yield() stats */ 1044 unsigned int yld_count; 1045 1046 /* schedule() stats */ 1047 unsigned int sched_count; 1048 unsigned int sched_goidle; 1049 1050 /* try_to_wake_up() stats */ 1051 unsigned int ttwu_count; 1052 unsigned int ttwu_local; 1053 #endif 1054 1055 #ifdef CONFIG_CPU_IDLE 1056 /* Must be inspected within a rcu lock section */ 1057 struct cpuidle_state *idle_state; 1058 #endif 1059 1060 #ifdef CONFIG_SMP 1061 unsigned int nr_pinned; 1062 #endif 1063 unsigned int push_busy; 1064 struct cpu_stop_work push_work; 1065 }; 1066 1067 #ifdef CONFIG_FAIR_GROUP_SCHED 1068 1069 /* CPU runqueue to which this cfs_rq is attached */ 1070 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1071 { 1072 return cfs_rq->rq; 1073 } 1074 1075 #else 1076 1077 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1078 { 1079 return container_of(cfs_rq, struct rq, cfs); 1080 } 1081 #endif 1082 1083 static inline int cpu_of(struct rq *rq) 1084 { 1085 #ifdef CONFIG_SMP 1086 return rq->cpu; 1087 #else 1088 return 0; 1089 #endif 1090 } 1091 1092 #define MDF_PUSH 0x01 1093 1094 static inline bool is_migration_disabled(struct task_struct *p) 1095 { 1096 #ifdef CONFIG_SMP 1097 return p->migration_disabled; 1098 #else 1099 return false; 1100 #endif 1101 } 1102 1103 #ifdef CONFIG_SCHED_SMT 1104 extern void __update_idle_core(struct rq *rq); 1105 1106 static inline void update_idle_core(struct rq *rq) 1107 { 1108 if (static_branch_unlikely(&sched_smt_present)) 1109 __update_idle_core(rq); 1110 } 1111 1112 #else 1113 static inline void update_idle_core(struct rq *rq) { } 1114 #endif 1115 1116 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1117 1118 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1119 #define this_rq() this_cpu_ptr(&runqueues) 1120 #define task_rq(p) cpu_rq(task_cpu(p)) 1121 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1122 #define raw_rq() raw_cpu_ptr(&runqueues) 1123 1124 extern void update_rq_clock(struct rq *rq); 1125 1126 static inline u64 __rq_clock_broken(struct rq *rq) 1127 { 1128 return READ_ONCE(rq->clock); 1129 } 1130 1131 /* 1132 * rq::clock_update_flags bits 1133 * 1134 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1135 * call to __schedule(). This is an optimisation to avoid 1136 * neighbouring rq clock updates. 1137 * 1138 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1139 * in effect and calls to update_rq_clock() are being ignored. 1140 * 1141 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1142 * made to update_rq_clock() since the last time rq::lock was pinned. 1143 * 1144 * If inside of __schedule(), clock_update_flags will have been 1145 * shifted left (a left shift is a cheap operation for the fast path 1146 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1147 * 1148 * if (rq-clock_update_flags >= RQCF_UPDATED) 1149 * 1150 * to check if %RQCF_UPADTED is set. It'll never be shifted more than 1151 * one position though, because the next rq_unpin_lock() will shift it 1152 * back. 1153 */ 1154 #define RQCF_REQ_SKIP 0x01 1155 #define RQCF_ACT_SKIP 0x02 1156 #define RQCF_UPDATED 0x04 1157 1158 static inline void assert_clock_updated(struct rq *rq) 1159 { 1160 /* 1161 * The only reason for not seeing a clock update since the 1162 * last rq_pin_lock() is if we're currently skipping updates. 1163 */ 1164 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1165 } 1166 1167 static inline u64 rq_clock(struct rq *rq) 1168 { 1169 lockdep_assert_held(&rq->lock); 1170 assert_clock_updated(rq); 1171 1172 return rq->clock; 1173 } 1174 1175 static inline u64 rq_clock_task(struct rq *rq) 1176 { 1177 lockdep_assert_held(&rq->lock); 1178 assert_clock_updated(rq); 1179 1180 return rq->clock_task; 1181 } 1182 1183 /** 1184 * By default the decay is the default pelt decay period. 1185 * The decay shift can change the decay period in 1186 * multiples of 32. 1187 * Decay shift Decay period(ms) 1188 * 0 32 1189 * 1 64 1190 * 2 128 1191 * 3 256 1192 * 4 512 1193 */ 1194 extern int sched_thermal_decay_shift; 1195 1196 static inline u64 rq_clock_thermal(struct rq *rq) 1197 { 1198 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1199 } 1200 1201 static inline void rq_clock_skip_update(struct rq *rq) 1202 { 1203 lockdep_assert_held(&rq->lock); 1204 rq->clock_update_flags |= RQCF_REQ_SKIP; 1205 } 1206 1207 /* 1208 * See rt task throttling, which is the only time a skip 1209 * request is cancelled. 1210 */ 1211 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1212 { 1213 lockdep_assert_held(&rq->lock); 1214 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1215 } 1216 1217 struct rq_flags { 1218 unsigned long flags; 1219 struct pin_cookie cookie; 1220 #ifdef CONFIG_SCHED_DEBUG 1221 /* 1222 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1223 * current pin context is stashed here in case it needs to be 1224 * restored in rq_repin_lock(). 1225 */ 1226 unsigned int clock_update_flags; 1227 #endif 1228 }; 1229 1230 extern struct callback_head balance_push_callback; 1231 1232 /* 1233 * Lockdep annotation that avoids accidental unlocks; it's like a 1234 * sticky/continuous lockdep_assert_held(). 1235 * 1236 * This avoids code that has access to 'struct rq *rq' (basically everything in 1237 * the scheduler) from accidentally unlocking the rq if they do not also have a 1238 * copy of the (on-stack) 'struct rq_flags rf'. 1239 * 1240 * Also see Documentation/locking/lockdep-design.rst. 1241 */ 1242 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1243 { 1244 rf->cookie = lockdep_pin_lock(&rq->lock); 1245 1246 #ifdef CONFIG_SCHED_DEBUG 1247 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1248 rf->clock_update_flags = 0; 1249 #ifdef CONFIG_SMP 1250 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1251 #endif 1252 #endif 1253 } 1254 1255 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1256 { 1257 #ifdef CONFIG_SCHED_DEBUG 1258 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1259 rf->clock_update_flags = RQCF_UPDATED; 1260 #endif 1261 1262 lockdep_unpin_lock(&rq->lock, rf->cookie); 1263 } 1264 1265 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1266 { 1267 lockdep_repin_lock(&rq->lock, rf->cookie); 1268 1269 #ifdef CONFIG_SCHED_DEBUG 1270 /* 1271 * Restore the value we stashed in @rf for this pin context. 