xref: /openbmc/linux/kernel/sched/sched.h (revision 0a907292)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/ratelimit.h>
61 #include <linux/rcupdate_wait.h>
62 #include <linux/security.h>
63 #include <linux/stop_machine.h>
64 #include <linux/suspend.h>
65 #include <linux/swait.h>
66 #include <linux/syscalls.h>
67 #include <linux/task_work.h>
68 #include <linux/tsacct_kern.h>
69 
70 #include <asm/tlb.h>
71 
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75 
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78 
79 #include <trace/events/sched.h>
80 
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
85 #endif
86 
87 struct rq;
88 struct cpuidle_state;
89 
90 /* task_struct::on_rq states: */
91 #define TASK_ON_RQ_QUEUED	1
92 #define TASK_ON_RQ_MIGRATING	2
93 
94 extern __read_mostly int scheduler_running;
95 
96 extern unsigned long calc_load_update;
97 extern atomic_long_t calc_load_tasks;
98 
99 extern void calc_global_load_tick(struct rq *this_rq);
100 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101 
102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) \
126 ({ \
127 	unsigned long __w = (w); \
128 	if (__w) \
129 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 	__w; \
131 })
132 #else
133 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load(w)		(w)
135 # define scale_load_down(w)	(w)
136 #endif
137 
138 /*
139  * Task weight (visible to users) and its load (invisible to users) have
140  * independent resolution, but they should be well calibrated. We use
141  * scale_load() and scale_load_down(w) to convert between them. The
142  * following must be true:
143  *
144  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
145  *
146  */
147 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
148 
149 /*
150  * Single value that decides SCHED_DEADLINE internal math precision.
151  * 10 -> just above 1us
152  * 9  -> just above 0.5us
153  */
154 #define DL_SCALE		10
155 
156 /*
157  * Single value that denotes runtime == period, ie unlimited time.
158  */
159 #define RUNTIME_INF		((u64)~0ULL)
160 
161 static inline int idle_policy(int policy)
162 {
163 	return policy == SCHED_IDLE;
164 }
165 static inline int fair_policy(int policy)
166 {
167 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168 }
169 
170 static inline int rt_policy(int policy)
171 {
172 	return policy == SCHED_FIFO || policy == SCHED_RR;
173 }
174 
175 static inline int dl_policy(int policy)
176 {
177 	return policy == SCHED_DEADLINE;
178 }
179 static inline bool valid_policy(int policy)
180 {
181 	return idle_policy(policy) || fair_policy(policy) ||
182 		rt_policy(policy) || dl_policy(policy);
183 }
184 
185 static inline int task_has_idle_policy(struct task_struct *p)
186 {
187 	return idle_policy(p->policy);
188 }
189 
190 static inline int task_has_rt_policy(struct task_struct *p)
191 {
192 	return rt_policy(p->policy);
193 }
194 
195 static inline int task_has_dl_policy(struct task_struct *p)
196 {
197 	return dl_policy(p->policy);
198 }
199 
200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201 
202 static inline void update_avg(u64 *avg, u64 sample)
203 {
204 	s64 diff = sample - *avg;
205 	*avg += diff / 8;
206 }
207 
208 /*
209  * Shifting a value by an exponent greater *or equal* to the size of said value
210  * is UB; cap at size-1.
211  */
212 #define shr_bound(val, shift)							\
213 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
214 
215 /*
216  * !! For sched_setattr_nocheck() (kernel) only !!
217  *
218  * This is actually gross. :(
219  *
220  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
221  * tasks, but still be able to sleep. We need this on platforms that cannot
222  * atomically change clock frequency. Remove once fast switching will be
223  * available on such platforms.
224  *
225  * SUGOV stands for SchedUtil GOVernor.
226  */
227 #define SCHED_FLAG_SUGOV	0x10000000
228 
229 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
230 
231 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
232 {
233 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
234 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Tells if entity @a should preempt entity @b.
242  */
243 static inline bool
244 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
245 {
246 	return dl_entity_is_special(a) ||
247 	       dl_time_before(a->deadline, b->deadline);
248 }
249 
250 /*
251  * This is the priority-queue data structure of the RT scheduling class:
252  */
253 struct rt_prio_array {
254 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
255 	struct list_head queue[MAX_RT_PRIO];
256 };
257 
258 struct rt_bandwidth {
259 	/* nests inside the rq lock: */
260 	raw_spinlock_t		rt_runtime_lock;
261 	ktime_t			rt_period;
262 	u64			rt_runtime;
263 	struct hrtimer		rt_period_timer;
264 	unsigned int		rt_period_active;
265 };
266 
267 void __dl_clear_params(struct task_struct *p);
268 
269 struct dl_bandwidth {
270 	raw_spinlock_t		dl_runtime_lock;
271 	u64			dl_runtime;
272 	u64			dl_period;
273 };
274 
275 static inline int dl_bandwidth_enabled(void)
276 {
277 	return sysctl_sched_rt_runtime >= 0;
278 }
279 
280 /*
281  * To keep the bandwidth of -deadline tasks under control
282  * we need some place where:
283  *  - store the maximum -deadline bandwidth of each cpu;
284  *  - cache the fraction of bandwidth that is currently allocated in
285  *    each root domain;
286  *
287  * This is all done in the data structure below. It is similar to the
288  * one used for RT-throttling (rt_bandwidth), with the main difference
289  * that, since here we are only interested in admission control, we
290  * do not decrease any runtime while the group "executes", neither we
291  * need a timer to replenish it.
292  *
293  * With respect to SMP, bandwidth is given on a per root domain basis,
294  * meaning that:
295  *  - bw (< 100%) is the deadline bandwidth of each CPU;
296  *  - total_bw is the currently allocated bandwidth in each root domain;
297  */
298 struct dl_bw {
299 	raw_spinlock_t		lock;
300 	u64			bw;
301 	u64			total_bw;
302 };
303 
304 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
305 
306 static inline
307 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
308 {
309 	dl_b->total_bw -= tsk_bw;
310 	__dl_update(dl_b, (s32)tsk_bw / cpus);
311 }
312 
313 static inline
314 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
315 {
316 	dl_b->total_bw += tsk_bw;
317 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
318 }
319 
320 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
321 				 u64 old_bw, u64 new_bw)
322 {
323 	return dl_b->bw != -1 &&
324 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
325 }
326 
327 /*
328  * Verify the fitness of task @p to run on @cpu taking into account the
329  * CPU original capacity and the runtime/deadline ratio of the task.
