1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/bitops.h> 40 #include <linux/blkdev.h> 41 #include <linux/compat.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpufreq.h> 44 #include <linux/cpuidle.h> 45 #include <linux/cpuset.h> 46 #include <linux/ctype.h> 47 #include <linux/debugfs.h> 48 #include <linux/delayacct.h> 49 #include <linux/energy_model.h> 50 #include <linux/init_task.h> 51 #include <linux/kprobes.h> 52 #include <linux/kthread.h> 53 #include <linux/membarrier.h> 54 #include <linux/migrate.h> 55 #include <linux/mmu_context.h> 56 #include <linux/nmi.h> 57 #include <linux/proc_fs.h> 58 #include <linux/prefetch.h> 59 #include <linux/profile.h> 60 #include <linux/psi.h> 61 #include <linux/ratelimit.h> 62 #include <linux/rcupdate_wait.h> 63 #include <linux/security.h> 64 #include <linux/stop_machine.h> 65 #include <linux/suspend.h> 66 #include <linux/swait.h> 67 #include <linux/syscalls.h> 68 #include <linux/task_work.h> 69 #include <linux/tsacct_kern.h> 70 71 #include <asm/tlb.h> 72 73 #ifdef CONFIG_PARAVIRT 74 # include <asm/paravirt.h> 75 #endif 76 77 #include "cpupri.h" 78 #include "cpudeadline.h" 79 80 #include <trace/events/sched.h> 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 84 #else 85 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 86 #endif 87 88 struct rq; 89 struct cpuidle_state; 90 91 /* task_struct::on_rq states: */ 92 #define TASK_ON_RQ_QUEUED 1 93 #define TASK_ON_RQ_MIGRATING 2 94 95 extern __read_mostly int scheduler_running; 96 97 extern unsigned long calc_load_update; 98 extern atomic_long_t calc_load_tasks; 99 100 extern void calc_global_load_tick(struct rq *this_rq); 101 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 102 103 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 104 /* 105 * Helpers for converting nanosecond timing to jiffy resolution 106 */ 107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 108 109 /* 110 * Increase resolution of nice-level calculations for 64-bit architectures. 111 * The extra resolution improves shares distribution and load balancing of 112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 113 * hierarchies, especially on larger systems. This is not a user-visible change 114 * and does not change the user-interface for setting shares/weights. 115 * 116 * We increase resolution only if we have enough bits to allow this increased 117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 118 * are pretty high and the returns do not justify the increased costs. 119 * 120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 121 * increase coverage and consistency always enable it on 64-bit platforms. 122 */ 123 #ifdef CONFIG_64BIT 124 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 125 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 126 # define scale_load_down(w) \ 127 ({ \ 128 unsigned long __w = (w); \ 129 if (__w) \ 130 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 131 __w; \ 132 }) 133 #else 134 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 135 # define scale_load(w) (w) 136 # define scale_load_down(w) (w) 137 #endif 138 139 /* 140 * Task weight (visible to users) and its load (invisible to users) have 141 * independent resolution, but they should be well calibrated. We use 142 * scale_load() and scale_load_down(w) to convert between them. The 143 * following must be true: 144 * 145 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 146 * 147 */ 148 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 149 150 /* 151 * Single value that decides SCHED_DEADLINE internal math precision. 152 * 10 -> just above 1us 153 * 9 -> just above 0.5us 154 */ 155 #define DL_SCALE 10 156 157 /* 158 * Single value that denotes runtime == period, ie unlimited time. 159 */ 160 #define RUNTIME_INF ((u64)~0ULL) 161 162 static inline int idle_policy(int policy) 163 { 164 return policy == SCHED_IDLE; 165 } 166 static inline int fair_policy(int policy) 167 { 168 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 169 } 170 171 static inline int rt_policy(int policy) 172 { 173 return policy == SCHED_FIFO || policy == SCHED_RR; 174 } 175 176 static inline int dl_policy(int policy) 177 { 178 return policy == SCHED_DEADLINE; 179 } 180 static inline bool valid_policy(int policy) 181 { 182 return idle_policy(policy) || fair_policy(policy) || 183 rt_policy(policy) || dl_policy(policy); 184 } 185 186 static inline int task_has_idle_policy(struct task_struct *p) 187 { 188 return idle_policy(p->policy); 189 } 190 191 static inline int task_has_rt_policy(struct task_struct *p) 192 { 193 return rt_policy(p->policy); 194 } 195 196 static inline int task_has_dl_policy(struct task_struct *p) 197 { 198 return dl_policy(p->policy); 199 } 200 201 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 202 203 static inline void update_avg(u64 *avg, u64 sample) 204 { 205 s64 diff = sample - *avg; 206 *avg += diff / 8; 207 } 208 209 /* 210 * Shifting a value by an exponent greater *or equal* to the size of said value 211 * is UB; cap at size-1. 212 */ 213 #define shr_bound(val, shift) \ 214 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 215 216 /* 217 * !! For sched_setattr_nocheck() (kernel) only !! 218 * 219 * This is actually gross. :( 220 * 221 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 222 * tasks, but still be able to sleep. We need this on platforms that cannot 223 * atomically change clock frequency. Remove once fast switching will be 224 * available on such platforms. 225 * 226 * SUGOV stands for SchedUtil GOVernor. 227 */ 228 #define SCHED_FLAG_SUGOV 0x10000000 229 230 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 231 232 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 233 { 234 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 235 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 236 #else 237 return false; 238 #endif 239 } 240 241 /* 242 * Tells if entity @a should preempt entity @b. 243 */ 244 static inline bool 245 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 246 { 247 return dl_entity_is_special(a) || 248 dl_time_before(a->deadline, b->deadline); 249 } 250 251 /* 252 * This is the priority-queue data structure of the RT scheduling class: 253 */ 254 struct rt_prio_array { 255 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 256 struct list_head queue[MAX_RT_PRIO]; 257 }; 258 259 struct rt_bandwidth { 260 /* nests inside the rq lock: */ 261 raw_spinlock_t rt_runtime_lock; 262 ktime_t rt_period; 263 u64 rt_runtime; 264 struct hrtimer rt_period_timer; 265 unsigned int rt_period_active; 266 }; 267 268 void __dl_clear_params(struct task_struct *p); 269 270 struct dl_bandwidth { 271 raw_spinlock_t dl_runtime_lock; 272 u64 dl_runtime; 273 u64 dl_period; 274 }; 275 276 static inline int dl_bandwidth_enabled(void) 277 { 278 return sysctl_sched_rt_runtime >= 0; 279 } 280 281 /* 282 * To keep the bandwidth of -deadline tasks under control 283 * we need some place where: 284 * - store the maximum -deadline bandwidth of each cpu; 285 * - cache the fraction of bandwidth that is currently allocated in 286 * each root domain; 287 * 288 * This is all done in the data structure below. It is similar to the 289 * one used for RT-throttling (rt_bandwidth), with the main difference 290 * that, since here we are only interested in admission control, we 291 * do not decrease any runtime while the group "executes", neither we 292 * need a timer to replenish it. 293 * 294 * With respect to SMP, bandwidth is given on a per root domain basis, 295 * meaning that: 296 * - bw (< 100%) is the deadline bandwidth of each CPU; 297 * - total_bw is the currently allocated bandwidth in each root domain; 298 */ 299 struct dl_bw { 300 raw_spinlock_t lock; 301 u64 bw; 302 u64 total_bw; 303 }; 304 305 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 306 307 static inline 308 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 309 { 310 dl_b->total_bw -= tsk_bw; 311 __dl_update(dl_b, (s32)tsk_bw / cpus); 312 } 313 314 static inline 315 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 316 { 317 dl_b->total_bw += tsk_bw; 318 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 319 } 320 321 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, 322 u64 old_bw, u64 new_bw) 323 { 324 return dl_b->bw != -1 && 325 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 326 } 327 328 /* 329 * Verify the fitness of task @p to run on @cpu taking into account the 330 * CPU original capacity and the runtime/deadline ratio of the task. 331 * 332 * The function will return true if the CPU original capacity of the 333 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 334 * task and false otherwise. 335 */ 336 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 337 { 338 unsigned long cap = arch_scale_cpu_capacity(cpu); 339 340 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 341 } 342 343 extern void init_dl_bw(struct dl_bw *dl_b); 344 extern int sched_dl_global_validate(void); 345 extern void sched_dl_do_global(void); 346 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 347 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 348 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 349 extern bool __checkparam_dl(const struct sched_attr *attr); 350 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 351 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 352 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 353 extern bool dl_cpu_busy(unsigned int cpu); 354 355 #ifdef CONFIG_CGROUP_SCHED 356 357 #include <linux/cgroup.h> 358 #include <linux/psi.h> 359 360 struct cfs_rq; 361 struct rt_rq; 362 363 extern struct list_head task_groups; 364 365 struct cfs_bandwidth { 366 #ifdef CONFIG_CFS_BANDWIDTH 367 raw_spinlock_t lock; 368 ktime_t period; 369 u64 quota; 370 u64 runtime; 371 u64 burst; 372 s64 hierarchical_quota; 373 374 u8 idle; 375 u8 period_active; 376 u8 slack_started; 377 struct hrtimer period_timer; 378 struct hrtimer slack_timer; 379 struct list_head throttled_cfs_rq; 380 381 /* Statistics: */ 382 int nr_periods; 383 int nr_throttled; 384 u64 throttled_time; 385 #endif 386 }; 387 388 /* Task group related information */ 389 struct task_group { 390 struct cgroup_subsys_state css; 391 392 #ifdef CONFIG_FAIR_GROUP_SCHED 393 /* schedulable entities of this group on each CPU */ 394 struct sched_entity **se; 395 /* runqueue "owned" by this group on each CPU */ 396 struct cfs_rq **cfs_rq; 397 unsigned long shares; 398 399 /* A positive value indicates that this is a SCHED_IDLE group. */ 400 int idle; 401 402 #ifdef CONFIG_SMP 403 /* 404 * load_avg can be heavily contended at clock tick time, so put 405 * it in its own cacheline separated from the fields above which 406 * will also be accessed at each tick. 407 */ 408 atomic_long_t load_avg ____cacheline_aligned; 409 #endif 410 #endif 411 412 #ifdef CONFIG_RT_GROUP_SCHED 413 struct sched_rt_entity **rt_se; 414 struct rt_rq **rt_rq; 415 416 struct rt_bandwidth rt_bandwidth; 417 #endif 418 419 struct rcu_head rcu; 420 struct list_head list; 421 422 struct task_group *parent; 423 struct list_head siblings; 424 struct list_head children; 425 426 #ifdef CONFIG_SCHED_AUTOGROUP 427 struct autogroup *autogroup; 428 #endif 429 430 struct cfs_bandwidth cfs_bandwidth; 431 432 #ifdef CONFIG_UCLAMP_TASK_GROUP 433 /* The two decimal precision [%] value requested from user-space */ 434 unsigned int uclamp_pct[UCLAMP_CNT]; 435 /* Clamp values requested for a task group */ 436 struct uclamp_se uclamp_req[UCLAMP_CNT]; 437 /* Effective clamp values used for a task group */ 438 struct uclamp_se uclamp[UCLAMP_CNT]; 439 #endif 440 441 }; 442 443 #ifdef CONFIG_FAIR_GROUP_SCHED 444 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 445 446 /* 447 * A weight of 0 or 1 can cause arithmetics problems. 