1272 */ 1273 rq->clock_update_flags |= rf->clock_update_flags; 1274 #endif 1275 } 1276 1277 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1278 __acquires(rq->lock); 1279 1280 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1281 __acquires(p->pi_lock) 1282 __acquires(rq->lock); 1283 1284 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1285 __releases(rq->lock) 1286 { 1287 rq_unpin_lock(rq, rf); 1288 raw_spin_unlock(&rq->lock); 1289 } 1290 1291 static inline void 1292 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1293 __releases(rq->lock) 1294 __releases(p->pi_lock) 1295 { 1296 rq_unpin_lock(rq, rf); 1297 raw_spin_unlock(&rq->lock); 1298 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1299 } 1300 1301 static inline void 1302 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1303 __acquires(rq->lock) 1304 { 1305 raw_spin_lock_irqsave(&rq->lock, rf->flags); 1306 rq_pin_lock(rq, rf); 1307 } 1308 1309 static inline void 1310 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1311 __acquires(rq->lock) 1312 { 1313 raw_spin_lock_irq(&rq->lock); 1314 rq_pin_lock(rq, rf); 1315 } 1316 1317 static inline void 1318 rq_lock(struct rq *rq, struct rq_flags *rf) 1319 __acquires(rq->lock) 1320 { 1321 raw_spin_lock(&rq->lock); 1322 rq_pin_lock(rq, rf); 1323 } 1324 1325 static inline void 1326 rq_relock(struct rq *rq, struct rq_flags *rf) 1327 __acquires(rq->lock) 1328 { 1329 raw_spin_lock(&rq->lock); 1330 rq_repin_lock(rq, rf); 1331 } 1332 1333 static inline void 1334 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1335 __releases(rq->lock) 1336 { 1337 rq_unpin_lock(rq, rf); 1338 raw_spin_unlock_irqrestore(&rq->lock, rf->flags); 1339 } 1340 1341 static inline void 1342 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1343 __releases(rq->lock) 1344 { 1345 rq_unpin_lock(rq, rf); 1346 raw_spin_unlock_irq(&rq->lock); 1347 } 1348 1349 static inline void 1350 rq_unlock(struct rq *rq, struct rq_flags *rf) 1351 __releases(rq->lock) 1352 { 1353 rq_unpin_lock(rq, rf); 1354 raw_spin_unlock(&rq->lock); 1355 } 1356 1357 static inline struct rq * 1358 this_rq_lock_irq(struct rq_flags *rf) 1359 __acquires(rq->lock) 1360 { 1361 struct rq *rq; 1362 1363 local_irq_disable(); 1364 rq = this_rq(); 1365 rq_lock(rq, rf); 1366 return rq; 1367 } 1368 1369 #ifdef CONFIG_NUMA 1370 enum numa_topology_type { 1371 NUMA_DIRECT, 1372 NUMA_GLUELESS_MESH, 1373 NUMA_BACKPLANE, 1374 }; 1375 extern enum numa_topology_type sched_numa_topology_type; 1376 extern int sched_max_numa_distance; 1377 extern bool find_numa_distance(int distance); 1378 extern void sched_init_numa(void); 1379 extern void sched_domains_numa_masks_set(unsigned int cpu); 1380 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1381 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1382 #else 1383 static inline void sched_init_numa(void) { } 1384 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1385 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1386 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1387 { 1388 return nr_cpu_ids; 1389 } 1390 #endif 1391 1392 #ifdef CONFIG_NUMA_BALANCING 1393 /* The regions in numa_faults array from task_struct */ 1394 enum numa_faults_stats { 1395 NUMA_MEM = 0, 1396 NUMA_CPU, 1397 NUMA_MEMBUF, 1398 NUMA_CPUBUF 1399 }; 1400 extern void sched_setnuma(struct task_struct *p, int node); 1401 extern int migrate_task_to(struct task_struct *p, int cpu); 1402 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1403 int cpu, int scpu); 1404 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1405 #else 1406 static inline void 1407 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1408 { 1409 } 1410 #endif /* CONFIG_NUMA_BALANCING */ 1411 1412 #ifdef CONFIG_SMP 1413 1414 static inline void 1415 queue_balance_callback(struct rq *rq, 1416 struct callback_head *head, 1417 void (*func)(struct rq *rq)) 1418 { 1419 lockdep_assert_held(&rq->lock); 1420 1421 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1422 return; 1423 1424 head->func = (void (*)(struct callback_head *))func; 1425 head->next = rq->balance_callback; 1426 rq->balance_callback = head; 1427 } 1428 1429 #define rcu_dereference_check_sched_domain(p) \ 1430 rcu_dereference_check((p), \ 1431 lockdep_is_held(&sched_domains_mutex)) 1432 1433 /* 1434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1435 * See destroy_sched_domains: call_rcu for details. 1436 * 1437 * The domain tree of any CPU may only be accessed from within 1438 * preempt-disabled sections. 1439 */ 1440 #define for_each_domain(cpu, __sd) \ 1441 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1442 __sd; __sd = __sd->parent) 1443 1444 /** 1445 * highest_flag_domain - Return highest sched_domain containing flag. 1446 * @cpu: The CPU whose highest level of sched domain is to 1447 * be returned. 1448 * @flag: The flag to check for the highest sched_domain 1449 * for the given CPU. 1450 * 1451 * Returns the highest sched_domain of a CPU which contains the given flag. 1452 */ 1453 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1454 { 1455 struct sched_domain *sd, *hsd = NULL; 1456 1457 for_each_domain(cpu, sd) { 1458 if (!