330  *
331  * The function will return true if the CPU original capacity of the
332  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
333  * task and false otherwise.
334  */
335 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
336 {
337 	unsigned long cap = arch_scale_cpu_capacity(cpu);
338 
339 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
340 }
341 
342 extern void init_dl_bw(struct dl_bw *dl_b);
343 extern int  sched_dl_global_validate(void);
344 extern void sched_dl_do_global(void);
345 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
346 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
347 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
348 extern bool __checkparam_dl(const struct sched_attr *attr);
349 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
350 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
351 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
352 extern bool dl_cpu_busy(unsigned int cpu);
353 
354 #ifdef CONFIG_CGROUP_SCHED
355 
356 #include <linux/cgroup.h>
357 #include <linux/psi.h>
358 
359 struct cfs_rq;
360 struct rt_rq;
361 
362 extern struct list_head task_groups;
363 
364 struct cfs_bandwidth {
365 #ifdef CONFIG_CFS_BANDWIDTH
366 	raw_spinlock_t		lock;
367 	ktime_t			period;
368 	u64			quota;
369 	u64			runtime;
370 	u64			burst;
371 	u64			runtime_snap;
372 	s64			hierarchical_quota;
373 
374 	u8			idle;
375 	u8			period_active;
376 	u8			slack_started;
377 	struct hrtimer		period_timer;
378 	struct hrtimer		slack_timer;
379 	struct list_head	throttled_cfs_rq;
380 
381 	/* Statistics: */
382 	int			nr_periods;
383 	int			nr_throttled;
384 	int			nr_burst;
385 	u64			throttled_time;
386 	u64			burst_time;
387 #endif
388 };
389 
390 /* Task group related information */
391 struct task_group {
392 	struct cgroup_subsys_state css;
393 
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 	/* schedulable entities of this group on each CPU */
396 	struct sched_entity	**se;
397 	/* runqueue "owned" by this group on each CPU */
398 	struct cfs_rq		**cfs_rq;
399 	unsigned long		shares;
400 
401 	/* A positive value indicates that this is a SCHED_IDLE group. */
402 	int			idle;
403 
404 #ifdef	CONFIG_SMP
405 	/*
406 	 * load_avg can be heavily contended at clock tick time, so put
407 	 * it in its own cacheline separated from the fields above which
408 	 * will also be accessed at each tick.
409 	 */
410 	atomic_long_t		load_avg ____cacheline_aligned;
411 #endif
412 #endif
413 
414 #ifdef CONFIG_RT_GROUP_SCHED
415 	struct sched_rt_entity	**rt_se;
416 	struct rt_rq		**rt_rq;
417 
418 	struct rt_bandwidth	rt_bandwidth;
419 #endif
420 
421 	struct rcu_head		rcu;
422 	struct list_head	list;
423 
424 	struct task_group	*parent;
425 	struct list_head	siblings;
426 	struct list_head	children;
427 
428 #ifdef CONFIG_SCHED_AUTOGROUP
429 	struct autogroup	*autogroup;
430 #endif
431 
432 	struct cfs_bandwidth	cfs_bandwidth;
433 
434 #ifdef CONFIG_UCLAMP_TASK_GROUP
435 	/* The two decimal precision [%] value requested from user-space */
436 	unsigned int		uclamp_pct[UCLAMP_CNT];
437 	/* Clamp values requested for a task group */
438 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
439 	/* Effective clamp values used for a task group */
440 	struct uclamp_se	uclamp[UCLAMP_CNT];
441 #endif
442 
443 };
444 
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
447 
448 /*
449  * A weight of 0 or 1 can cause arithmetics problems.
450  * A weight of a cfs_rq is the sum of weights of which entities
451  * are queued on this cfs_rq, so a weight of a entity should not be
452  * too large, so as the shares value of a task group.
453  * (The default weight is 1024 - so there's no practical
454  *  limitation from this.)
455  */
456 #define MIN_SHARES		(1UL <<  1)
457 #define MAX_SHARES		(1UL << 18)
458 #endif
459 
460 typedef int (*tg_visitor)(struct task_group *, void *);
461 
462 extern int walk_tg_tree_from(struct task_group *from,
463 			     tg_visitor down, tg_visitor up, void *data);
464 
465 /*
466  * Iterate the full tree, calling @down when first entering a node and @up when
467  * leaving it for the final time.
468  *
469  * Caller must hold rcu_lock or sufficient equivalent.
470  */
471 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
472 {
473 	return walk_tg_tree_from(&root_task_group, down, up, data);
474 }
475 
476 extern int tg_nop(struct task_group *tg, void *data);
477 
478 extern void free_fair_sched_group(struct task_group *tg);
479 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
480 extern void online_fair_sched_group(struct task_group *tg);
481 extern void unregister_fair_sched_group(struct task_group *tg);
482 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
483 			struct sched_entity *se, int cpu,
484 			struct sched_entity *parent);
485 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
486 
487 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
488 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
489 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
490 
491 extern void free_rt_sched_group(struct task_group *tg);
492 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
493 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
494 		struct sched_rt_entity *rt_se, int cpu,
495 		struct sched_rt_entity *parent);
496 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
497 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
498 extern long sched_group_rt_runtime(struct task_group *tg);
499 extern long sched_group_rt_period(struct task_group *tg);
500 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
501 
502 extern struct task_group *sched_create_group(struct task_group *parent);
503 extern void sched_online_group(struct task_group *tg,
504 			       struct task_group *parent);
505 extern void sched_destroy_group(struct task_group *tg);
506 extern void sched_offline_group(struct task_group *tg);
507 
508 extern void sched_move_task(struct task_struct *tsk);
509 
510 #ifdef CONFIG_FAIR_GROUP_SCHED
511 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
512 
513 extern int sched_group_set_idle(struct task_group *tg, long idle);
514 
515 #ifdef CONFIG_SMP
516 extern void set_task_rq_fair(struct sched_entity *se,
517 			     struct cfs_rq *prev, struct cfs_rq *next);
518 #else /* !CONFIG_SMP */
519 static inline void set_task_rq_fair(struct sched_entity *se,
520 			     struct cfs_rq *prev, struct cfs_rq *next) { }
521 #endif /* CONFIG_SMP */
522 #endif /* CONFIG_FAIR_GROUP_SCHED */
523 
524 #else /* CONFIG_CGROUP_SCHED */
525 
526 struct cfs_bandwidth { };
527 
528 #endif	/* CONFIG_CGROUP_SCHED */
529 
530 /* CFS-related fields in a runqueue */
531 struct cfs_rq {
532 	struct load_weight	load;
533 	unsigned int		nr_running;
534 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
535 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
536 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
537 
538 	u64			exec_clock;
539 	u64			min_vruntime;
540 #ifdef CONFIG_SCHED_CORE
541 	unsigned int		forceidle_seq;
542 	u64			min_vruntime_fi;
543 #endif
544 
545 #ifndef CONFIG_64BIT
546 	u64			min_vruntime_copy;
547 #endif
548 
549 	struct rb_root_cached	tasks_timeline;
550 
551 	/*
552 	 * 'curr' points to currently running entity on this cfs_rq.