448 * A weight of a cfs_rq is the sum of weights of which entities 449 * are queued on this cfs_rq, so a weight of a entity should not be 450 * too large, so as the shares value of a task group. 451 * (The default weight is 1024 - so there's no practical 452 * limitation from this.) 453 */ 454 #define MIN_SHARES (1UL << 1) 455 #define MAX_SHARES (1UL << 18) 456 #endif 457 458 typedef int (*tg_visitor)(struct task_group *, void *); 459 460 extern int walk_tg_tree_from(struct task_group *from, 461 tg_visitor down, tg_visitor up, void *data); 462 463 /* 464 * Iterate the full tree, calling @down when first entering a node and @up when 465 * leaving it for the final time. 466 * 467 * Caller must hold rcu_lock or sufficient equivalent. 468 */ 469 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 470 { 471 return walk_tg_tree_from(&root_task_group, down, up, data); 472 } 473 474 extern int tg_nop(struct task_group *tg, void *data); 475 476 extern void free_fair_sched_group(struct task_group *tg); 477 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 478 extern void online_fair_sched_group(struct task_group *tg); 479 extern void unregister_fair_sched_group(struct task_group *tg); 480 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 481 struct sched_entity *se, int cpu, 482 struct sched_entity *parent); 483 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 484 485 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 486 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 487 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 488 489 extern void free_rt_sched_group(struct task_group *tg); 490 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 491 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 492 struct sched_rt_entity *rt_se, int cpu, 493 struct sched_rt_entity *parent); 494 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 495 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 496 extern long sched_group_rt_runtime(struct task_group *tg); 497 extern long sched_group_rt_period(struct task_group *tg); 498 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 499 500 extern struct task_group *sched_create_group(struct task_group *parent); 501 extern void sched_online_group(struct task_group *tg, 502 struct task_group *parent); 503 extern void sched_destroy_group(struct task_group *tg); 504 extern void sched_offline_group(struct task_group *tg); 505 506 extern void sched_move_task(struct task_struct *tsk); 507 508 #ifdef CONFIG_FAIR_GROUP_SCHED 509 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 510 511 extern int sched_group_set_idle(struct task_group *tg, long idle); 512 513 #ifdef CONFIG_SMP 514 extern void set_task_rq_fair(struct sched_entity *se, 515 struct cfs_rq *prev, struct cfs_rq *next); 516 #else /* !CONFIG_SMP */ 517 static inline void set_task_rq_fair(struct sched_entity *se, 518 struct cfs_rq *prev, struct cfs_rq *next) { } 519 #endif /* CONFIG_SMP */ 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 #else /* CONFIG_CGROUP_SCHED */ 523 524 struct cfs_bandwidth { }; 525 526 #endif /* CONFIG_CGROUP_SCHED */ 527 528 /* CFS-related fields in a runqueue */ 529 struct cfs_rq { 530 struct load_weight load; 531 unsigned int nr_running; 532 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 533 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 534 535 u64 exec_clock; 536 u64 min_vruntime; 537 #ifdef CONFIG_SCHED_CORE 538 unsigned int forceidle_seq; 539 u64 min_vruntime_fi; 540 #endif 541 542 #ifndef CONFIG_64BIT 543 u64 min_vruntime_copy; 544 #endif 545 546 struct rb_root_cached tasks_timeline; 547 548 /* 549 * 'curr' points to currently running entity on this cfs_rq. 550 * It is set to NULL otherwise (i.e when none are currently running). 551 */ 552 struct sched_entity *curr; 553 struct sched_entity *next; 554 struct sched_entity *last; 555 struct sched_entity *skip; 556 557 #ifdef CONFIG_SCHED_DEBUG 558 unsigned int nr_spread_over; 559 #endif 560 561 #ifdef CONFIG_SMP 562 /* 563 * CFS load tracking 564 */ 565 struct sched_avg avg; 566 #ifndef CONFIG_64BIT 567 u64 load_last_update_time_copy; 568 #endif 569 struct { 570 raw_spinlock_t lock ____cacheline_aligned; 571 int nr; 572 unsigned long load_avg; 573 unsigned long util_avg; 574 unsigned long runnable_avg; 575 } removed; 576 577 #ifdef CONFIG_FAIR_GROUP_SCHED 578 unsigned long tg_load_avg_contrib; 579 long propagate; 580 long prop_runnable_sum; 581 582 /* 583 * h_load = weight * f(tg) 584 * 585 * Where f(tg) is the recursive weight fraction assigned to 586 * this group. 587 */ 588 unsigned long h_load; 589 u64 last_h_load_update; 590 struct sched_entity *h_load_next; 591 #endif /* CONFIG_FAIR_GROUP_SCHED */ 592 #endif /* CONFIG_SMP */ 593 594 #ifdef CONFIG_FAIR_GROUP_SCHED 595 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 596 597 /* 598 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 599 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 600 * (like users, containers etc.) 601 * 602 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 603 * This list is used during load balance. 604 */ 605 int on_list; 606 struct list_head leaf_cfs_rq_list; 607 struct task_group *tg; /* group that "owns" this runqueue */ 608 609 /* Locally cached copy of our task_group's idle value */ 610 int idle; 611 612 #ifdef CONFIG_CFS_BANDWIDTH 613 int runtime_enabled; 614 s64 runtime_remaining; 615 616 u64 throttled_clock; 617 u64 throttled_clock_task; 618 u64 throttled_clock_task_time; 619 int throttled; 620 int throttle_count; 621 struct list_head throttled_list; 622 #endif /* CONFIG_CFS_BANDWIDTH */ 623 #endif /* CONFIG_FAIR_GROUP_SCHED */ 624 }; 625 626 static inline int rt_bandwidth_enabled(void) 627 { 628 return sysctl_sched_rt_runtime >= 0; 629 } 630 631 /* RT IPI pull logic requires IRQ_WORK */ 632 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 633 # define HAVE_RT_PUSH_IPI 634 #endif 635 636 /* Real-Time classes' related field in a runqueue: */ 637 struct rt_rq { 638 struct rt_prio_array active; 639 unsigned int rt_nr_running; 640 unsigned int rr_nr_running; 641 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 642 struct { 643 int curr; /* highest queued rt task prio */ 644 #ifdef CONFIG_SMP 645 int next; /* next highest */ 646 #endif 647 } highest_prio; 648 #endif 649 #ifdef CONFIG_SMP 650 unsigned int rt_nr_migratory; 651 unsigned int rt_nr_total; 652 int overloaded; 653 struct plist_head pushable_tasks; 654 655 #endif /* CONFIG_SMP */ 656 int rt_queued; 657 658 int rt_throttled; 659 u64 rt_time; 660 u64 rt_runtime; 661 /* Nests inside the rq lock: */ 662 raw_spinlock_t rt_runtime_lock; 663 664 #ifdef CONFIG_RT_GROUP_SCHED 665 unsigned int rt_nr_boosted; 666 667 struct rq *rq; 668 struct task_group *tg; 669 #endif 670 }; 671 672 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 673 { 674 return rt_rq->rt_queued && rt_rq->rt_nr_running; 675 } 676 677 /* Deadline class' related fields in a runqueue */ 678 struct dl_rq { 679 /* runqueue is an rbtree, ordered by deadline */ 680 struct rb_root_cached root; 681 682 unsigned int dl_nr_running; 683 684 #ifdef CONFIG_SMP 685 /* 686 * Deadline values of the currently executing and the 687 * earliest ready task on this rq. Caching these facilitates 688 * the decision whether or not a ready but not running task 689 * should migrate somewhere else. 690 */ 691 struct { 692 u64 curr; 693 u64 next; 694 } earliest_dl; 695 696 unsigned int dl_nr_migratory; 697 int overloaded; 698 699 /* 700 * Tasks on this rq that can be pushed away. They are kept in 701 * an rb-tree, ordered by tasks' deadlines, with caching 702 * of the leftmost (earliest deadline) element. 703 */ 704 struct rb_root_cached pushable_dl_tasks_root; 705 #else 706 struct dl_bw dl_bw; 707 #endif 708 /* 709 * "Active utilization" for this runqueue: increased when a 710 * task wakes up (becomes TASK_RUNNING) and decreased when a 711 * task blocks 712 */ 713 u64 running_bw; 714 715 /* 716 * Utilization of the tasks "assigned" to this runqueue (including 717 * the tasks that are in runqueue and the tasks that executed on this 718 * CPU and blocked). Increased when a task moves to this runqueue, and 719 * decreased when the task moves away (migrates, changes scheduling 720 * policy, or terminates). 721 * This is needed to compute the "inactive utilization" for the 722 * runqueue (inactive utilization = this_bw - running_bw). 723 */ 724 u64 this_bw; 725 u64 extra_bw; 726 727 /* 728 * Inverse of the fraction of CPU utilization that can be reclaimed 729 * by the GRUB algorithm. 730 */ 731 u64 bw_ratio; 732 }; 733 734 #ifdef CONFIG_FAIR_GROUP_SCHED 735 /* An entity is a task if it doesn't "own" a runqueue */ 736 #define entity_is_task(se) (!se->my_q) 737 738 static inline void se_update_runnable(struct sched_entity *se) 739 { 740 if (!entity_is_task(se)) 741 se->runnable_weight = se->my_q->h_nr_running; 742 } 743 744 static inline long se_runnable(struct sched_entity *se) 745 { 746 if (entity_is_task(se)) 747 return !!se->on_rq; 748 else 749 return se->runnable_weight; 750 } 751 752 #else 753 #define entity_is_task(se) 1 754 755 static inline void se_update_runnable(struct sched_entity *se) {} 756 757 static inline long se_runnable(struct sched_entity *se) 758 { 759 return !!se->on_rq; 760 } 761 #endif 762 763 #ifdef CONFIG_SMP 764 /* 765 * XXX we want to get rid of these helpers and use the full load resolution. 766 */ 767 static inline long se_weight(struct sched_entity *se) 768 { 769 return scale_load_down(se->load.weight); 770 } 771 772 773 static inline bool sched_asym_prefer(int a, int b) 774 { 775 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 776 } 777 778 struct perf_domain { 779 struct em_perf_domain *em_pd; 780 struct perf_domain *next; 781 struct rcu_head rcu; 782 }; 783 784 /* Scheduling group status flags */ 785 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 786 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 787 788 /* 789 * We add the notion of a root-domain which will be used to define per-domain 790 * variables. Each exclusive cpuset essentially defines an island domain by 791 * fully partitioning the member CPUs from any other cpuset. Whenever a new 792 * exclusive cpuset is created, we also create and attach a new root-domain 793 * object. 