(sd->flags & flag)) 1459 break; 1460 hsd = sd; 1461 } 1462 1463 return hsd; 1464 } 1465 1466 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1467 { 1468 struct sched_domain *sd; 1469 1470 for_each_domain(cpu, sd) { 1471 if (sd->flags & flag) 1472 break; 1473 } 1474 1475 return sd; 1476 } 1477 1478 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1479 DECLARE_PER_CPU(int, sd_llc_size); 1480 DECLARE_PER_CPU(int, sd_llc_id); 1481 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1482 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1483 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1484 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1485 extern struct static_key_false sched_asym_cpucapacity; 1486 1487 struct sched_group_capacity { 1488 atomic_t ref; 1489 /* 1490 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1491 * for a single CPU. 1492 */ 1493 unsigned long capacity; 1494 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1495 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1496 unsigned long next_update; 1497 int imbalance; /* XXX unrelated to capacity but shared group state */ 1498 1499 #ifdef CONFIG_SCHED_DEBUG 1500 int id; 1501 #endif 1502 1503 unsigned long cpumask[]; /* Balance mask */ 1504 }; 1505 1506 struct sched_group { 1507 struct sched_group *next; /* Must be a circular list */ 1508 atomic_t ref; 1509 1510 unsigned int group_weight; 1511 struct sched_group_capacity *sgc; 1512 int asym_prefer_cpu; /* CPU of highest priority in group */ 1513 1514 /* 1515 * The CPUs this group covers. 1516 * 1517 * NOTE: this field is variable length. (Allocated dynamically 1518 * by attaching extra space to the end of the structure, 1519 * depending on how many CPUs the kernel has booted up with) 1520 */ 1521 unsigned long cpumask[]; 1522 }; 1523 1524 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1525 { 1526 return to_cpumask(sg->cpumask); 1527 } 1528 1529 /* 1530 * See build_balance_mask(). 1531 */ 1532 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1533 { 1534 return to_cpumask(sg->sgc->cpumask); 1535 } 1536 1537 /** 1538 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1539 * @group: The group whose first CPU is to be returned. 1540 */ 1541 static inline unsigned int group_first_cpu(struct sched_group *group) 1542 { 1543 return cpumask_first(sched_group_span(group)); 1544 } 1545 1546 extern int group_balance_cpu(struct sched_group *sg); 1547 1548 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 1549 void register_sched_domain_sysctl(void); 1550 void dirty_sched_domain_sysctl(int cpu); 1551 void unregister_sched_domain_sysctl(void); 1552 #else 1553 static inline void register_sched_domain_sysctl(void) 1554 { 1555 } 1556 static inline void dirty_sched_domain_sysctl(int cpu) 1557 { 1558 } 1559 static inline void unregister_sched_domain_sysctl(void) 1560 { 1561 } 1562 #endif 1563 1564 extern void flush_smp_call_function_from_idle(void); 1565 1566 #else /* !CONFIG_SMP: */ 1567 static inline void flush_smp_call_function_from_idle(void) { } 1568 #endif 1569 1570 #include "stats.h" 1571 #include "autogroup.h" 1572 1573 #ifdef CONFIG_CGROUP_SCHED 1574 1575 /* 1576 * Return the group to which this tasks belongs. 1577 * 1578 * We cannot use task_css() and friends because the cgroup subsystem 1579 * changes that value before the cgroup_subsys::attach() method is called, 1580 * therefore we cannot pin it and might observe the wrong value. 1581 * 1582 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1583 * core changes this before calling sched_move_task(). 1584 * 1585 * Instead we use a 'copy' which is updated from sched_move_task() while 1586 * holding both task_struct::pi_lock and rq::lock. 1587 */ 1588 static inline struct task_group *task_group(struct task_struct *p) 1589 { 1590 return p->sched_task_group; 1591 } 1592 1593 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1594 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1595 { 1596 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1597 struct task_group *tg = task_group(p); 1598 #endif 1599 1600 #ifdef CONFIG_FAIR_GROUP_SCHED 1601 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1602 p->se.cfs_rq = tg->cfs_rq[cpu]; 1603 p->se.parent = tg->se[cpu]; 1604 #endif 1605 1606 #ifdef CONFIG_RT_GROUP_SCHED 1607 p->rt.rt_rq = tg->rt_rq[cpu]; 1608 p->rt.parent = tg->rt_se[cpu]; 1609 #endif 1610 } 1611 1612 #else /* CONFIG_CGROUP_SCHED */ 1613 1614 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1615 static inline struct task_group *task_group(struct task_struct *p) 1616 { 1617 return NULL; 1618 } 1619 1620 #endif /* CONFIG_CGROUP_SCHED */ 1621 1622 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1623 { 1624 set_task_rq(p, cpu); 1625 #ifdef CONFIG_SMP 1626 /* 1627 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1628 * successfully executed on another CPU. We must ensure that updates of 1629 * per-task data have been completed by this moment. 1630 */ 1631 smp_wmb(); 1632 #ifdef CONFIG_THREAD_INFO_IN_TASK 1633 WRITE_ONCE(p->cpu, cpu); 1634 #else 1635 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1636 #endif 1637 p->wake_cpu = cpu; 1638 #endif 1639 } 1640 1641 /* 1642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1643 */ 1644 #ifdef CONFIG_SCHED_DEBUG 1645 # include <linux/static_key.h> 1646 # define const_debug __read_mostly 1647 #else 1648 # define const_debug const 1649 #endif 1650 1651 #define SCHED_FEAT(name, enabled) \ 1652 __SCHED_FEAT_##name , 1653 1654 enum { 1655 #include "features.h" 1656 __SCHED_FEAT_NR, 1657 }; 1658 1659 #undef SCHED_FEAT 1660 1661 #ifdef CONFIG_SCHED_DEBUG 1662 1663 /* 1664 * To support run-time toggling of sched features, all the translation units 1665 * (but core.c) reference the sysctl_sched_features defined in core.c. 1666 */ 1667 extern const_debug unsigned int sysctl_sched_features; 1668 1669 #ifdef CONFIG_JUMP_LABEL 1670 #define SCHED_FEAT(name, enabled) \ 1671 static __always_inline bool static_branch_##name(struct static_key *key) \ 1672 { \ 1673 return static_key_##enabled(key); \ 1674 } 1675 1676 #include "features.h" 1677 #undef SCHED_FEAT 1678 1679 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1680 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1681 1682 #else /* !CONFIG_JUMP_LABEL */ 1683 1684 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1685 1686 #endif /* CONFIG_JUMP_LABEL */ 1687 1688 #else /* !SCHED_DEBUG */ 1689 1690 /* 1691 * Each translation unit has its own copy of sysctl_sched_features to allow 1692 * constants propagation at compile time and compiler optimization based on 1693 * features default. 