553 	 * It is set to NULL otherwise (i.e when none are currently running).
554 	 */
555 	struct sched_entity	*curr;
556 	struct sched_entity	*next;
557 	struct sched_entity	*last;
558 	struct sched_entity	*skip;
559 
560 #ifdef	CONFIG_SCHED_DEBUG
561 	unsigned int		nr_spread_over;
562 #endif
563 
564 #ifdef CONFIG_SMP
565 	/*
566 	 * CFS load tracking
567 	 */
568 	struct sched_avg	avg;
569 #ifndef CONFIG_64BIT
570 	u64			load_last_update_time_copy;
571 #endif
572 	struct {
573 		raw_spinlock_t	lock ____cacheline_aligned;
574 		int		nr;
575 		unsigned long	load_avg;
576 		unsigned long	util_avg;
577 		unsigned long	runnable_avg;
578 	} removed;
579 
580 #ifdef CONFIG_FAIR_GROUP_SCHED
581 	unsigned long		tg_load_avg_contrib;
582 	long			propagate;
583 	long			prop_runnable_sum;
584 
585 	/*
586 	 *   h_load = weight * f(tg)
587 	 *
588 	 * Where f(tg) is the recursive weight fraction assigned to
589 	 * this group.
590 	 */
591 	unsigned long		h_load;
592 	u64			last_h_load_update;
593 	struct sched_entity	*h_load_next;
594 #endif /* CONFIG_FAIR_GROUP_SCHED */
595 #endif /* CONFIG_SMP */
596 
597 #ifdef CONFIG_FAIR_GROUP_SCHED
598 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
599 
600 	/*
601 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
602 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
603 	 * (like users, containers etc.)
604 	 *
605 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
606 	 * This list is used during load balance.
607 	 */
608 	int			on_list;
609 	struct list_head	leaf_cfs_rq_list;
610 	struct task_group	*tg;	/* group that "owns" this runqueue */
611 
612 	/* Locally cached copy of our task_group's idle value */
613 	int			idle;
614 
615 #ifdef CONFIG_CFS_BANDWIDTH
616 	int			runtime_enabled;
617 	s64			runtime_remaining;
618 
619 	u64			throttled_clock;
620 	u64			throttled_clock_task;
621 	u64			throttled_clock_task_time;
622 	int			throttled;
623 	int			throttle_count;
624 	struct list_head	throttled_list;
625 #endif /* CONFIG_CFS_BANDWIDTH */
626 #endif /* CONFIG_FAIR_GROUP_SCHED */
627 };
628 
629 static inline int rt_bandwidth_enabled(void)
630 {
631 	return sysctl_sched_rt_runtime >= 0;
632 }
633 
634 /* RT IPI pull logic requires IRQ_WORK */
635 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
636 # define HAVE_RT_PUSH_IPI
637 #endif
638 
639 /* Real-Time classes' related field in a runqueue: */
640 struct rt_rq {
641 	struct rt_prio_array	active;
642 	unsigned int		rt_nr_running;
643 	unsigned int		rr_nr_running;
644 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
645 	struct {
646 		int		curr; /* highest queued rt task prio */
647 #ifdef CONFIG_SMP
648 		int		next; /* next highest */
649 #endif
650 	} highest_prio;
651 #endif
652 #ifdef CONFIG_SMP
653 	unsigned int		rt_nr_migratory;
654 	unsigned int		rt_nr_total;
655 	int			overloaded;
656 	struct plist_head	pushable_tasks;
657 
658 #endif /* CONFIG_SMP */
659 	int			rt_queued;
660 
661 	int			rt_throttled;
662 	u64			rt_time;
663 	u64			rt_runtime;
664 	/* Nests inside the rq lock: */
665 	raw_spinlock_t		rt_runtime_lock;
666 
667 #ifdef CONFIG_RT_GROUP_SCHED
668 	unsigned int		rt_nr_boosted;
669 
670 	struct rq		*rq;
671 	struct task_group	*tg;
672 #endif
673 };
674 
675 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
676 {
677 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
678 }
679 
680 /* Deadline class' related fields in a runqueue */
681 struct dl_rq {
682 	/* runqueue is an rbtree, ordered by deadline */
683 	struct rb_root_cached	root;
684 
685 	unsigned int		dl_nr_running;
686 
687 #ifdef CONFIG_SMP
688 	/*
689 	 * Deadline values of the currently executing and the
690 	 * earliest ready task on this rq. Caching these facilitates
691 	 * the decision whether or not a ready but not running task
692 	 * should migrate somewhere else.
693 	 */
694 	struct {
695 		u64		curr;
696 		u64		next;
697 	} earliest_dl;
698 
699 	unsigned int		dl_nr_migratory;
700 	int			overloaded;
701 
702 	/*
703 	 * Tasks on this rq that can be pushed away. They are kept in
704 	 * an rb-tree, ordered by tasks' deadlines, with caching
705 	 * of the leftmost (earliest deadline) element.
706 	 */
707 	struct rb_root_cached	pushable_dl_tasks_root;
708 #else
709 	struct dl_bw		dl_bw;
710 #endif
711 	/*
712 	 * "Active utilization" for this runqueue: increased when a
713 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
714 	 * task blocks
715 	 */
716 	u64			running_bw;
717 
718 	/*
719 	 * Utilization of the tasks "assigned" to this runqueue (including
720 	 * the tasks that are in runqueue and the tasks that executed on this
721 	 * CPU and blocked). Increased when a task moves to this runqueue, and
722 	 * decreased when the task moves away (migrates, changes scheduling
723 	 * policy, or terminates).