794 * 795 */ 796 struct root_domain { 797 atomic_t refcount; 798 atomic_t rto_count; 799 struct rcu_head rcu; 800 cpumask_var_t span; 801 cpumask_var_t online; 802 803 /* 804 * Indicate pullable load on at least one CPU, e.g: 805 * - More than one runnable task 806 * - Running task is misfit 807 */ 808 int overload; 809 810 /* Indicate one or more cpus over-utilized (tipping point) */ 811 int overutilized; 812 813 /* 814 * The bit corresponding to a CPU gets set here if such CPU has more 815 * than one runnable -deadline task (as it is below for RT tasks). 816 */ 817 cpumask_var_t dlo_mask; 818 atomic_t dlo_count; 819 struct dl_bw dl_bw; 820 struct cpudl cpudl; 821 822 /* 823 * Indicate whether a root_domain's dl_bw has been checked or 824 * updated. It's monotonously increasing value. 825 * 826 * Also, some corner cases, like 'wrap around' is dangerous, but given 827 * that u64 is 'big enough'. So that shouldn't be a concern. 828 */ 829 u64 visit_gen; 830 831 #ifdef HAVE_RT_PUSH_IPI 832 /* 833 * For IPI pull requests, loop across the rto_mask. 834 */ 835 struct irq_work rto_push_work; 836 raw_spinlock_t rto_lock; 837 /* These are only updated and read within rto_lock */ 838 int rto_loop; 839 int rto_cpu; 840 /* These atomics are updated outside of a lock */ 841 atomic_t rto_loop_next; 842 atomic_t rto_loop_start; 843 #endif 844 /* 845 * The "RT overload" flag: it gets set if a CPU has more than 846 * one runnable RT task. 847 */ 848 cpumask_var_t rto_mask; 849 struct cpupri cpupri; 850 851 unsigned long max_cpu_capacity; 852 853 /* 854 * NULL-terminated list of performance domains intersecting with the 855 * CPUs of the rd. Protected by RCU. 856 */ 857 struct perf_domain __rcu *pd; 858 }; 859 860 extern void init_defrootdomain(void); 861 extern int sched_init_domains(const struct cpumask *cpu_map); 862 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 863 extern void sched_get_rd(struct root_domain *rd); 864 extern void sched_put_rd(struct root_domain *rd); 865 866 #ifdef HAVE_RT_PUSH_IPI 867 extern void rto_push_irq_work_func(struct irq_work *work); 868 #endif 869 #endif /* CONFIG_SMP */ 870 871 #ifdef CONFIG_UCLAMP_TASK 872 /* 873 * struct uclamp_bucket - Utilization clamp bucket 874 * @value: utilization clamp value for tasks on this clamp bucket 875 * @tasks: number of RUNNABLE tasks on this clamp bucket 876 * 877 * Keep track of how many tasks are RUNNABLE for a given utilization 878 * clamp value. 879 */ 880 struct uclamp_bucket { 881 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 882 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 883 }; 884 885 /* 886 * struct uclamp_rq - rq's utilization clamp 887 * @value: currently active clamp values for a rq 888 * @bucket: utilization clamp buckets affecting a rq 889 * 890 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 891 * A clamp value is affecting a rq when there is at least one task RUNNABLE 892 * (or actually running) with that value. 893 * 894 * There are up to UCLAMP_CNT possible different clamp values, currently there 895 * are only two: minimum utilization and maximum utilization. 896 * 897 * All utilization clamping values are MAX aggregated, since: 898 * - for util_min: we want to run the CPU at least at the max of the minimum 899 * utilization required by its currently RUNNABLE tasks. 900 * - for util_max: we want to allow the CPU to run up to the max of the 901 * maximum utilization allowed by its currently RUNNABLE tasks. 902 * 903 * Since on each system we expect only a limited number of different 904 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 905 * the metrics required to compute all the per-rq utilization clamp values. 906 */ 907 struct uclamp_rq { 908 unsigned int value; 909 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 910 }; 911 912 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 913 #endif /* CONFIG_UCLAMP_TASK */ 914 915 /* 916 * This is the main, per-CPU runqueue data structure. 917 * 918 * Locking rule: those places that want to lock multiple runqueues 919 * (such as the load balancing or the thread migration code), lock 920 * acquire operations must be ordered by ascending &runqueue. 921 */ 922 struct rq { 923 /* runqueue lock: */ 924 raw_spinlock_t __lock; 925 926 /* 927 * nr_running and cpu_load should be in the same cacheline because 928 * remote CPUs use both these fields when doing load calculation. 929 */ 930 unsigned int nr_running; 931 #ifdef CONFIG_NUMA_BALANCING 932 unsigned int nr_numa_running; 933 unsigned int nr_preferred_running; 934 unsigned int numa_migrate_on; 935 #endif 936 #ifdef CONFIG_NO_HZ_COMMON 937 #ifdef CONFIG_SMP 938 unsigned long last_blocked_load_update_tick; 939 unsigned int has_blocked_load; 940 call_single_data_t nohz_csd; 941 #endif /* CONFIG_SMP */ 942 unsigned int nohz_tick_stopped; 943 atomic_t nohz_flags; 944 #endif /* CONFIG_NO_HZ_COMMON */ 945 946 #ifdef CONFIG_SMP 947 unsigned int ttwu_pending; 948 #endif 949 u64 nr_switches; 950 951 #ifdef CONFIG_UCLAMP_TASK 952 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 953 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 954 unsigned int uclamp_flags; 955 #define UCLAMP_FLAG_IDLE 0x01 956 #endif 957 958 struct cfs_rq cfs; 959 struct rt_rq rt; 960 struct dl_rq dl; 961 962 #ifdef CONFIG_FAIR_GROUP_SCHED 963 /* list of leaf cfs_rq on this CPU: */ 964 struct list_head leaf_cfs_rq_list; 965 struct list_head *tmp_alone_branch; 966 #endif /* CONFIG_FAIR_GROUP_SCHED */ 967 968 /* 969 * This is part of a global counter where only the total sum 970 * over all CPUs matters. A task can increase this counter on 971 * one CPU and if it got migrated afterwards it may decrease 972 * it on another CPU. Always updated under the runqueue lock: 973 */ 974 unsigned int nr_uninterruptible; 975 976 struct task_struct __rcu *curr; 977 struct task_struct *idle; 978 struct task_struct *stop; 979 unsigned long next_balance; 980 struct mm_struct *prev_mm; 981 982 unsigned int clock_update_flags; 983 u64 clock; 984 /* Ensure that all clocks are in the same cache line */ 985 u64 clock_task ____cacheline_aligned; 986 u64 clock_pelt; 987 unsigned long lost_idle_time; 988 989 atomic_t nr_iowait; 990 991 #ifdef CONFIG_SCHED_DEBUG 992 u64 last_seen_need_resched_ns; 993 int ticks_without_resched; 994 #endif 995 996 #ifdef CONFIG_MEMBARRIER 997 int membarrier_state; 998 #endif 999 1000 #ifdef CONFIG_SMP 1001 struct root_domain *rd; 1002 struct sched_domain __rcu *sd; 1003 1004 unsigned long cpu_capacity; 1005 unsigned long cpu_capacity_orig; 1006 1007 struct callback_head *balance_callback; 1008 1009 unsigned char nohz_idle_balance; 1010 unsigned char idle_balance; 1011 1012 unsigned long misfit_task_load; 1013 1014 /* For active balancing */ 1015 int active_balance; 1016 int push_cpu; 1017 struct cpu_stop_work active_balance_work; 1018 1019 /* CPU of this runqueue: */ 1020 int cpu; 1021 int online; 1022 1023 struct list_head cfs_tasks; 1024 1025 struct sched_avg avg_rt; 1026 struct sched_avg avg_dl; 1027 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1028 struct sched_avg avg_irq; 1029 #endif 1030 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1031 struct sched_avg avg_thermal; 1032 #endif 1033 u64 idle_stamp; 1034 u64 avg_idle; 1035 1036 unsigned long wake_stamp; 1037 u64 wake_avg_idle; 1038 1039 /* This is used to determine avg_idle's max value */ 1040 u64 max_idle_balance_cost; 1041 1042 #ifdef CONFIG_HOTPLUG_CPU 1043 struct rcuwait hotplug_wait; 1044 #endif 1045 #endif /* CONFIG_SMP */ 1046 1047 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1048 u64 prev_irq_time; 1049 #endif 1050 #ifdef CONFIG_PARAVIRT 1051 u64 prev_steal_time; 1052 #endif 1053 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1054 u64 prev_steal_time_rq; 1055 #endif 1056 1057 /* calc_load related fields */ 1058 unsigned long calc_load_update; 1059 long calc_load_active; 1060 1061 #ifdef CONFIG_SCHED_HRTICK 1062 #ifdef CONFIG_SMP 1063 call_single_data_t hrtick_csd; 1064 #endif 1065 struct hrtimer hrtick_timer; 1066 ktime_t hrtick_time; 1067 #endif 1068 1069 #ifdef CONFIG_SCHEDSTATS 1070 /* latency stats */ 1071 struct sched_info rq_sched_info; 1072 unsigned long long rq_cpu_time; 1073 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1074 1075 /* sys_sched_yield() stats */ 1076 unsigned int yld_count; 1077 1078 /* schedule() stats */ 1079 unsigned int sched_count; 1080 unsigned int sched_goidle; 1081 1082 /* try_to_wake_up() stats */ 1083 unsigned int ttwu_count; 1084 unsigned int ttwu_local; 1085 #endif 1086 1087 #ifdef CONFIG_CPU_IDLE 1088 /* Must be inspected within a rcu lock section */ 1089 struct cpuidle_state *idle_state; 1090 #endif 1091 1092 #ifdef CONFIG_SMP 1093 unsigned int nr_pinned; 1094 #endif 1095 unsigned int push_busy; 1096 struct cpu_stop_work push_work; 1097 1098 #ifdef CONFIG_SCHED_CORE 1099 /* per rq */ 1100 struct rq *core; 1101 struct task_struct *core_pick; 1102 unsigned int core_enabled; 1103 unsigned int core_sched_seq; 1104 struct rb_root core_tree; 1105 1106 /* shared state -- careful with sched_core_cpu_deactivate() */ 1107 unsigned int core_task_seq; 1108 unsigned int core_pick_seq; 1109 unsigned long core_cookie; 1110 unsigned char core_forceidle; 1111 unsigned int core_forceidle_seq; 1112 #endif 1113 }; 1114 1115 #ifdef CONFIG_FAIR_GROUP_SCHED 1116 1117 /* CPU runqueue to which this cfs_rq is attached */ 1118 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1119 { 1120 return cfs_rq->rq; 1121 } 1122 1123 #else 1124 1125 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1126 { 1127 return container_of(cfs_rq, struct rq, cfs); 1128 } 1129 #endif 1130 1131 static inline int cpu_of(struct rq *rq) 1132 { 1133 #ifdef CONFIG_SMP 1134 return rq->cpu; 1135 #else 1136 return 0; 1137 #endif 1138 } 1139 1140 #define MDF_PUSH 0x01 1141 1142 static inline bool is_migration_disabled(struct task_struct *p) 1143 { 1144 #ifdef CONFIG_SMP 1145 return p->migration_disabled; 1146 #else 1147 return false; 1148 #endif 1149 } 1150 1151 struct sched_group; 1152 #ifdef CONFIG_SCHED_CORE 1153 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1154 1155 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1156 1157 static inline bool sched_core_enabled(struct rq *rq) 1158 { 1159 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1160 } 1161 1162 static inline bool sched_core_disabled(void) 1163 { 1164 return !static_branch_unlikely(&__sched_core_enabled); 1165 } 1166 1167 /* 1168 * Be careful with this function; not for general use. The return value isn't 1169 * stable unless you actually hold a relevant rq->__lock. 1170 */ 1171 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1172 { 1173 if (sched_core_enabled(rq)) 1174 return &rq->core->__lock; 1175 1176 return &rq->__lock; 1177 } 1178 1179 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1180 { 1181 if (rq->core_enabled) 1182 return &rq->core->__lock; 1183 1184 return &rq->__lock; 1185 } 1186 1187 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1188 1189 /* 1190 * Helpers to check if the CPU's core cookie matches with the task's cookie 1191 * when core scheduling is enabled. 