1694 */ 1695 #define SCHED_FEAT(name, enabled) \ 1696 (1UL << __SCHED_FEAT_##name) * enabled | 1697 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1698 #include "features.h" 1699 0; 1700 #undef SCHED_FEAT 1701 1702 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1703 1704 #endif /* SCHED_DEBUG */ 1705 1706 extern struct static_key_false sched_numa_balancing; 1707 extern struct static_key_false sched_schedstats; 1708 1709 static inline u64 global_rt_period(void) 1710 { 1711 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1712 } 1713 1714 static inline u64 global_rt_runtime(void) 1715 { 1716 if (sysctl_sched_rt_runtime < 0) 1717 return RUNTIME_INF; 1718 1719 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1720 } 1721 1722 static inline int task_current(struct rq *rq, struct task_struct *p) 1723 { 1724 return rq->curr == p; 1725 } 1726 1727 static inline int task_running(struct rq *rq, struct task_struct *p) 1728 { 1729 #ifdef CONFIG_SMP 1730 return p->on_cpu; 1731 #else 1732 return task_current(rq, p); 1733 #endif 1734 } 1735 1736 static inline int task_on_rq_queued(struct task_struct *p) 1737 { 1738 return p->on_rq == TASK_ON_RQ_QUEUED; 1739 } 1740 1741 static inline int task_on_rq_migrating(struct task_struct *p) 1742 { 1743 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 1744 } 1745 1746 /* Wake flags. The first three directly map to some SD flag value */ 1747 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 1748 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 1749 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 1750 1751 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 1752 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 1753 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 1754 1755 #ifdef CONFIG_SMP 1756 static_assert(WF_EXEC == SD_BALANCE_EXEC); 1757 static_assert(WF_FORK == SD_BALANCE_FORK); 1758 static_assert(WF_TTWU == SD_BALANCE_WAKE); 1759 #endif 1760 1761 /* 1762 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1763 * of tasks with abnormal "nice" values across CPUs the contribution that 1764 * each task makes to its run queue's load is weighted according to its 1765 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1766 * scaled version of the new time slice allocation that they receive on time 1767 * slice expiry etc. 1768 */ 1769 1770 #define WEIGHT_IDLEPRIO 3 1771 #define WMULT_IDLEPRIO 1431655765 1772 1773 extern const int sched_prio_to_weight[40]; 1774 extern const u32 sched_prio_to_wmult[40]; 1775 1776 /* 1777 * {de,en}queue flags: 1778 * 1779 * DEQUEUE_SLEEP - task is no longer runnable 1780 * ENQUEUE_WAKEUP - task just became runnable 1781 * 1782 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1783 * are in a known state which allows modification. Such pairs 1784 * should preserve as much state as possible. 1785 * 1786 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1787 * in the runqueue. 1788 * 1789 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1790 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1791 * ENQUEUE_MIGRATED - the task was migrated during wakeup 1792 * 1793 */ 1794 1795 #define DEQUEUE_SLEEP 0x01 1796 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 1797 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 1798 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 1799 1800 #define ENQUEUE_WAKEUP 0x01 1801 #define ENQUEUE_RESTORE 0x02 1802 #define ENQUEUE_MOVE 0x04 1803 #define ENQUEUE_NOCLOCK 0x08 1804 1805 #define ENQUEUE_HEAD 0x10 1806 #define ENQUEUE_REPLENISH 0x20 1807 #ifdef CONFIG_SMP 1808 #define ENQUEUE_MIGRATED 0x40 1809 #else 1810 #define ENQUEUE_MIGRATED 0x00 1811 #endif 1812 1813 #define RETRY_TASK ((void *)-1UL) 1814 1815 struct sched_class { 1816 1817 #ifdef CONFIG_UCLAMP_TASK 1818 int uclamp_enabled; 1819 #endif 1820 1821 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1822 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1823 void (*yield_task) (struct rq *rq); 1824 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 1825 1826 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 1827 1828 struct task_struct *(*pick_next_task)(struct rq *rq); 1829 1830 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 1831 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 1832 1833 #ifdef CONFIG_SMP 1834 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 1835 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 1836 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 1837 1838 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 1839 1840 void (*set_cpus_allowed)(struct task_struct *p, 1841 const struct cpumask *newmask, 1842 u32 flags); 1843 1844 void (*rq_online)(struct rq *rq); 1845 void (*rq_offline)(struct rq *rq); 1846 1847 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 1848 #endif 1849 1850 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 1851 void (*task_fork)(struct task_struct *p); 1852 void (*task_dead)(struct task_struct *p); 1853 1854 /* 1855 * The switched_from() call is allowed to drop rq->lock, therefore we 1856 * cannot assume the switched_from/switched_to pair is serliazed by 1857 * rq->lock. They are however serialized by p->pi_lock. 1858 */ 1859 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 1860 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1861 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1862 int oldprio); 1863 1864 unsigned int (*get_rr_interval)(struct rq *rq, 1865 struct task_struct *task); 1866 1867 void (*update_curr)(struct rq *rq); 1868 1869 #define TASK_SET_GROUP 0 1870 #define TASK_MOVE_GROUP 1 1871 1872 #ifdef CONFIG_FAIR_GROUP_SCHED 1873 void (*task_change_group)(struct task_struct *p, int type); 1874 #endif 1875 }; 1876 1877 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1878 { 1879 WARN_ON_ONCE(rq->curr != prev); 1880 prev->sched_class->put_prev_task(rq, prev); 1881 } 1882 1883 static inline void set_next_task(struct rq *rq, struct task_struct *next) 1884 { 1885 WARN_ON_ONCE(rq->curr != next); 1886 next->sched_class->set_next_task(rq, next, false); 1887 } 1888 1889 1890 /* 1891 * Helper to define a sched_class instance; each one is placed in a separate 1892 * section which is ordered by the linker script: 1893 * 1894 * include/asm-generic/vmlinux.lds.h 1895 * 1896 * Also enforce alignment on the instance, not the type, to guarantee layout. 