724 	 * This is needed to compute the "inactive utilization" for the
725 	 * runqueue (inactive utilization = this_bw - running_bw).
726 	 */
727 	u64			this_bw;
728 	u64			extra_bw;
729 
730 	/*
731 	 * Inverse of the fraction of CPU utilization that can be reclaimed
732 	 * by the GRUB algorithm.
733 	 */
734 	u64			bw_ratio;
735 };
736 
737 #ifdef CONFIG_FAIR_GROUP_SCHED
738 /* An entity is a task if it doesn't "own" a runqueue */
739 #define entity_is_task(se)	(!se->my_q)
740 
741 static inline void se_update_runnable(struct sched_entity *se)
742 {
743 	if (!entity_is_task(se))
744 		se->runnable_weight = se->my_q->h_nr_running;
745 }
746 
747 static inline long se_runnable(struct sched_entity *se)
748 {
749 	if (entity_is_task(se))
750 		return !!se->on_rq;
751 	else
752 		return se->runnable_weight;
753 }
754 
755 #else
756 #define entity_is_task(se)	1
757 
758 static inline void se_update_runnable(struct sched_entity *se) {}
759 
760 static inline long se_runnable(struct sched_entity *se)
761 {
762 	return !!se->on_rq;
763 }
764 #endif
765 
766 #ifdef CONFIG_SMP
767 /*
768  * XXX we want to get rid of these helpers and use the full load resolution.
769  */
770 static inline long se_weight(struct sched_entity *se)
771 {
772 	return scale_load_down(se->load.weight);
773 }
774 
775 
776 static inline bool sched_asym_prefer(int a, int b)
777 {
778 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
779 }
780 
781 struct perf_domain {
782 	struct em_perf_domain *em_pd;
783 	struct perf_domain *next;
784 	struct rcu_head rcu;
785 };
786 
787 /* Scheduling group status flags */
788 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
789 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
790 
791 /*
792  * We add the notion of a root-domain which will be used to define per-domain
793  * variables. Each exclusive cpuset essentially defines an island domain by
794  * fully partitioning the member CPUs from any other cpuset. Whenever a new
795  * exclusive cpuset is created, we also create and attach a new root-domain
796  * object.
797  *
798  */
799 struct root_domain {
800 	atomic_t		refcount;
801 	atomic_t		rto_count;
802 	struct rcu_head		rcu;
803 	cpumask_var_t		span;
804 	cpumask_var_t		online;
805 
806 	/*
807 	 * Indicate pullable load on at least one CPU, e.g:
808 	 * - More than one runnable task
809 	 * - Running task is misfit
810 	 */
811 	int			overload;
812 
813 	/* Indicate one or more cpus over-utilized (tipping point) */
814 	int			overutilized;
815 
816 	/*
817 	 * The bit corresponding to a CPU gets set here if such CPU has more
818 	 * than one runnable -deadline task (as it is below for RT tasks).
819 	 */
820 	cpumask_var_t		dlo_mask;
821 	atomic_t		dlo_count;
822 	struct dl_bw		dl_bw;
823 	struct cpudl		cpudl;
824 
825 	/*
826 	 * Indicate whether a root_domain's dl_bw has been checked or
827 	 * updated. It's monotonously increasing value.
828 	 *
829 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
830 	 * that u64 is 'big enough'. So that shouldn't be a concern.
831 	 */
832 	u64 visit_gen;
833 
834 #ifdef HAVE_RT_PUSH_IPI
835 	/*
836 	 * For IPI pull requests, loop across the rto_mask.
837 	 */
838 	struct irq_work		rto_push_work;
839 	raw_spinlock_t		rto_lock;
840 	/* These are only updated and read within rto_lock */
841 	int			rto_loop;
842 	int			rto_cpu;
843 	/* These atomics are updated outside of a lock */
844 	atomic_t		rto_loop_next;
845 	atomic_t		rto_loop_start;
846 #endif
847 	/*
848 	 * The "RT overload" flag: it gets set if a CPU has more than
849 	 * one runnable RT task.
850 	 */
851 	cpumask_var_t		rto_mask;
852 	struct cpupri		cpupri;
853 
854 	unsigned long		max_cpu_capacity;
855 
856 	/*
857 	 * NULL-terminated list of performance domains intersecting with the
858 	 * CPUs of the rd. Protected by RCU.
859 	 */
860 	struct perf_domain __rcu *pd;
861 };
862 
863 extern void init_defrootdomain(void);
864 extern int sched_init_domains(const struct cpumask *cpu_map);
865 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
866 extern void sched_get_rd(struct root_domain *rd);
867 extern void sched_put_rd(struct root_domain *rd);
868 
869 #ifdef HAVE_RT_PUSH_IPI
870 extern void rto_push_irq_work_func(struct irq_work *work);
871 #endif
872 #endif /* CONFIG_SMP */
873 
874 #ifdef CONFIG_UCLAMP_TASK
875 /*
876  * struct uclamp_bucket - Utilization clamp bucket
877  * @value: utilization clamp value for tasks on this clamp bucket
878  * @tasks: number of RUNNABLE tasks on this clamp bucket
879  *
880  * Keep track of how many tasks are RUNNABLE for a given utilization
881  * clamp value.
882  */
883 struct uclamp_bucket {
884 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
885 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
886 };
887 
888 /*
889  * struct uclamp_rq - rq's utilization clamp
890  * @value: currently active clamp values for a rq
891  * @bucket: utilization clamp buckets affecting a rq
892  *
893  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
894  * A clamp value is affecting a rq when there is at least one task RUNNABLE
895  * (or actually running) with that value.
896  *
897  * There are up to UCLAMP_CNT possible different clamp values, currently there
898  * are only two: minimum utilization and maximum utilization.
899  *
900  * All utilization clamping values are MAX aggregated, since:
901  * - for util_min: we want to run the CPU at least at the max of the minimum
902  *   utilization required by its currently RUNNABLE tasks.
903  * - for util_max: we want to allow the CPU to run up to the max of the
904  *   maximum utilization allowed by its currently RUNNABLE tasks.
905  *
906  * Since on each system we expect only a limited number of different
907  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
908  * the metrics required to compute all the per-rq utilization clamp values.
909  */
910 struct uclamp_rq {
911 	unsigned int value;
912 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
913 };
914 
915 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
916 #endif /* CONFIG_UCLAMP_TASK */
917 
918 /*
919  * This is the main, per-CPU runqueue data structure.