1192 * A special case is that the task's cookie always matches with CPU's core 1193 * cookie if the CPU is in an idle core. 1194 */ 1195 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1196 { 1197 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1198 if (!sched_core_enabled(rq)) 1199 return true; 1200 1201 return rq->core->core_cookie == p->core_cookie; 1202 } 1203 1204 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1205 { 1206 bool idle_core = true; 1207 int cpu; 1208 1209 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1210 if (!sched_core_enabled(rq)) 1211 return true; 1212 1213 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1214 if (!available_idle_cpu(cpu)) { 1215 idle_core = false; 1216 break; 1217 } 1218 } 1219 1220 /* 1221 * A CPU in an idle core is always the best choice for tasks with 1222 * cookies. 1223 */ 1224 return idle_core || rq->core->core_cookie == p->core_cookie; 1225 } 1226 1227 static inline bool sched_group_cookie_match(struct rq *rq, 1228 struct task_struct *p, 1229 struct sched_group *group) 1230 { 1231 int cpu; 1232 1233 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1234 if (!sched_core_enabled(rq)) 1235 return true; 1236 1237 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1238 if (sched_core_cookie_match(rq, p)) 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 extern void queue_core_balance(struct rq *rq); 1245 1246 static inline bool sched_core_enqueued(struct task_struct *p) 1247 { 1248 return !RB_EMPTY_NODE(&p->core_node); 1249 } 1250 1251 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1252 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p); 1253 1254 extern void sched_core_get(void); 1255 extern void sched_core_put(void); 1256 1257 extern unsigned long sched_core_alloc_cookie(void); 1258 extern void sched_core_put_cookie(unsigned long cookie); 1259 extern unsigned long sched_core_get_cookie(unsigned long cookie); 1260 extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie); 1261 1262 #else /* !CONFIG_SCHED_CORE */ 1263 1264 static inline bool sched_core_enabled(struct rq *rq) 1265 { 1266 return false; 1267 } 1268 1269 static inline bool sched_core_disabled(void) 1270 { 1271 return true; 1272 } 1273 1274 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1275 { 1276 return &rq->__lock; 1277 } 1278 1279 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1280 { 1281 return &rq->__lock; 1282 } 1283 1284 static inline void queue_core_balance(struct rq *rq) 1285 { 1286 } 1287 1288 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1289 { 1290 return true; 1291 } 1292 1293 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1294 { 1295 return true; 1296 } 1297 1298 static inline bool sched_group_cookie_match(struct rq *rq, 1299 struct task_struct *p, 1300 struct sched_group *group) 1301 { 1302 return true; 1303 } 1304 #endif /* CONFIG_SCHED_CORE */ 1305 1306 static inline void lockdep_assert_rq_held(struct rq *rq) 1307 { 1308 lockdep_assert_held(__rq_lockp(rq)); 1309 } 1310 1311 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1312 extern bool raw_spin_rq_trylock(struct rq *rq); 1313 extern void raw_spin_rq_unlock(struct rq *rq); 1314 1315 static inline void raw_spin_rq_lock(struct rq *rq) 1316 { 1317 raw_spin_rq_lock_nested(rq, 0); 1318 } 1319 1320 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1321 { 1322 local_irq_disable(); 1323 raw_spin_rq_lock(rq); 1324 } 1325 1326 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1327 { 1328 raw_spin_rq_unlock(rq); 1329 local_irq_enable(); 1330 } 1331 1332 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1333 { 1334 unsigned long flags; 1335 local_irq_save(flags); 1336 raw_spin_rq_lock(rq); 1337 return flags; 1338 } 1339 1340 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1341 { 1342 raw_spin_rq_unlock(rq); 1343 local_irq_restore(flags); 1344 } 1345 1346 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1347 do { \ 1348 flags = _raw_spin_rq_lock_irqsave(rq); \ 1349 } while (0) 1350 1351 #ifdef CONFIG_SCHED_SMT 1352 extern void __update_idle_core(struct rq *rq); 1353 1354 static inline void update_idle_core(struct rq *rq) 1355 { 1356 if (static_branch_unlikely(&sched_smt_present)) 1357 __update_idle_core(rq); 1358 } 1359 1360 #else 1361 static inline void update_idle_core(struct rq *rq) { } 1362 #endif 1363 1364 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1365 1366 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1367 #define this_rq() this_cpu_ptr(&runqueues) 1368 #define task_rq(p) cpu_rq(task_cpu(p)) 1369 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1370 #define raw_rq() raw_cpu_ptr(&runqueues) 1371 1372 #ifdef CONFIG_FAIR_GROUP_SCHED 1373 static inline struct task_struct *task_of(struct sched_entity *se) 1374 { 1375 SCHED_WARN_ON(!entity_is_task(se)); 1376 return container_of(se, struct task_struct, se); 1377 } 1378 1379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1380 { 1381 return p->se.cfs_rq; 1382 } 1383 1384 /* runqueue on which this entity is (to be) queued */ 1385 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1386 { 1387 return se->cfs_rq; 1388 } 1389 1390 /* runqueue "owned" by this group */ 1391 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1392 { 1393 return grp->my_q; 1394 } 1395 1396 #else 1397 1398 static inline struct task_struct *task_of(struct sched_entity *se) 1399 { 1400 return container_of(se, struct task_struct, se); 1401 } 1402 1403 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1404 { 1405 return &task_rq(p)->cfs; 1406 } 1407 1408 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1409 { 1410 struct task_struct *p = task_of(se); 1411 struct rq *rq = task_rq(p); 1412 1413 return &rq->cfs; 1414 } 1415 1416 /* runqueue "owned" by this group */ 1417 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1418 { 1419 return NULL; 1420 } 1421 #endif 1422 1423 extern void update_rq_clock(struct rq *rq); 1424 1425 static inline u64 __rq_clock_broken(struct rq *rq) 1426 { 1427 return READ_ONCE(rq->clock); 1428 } 1429 1430 /* 1431 * rq::clock_update_flags bits 1432 * 1433 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1434 * call to __schedule(). This is an optimisation to avoid 1435 * neighbouring rq clock updates. 1436 * 1437 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1438 * in effect and calls to update_rq_clock() are being ignored. 1439 * 1440 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1441 * made to update_rq_clock() since the last time rq::lock was pinned. 1442 * 1443 * If inside of __schedule(), clock_update_flags will have been 1444 * shifted left (a left shift is a cheap operation for the fast path 1445 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1446 * 1447 * if (rq-clock_update_flags >= RQCF_UPDATED) 1448 * 1449 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1450 * one position though, because the next rq_unpin_lock() will shift it 1451 * back. 1452 */ 1453 #define RQCF_REQ_SKIP 0x01 1454 #define RQCF_ACT_SKIP 0x02 1455 #define RQCF_UPDATED 0x04 1456 1457 static inline void assert_clock_updated(struct rq *rq) 1458 { 1459 /* 1460 * The only reason for not seeing a clock update since the 1461 * last rq_pin_lock() is if we're currently skipping updates. 1462 */ 1463 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1464 } 1465 1466 static inline u64 rq_clock(struct rq *rq) 1467 { 1468 lockdep_assert_rq_held(rq); 1469 assert_clock_updated(rq); 1470 1471 return rq->clock; 1472 } 1473 1474 static inline u64 rq_clock_task(struct rq *rq) 1475 { 1476 lockdep_assert_rq_held(rq); 1477 assert_clock_updated(rq); 1478 1479 return rq->clock_task; 1480 } 1481 1482 /** 1483 * By default the decay is the default pelt decay period. 1484 * The decay shift can change the decay period in 1485 * multiples of 32. 1486 * Decay shift Decay period(ms) 1487 * 0 32 1488 * 1 64 1489 * 2 128 1490 * 3 256 1491 * 4 512 1492 */ 1493 extern int sched_thermal_decay_shift; 1494 1495 static inline u64 rq_clock_thermal(struct rq *rq) 1496 { 1497 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1498 } 1499 1500 static inline void rq_clock_skip_update(struct rq *rq) 1501 { 1502 lockdep_assert_rq_held(rq); 1503 rq->clock_update_flags |= RQCF_REQ_SKIP; 1504 } 1505 1506 /* 1507 * See rt task throttling, which is the only time a skip 1508 * request is canceled. 1509 */ 1510 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1511 { 1512 lockdep_assert_rq_held(rq); 1513 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1514 } 1515 1516 struct rq_flags { 1517 unsigned long flags; 1518 struct pin_cookie cookie; 1519 #ifdef CONFIG_SCHED_DEBUG 1520 /* 1521 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1522 * current pin context is stashed here in case it needs to be 1523 * restored in rq_repin_lock(). 1524 */ 1525 unsigned int clock_update_flags; 1526 #endif 1527 }; 1528 1529 extern struct callback_head balance_push_callback; 1530 1531 /* 1532 * Lockdep annotation that avoids accidental unlocks; it's like a 1533 * sticky/continuous lockdep_assert_held(). 1534 * 1535 * This avoids code that has access to 'struct rq *rq' (basically everything in 1536 * the scheduler) from accidentally unlocking the rq if they do not also have a 1537 * copy of the (on-stack) 'struct rq_flags rf'. 1538 * 1539 * Also see Documentation/locking/lockdep-design.rst. 1540 */ 1541 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1542 { 1543 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1544 1545 #ifdef CONFIG_SCHED_DEBUG 1546 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1547 rf->clock_update_flags = 0; 1548 #ifdef CONFIG_SMP 1549 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1550 #endif 1551 #endif 1552 } 1553 1554 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1555 { 1556 #ifdef CONFIG_SCHED_DEBUG 1557 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1558 rf->clock_update_flags = RQCF_UPDATED; 1559 #endif 1560 1561 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1562 } 1563 1564 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1565 { 1566 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1567 1568 #ifdef CONFIG_SCHED_DEBUG 1569 /* 1570 * Restore the value we stashed in @rf for this pin context. 