1897 */ 1898 #define DEFINE_SCHED_CLASS(name) \ 1899 const struct sched_class name##_sched_class \ 1900 __aligned(__alignof__(struct sched_class)) \ 1901 __section("__" #name "_sched_class") 1902 1903 /* Defined in include/asm-generic/vmlinux.lds.h */ 1904 extern struct sched_class __begin_sched_classes[]; 1905 extern struct sched_class __end_sched_classes[]; 1906 1907 #define sched_class_highest (__end_sched_classes - 1) 1908 #define sched_class_lowest (__begin_sched_classes - 1) 1909 1910 #define for_class_range(class, _from, _to) \ 1911 for (class = (_from); class != (_to); class--) 1912 1913 #define for_each_class(class) \ 1914 for_class_range(class, sched_class_highest, sched_class_lowest) 1915 1916 extern const struct sched_class stop_sched_class; 1917 extern const struct sched_class dl_sched_class; 1918 extern const struct sched_class rt_sched_class; 1919 extern const struct sched_class fair_sched_class; 1920 extern const struct sched_class idle_sched_class; 1921 1922 static inline bool sched_stop_runnable(struct rq *rq) 1923 { 1924 return rq->stop && task_on_rq_queued(rq->stop); 1925 } 1926 1927 static inline bool sched_dl_runnable(struct rq *rq) 1928 { 1929 return rq->dl.dl_nr_running > 0; 1930 } 1931 1932 static inline bool sched_rt_runnable(struct rq *rq) 1933 { 1934 return rq->rt.rt_queued > 0; 1935 } 1936 1937 static inline bool sched_fair_runnable(struct rq *rq) 1938 { 1939 return rq->cfs.nr_running > 0; 1940 } 1941 1942 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 1943 extern struct task_struct *pick_next_task_idle(struct rq *rq); 1944 1945 #define SCA_CHECK 0x01 1946 #define SCA_MIGRATE_DISABLE 0x02 1947 #define SCA_MIGRATE_ENABLE 0x04 1948 1949 #ifdef CONFIG_SMP 1950 1951 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1952 1953 extern void trigger_load_balance(struct rq *rq); 1954 1955 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1956 1957 static inline struct task_struct *get_push_task(struct rq *rq) 1958 { 1959 struct task_struct *p = rq->curr; 1960 1961 lockdep_assert_held(&rq->lock); 1962 1963 if (rq->push_busy) 1964 return NULL; 1965 1966 if (p->nr_cpus_allowed == 1) 1967 return NULL; 1968 1969 rq->push_busy = true; 1970 return get_task_struct(p); 1971 } 1972 1973 extern int push_cpu_stop(void *arg); 1974 1975 #endif 1976 1977 #ifdef CONFIG_CPU_IDLE 1978 static inline void idle_set_state(struct rq *rq, 1979 struct cpuidle_state *idle_state) 1980 { 1981 rq->idle_state = idle_state; 1982 } 1983 1984 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1985 { 1986 SCHED_WARN_ON(!rcu_read_lock_held()); 1987 1988 return rq->idle_state; 1989 } 1990 #else 1991 static inline void idle_set_state(struct rq *rq, 1992 struct cpuidle_state *idle_state) 1993 { 1994 } 1995 1996 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1997 { 1998 return NULL; 1999 } 2000 #endif 2001 2002 extern void schedule_idle(void); 2003 2004 extern void sysrq_sched_debug_show(void); 2005 extern void sched_init_granularity(void); 2006 extern void update_max_interval(void); 2007 2008 extern void init_sched_dl_class(void); 2009 extern void init_sched_rt_class(void); 2010 extern void init_sched_fair_class(void); 2011 2012 extern void reweight_task(struct task_struct *p, int prio); 2013 2014 extern void resched_curr(struct rq *rq); 2015 extern void resched_cpu(int cpu); 2016 2017 extern struct rt_bandwidth def_rt_bandwidth; 2018 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2019 2020 extern struct dl_bandwidth def_dl_bandwidth; 2021 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2022 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2023 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2024 2025 #define BW_SHIFT 20 2026 #define BW_UNIT (1 << BW_SHIFT) 2027 #define RATIO_SHIFT 8 2028 #define MAX_BW_BITS (64 - BW_SHIFT) 2029 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2030 unsigned long to_ratio(u64 period, u64 runtime); 2031 2032 extern void init_entity_runnable_average(struct sched_entity *se); 2033 extern void post_init_entity_util_avg(struct task_struct *p); 2034 2035 #ifdef CONFIG_NO_HZ_FULL 2036 extern bool sched_can_stop_tick(struct rq *rq); 2037 extern int __init sched_tick_offload_init(void); 2038 2039 /* 2040 * Tick may be needed by tasks in the runqueue depending on their policy and 2041 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2042 * nohz mode if necessary. 2043 */ 2044 static inline void sched_update_tick_dependency(struct rq *rq) 2045 { 2046 int cpu = cpu_of(rq); 2047 2048 if (!tick_nohz_full_cpu(cpu)) 2049 return; 2050 2051 if (sched_can_stop_tick(rq)) 2052 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2053 else 2054 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2055 } 2056 #else 2057 static inline int sched_tick_offload_init(void) { return 0; } 2058 static inline void sched_update_tick_dependency(struct rq *rq) { } 2059 #endif 2060 2061 static inline void add_nr_running(struct rq *rq, unsigned count) 2062 { 2063 unsigned prev_nr = rq->nr_running; 2064 2065 rq->nr_running = prev_nr + count; 2066 if (trace_sched_update_nr_running_tp_enabled()) { 2067 call_trace_sched_update_nr_running(rq, count); 2068 } 2069 2070 #ifdef CONFIG_SMP 2071 if (prev_nr < 2 && rq->nr_running >= 2) { 2072 if (!READ_ONCE(rq->rd->overload)) 2073 WRITE_ONCE(rq->rd->overload, 1); 2074 } 2075 #endif 2076 2077 sched_update_tick_dependency(rq); 2078 } 2079 2080 static inline void sub_nr_running(struct rq *rq, unsigned count) 2081 { 2082 rq->nr_running -= count; 2083 if (trace_sched_update_nr_running_tp_enabled()) { 2084 call_trace_sched_update_nr_running(rq, -count); 2085 } 2086 2087 /* Check if we still need preemption */ 2088 sched_update_tick_dependency(rq); 2089 } 2090 2091 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2092 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2093 