920  *
921  * Locking rule: those places that want to lock multiple runqueues
922  * (such as the load balancing or the thread migration code), lock
923  * acquire operations must be ordered by ascending &runqueue.
924  */
925 struct rq {
926 	/* runqueue lock: */
927 	raw_spinlock_t		__lock;
928 
929 	/*
930 	 * nr_running and cpu_load should be in the same cacheline because
931 	 * remote CPUs use both these fields when doing load calculation.
932 	 */
933 	unsigned int		nr_running;
934 #ifdef CONFIG_NUMA_BALANCING
935 	unsigned int		nr_numa_running;
936 	unsigned int		nr_preferred_running;
937 	unsigned int		numa_migrate_on;
938 #endif
939 #ifdef CONFIG_NO_HZ_COMMON
940 #ifdef CONFIG_SMP
941 	unsigned long		last_blocked_load_update_tick;
942 	unsigned int		has_blocked_load;
943 	call_single_data_t	nohz_csd;
944 #endif /* CONFIG_SMP */
945 	unsigned int		nohz_tick_stopped;
946 	atomic_t		nohz_flags;
947 #endif /* CONFIG_NO_HZ_COMMON */
948 
949 #ifdef CONFIG_SMP
950 	unsigned int		ttwu_pending;
951 #endif
952 	u64			nr_switches;
953 
954 #ifdef CONFIG_UCLAMP_TASK
955 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
956 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
957 	unsigned int		uclamp_flags;
958 #define UCLAMP_FLAG_IDLE 0x01
959 #endif
960 
961 	struct cfs_rq		cfs;
962 	struct rt_rq		rt;
963 	struct dl_rq		dl;
964 
965 #ifdef CONFIG_FAIR_GROUP_SCHED
966 	/* list of leaf cfs_rq on this CPU: */
967 	struct list_head	leaf_cfs_rq_list;
968 	struct list_head	*tmp_alone_branch;
969 #endif /* CONFIG_FAIR_GROUP_SCHED */
970 
971 	/*
972 	 * This is part of a global counter where only the total sum
973 	 * over all CPUs matters. A task can increase this counter on
974 	 * one CPU and if it got migrated afterwards it may decrease
975 	 * it on another CPU. Always updated under the runqueue lock:
976 	 */
977 	unsigned int		nr_uninterruptible;
978 
979 	struct task_struct __rcu	*curr;
980 	struct task_struct	*idle;
981 	struct task_struct	*stop;
982 	unsigned long		next_balance;
983 	struct mm_struct	*prev_mm;
984 
985 	unsigned int		clock_update_flags;
986 	u64			clock;
987 	/* Ensure that all clocks are in the same cache line */
988 	u64			clock_task ____cacheline_aligned;
989 	u64			clock_pelt;
990 	unsigned long		lost_idle_time;
991 
992 	atomic_t		nr_iowait;
993 
994 #ifdef CONFIG_SCHED_DEBUG
995 	u64 last_seen_need_resched_ns;
996 	int ticks_without_resched;
997 #endif
998 
999 #ifdef CONFIG_MEMBARRIER
1000 	int membarrier_state;
1001 #endif
1002 
1003 #ifdef CONFIG_SMP
1004 	struct root_domain		*rd;
1005 	struct sched_domain __rcu	*sd;
1006 
1007 	unsigned long		cpu_capacity;
1008 	unsigned long		cpu_capacity_orig;
1009 
1010 	struct callback_head	*balance_callback;
1011 
1012 	unsigned char		nohz_idle_balance;
1013 	unsigned char		idle_balance;
1014 
1015 	unsigned long		misfit_task_load;
1016 
1017 	/* For active balancing */
1018 	int			active_balance;
1019 	int			push_cpu;
1020 	struct cpu_stop_work	active_balance_work;
1021 
1022 	/* CPU of this runqueue: */
1023 	int			cpu;
1024 	int			online;
1025 
1026 	struct list_head cfs_tasks;
1027 
1028 	struct sched_avg	avg_rt;
1029 	struct sched_avg	avg_dl;
1030 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1031 	struct sched_avg	avg_irq;
1032 #endif
1033 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1034 	struct sched_avg	avg_thermal;
1035 #endif
1036 	u64			idle_stamp;
1037 	u64			avg_idle;
1038 
1039 	unsigned long		wake_stamp;
1040 	u64			wake_avg_idle;
1041 
1042 	/* This is used to determine avg_idle's max value */
1043 	u64			max_idle_balance_cost;
1044 
1045 #ifdef CONFIG_HOTPLUG_CPU
1046 	struct rcuwait		hotplug_wait;
1047 #endif
1048 #endif /* CONFIG_SMP */
1049 
1050 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1051 	u64			prev_irq_time;
1052 #endif
1053 #ifdef CONFIG_PARAVIRT
1054 	u64			prev_steal_time;
1055 #endif
1056 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1057 	u64			prev_steal_time_rq;
1058 #endif
1059 
1060 	/* calc_load related fields */
1061 	unsigned long		calc_load_update;
1062 	long			calc_load_active;
1063 
1064 #ifdef CONFIG_SCHED_HRTICK
1065 #ifdef CONFIG_SMP
1066 	call_single_data_t	hrtick_csd;
1067 #endif
1068 	struct hrtimer		hrtick_timer;
1069 	ktime_t 		hrtick_time;
1070 #endif
1071 
1072 #ifdef CONFIG_SCHEDSTATS
1073 	/* latency stats */
1074 	struct sched_info	rq_sched_info;
1075 	unsigned long long	rq_cpu_time;
1076 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1077 
1078 	/* sys_sched_yield() stats */
1079 	unsigned int		yld_count;
1080 
1081 	/* schedule() stats */
1082 	unsigned int		sched_count;
1083 	unsigned int		sched_goidle;
1084 
1085 	/* try_to_wake_up() stats */
1086 	unsigned int		ttwu_count;
1087 	unsigned int		ttwu_local;
1088 #endif
1089 
1090 #ifdef CONFIG_CPU_IDLE
1091 	/* Must be inspected within a rcu lock section */
1092 	struct cpuidle_state	*idle_state;
1093 #endif
1094 
1095 #ifdef CONFIG_SMP
1096 	unsigned int		nr_pinned;
1097 #endif
1098 	unsigned int		push_busy;
1099 	struct cpu_stop_work	push_work;
1100 
1101 #ifdef CONFIG_SCHED_CORE
1102 	/* per rq */
1103 	struct rq		*core;
1104 	struct task_struct	*core_pick;
1105 	unsigned int		core_enabled;
1106 	unsigned int		core_sched_seq;
1107 	struct rb_root		core_tree;
1108 
1109 	/* shared state -- careful with sched_core_cpu_deactivate() */
1110 	unsigned int		core_task_seq;
1111 	unsigned int		core_pick_seq;
1112 	unsigned long		core_cookie;
1113 	unsigned char		core_forceidle;
1114 	unsigned int		core_forceidle_seq;
1115 #endif
1116 };
1117 
1118 #ifdef CONFIG_FAIR_GROUP_SCHED
1119 
1120 /* CPU runqueue to which this cfs_rq is attached */
1121 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1122 {
1123 	return cfs_rq->rq;
1124 }
1125 
1126 #else
1127 
1128 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1129 {
1130 	return container_of(cfs_rq, struct rq, cfs);