1571 */ 1572 rq->clock_update_flags |= rf->clock_update_flags; 1573 #endif 1574 } 1575 1576 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1577 __acquires(rq->lock); 1578 1579 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1580 __acquires(p->pi_lock) 1581 __acquires(rq->lock); 1582 1583 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1584 __releases(rq->lock) 1585 { 1586 rq_unpin_lock(rq, rf); 1587 raw_spin_rq_unlock(rq); 1588 } 1589 1590 static inline void 1591 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1592 __releases(rq->lock) 1593 __releases(p->pi_lock) 1594 { 1595 rq_unpin_lock(rq, rf); 1596 raw_spin_rq_unlock(rq); 1597 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1598 } 1599 1600 static inline void 1601 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1602 __acquires(rq->lock) 1603 { 1604 raw_spin_rq_lock_irqsave(rq, rf->flags); 1605 rq_pin_lock(rq, rf); 1606 } 1607 1608 static inline void 1609 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1610 __acquires(rq->lock) 1611 { 1612 raw_spin_rq_lock_irq(rq); 1613 rq_pin_lock(rq, rf); 1614 } 1615 1616 static inline void 1617 rq_lock(struct rq *rq, struct rq_flags *rf) 1618 __acquires(rq->lock) 1619 { 1620 raw_spin_rq_lock(rq); 1621 rq_pin_lock(rq, rf); 1622 } 1623 1624 static inline void 1625 rq_relock(struct rq *rq, struct rq_flags *rf) 1626 __acquires(rq->lock) 1627 { 1628 raw_spin_rq_lock(rq); 1629 rq_repin_lock(rq, rf); 1630 } 1631 1632 static inline void 1633 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1634 __releases(rq->lock) 1635 { 1636 rq_unpin_lock(rq, rf); 1637 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1638 } 1639 1640 static inline void 1641 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1642 __releases(rq->lock) 1643 { 1644 rq_unpin_lock(rq, rf); 1645 raw_spin_rq_unlock_irq(rq); 1646 } 1647 1648 static inline void 1649 rq_unlock(struct rq *rq, struct rq_flags *rf) 1650 __releases(rq->lock) 1651 { 1652 rq_unpin_lock(rq, rf); 1653 raw_spin_rq_unlock(rq); 1654 } 1655 1656 static inline struct rq * 1657 this_rq_lock_irq(struct rq_flags *rf) 1658 __acquires(rq->lock) 1659 { 1660 struct rq *rq; 1661 1662 local_irq_disable(); 1663 rq = this_rq(); 1664 rq_lock(rq, rf); 1665 return rq; 1666 } 1667 1668 #ifdef CONFIG_NUMA 1669 enum numa_topology_type { 1670 NUMA_DIRECT, 1671 NUMA_GLUELESS_MESH, 1672 NUMA_BACKPLANE, 1673 }; 1674 extern enum numa_topology_type sched_numa_topology_type; 1675 extern int sched_max_numa_distance; 1676 extern bool find_numa_distance(int distance); 1677 extern void sched_init_numa(void); 1678 extern void sched_domains_numa_masks_set(unsigned int cpu); 1679 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1680 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1681 #else 1682 static inline void sched_init_numa(void) { } 1683 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1684 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1685 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1686 { 1687 return nr_cpu_ids; 1688 } 1689 #endif 1690 1691 #ifdef CONFIG_NUMA_BALANCING 1692 /* The regions in numa_faults array from task_struct */ 1693 enum numa_faults_stats { 1694 NUMA_MEM = 0, 1695 NUMA_CPU, 1696 NUMA_MEMBUF, 1697 NUMA_CPUBUF 1698 }; 1699 extern void sched_setnuma(struct task_struct *p, int node); 1700 extern int migrate_task_to(struct task_struct *p, int cpu); 1701 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1702 int cpu, int scpu); 1703 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1704 #else 1705 static inline void 1706 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1707 { 1708 } 1709 #endif /* CONFIG_NUMA_BALANCING */ 1710 1711 #ifdef CONFIG_SMP 1712 1713 static inline void 1714 queue_balance_callback(struct rq *rq, 1715 struct callback_head *head, 1716 void (*func)(struct rq *rq)) 1717 { 1718 lockdep_assert_rq_held(rq); 1719 1720 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1721 return; 1722 1723 head->func = (void (*)(struct callback_head *))func; 1724 head->next = rq->balance_callback; 1725 rq->balance_callback = head; 1726 } 1727 1728 #define rcu_dereference_check_sched_domain(p) \ 1729 rcu_dereference_check((p), \ 1730 lockdep_is_held(&sched_domains_mutex)) 1731 1732 /* 1733 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1734 * See destroy_sched_domains: call_rcu for details. 1735 * 1736 * The domain tree of any CPU may only be accessed from within 1737 * preempt-disabled sections. 1738 */ 1739 #define for_each_domain(cpu, __sd) \ 1740 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1741 __sd; __sd = __sd->parent) 1742 1743 /** 1744 * highest_flag_domain - Return highest sched_domain containing flag. 1745 * @cpu: The CPU whose highest level of sched domain is to 1746 * be returned. 1747 * @flag: The flag to check for the highest sched_domain 1748 * for the given CPU. 1749 * 1750 * Returns the highest sched_domain of a CPU which contains the given flag. 1751 */ 1752 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1753 { 1754 struct sched_domain *sd, *hsd = NULL; 1755 1756 for_each_domain(cpu, sd) { 1757 if (!(sd->flags & flag)) 1758 break; 1759 hsd = sd; 1760 } 1761 1762 return hsd; 1763 } 1764 1765 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1766 { 1767 struct sched_domain *sd; 1768 1769 for_each_domain(cpu, sd) { 1770 if (sd->flags & flag) 1771 break; 1772 } 1773 1774 return sd; 1775 } 1776 1777 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1778 DECLARE_PER_CPU(int, sd_llc_size); 1779 DECLARE_PER_CPU(int, sd_llc_id); 1780 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1781 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1782 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1783 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1784 extern struct static_key_false sched_asym_cpucapacity; 1785 1786 struct sched_group_capacity { 1787 atomic_t ref; 1788 /* 1789 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1790 * for a single CPU. 1791 */ 1792 unsigned long capacity; 1793 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1794 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1795 unsigned long next_update; 1796 int imbalance; /* XXX unrelated to capacity but shared group state */ 1797 1798 #ifdef CONFIG_SCHED_DEBUG 1799 int id; 1800 #endif 1801 1802 unsigned long cpumask[]; /* Balance mask */ 1803 }; 1804 1805 struct sched_group { 1806 struct sched_group *next; /* Must be a circular list */ 1807 atomic_t ref; 1808 1809 unsigned int group_weight; 1810 struct sched_group_capacity *sgc; 1811 int asym_prefer_cpu; /* CPU of highest priority in group */ 1812 1813 /* 1814 * The CPUs this group covers. 1815 * 1816 * NOTE: this field is variable length. (Allocated dynamically 1817 * by attaching extra space to the end of the structure, 1818 * depending on how many CPUs the kernel has booted up with) 1819 */ 1820 unsigned long cpumask[]; 1821 }; 1822 1823 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1824 { 1825 return to_cpumask(sg->cpumask); 1826 } 1827 1828 /* 1829 * See build_balance_mask(). 1830 */ 1831 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1832 { 1833 return to_cpumask(sg->sgc->cpumask); 1834 } 1835 1836 /** 1837 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1838 * @group: The group whose first CPU is to be returned. 1839 */ 1840 static inline unsigned int group_first_cpu(struct sched_group *group) 1841 { 1842 return cpumask_first(sched_group_span(group)); 1843 } 1844 1845 extern int group_balance_cpu(struct sched_group *sg); 1846 1847 #ifdef CONFIG_SCHED_DEBUG 1848 void update_sched_domain_debugfs(void); 1849 void dirty_sched_domain_sysctl(int cpu); 1850 #else 1851 static inline void update_sched_domain_debugfs(void) 1852 { 1853 } 1854 static inline void dirty_sched_domain_sysctl(int cpu) 1855 { 1856 } 1857 #endif 1858 1859 extern int sched_update_scaling(void); 1860 1861 extern void flush_smp_call_function_from_idle(void); 1862 1863 #else /* !CONFIG_SMP: */ 1864 static inline void flush_smp_call_function_from_idle(void) { } 1865 #endif 1866 1867 #include "stats.h" 1868 #include "autogroup.h" 1869 1870 #ifdef CONFIG_CGROUP_SCHED 1871 1872 /* 1873 * Return the group to which this tasks belongs. 1874 * 1875 * We cannot use task_css() and friends because the cgroup subsystem 1876 * changes that value before the cgroup_subsys::attach() method is called, 1877 * therefore we cannot pin it and might observe the wrong value. 1878 * 1879 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1880 * core changes this before calling sched_move_task(). 1881 * 1882 * Instead we use a 'copy' which is updated from sched_move_task() while 1883 * holding both task_struct::pi_lock and rq::lock. 1884 */ 1885 static inline struct task_group *task_group(struct task_struct *p) 1886 { 1887 return p->sched_task_group; 1888 } 1889 1890 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1891 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1892 { 1893 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1894 struct task_group *tg = task_group(p); 1895 #endif 1896 1897 #ifdef CONFIG_FAIR_GROUP_SCHED 1898 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1899 p->se.cfs_rq = tg->cfs_rq[cpu]; 1900 p->se.parent = tg->se[cpu]; 1901 #endif 1902 1903 #ifdef CONFIG_RT_GROUP_SCHED 1904 p->rt.rt_rq = tg->rt_rq[cpu]; 1905 p->rt.parent = tg->rt_se[cpu]; 1906 #endif 1907 } 1908 1909 #else /* CONFIG_CGROUP_SCHED */ 1910 1911 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1912 static inline struct task_group *task_group(struct task_struct *p) 1913 { 1914 return NULL; 1915 } 1916 1917 #endif /* CONFIG_CGROUP_SCHED */ 1918 1919 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1920 { 1921 set_task_rq(p, cpu); 1922 #ifdef CONFIG_SMP 1923 /* 1924 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1925 * successfully executed on another CPU. We must ensure that updates of 1926 * per-task data have been completed by this moment. 1927 */ 1928 smp_wmb(); 1929 #ifdef CONFIG_THREAD_INFO_IN_TASK 1930 WRITE_ONCE(p->cpu, cpu); 1931 #else 1932 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1933 #endif 1934 p->wake_cpu = cpu; 1935 #endif 1936 } 1937 1938 /* 1939 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1940 */ 1941 #ifdef CONFIG_SCHED_DEBUG 1942 # include <linux/static_key.h> 1943 # define const_debug __read_mostly 1944 #else 1945 # define const_debug const 1946 #endif 1947 1948 #define SCHED_FEAT(name, enabled) \ 1949 __SCHED_FEAT_##name , 1950 1951 enum { 1952 #include "features.h" 1953 __SCHED_FEAT_NR, 1954 }; 1955 1956 #undef SCHED_FEAT 1957 1958 #ifdef CONFIG_SCHED_DEBUG 1959 1960 /* 1961 * To support run-time toggling of sched features, all the translation units 1962 * (but core.c) reference the sysctl_sched_features defined in core.c. 1963 */ 1964 extern const_debug unsigned int sysctl_sched_features; 1965 1966 #ifdef CONFIG_JUMP_LABEL 1967 #define SCHED_FEAT(name, enabled) \ 1968 static __always_inline bool static_branch_##name(struct static_key *key) \ 1969 { \ 1970 return static_key_##enabled(key); \ 1971 } 1972 1973 #include "features.h" 1974 #undef SCHED_FEAT 1975 1976 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1977 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1978 1979 #else /* !CONFIG_JUMP_LABEL */ 1980 1981 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1982 1983 #endif /* CONFIG_JUMP_LABEL */ 1984 1985 #else /* !SCHED_DEBUG */ 1986 1987 /* 1988 * Each translation unit has its own copy of sysctl_sched_features to allow 1989 * constants propagation at compile time and compiler optimization based on 1990 * features default. 