2094 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2095 2096 extern const_debug unsigned int sysctl_sched_nr_migrate; 2097 extern const_debug unsigned int sysctl_sched_migration_cost; 2098 2099 #ifdef CONFIG_SCHED_HRTICK 2100 2101 /* 2102 * Use hrtick when: 2103 * - enabled by features 2104 * - hrtimer is actually high res 2105 */ 2106 static inline int hrtick_enabled(struct rq *rq) 2107 { 2108 if (!cpu_active(cpu_of(rq))) 2109 return 0; 2110 return hrtimer_is_hres_active(&rq->hrtick_timer); 2111 } 2112 2113 static inline int hrtick_enabled_fair(struct rq *rq) 2114 { 2115 if (!sched_feat(HRTICK)) 2116 return 0; 2117 return hrtick_enabled(rq); 2118 } 2119 2120 static inline int hrtick_enabled_dl(struct rq *rq) 2121 { 2122 if (!sched_feat(HRTICK_DL)) 2123 return 0; 2124 return hrtick_enabled(rq); 2125 } 2126 2127 void hrtick_start(struct rq *rq, u64 delay); 2128 2129 #else 2130 2131 static inline int hrtick_enabled_fair(struct rq *rq) 2132 { 2133 return 0; 2134 } 2135 2136 static inline int hrtick_enabled_dl(struct rq *rq) 2137 { 2138 return 0; 2139 } 2140 2141 static inline int hrtick_enabled(struct rq *rq) 2142 { 2143 return 0; 2144 } 2145 2146 #endif /* CONFIG_SCHED_HRTICK */ 2147 2148 #ifndef arch_scale_freq_tick 2149 static __always_inline 2150 void arch_scale_freq_tick(void) 2151 { 2152 } 2153 #endif 2154 2155 #ifndef arch_scale_freq_capacity 2156 /** 2157 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2158 * @cpu: the CPU in question. 2159 * 2160 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2161 * 2162 * f_curr 2163 * ------ * SCHED_CAPACITY_SCALE 2164 * f_max 2165 */ 2166 static __always_inline 2167 unsigned long arch_scale_freq_capacity(int cpu) 2168 { 2169 return SCHED_CAPACITY_SCALE; 2170 } 2171 #endif 2172 2173 #ifdef CONFIG_SMP 2174 #ifdef CONFIG_PREEMPTION 2175 2176 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 2177 2178 /* 2179 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2180 * way at the expense of forcing extra atomic operations in all 2181 * invocations. This assures that the double_lock is acquired using the 2182 * same underlying policy as the spinlock_t on this architecture, which 2183 * reduces latency compared to the unfair variant below. However, it 2184 * also adds more overhead and therefore may reduce throughput. 2185 */ 2186 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2187 __releases(this_rq->lock) 2188 __acquires(busiest->lock) 2189 __acquires(this_rq->lock) 2190 { 2191 raw_spin_unlock(&this_rq->lock); 2192 double_rq_lock(this_rq, busiest); 2193 2194 return 1; 2195 } 2196 2197 #else 2198 /* 2199 * Unfair double_lock_balance: Optimizes throughput at the expense of 2200 * latency by eliminating extra atomic operations when the locks are 2201 * already in proper order on entry. This favors lower CPU-ids and will 2202 * grant the double lock to lower CPUs over higher ids under contention, 2203 * regardless of entry order into the function. 2204 */ 2205 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2206 __releases(this_rq->lock) 2207 __acquires(busiest->lock) 2208 __acquires(this_rq->lock) 2209 { 2210 int ret = 0; 2211 2212 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 2213 if (busiest < this_rq) { 2214 raw_spin_unlock(&this_rq->lock); 2215 raw_spin_lock(&busiest->lock); 2216 raw_spin_lock_nested(&this_rq->lock, 2217 SINGLE_DEPTH_NESTING); 2218 ret = 1; 2219 } else 2220 raw_spin_lock_nested(&busiest->lock, 2221 SINGLE_DEPTH_NESTING); 2222 } 2223 return ret; 2224 } 2225 2226 #endif /* CONFIG_PREEMPTION */ 2227 2228 /* 2229 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2230 */ 2231 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2232 { 2233 if (unlikely(!irqs_disabled())) { 2234 /* printk() doesn't work well under rq->lock */ 2235 raw_spin_unlock(&this_rq->lock); 2236 BUG_ON(1); 2237 } 2238 2239 return _double_lock_balance(this_rq, busiest); 2240 } 2241 2242 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2243 __releases(busiest->lock) 2244 { 2245 raw_spin_unlock(&busiest->lock); 2246 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 2247 } 2248 2249 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2250 { 2251 if (l1 > l2) 2252 swap(l1, l2); 2253 2254 spin_lock(l1); 2255 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2256 } 2257 2258 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2259 { 2260 if (l1 > l2) 2261 swap(l1, l2); 2262 2263 spin_lock_irq(l1); 2264 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2265 } 2266 2267 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2268 { 2269 if (l1 > l2) 2270 swap(l1, l2); 2271 2272 raw_spin_lock(l1); 2273 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2274 } 2275 2276 /* 2277 * double_rq_lock - safely lock two runqueues 2278 * 2279 * Note this does not disable interrupts like task_rq_lock, 2280 * you need to do so manually before calling. 2281 */ 2282 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2283 __acquires(rq1->lock) 2284 __acquires(rq2->lock) 2285 { 2286 BUG_ON(!irqs_disabled()); 2287 if (rq1 == rq2) { 2288 raw_spin_lock(&rq1->lock); 2289 __acquire(rq2->lock); /* Fake it out ;) */ 2290 } else { 2291 if (rq1 < rq2) { 2292 raw_spin_lock(&rq1->lock); 2293 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 2294 } else { 2295 raw_spin_lock(&rq2->lock); 2296 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 2297 } 2298 } 2299 } 2300 2301 /* 2302 * double_rq_unlock - safely unlock two runqueues 2303 * 2304 * Note this does not restore interrupts like task_rq_unlock, 2305 * you need to do so manually after calling. 2306 */ 2307 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2308 __releases(rq1->lock) 2309 __releases(rq2->lock) 2310 { 2311 raw_spin_unlock(&rq1->lock); 2312 if (rq1 != rq2) 2313 raw_spin_unlock(&rq2->lock); 2314 else 2315 __release(rq2->lock); 2316 } 2317 2318 extern void set_rq_online (struct rq *rq); 2319 extern void set_rq_offline(struct rq *rq); 2320 extern bool sched_smp_initialized; 2321 2322 #else /* CONFIG_SMP */ 2323 2324 /* 2325 * double_rq_lock - safely lock two runqueues 2326 * 2327 * Note this does not disable interrupts like task_rq_lock, 2328 * you need to do so manually before calling. 