1131 }
1132 #endif
1133 
1134 static inline int cpu_of(struct rq *rq)
1135 {
1136 #ifdef CONFIG_SMP
1137 	return rq->cpu;
1138 #else
1139 	return 0;
1140 #endif
1141 }
1142 
1143 #define MDF_PUSH	0x01
1144 
1145 static inline bool is_migration_disabled(struct task_struct *p)
1146 {
1147 #ifdef CONFIG_SMP
1148 	return p->migration_disabled;
1149 #else
1150 	return false;
1151 #endif
1152 }
1153 
1154 struct sched_group;
1155 #ifdef CONFIG_SCHED_CORE
1156 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1157 
1158 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1159 
1160 static inline bool sched_core_enabled(struct rq *rq)
1161 {
1162 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1163 }
1164 
1165 static inline bool sched_core_disabled(void)
1166 {
1167 	return !static_branch_unlikely(&__sched_core_enabled);
1168 }
1169 
1170 /*
1171  * Be careful with this function; not for general use. The return value isn't
1172  * stable unless you actually hold a relevant rq->__lock.
1173  */
1174 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1175 {
1176 	if (sched_core_enabled(rq))
1177 		return &rq->core->__lock;
1178 
1179 	return &rq->__lock;
1180 }
1181 
1182 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1183 {
1184 	if (rq->core_enabled)
1185 		return &rq->core->__lock;
1186 
1187 	return &rq->__lock;
1188 }
1189 
1190 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1191 
1192 /*
1193  * Helpers to check if the CPU's core cookie matches with the task's cookie
1194  * when core scheduling is enabled.
1195  * A special case is that the task's cookie always matches with CPU's core
1196  * cookie if the CPU is in an idle core.
1197  */
1198 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1199 {
1200 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1201 	if (!sched_core_enabled(rq))
1202 		return true;
1203 
1204 	return rq->core->core_cookie == p->core_cookie;
1205 }
1206 
1207 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1208 {
1209 	bool idle_core = true;
1210 	int cpu;
1211 
1212 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1213 	if (!sched_core_enabled(rq))
1214 		return true;
1215 
1216 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1217 		if (!available_idle_cpu(cpu)) {
1218 			idle_core = false;
1219 			break;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * A CPU in an idle core is always the best choice for tasks with
1225 	 * cookies.
1226 	 */
1227 	return idle_core || rq->core->core_cookie == p->core_cookie;
1228 }
1229 
1230 static inline bool sched_group_cookie_match(struct rq *rq,
1231 					    struct task_struct *p,
1232 					    struct sched_group *group)
1233 {
1234 	int cpu;
1235 
1236 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1237 	if (!sched_core_enabled(rq))
1238 		return true;
1239 
1240 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1241 		if (sched_core_cookie_match(rq, p))
1242 			return true;
1243 	}
1244 	return false;
1245 }
1246 
1247 extern void queue_core_balance(struct rq *rq);
1248 
1249 static inline bool sched_core_enqueued(struct task_struct *p)
1250 {
1251 	return !RB_EMPTY_NODE(&p->core_node);
1252 }
1253 
1254 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1255 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1256 
1257 extern void sched_core_get(void);
1258 extern void sched_core_put(void);
1259 
1260 #else /* !CONFIG_SCHED_CORE */
1261 
1262 static inline bool sched_core_enabled(struct rq *rq)
1263 {
1264 	return false;
1265 }
1266 
1267 static inline bool sched_core_disabled(void)
1268 {
1269 	return true;
1270 }
1271 
1272 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1273 {
1274 	return &rq->__lock;
1275 }
1276 
1277 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1278 {
1279 	return &rq->__lock;
1280 }
1281 
1282 static inline void queue_core_balance(struct rq *rq)
1283 {
1284 }
1285 
1286 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1287 {
1288 	return true;
1289 }
1290 
1291 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1292 {
1293 	return true;
1294 }
1295 
1296 static inline bool sched_group_cookie_match(struct rq *rq,
1297 					    struct task_struct *p,
1298 					    struct sched_group *group)
1299 {
1300 	return true;
1301 }
1302 #endif /* CONFIG_SCHED_CORE */
1303 
1304 static inline void lockdep_assert_rq_held(struct rq *rq)
1305 {
1306 	lockdep_assert_held(__rq_lockp(rq));
1307 }
1308 
1309 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1310 extern bool raw_spin_rq_trylock(struct rq *rq);
1311 extern void raw_spin_rq_unlock(struct rq *rq);
1312 
1313 static inline void raw_spin_rq_lock(struct rq *rq)
1314 {
1315 	raw_spin_rq_lock_nested(rq, 0);
1316 }
1317 
1318 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1319 {
1320 	local_irq_disable();
1321 	raw_spin_rq_lock(rq);
1322 }
1323 
1324 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1325 {
1326 	raw_spin_rq_unlock(rq);
1327 	local_irq_enable();
1328 }
1329 
1330 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1331 {
1332 	unsigned long flags;
1333 	local_irq_save(flags);
1334 	raw_spin_rq_lock(rq);
1335 	return flags;
1336 }
1337 
1338 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1339 {
1340 	raw_spin_rq_unlock(rq);
1341 	local_irq_restore(flags);
1342 }
1343 
1344 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1345 do {						\
1346 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1347 } while (0)
1348 
1349 #ifdef CONFIG_SCHED_SMT
1350 extern void __update_idle_core(struct rq *rq);
1351 
1352 static inline void update_idle_core(struct rq *rq)
1353 {
1354 	if (static_branch_unlikely(&sched_smt_present))
1355 		__update_idle_core(rq);
1356 }
1357 
1358 #else
1359 static inline void update_idle_core(struct rq *rq) { }
1360 #endif
1361 
1362 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1363 