1991 */ 1992 #define SCHED_FEAT(name, enabled) \ 1993 (1UL << __SCHED_FEAT_##name) * enabled | 1994 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1995 #include "features.h" 1996 0; 1997 #undef SCHED_FEAT 1998 1999 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2000 2001 #endif /* SCHED_DEBUG */ 2002 2003 extern struct static_key_false sched_numa_balancing; 2004 extern struct static_key_false sched_schedstats; 2005 2006 static inline u64 global_rt_period(void) 2007 { 2008 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2009 } 2010 2011 static inline u64 global_rt_runtime(void) 2012 { 2013 if (sysctl_sched_rt_runtime < 0) 2014 return RUNTIME_INF; 2015 2016 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2017 } 2018 2019 static inline int task_current(struct rq *rq, struct task_struct *p) 2020 { 2021 return rq->curr == p; 2022 } 2023 2024 static inline int task_running(struct rq *rq, struct task_struct *p) 2025 { 2026 #ifdef CONFIG_SMP 2027 return p->on_cpu; 2028 #else 2029 return task_current(rq, p); 2030 #endif 2031 } 2032 2033 static inline int task_on_rq_queued(struct task_struct *p) 2034 { 2035 return p->on_rq == TASK_ON_RQ_QUEUED; 2036 } 2037 2038 static inline int task_on_rq_migrating(struct task_struct *p) 2039 { 2040 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2041 } 2042 2043 /* Wake flags. The first three directly map to some SD flag value */ 2044 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2045 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2046 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2047 2048 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2049 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2050 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 2051 2052 #ifdef CONFIG_SMP 2053 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2054 static_assert(WF_FORK == SD_BALANCE_FORK); 2055 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2056 #endif 2057 2058 /* 2059 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2060 * of tasks with abnormal "nice" values across CPUs the contribution that 2061 * each task makes to its run queue's load is weighted according to its 2062 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2063 * scaled version of the new time slice allocation that they receive on time 2064 * slice expiry etc. 2065 */ 2066 2067 #define WEIGHT_IDLEPRIO 3 2068 #define WMULT_IDLEPRIO 1431655765 2069 2070 extern const int sched_prio_to_weight[40]; 2071 extern const u32 sched_prio_to_wmult[40]; 2072 2073 /* 2074 * {de,en}queue flags: 2075 * 2076 * DEQUEUE_SLEEP - task is no longer runnable 2077 * ENQUEUE_WAKEUP - task just became runnable 2078 * 2079 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2080 * are in a known state which allows modification. Such pairs 2081 * should preserve as much state as possible. 2082 * 2083 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2084 * in the runqueue. 2085 * 2086 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2087 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2088 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2089 * 2090 */ 2091 2092 #define DEQUEUE_SLEEP 0x01 2093 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2094 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2095 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2096 2097 #define ENQUEUE_WAKEUP 0x01 2098 #define ENQUEUE_RESTORE 0x02 2099 #define ENQUEUE_MOVE 0x04 2100 #define ENQUEUE_NOCLOCK 0x08 2101 2102 #define ENQUEUE_HEAD 0x10 2103 #define ENQUEUE_REPLENISH 0x20 2104 #ifdef CONFIG_SMP 2105 #define ENQUEUE_MIGRATED 0x40 2106 #else 2107 #define ENQUEUE_MIGRATED 0x00 2108 #endif 2109 2110 #define RETRY_TASK ((void *)-1UL) 2111 2112 struct sched_class { 2113 2114 #ifdef CONFIG_UCLAMP_TASK 2115 int uclamp_enabled; 2116 #endif 2117 2118 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2119 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2120 void (*yield_task) (struct rq *rq); 2121 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2122 2123 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2124 2125 struct task_struct *(*pick_next_task)(struct rq *rq); 2126 2127 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2128 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2129 2130 #ifdef CONFIG_SMP 2131 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2132 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2133 2134 struct task_struct * (*pick_task)(struct rq *rq); 2135 2136 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2137 2138 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2139 2140 void (*set_cpus_allowed)(struct task_struct *p, 2141 const struct cpumask *newmask, 2142 u32 flags); 2143 2144 void (*rq_online)(struct rq *rq); 2145 void (*rq_offline)(struct rq *rq); 2146 2147 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2148 #endif 2149 2150 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2151 void (*task_fork)(struct task_struct *p); 2152 void (*task_dead)(struct task_struct *p); 2153 2154 /* 2155 * The switched_from() call is allowed to drop rq->lock, therefore we 2156 * cannot assume the switched_from/switched_to pair is serialized by 2157 * rq->lock. They are however serialized by p->pi_lock. 2158 */ 2159 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2160 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2161 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2162 int oldprio); 2163 2164 unsigned int (*get_rr_interval)(struct rq *rq, 2165 struct task_struct *task); 2166 2167 void (*update_curr)(struct rq *rq); 2168 2169 #define TASK_SET_GROUP 0 2170 #define TASK_MOVE_GROUP 1 2171 2172 #ifdef CONFIG_FAIR_GROUP_SCHED 2173 void (*task_change_group)(struct task_struct *p, int type); 2174 #endif 2175 }; 2176 2177 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2178 { 2179 WARN_ON_ONCE(rq->curr != prev); 2180 prev->sched_class->put_prev_task(rq, prev); 2181 } 2182 2183 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2184 { 2185 next->sched_class->set_next_task(rq, next, false); 2186 } 2187 2188 2189 /* 2190 * Helper to define a sched_class instance; each one is placed in a separate 2191 * section which is ordered by the linker script: 2192 * 2193 * include/asm-generic/vmlinux.lds.h 2194 * 2195 * Also enforce alignment on the instance, not the type, to guarantee layout. 2196 */ 2197 #define DEFINE_SCHED_CLASS(name) \ 2198 const struct sched_class name##_sched_class \ 2199 __aligned(__alignof__(struct sched_class)) \ 2200 __section("__" #name "_sched_class") 2201 2202 /* Defined in include/asm-generic/vmlinux.lds.h */ 2203 extern struct sched_class __begin_sched_classes[]; 2204 extern struct sched_class __end_sched_classes[]; 2205 2206 #define sched_class_highest (__end_sched_classes - 1) 2207 #define sched_class_lowest (__begin_sched_classes - 1) 2208 2209 #define for_class_range(class, _from, _to) \ 2210 for (class = (_from); class != (_to); class--) 2211 2212 #define for_each_class(class) \ 2213 for_class_range(class, sched_class_highest, sched_class_lowest) 2214 2215 extern const struct sched_class stop_sched_class; 2216 extern const struct sched_class dl_sched_class; 2217 extern const struct sched_class rt_sched_class; 2218 extern const struct sched_class fair_sched_class; 2219 extern const struct sched_class idle_sched_class; 2220 2221 static inline bool sched_stop_runnable(struct rq *rq) 2222 { 2223 return rq->stop && task_on_rq_queued(rq->stop); 2224 } 2225 2226 static inline bool sched_dl_runnable(struct rq *rq) 2227 { 2228 return rq->dl.dl_nr_running > 0; 2229 } 2230 2231 static inline bool sched_rt_runnable(struct rq *rq) 2232 { 2233 return rq->rt.rt_queued > 0; 2234 } 2235 2236 static inline bool sched_fair_runnable(struct rq *rq) 2237 { 2238 return rq->cfs.nr_running > 0; 2239 } 2240 2241 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2242 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2243 2244 #define SCA_CHECK 0x01 2245 #define SCA_MIGRATE_DISABLE 0x02 2246 #define SCA_MIGRATE_ENABLE 0x04 2247 #define SCA_USER 0x08 2248 2249 #ifdef CONFIG_SMP 2250 2251 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2252 2253 extern void trigger_load_balance(struct rq *rq); 2254 2255 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2256 2257 static inline struct task_struct *get_push_task(struct rq *rq) 2258 { 2259 struct task_struct *p = rq->curr; 2260 2261 lockdep_assert_rq_held(rq); 2262 2263 if (rq->push_busy) 2264 return NULL; 2265 2266 if (p->nr_cpus_allowed == 1) 2267 return NULL; 2268 2269 if (p->migration_disabled) 2270 return NULL; 2271 2272 rq->push_busy = true; 2273 return get_task_struct(p); 2274 } 2275 2276 extern int push_cpu_stop(void *arg); 2277 2278 #endif 2279 2280 #ifdef CONFIG_CPU_IDLE 2281 static inline void idle_set_state(struct rq *rq, 2282 struct cpuidle_state *idle_state) 2283 { 2284 rq->idle_state = idle_state; 2285 } 2286 2287 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2288 { 2289 SCHED_WARN_ON(!rcu_read_lock_held()); 2290 2291 return rq->idle_state; 2292 } 2293 #else 2294 static inline void idle_set_state(struct rq *rq, 2295 struct cpuidle_state *idle_state) 2296 { 2297 } 2298 2299 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2300 { 2301 return NULL; 2302 } 2303 #endif 2304 2305 extern void schedule_idle(void); 2306 2307 extern void sysrq_sched_debug_show(void); 2308 extern void sched_init_granularity(void); 2309 extern void update_max_interval(void); 2310 2311 extern void init_sched_dl_class(void); 2312 extern void init_sched_rt_class(void); 2313 extern void init_sched_fair_class(void); 2314 2315 extern void reweight_task(struct task_struct *p, int prio); 2316 2317 extern void resched_curr(struct rq *rq); 2318 extern void resched_cpu(int cpu); 2319 2320 extern struct rt_bandwidth def_rt_bandwidth; 2321 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2322 2323 extern struct dl_bandwidth def_dl_bandwidth; 2324 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2325 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2326 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2327 2328 #define BW_SHIFT 20 2329 #define BW_UNIT (1 << BW_SHIFT) 2330 #define RATIO_SHIFT 8 2331 #define MAX_BW_BITS (64 - BW_SHIFT) 2332 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2333 unsigned long to_ratio(u64 period, u64 runtime); 2334 2335 extern void init_entity_runnable_average(struct sched_entity *se); 2336 extern void post_init_entity_util_avg(struct task_struct *p); 2337 2338 #ifdef CONFIG_NO_HZ_FULL 2339 extern bool sched_can_stop_tick(struct rq *rq); 2340 extern int __init sched_tick_offload_init(void); 2341 2342 /* 2343 * Tick may be needed by tasks in the runqueue depending on their policy and 2344 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2345 * nohz mode if necessary. 