2329 */ 2330 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2331 __acquires(rq1->lock) 2332 __acquires(rq2->lock) 2333 { 2334 BUG_ON(!irqs_disabled()); 2335 BUG_ON(rq1 != rq2); 2336 raw_spin_lock(&rq1->lock); 2337 __acquire(rq2->lock); /* Fake it out ;) */ 2338 } 2339 2340 /* 2341 * double_rq_unlock - safely unlock two runqueues 2342 * 2343 * Note this does not restore interrupts like task_rq_unlock, 2344 * you need to do so manually after calling. 2345 */ 2346 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2347 __releases(rq1->lock) 2348 __releases(rq2->lock) 2349 { 2350 BUG_ON(rq1 != rq2); 2351 raw_spin_unlock(&rq1->lock); 2352 __release(rq2->lock); 2353 } 2354 2355 #endif 2356 2357 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2358 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2359 2360 #ifdef CONFIG_SCHED_DEBUG 2361 extern bool sched_debug_enabled; 2362 2363 extern void print_cfs_stats(struct seq_file *m, int cpu); 2364 extern void print_rt_stats(struct seq_file *m, int cpu); 2365 extern void print_dl_stats(struct seq_file *m, int cpu); 2366 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2367 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2368 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2369 #ifdef CONFIG_NUMA_BALANCING 2370 extern void 2371 show_numa_stats(struct task_struct *p, struct seq_file *m); 2372 extern void 2373 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2374 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2375 #endif /* CONFIG_NUMA_BALANCING */ 2376 #endif /* CONFIG_SCHED_DEBUG */ 2377 2378 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2379 extern void init_rt_rq(struct rt_rq *rt_rq); 2380 extern void init_dl_rq(struct dl_rq *dl_rq); 2381 2382 extern void cfs_bandwidth_usage_inc(void); 2383 extern void cfs_bandwidth_usage_dec(void); 2384 2385 #ifdef CONFIG_NO_HZ_COMMON 2386 #define NOHZ_BALANCE_KICK_BIT 0 2387 #define NOHZ_STATS_KICK_BIT 1 2388 2389 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2390 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2391 2392 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) 2393 2394 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2395 2396 extern void nohz_balance_exit_idle(struct rq *rq); 2397 #else 2398 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2399 #endif 2400 2401 2402 #ifdef CONFIG_SMP 2403 static inline 2404 void __dl_update(struct dl_bw *dl_b, s64 bw) 2405 { 2406 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2407 int i; 2408 2409 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2410 "sched RCU must be held"); 2411 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2412 struct rq *rq = cpu_rq(i); 2413 2414 rq->dl.extra_bw += bw; 2415 } 2416 } 2417 #else 2418 static inline 2419 void __dl_update(struct dl_bw *dl_b, s64 bw) 2420 { 2421 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2422 2423 dl->extra_bw += bw; 2424 } 2425 #endif 2426 2427 2428 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2429 struct irqtime { 2430 u64 total; 2431 u64 tick_delta; 2432 u64 irq_start_time; 2433 struct u64_stats_sync sync; 2434 }; 2435 2436 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2437 2438 /* 2439 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2440 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime 2441 * and never move forward. 2442 */ 2443 static inline u64 irq_time_read(int cpu) 2444 { 2445 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2446 unsigned int seq; 2447 u64 total; 2448 2449 do { 2450 seq = __u64_stats_fetch_begin(&irqtime->sync); 2451 total = irqtime->total; 2452 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2453 2454 return total; 2455 } 2456 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2457 2458 #ifdef CONFIG_CPU_FREQ 2459 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2460 2461 /** 2462 * cpufreq_update_util - Take a note about CPU utilization changes. 2463 * @rq: Runqueue to carry out the update for. 2464 * @flags: Update reason flags. 2465 * 2466 * This function is called by the scheduler on the CPU whose utilization is 2467 * being updated. 2468 * 2469 * It can only be called from RCU-sched read-side critical sections. 2470 * 2471 * The way cpufreq is currently arranged requires it to evaluate the CPU 2472 * performance state (frequency/voltage) on a regular basis to prevent it from 2473 * being stuck in a completely inadequate performance level for too long. 2474 * That is not guaranteed to happen if the updates are only triggered from CFS 2475 * and DL, though, because they may not be coming in if only RT tasks are 2476 * active all the time (or there are RT tasks only). 2477 * 2478 * As a workaround for that issue, this function is called periodically by the 2479 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2480 * but that really is a band-aid. Going forward it should be replaced with 2481 * solutions targeted more specifically at RT tasks. 2482 */ 2483 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2484 { 2485 struct update_util_data *data; 2486 2487 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2488 cpu_of(rq))); 2489 if (data) 2490 data->func(data, rq_clock(rq), flags); 2491 } 2492 #else 2493 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2494 #endif /* CONFIG_CPU_FREQ */ 2495 2496 #ifdef CONFIG_UCLAMP_TASK 2497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2498 2499 /** 2500 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2501 * @rq: The rq to clamp against. Must not be NULL. 2502 * @util: The util value to clamp. 2503 * @p: The task to clamp against. Can be NULL if you want to clamp 2504 * against @rq only. 2505 * 2506 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2507 * 2508 * If sched_uclamp_used static key is disabled, then just return the util 2509 * without any clamping since uclamp aggregation at the rq level in the fast 2510 * path is disabled, rendering this operation a NOP. 2511 * 2512 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2513 * will return the correct effective uclamp value of the task even if the 2514 * static key is disabled. 