1364 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1365 #define this_rq()		this_cpu_ptr(&runqueues)
1366 #define task_rq(p)		cpu_rq(task_cpu(p))
1367 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1368 #define raw_rq()		raw_cpu_ptr(&runqueues)
1369 
1370 #ifdef CONFIG_FAIR_GROUP_SCHED
1371 static inline struct task_struct *task_of(struct sched_entity *se)
1372 {
1373 	SCHED_WARN_ON(!entity_is_task(se));
1374 	return container_of(se, struct task_struct, se);
1375 }
1376 
1377 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1378 {
1379 	return p->se.cfs_rq;
1380 }
1381 
1382 /* runqueue on which this entity is (to be) queued */
1383 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1384 {
1385 	return se->cfs_rq;
1386 }
1387 
1388 /* runqueue "owned" by this group */
1389 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1390 {
1391 	return grp->my_q;
1392 }
1393 
1394 #else
1395 
1396 static inline struct task_struct *task_of(struct sched_entity *se)
1397 {
1398 	return container_of(se, struct task_struct, se);
1399 }
1400 
1401 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1402 {
1403 	return &task_rq(p)->cfs;
1404 }
1405 
1406 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1407 {
1408 	struct task_struct *p = task_of(se);
1409 	struct rq *rq = task_rq(p);
1410 
1411 	return &rq->cfs;
1412 }
1413 
1414 /* runqueue "owned" by this group */
1415 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1416 {
1417 	return NULL;
1418 }
1419 #endif
1420 
1421 extern void update_rq_clock(struct rq *rq);
1422 
1423 /*
1424  * rq::clock_update_flags bits
1425  *
1426  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1427  *  call to __schedule(). This is an optimisation to avoid
1428  *  neighbouring rq clock updates.
1429  *
1430  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1431  *  in effect and calls to update_rq_clock() are being ignored.
1432  *
1433  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1434  *  made to update_rq_clock() since the last time rq::lock was pinned.
1435  *
1436  * If inside of __schedule(), clock_update_flags will have been
1437  * shifted left (a left shift is a cheap operation for the fast path
1438  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1439  *
1440  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1441  *
1442  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1443  * one position though, because the next rq_unpin_lock() will shift it
1444  * back.
1445  */
1446 #define RQCF_REQ_SKIP		0x01
1447 #define RQCF_ACT_SKIP		0x02
1448 #define RQCF_UPDATED		0x04
1449 
1450 static inline void assert_clock_updated(struct rq *rq)
1451 {
1452 	/*
1453 	 * The only reason for not seeing a clock update since the
1454 	 * last rq_pin_lock() is if we're currently skipping updates.
1455 	 */
1456 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1457 }
1458 
1459 static inline u64 rq_clock(struct rq *rq)
1460 {
1461 	lockdep_assert_rq_held(rq);
1462 	assert_clock_updated(rq);
1463 
1464 	return rq->clock;
1465 }
1466 
1467 static inline u64 rq_clock_task(struct rq *rq)
1468 {
1469 	lockdep_assert_rq_held(rq);
1470 	assert_clock_updated(rq);
1471 
1472 	return rq->clock_task;
1473 }
1474 
1475 /**
1476  * By default the decay is the default pelt decay period.
1477  * The decay shift can change the decay period in
1478  * multiples of 32.
1479  *  Decay shift		Decay period(ms)
1480  *	0			32
1481  *	1			64
1482  *	2			128
1483  *	3			256
1484  *	4			512
1485  */
1486 extern int sched_thermal_decay_shift;
1487 
1488 static inline u64 rq_clock_thermal(struct rq *rq)
1489 {
1490 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1491 }
1492 
1493 static inline void rq_clock_skip_update(struct rq *rq)
1494 {
1495 	lockdep_assert_rq_held(rq);
1496 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1497 }
1498 
1499 /*
1500  * See rt task throttling, which is the only time a skip
1501  * request is canceled.
1502  */
1503 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1504 {
1505 	lockdep_assert_rq_held(rq);
1506 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1507 }
1508 
1509 struct rq_flags {
1510 	unsigned long flags;
1511 	struct pin_cookie cookie;
1512 #ifdef CONFIG_SCHED_DEBUG
1513 	/*
1514 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1515 	 * current pin context is stashed here in case it needs to be
1516 	 * restored in rq_repin_lock().
1517 	 */
1518 	unsigned int clock_update_flags;
1519 #endif
1520 };
1521 
1522 extern struct callback_head balance_push_callback;
1523 
1524 /*
1525  * Lockdep annotation that avoids accidental unlocks; it's like a
1526  * sticky/continuous lockdep_assert_held().
1527  *
1528  * This avoids code that has access to 'struct rq *rq' (basically everything in
1529  * the scheduler) from accidentally unlocking the rq if they do not also have a
1530  * copy of the (on-stack) 'struct rq_flags rf'.
1531  *
1532  * Also see Documentation/locking/lockdep-design.rst.
1533  */
1534 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1535 {
1536 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1537 
1538 #ifdef CONFIG_SCHED_DEBUG
1539 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1540 	rf->clock_update_flags = 0;
1541 #ifdef CONFIG_SMP
1542 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1543 #endif
1544 #endif
1545 }
1546 
1547 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1548 {
1549 #ifdef CONFIG_SCHED_DEBUG
1550 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1551 		rf->clock_update_flags = RQCF_UPDATED;
1552 #endif
1553 
1554 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1555 }
1556 
1557 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1558 {
1559 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1560 
1561 #ifdef CONFIG_SCHED_DEBUG
1562 	/*
1563 	 * Restore the value we stashed in @rf for this pin context.