2346 */ 2347 static inline void sched_update_tick_dependency(struct rq *rq) 2348 { 2349 int cpu = cpu_of(rq); 2350 2351 if (!tick_nohz_full_cpu(cpu)) 2352 return; 2353 2354 if (sched_can_stop_tick(rq)) 2355 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2356 else 2357 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2358 } 2359 #else 2360 static inline int sched_tick_offload_init(void) { return 0; } 2361 static inline void sched_update_tick_dependency(struct rq *rq) { } 2362 #endif 2363 2364 static inline void add_nr_running(struct rq *rq, unsigned count) 2365 { 2366 unsigned prev_nr = rq->nr_running; 2367 2368 rq->nr_running = prev_nr + count; 2369 if (trace_sched_update_nr_running_tp_enabled()) { 2370 call_trace_sched_update_nr_running(rq, count); 2371 } 2372 2373 #ifdef CONFIG_SMP 2374 if (prev_nr < 2 && rq->nr_running >= 2) { 2375 if (!READ_ONCE(rq->rd->overload)) 2376 WRITE_ONCE(rq->rd->overload, 1); 2377 } 2378 #endif 2379 2380 sched_update_tick_dependency(rq); 2381 } 2382 2383 static inline void sub_nr_running(struct rq *rq, unsigned count) 2384 { 2385 rq->nr_running -= count; 2386 if (trace_sched_update_nr_running_tp_enabled()) { 2387 call_trace_sched_update_nr_running(rq, -count); 2388 } 2389 2390 /* Check if we still need preemption */ 2391 sched_update_tick_dependency(rq); 2392 } 2393 2394 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2395 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2396 2397 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2398 2399 extern const_debug unsigned int sysctl_sched_nr_migrate; 2400 extern const_debug unsigned int sysctl_sched_migration_cost; 2401 2402 #ifdef CONFIG_SCHED_DEBUG 2403 extern unsigned int sysctl_sched_latency; 2404 extern unsigned int sysctl_sched_min_granularity; 2405 extern unsigned int sysctl_sched_wakeup_granularity; 2406 extern int sysctl_resched_latency_warn_ms; 2407 extern int sysctl_resched_latency_warn_once; 2408 2409 extern unsigned int sysctl_sched_tunable_scaling; 2410 2411 extern unsigned int sysctl_numa_balancing_scan_delay; 2412 extern unsigned int sysctl_numa_balancing_scan_period_min; 2413 extern unsigned int sysctl_numa_balancing_scan_period_max; 2414 extern unsigned int sysctl_numa_balancing_scan_size; 2415 #endif 2416 2417 #ifdef CONFIG_SCHED_HRTICK 2418 2419 /* 2420 * Use hrtick when: 2421 * - enabled by features 2422 * - hrtimer is actually high res 2423 */ 2424 static inline int hrtick_enabled(struct rq *rq) 2425 { 2426 if (!cpu_active(cpu_of(rq))) 2427 return 0; 2428 return hrtimer_is_hres_active(&rq->hrtick_timer); 2429 } 2430 2431 static inline int hrtick_enabled_fair(struct rq *rq) 2432 { 2433 if (!sched_feat(HRTICK)) 2434 return 0; 2435 return hrtick_enabled(rq); 2436 } 2437 2438 static inline int hrtick_enabled_dl(struct rq *rq) 2439 { 2440 if (!sched_feat(HRTICK_DL)) 2441 return 0; 2442 return hrtick_enabled(rq); 2443 } 2444 2445 void hrtick_start(struct rq *rq, u64 delay); 2446 2447 #else 2448 2449 static inline int hrtick_enabled_fair(struct rq *rq) 2450 { 2451 return 0; 2452 } 2453 2454 static inline int hrtick_enabled_dl(struct rq *rq) 2455 { 2456 return 0; 2457 } 2458 2459 static inline int hrtick_enabled(struct rq *rq) 2460 { 2461 return 0; 2462 } 2463 2464 #endif /* CONFIG_SCHED_HRTICK */ 2465 2466 #ifndef arch_scale_freq_tick 2467 static __always_inline 2468 void arch_scale_freq_tick(void) 2469 { 2470 } 2471 #endif 2472 2473 #ifndef arch_scale_freq_capacity 2474 /** 2475 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2476 * @cpu: the CPU in question. 2477 * 2478 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2479 * 2480 * f_curr 2481 * ------ * SCHED_CAPACITY_SCALE 2482 * f_max 2483 */ 2484 static __always_inline 2485 unsigned long arch_scale_freq_capacity(int cpu) 2486 { 2487 return SCHED_CAPACITY_SCALE; 2488 } 2489 #endif 2490 2491 2492 #ifdef CONFIG_SMP 2493 2494 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2495 { 2496 #ifdef CONFIG_SCHED_CORE 2497 /* 2498 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2499 * order by core-id first and cpu-id second. 2500 * 2501 * Notably: 2502 * 2503 * double_rq_lock(0,3); will take core-0, core-1 lock 2504 * double_rq_lock(1,2); will take core-1, core-0 lock 2505 * 2506 * when only cpu-id is considered. 2507 */ 2508 if (rq1->core->cpu < rq2->core->cpu) 2509 return true; 2510 if (rq1->core->cpu > rq2->core->cpu) 2511 return false; 2512 2513 /* 2514 * __sched_core_flip() relies on SMT having cpu-id lock order. 2515 */ 2516 #endif 2517 return rq1->cpu < rq2->cpu; 2518 } 2519 2520 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2521 2522 #ifdef CONFIG_PREEMPTION 2523 2524 /* 2525 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2526 * way at the expense of forcing extra atomic operations in all 2527 * invocations. This assures that the double_lock is acquired using the 2528 * same underlying policy as the spinlock_t on this architecture, which 2529 * reduces latency compared to the unfair variant below. However, it 2530 * also adds more overhead and therefore may reduce throughput. 2531 */ 2532 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2533 __releases(this_rq->lock) 2534 __acquires(busiest->lock) 2535 __acquires(this_rq->lock) 2536 { 2537 raw_spin_rq_unlock(this_rq); 2538 double_rq_lock(this_rq, busiest); 2539 2540 return 1; 2541 } 2542 2543 #else 2544 /* 2545 * Unfair double_lock_balance: Optimizes throughput at the expense of 2546 * latency by eliminating extra atomic operations when the locks are 2547 * already in proper order on entry. This favors lower CPU-ids and will 2548 * grant the double lock to lower CPUs over higher ids under contention, 2549 * regardless of entry order into the function. 2550 */ 2551 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2552 __releases(this_rq->lock) 2553 __acquires(busiest->lock) 2554 __acquires(this_rq->lock) 2555 { 2556 if (__rq_lockp(this_rq) == __rq_lockp(busiest)) 2557 return 0; 2558 2559 if (likely(raw_spin_rq_trylock(busiest))) 2560 return 0; 2561 2562 if (rq_order_less(this_rq, busiest)) { 2563 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2564 return 0; 2565 } 2566 2567 raw_spin_rq_unlock(this_rq); 2568 double_rq_lock(this_rq, busiest); 2569 2570 return 1; 2571 } 2572 2573 #endif /* CONFIG_PREEMPTION */ 2574 2575 /* 2576 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2577 */ 2578 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2579 { 2580 lockdep_assert_irqs_disabled(); 2581 2582 return _double_lock_balance(this_rq, busiest); 2583 } 2584 2585 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2586 __releases(busiest->lock) 2587 { 2588 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2589 raw_spin_rq_unlock(busiest); 2590 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2591 } 2592 2593 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2594 { 2595 if (l1 > l2) 2596 swap(l1, l2); 2597 2598 spin_lock(l1); 2599 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2600 } 2601 2602 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2603 { 2604 if (l1 > l2) 2605 swap(l1, l2); 2606 2607 spin_lock_irq(l1); 2608 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2609 } 2610 2611 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2612 { 2613 if (l1 > l2) 2614 swap(l1, l2); 2615 2616 raw_spin_lock(l1); 2617 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2618 } 2619 2620 /* 2621 * double_rq_unlock - safely unlock two runqueues 2622 * 2623 * Note this does not restore interrupts like task_rq_unlock, 2624 * you need to do so manually after calling. 2625 */ 2626 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2627 __releases(rq1->lock) 2628 __releases(rq2->lock) 2629 { 2630 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2631 raw_spin_rq_unlock(rq2); 2632 else 2633 __release(rq2->lock); 2634 raw_spin_rq_unlock(rq1); 2635 } 2636 2637 extern void set_rq_online (struct rq *rq); 2638 extern void set_rq_offline(struct rq *rq); 2639 extern bool sched_smp_initialized; 2640 2641 #else /* CONFIG_SMP */ 2642 2643 /* 2644 * double_rq_lock - safely lock two runqueues 2645 * 2646 * Note this does not disable interrupts like task_rq_lock, 2647 * you need to do so manually before calling. 2648 */ 2649 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2650 __acquires(rq1->lock) 2651 __acquires(rq2->lock) 2652 { 2653 BUG_ON(!irqs_disabled()); 2654 BUG_ON(rq1 != rq2); 2655 raw_spin_rq_lock(rq1); 2656 __acquire(rq2->lock); /* Fake it out ;) */ 2657 } 2658 2659 /* 2660 * double_rq_unlock - safely unlock two runqueues 2661 * 2662 * Note this does not restore interrupts like task_rq_unlock, 2663 * you need to do so manually after calling. 