2515 */ 2516 static __always_inline 2517 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2518 struct task_struct *p) 2519 { 2520 unsigned long min_util; 2521 unsigned long max_util; 2522 2523 if (!static_branch_likely(&sched_uclamp_used)) 2524 return util; 2525 2526 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value); 2527 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 2528 2529 if (p) { 2530 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN)); 2531 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX)); 2532 } 2533 2534 /* 2535 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2536 * RUNNABLE tasks with _different_ clamps, we can end up with an 2537 * inversion. Fix it now when the clamps are applied. 2538 */ 2539 if (unlikely(min_util >= max_util)) 2540 return min_util; 2541 2542 return clamp(util, min_util, max_util); 2543 } 2544 2545 /* 2546 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2547 * by default in the fast path and only gets turned on once userspace performs 2548 * an operation that requires it. 2549 * 2550 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2551 * hence is active. 2552 */ 2553 static inline bool uclamp_is_used(void) 2554 { 2555 return static_branch_likely(&sched_uclamp_used); 2556 } 2557 #else /* CONFIG_UCLAMP_TASK */ 2558 static inline 2559 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2560 struct task_struct *p) 2561 { 2562 return util; 2563 } 2564 2565 static inline bool uclamp_is_used(void) 2566 { 2567 return false; 2568 } 2569 #endif /* CONFIG_UCLAMP_TASK */ 2570 2571 #ifdef arch_scale_freq_capacity 2572 # ifndef arch_scale_freq_invariant 2573 # define arch_scale_freq_invariant() true 2574 # endif 2575 #else 2576 # define arch_scale_freq_invariant() false 2577 #endif 2578 2579 #ifdef CONFIG_SMP 2580 static inline unsigned long capacity_orig_of(int cpu) 2581 { 2582 return cpu_rq(cpu)->cpu_capacity_orig; 2583 } 2584 2585 /** 2586 * enum cpu_util_type - CPU utilization type 2587 * @FREQUENCY_UTIL: Utilization used to select frequency 2588 * @ENERGY_UTIL: Utilization used during energy calculation 2589 * 2590 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2591 * need to be aggregated differently depending on the usage made of them. This 2592 * enum is used within effective_cpu_util() to differentiate the types of 2593 * utilization expected by the callers, and adjust the aggregation accordingly. 2594 */ 2595 enum cpu_util_type { 2596 FREQUENCY_UTIL, 2597 ENERGY_UTIL, 2598 }; 2599 2600 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2601 unsigned long max, enum cpu_util_type type, 2602 struct task_struct *p); 2603 2604 static inline unsigned long cpu_bw_dl(struct rq *rq) 2605 { 2606 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2607 } 2608 2609 static inline unsigned long cpu_util_dl(struct rq *rq) 2610 { 2611 return READ_ONCE(rq->avg_dl.util_avg); 2612 } 2613 2614 static inline unsigned long cpu_util_cfs(struct rq *rq) 2615 { 2616 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2617 2618 if (sched_feat(UTIL_EST)) { 2619 util = max_t(unsigned long, util, 2620 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2621 } 2622 2623 return util; 2624 } 2625 2626 static inline unsigned long cpu_util_rt(struct rq *rq) 2627 { 2628 return READ_ONCE(rq->avg_rt.util_avg); 2629 } 2630 #endif 2631 2632 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2633 static inline unsigned long cpu_util_irq(struct rq *rq) 2634 { 2635 return rq->avg_irq.util_avg; 2636 } 2637 2638 static inline 2639 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2640 { 2641 util *= (max - irq); 2642 util /= max; 2643 2644 return util; 2645 2646 } 2647 #else 2648 static inline unsigned long cpu_util_irq(struct rq *rq) 2649 { 2650 return 0; 2651 } 2652 2653 static inline 2654 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2655 { 2656 return util; 2657 } 2658 #endif 2659 2660 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2661 2662 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 2663 2664 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 2665 2666 static inline bool sched_energy_enabled(void) 2667 { 2668 return static_branch_unlikely(&sched_energy_present); 2669 } 2670 2671 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 2672 2673 #define perf_domain_span(pd) NULL 2674 static inline bool sched_energy_enabled(void) { return false; } 2675 2676 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2677 2678 #ifdef CONFIG_MEMBARRIER 2679 /* 2680 * The scheduler provides memory barriers required by membarrier between: 2681 * - prior user-space memory accesses and store to rq->membarrier_state, 2682 * - store to rq->membarrier_state and following user-space memory accesses. 2683 * In the same way it provides those guarantees around store to rq->curr. 2684 */ 2685 static inline void membarrier_switch_mm(struct rq *rq, 2686 struct mm_struct *prev_mm, 2687 struct mm_struct *next_mm) 2688 { 2689 int membarrier_state; 2690 2691 if (prev_mm == next_mm) 2692 return; 2693 2694 membarrier_state = atomic_read(&next_mm->membarrier_state); 2695 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 2696 return; 2697 2698 WRITE_ONCE(rq->membarrier_state, membarrier_state); 2699 } 2700 #else 2701 static inline void membarrier_switch_mm(struct rq *rq, 2702 struct mm_struct *prev_mm, 2703 struct mm_struct *next_mm) 2704 { 2705 } 2706 #endif 2707 2708 #ifdef CONFIG_SMP 2709 static inline bool is_per_cpu_kthread(struct task_struct *p) 2710 { 2711 if (!(p->flags & PF_KTHREAD)) 2712 return false; 2713 2714 if (p->nr_cpus_allowed != 1) 2715 return false; 2716 2717 return true; 2718 } 2719 #endif 2720 2721 void swake_up_all_locked(struct swait_queue_head *q); 2722 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 2723