2664 */ 2665 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2666 __releases(rq1->lock) 2667 __releases(rq2->lock) 2668 { 2669 BUG_ON(rq1 != rq2); 2670 raw_spin_rq_unlock(rq1); 2671 __release(rq2->lock); 2672 } 2673 2674 #endif 2675 2676 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2677 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2678 2679 #ifdef CONFIG_SCHED_DEBUG 2680 extern bool sched_debug_verbose; 2681 2682 extern void print_cfs_stats(struct seq_file *m, int cpu); 2683 extern void print_rt_stats(struct seq_file *m, int cpu); 2684 extern void print_dl_stats(struct seq_file *m, int cpu); 2685 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2686 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2687 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2688 2689 extern void resched_latency_warn(int cpu, u64 latency); 2690 #ifdef CONFIG_NUMA_BALANCING 2691 extern void 2692 show_numa_stats(struct task_struct *p, struct seq_file *m); 2693 extern void 2694 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2695 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2696 #endif /* CONFIG_NUMA_BALANCING */ 2697 #else 2698 static inline void resched_latency_warn(int cpu, u64 latency) {} 2699 #endif /* CONFIG_SCHED_DEBUG */ 2700 2701 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2702 extern void init_rt_rq(struct rt_rq *rt_rq); 2703 extern void init_dl_rq(struct dl_rq *dl_rq); 2704 2705 extern void cfs_bandwidth_usage_inc(void); 2706 extern void cfs_bandwidth_usage_dec(void); 2707 2708 #ifdef CONFIG_NO_HZ_COMMON 2709 #define NOHZ_BALANCE_KICK_BIT 0 2710 #define NOHZ_STATS_KICK_BIT 1 2711 #define NOHZ_NEWILB_KICK_BIT 2 2712 2713 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2714 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2715 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2716 2717 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) 2718 2719 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2720 2721 extern void nohz_balance_exit_idle(struct rq *rq); 2722 #else 2723 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2724 #endif 2725 2726 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2727 extern void nohz_run_idle_balance(int cpu); 2728 #else 2729 static inline void nohz_run_idle_balance(int cpu) { } 2730 #endif 2731 2732 #ifdef CONFIG_SMP 2733 static inline 2734 void __dl_update(struct dl_bw *dl_b, s64 bw) 2735 { 2736 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2737 int i; 2738 2739 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2740 "sched RCU must be held"); 2741 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2742 struct rq *rq = cpu_rq(i); 2743 2744 rq->dl.extra_bw += bw; 2745 } 2746 } 2747 #else 2748 static inline 2749 void __dl_update(struct dl_bw *dl_b, s64 bw) 2750 { 2751 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2752 2753 dl->extra_bw += bw; 2754 } 2755 #endif 2756 2757 2758 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2759 struct irqtime { 2760 u64 total; 2761 u64 tick_delta; 2762 u64 irq_start_time; 2763 struct u64_stats_sync sync; 2764 }; 2765 2766 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2767 2768 /* 2769 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2770 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2771 * and never move forward. 2772 */ 2773 static inline u64 irq_time_read(int cpu) 2774 { 2775 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2776 unsigned int seq; 2777 u64 total; 2778 2779 do { 2780 seq = __u64_stats_fetch_begin(&irqtime->sync); 2781 total = irqtime->total; 2782 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2783 2784 return total; 2785 } 2786 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2787 2788 #ifdef CONFIG_CPU_FREQ 2789 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2790 2791 /** 2792 * cpufreq_update_util - Take a note about CPU utilization changes. 2793 * @rq: Runqueue to carry out the update for. 2794 * @flags: Update reason flags. 2795 * 2796 * This function is called by the scheduler on the CPU whose utilization is 2797 * being updated. 2798 * 2799 * It can only be called from RCU-sched read-side critical sections. 2800 * 2801 * The way cpufreq is currently arranged requires it to evaluate the CPU 2802 * performance state (frequency/voltage) on a regular basis to prevent it from 2803 * being stuck in a completely inadequate performance level for too long. 2804 * That is not guaranteed to happen if the updates are only triggered from CFS 2805 * and DL, though, because they may not be coming in if only RT tasks are 2806 * active all the time (or there are RT tasks only). 2807 * 2808 * As a workaround for that issue, this function is called periodically by the 2809 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2810 * but that really is a band-aid. Going forward it should be replaced with 2811 * solutions targeted more specifically at RT tasks. 2812 */ 2813 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2814 { 2815 struct update_util_data *data; 2816 2817 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2818 cpu_of(rq))); 2819 if (data) 2820 data->func(data, rq_clock(rq), flags); 2821 } 2822 #else 2823 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2824 #endif /* CONFIG_CPU_FREQ */ 2825 2826 #ifdef CONFIG_UCLAMP_TASK 2827 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2828 2829 /** 2830 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2831 * @rq: The rq to clamp against. Must not be NULL. 2832 * @util: The util value to clamp. 2833 * @p: The task to clamp against. Can be NULL if you want to clamp 2834 * against @rq only. 2835 * 2836 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2837 * 2838 * If sched_uclamp_used static key is disabled, then just return the util 2839 * without any clamping since uclamp aggregation at the rq level in the fast 2840 * path is disabled, rendering this operation a NOP. 2841 * 2842 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2843 * will return the correct effective uclamp value of the task even if the 2844 * static key is disabled. 2845 */ 2846 static __always_inline 2847 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2848 struct task_struct *p) 2849 { 2850 unsigned long min_util = 0; 2851 unsigned long max_util = 0; 2852 2853 if (!static_branch_likely(&sched_uclamp_used)) 2854 return util; 2855 2856 if (p) { 2857 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2858 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2859 2860 /* 2861 * Ignore last runnable task's max clamp, as this task will 2862 * reset it. Similarly, no need to read the rq's min clamp. 2863 */ 2864 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 2865 goto out; 2866 } 2867 2868 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 2869 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 2870 out: 2871 /* 2872 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2873 * RUNNABLE tasks with _different_ clamps, we can end up with an 2874 * inversion. Fix it now when the clamps are applied. 2875 */ 2876 if (unlikely(min_util >= max_util)) 2877 return min_util; 2878 2879 return clamp(util, min_util, max_util); 2880 } 2881 2882 /* 2883 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2884 * by default in the fast path and only gets turned on once userspace performs 2885 * an operation that requires it. 2886 * 2887 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2888 * hence is active. 2889 */ 2890 static inline bool uclamp_is_used(void) 2891 { 2892 return static_branch_likely(&sched_uclamp_used); 2893 } 2894 #else /* CONFIG_UCLAMP_TASK */ 2895 static inline 2896 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2897 struct task_struct *p) 2898 { 2899 return util; 2900 } 2901 2902 static inline bool uclamp_is_used(void) 2903 { 2904 return false; 2905 } 2906 #endif /* CONFIG_UCLAMP_TASK */ 2907 2908 #ifdef arch_scale_freq_capacity 2909 # ifndef arch_scale_freq_invariant 2910 # define arch_scale_freq_invariant() true 2911 # endif 2912 #else 2913 # define arch_scale_freq_invariant() false 2914 #endif 2915 2916 #ifdef CONFIG_SMP 2917 static inline unsigned long capacity_orig_of(int cpu) 2918 { 2919 return cpu_rq(cpu)->cpu_capacity_orig; 2920 } 2921 2922 /** 2923 * enum cpu_util_type - CPU utilization type 2924 * @FREQUENCY_UTIL: Utilization used to select frequency 2925 * @ENERGY_UTIL: Utilization used during energy calculation 2926 * 2927 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2928 * need to be aggregated differently depending on the usage made of them. This 2929 * enum is used within effective_cpu_util() to differentiate the types of 2930 * utilization expected by the callers, and adjust the aggregation accordingly. 2931 */ 2932 enum cpu_util_type { 2933 FREQUENCY_UTIL, 2934 ENERGY_UTIL, 2935 }; 2936 2937 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2938 unsigned long max, enum cpu_util_type type, 2939 struct task_struct *p); 2940 2941 static inline unsigned long cpu_bw_dl(struct rq *rq) 2942 { 2943 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2944 } 2945 2946 static inline unsigned long cpu_util_dl(struct rq *rq) 2947 { 2948 return READ_ONCE(rq->avg_dl.util_avg); 2949 } 2950 2951 static inline unsigned long cpu_util_cfs(struct rq *rq) 2952 { 2953 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2954 2955 if (sched_feat(UTIL_EST)) { 2956 util = max_t(unsigned long, util, 2957 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2958 } 2959 2960 return util; 2961 } 2962 2963 static inline unsigned long cpu_util_rt(struct rq *rq) 2964 { 2965 return READ_ONCE(rq->avg_rt.util_avg); 2966 } 2967 #endif 2968 2969 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2970 static inline unsigned long cpu_util_irq(struct rq *rq) 2971 { 2972 return rq->avg_irq.util_avg; 2973 } 2974 2975 static inline 2976 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2977 { 2978 util *= (max - irq); 2979 util /= max; 2980 2981 return util; 2982 2983 } 2984 #else 2985 static inline unsigned long cpu_util_irq(struct rq *rq) 2986 { 2987 return 0; 2988 } 2989 2990 static inline 2991 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2992 { 2993 return util; 2994 } 2995 #endif 2996 2997 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2998 2999 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3000 3001 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3002 3003 static inline bool sched_energy_enabled(void) 3004 { 3005 return static_branch_unlikely(&sched_energy_present); 3006 } 3007 3008 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3009 3010 #define perf_domain_span(pd) NULL 3011 static inline bool sched_energy_enabled(void) { return false; } 3012 3013 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3014 3015 #ifdef CONFIG_MEMBARRIER 3016 /* 3017 * The scheduler provides memory barriers required by membarrier between: 3018 * - prior user-space memory accesses and store to rq->membarrier_state, 3019 * - store to rq->membarrier_state and following user-space memory accesses. 3020 * In the same way it provides those guarantees around store to rq->curr. 3021 */ 3022 static inline void membarrier_switch_mm(struct rq *rq, 3023 struct mm_struct *prev_mm, 3024 struct mm_struct *next_mm) 3025 { 3026 int membarrier_state; 3027 3028 if (prev_mm == next_mm) 3029 return; 3030 3031 membarrier_state = atomic_read(&next_mm->membarrier_state); 3032 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3033 return; 3034 3035 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3036 } 3037 #else 3038 static inline void membarrier_switch_mm(struct rq *rq, 3039 struct mm_struct *prev_mm, 3040 struct mm_struct *next_mm) 3041 { 3042 } 3043 #endif 3044 3045 #ifdef CONFIG_SMP 3046 static inline bool is_per_cpu_kthread(struct task_struct *p) 3047 { 3048 if (!(p->flags & PF_KTHREAD)) 3049 return false; 3050 3051 if (p->nr_cpus_allowed != 1) 3052 return false; 3053 3054 return true; 3055 } 3056 #endif 3057 3058 extern void swake_up_all_locked(struct swait_queue_head *q); 3059 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3060 3061 #ifdef CONFIG_PREEMPT_DYNAMIC 3062 extern int preempt_dynamic_mode; 3063 extern int sched_dynamic_mode(const char *str); 3064 extern void sched_dynamic_update(int mode); 3065 #endif 3066 3067