1564 	 */
1565 	rq->clock_update_flags |= rf->clock_update_flags;
1566 #endif
1567 }
1568 
1569 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1570 	__acquires(rq->lock);
1571 
1572 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1573 	__acquires(p->pi_lock)
1574 	__acquires(rq->lock);
1575 
1576 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1577 	__releases(rq->lock)
1578 {
1579 	rq_unpin_lock(rq, rf);
1580 	raw_spin_rq_unlock(rq);
1581 }
1582 
1583 static inline void
1584 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1585 	__releases(rq->lock)
1586 	__releases(p->pi_lock)
1587 {
1588 	rq_unpin_lock(rq, rf);
1589 	raw_spin_rq_unlock(rq);
1590 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1591 }
1592 
1593 static inline void
1594 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1595 	__acquires(rq->lock)
1596 {
1597 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1598 	rq_pin_lock(rq, rf);
1599 }
1600 
1601 static inline void
1602 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1603 	__acquires(rq->lock)
1604 {
1605 	raw_spin_rq_lock_irq(rq);
1606 	rq_pin_lock(rq, rf);
1607 }
1608 
1609 static inline void
1610 rq_lock(struct rq *rq, struct rq_flags *rf)
1611 	__acquires(rq->lock)
1612 {
1613 	raw_spin_rq_lock(rq);
1614 	rq_pin_lock(rq, rf);
1615 }
1616 
1617 static inline void
1618 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1619 	__releases(rq->lock)
1620 {
1621 	rq_unpin_lock(rq, rf);
1622 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1623 }
1624 
1625 static inline void
1626 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1627 	__releases(rq->lock)
1628 {
1629 	rq_unpin_lock(rq, rf);
1630 	raw_spin_rq_unlock_irq(rq);
1631 }
1632 
1633 static inline void
1634 rq_unlock(struct rq *rq, struct rq_flags *rf)
1635 	__releases(rq->lock)
1636 {
1637 	rq_unpin_lock(rq, rf);
1638 	raw_spin_rq_unlock(rq);
1639 }
1640 
1641 static inline struct rq *
1642 this_rq_lock_irq(struct rq_flags *rf)
1643 	__acquires(rq->lock)
1644 {
1645 	struct rq *rq;
1646 
1647 	local_irq_disable();
1648 	rq = this_rq();
1649 	rq_lock(rq, rf);
1650 	return rq;
1651 }
1652 
1653 #ifdef CONFIG_NUMA
1654 enum numa_topology_type {
1655 	NUMA_DIRECT,
1656 	NUMA_GLUELESS_MESH,
1657 	NUMA_BACKPLANE,
1658 };
1659 extern enum numa_topology_type sched_numa_topology_type;
1660 extern int sched_max_numa_distance;
1661 extern bool find_numa_distance(int distance);
1662 extern void sched_init_numa(void);
1663 extern void sched_domains_numa_masks_set(unsigned int cpu);
1664 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1665 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1666 #else
1667 static inline void sched_init_numa(void) { }
1668 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1669 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1670 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1671 {
1672 	return nr_cpu_ids;
1673 }
1674 #endif
1675 
1676 #ifdef CONFIG_NUMA_BALANCING
1677 /* The regions in numa_faults array from task_struct */
1678 enum numa_faults_stats {
1679 	NUMA_MEM = 0,
1680 	NUMA_CPU,
1681 	NUMA_MEMBUF,
1682 	NUMA_CPUBUF
1683 };
1684 extern void sched_setnuma(struct task_struct *p, int node);
1685 extern int migrate_task_to(struct task_struct *p, int cpu);
1686 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1687 			int cpu, int scpu);
1688 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1689 #else
1690 static inline void
1691 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1692 {
1693 }
1694 #endif /* CONFIG_NUMA_BALANCING */
1695 
1696 #ifdef CONFIG_SMP
1697 
1698 static inline void
1699 queue_balance_callback(struct rq *rq,
1700 		       struct callback_head *head,
1701 		       void (*func)(struct rq *rq))
1702 {
1703 	lockdep_assert_rq_held(rq);
1704 
1705 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1706 		return;
1707 
1708 	head->func = (void (*)(struct callback_head *))func;
1709 	head->next = rq->balance_callback;
1710 	rq->balance_callback = head;
1711 }
1712 
1713 #define rcu_dereference_check_sched_domain(p) \
1714 	rcu_dereference_check((p), \
1715 			      lockdep_is_held(&sched_domains_mutex))
1716 
1717 /*
1718  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1719  * See destroy_sched_domains: call_rcu for details.
1720  *
1721  * The domain tree of any CPU may only be accessed from within
1722  * preempt-disabled sections.
1723  */
1724 #define for_each_domain(cpu, __sd) \
1725 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1726 			__sd; __sd = __sd->parent)
1727 
1728 /**
1729  * highest_flag_domain - Return highest sched_domain containing flag.
1730  * @cpu:	The CPU whose highest level of sched domain is to
1731  *		be returned.
1732  * @flag:	The flag to check for the highest sched_domain
1733  *		for the given CPU.
1734  *
1735  * Returns the highest sched_domain of a CPU which contains the given flag.
1736  */
1737 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1738 {
1739 	struct sched_domain *sd, *hsd = NULL;
1740 
1741 	for_each_domain(cpu, sd) {
1742 		if (!(sd->flags & flag))
1743 			break;
1744 		hsd = sd;
1745 	}
1746 
1747 	return hsd;
1748 }
1749 
1750 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1751 {
1752 	struct sched_domain *sd;
1753 
1754 	for_each_domain(cpu, sd) {
1755 		if (sd->flags & flag)
1756 			break;
1757 	}
1758 
1759 	return sd;
1760 }
1761 
1762 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1763 DECLARE_PER_CPU(int, sd_llc_size);
1764 DECLARE_PER_CPU(int, sd_llc_id);
1765 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1766 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1767 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1768 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1769 extern struct static_key_false sched_asym_cpucapacity;
1770 
1771 struct sched_group_capacity {
1772 	atomic_t		ref;
1773 	/*
1774 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1775 	 * for a single CPU.
1776 	 */
1777 	unsigned long		capacity;
1778 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1779 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1780 	unsigned long		next_update;
1781 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1782 
1783 #ifdef CONFIG_SCHED_DEBUG
1784 	int			id;
1785 #endif
1786 
1787 	unsigned long		cpumask[];		/* Balance mask */
1788 };
1789 
1790 struct sched_group {
1791 	struct sched_group	*next;			/* Must be a circular list */
1792 	atomic_t		ref;
1793 
1794 	unsigned int		group_weight;
1795 	struct sched_group_capacity *sgc;
1796 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1797 	int			flags;
1798 
1799 	/*
1800 	 * The CPUs this group covers.
1801 	 *
1802 	 * NOTE: this field is variable length. (Allocated dynamically
1803 	 * by attaching extra space to the end of the structure,
1804 	 * depending on how many CPUs the kernel has booted up with)
1805 	 */
1806 	unsigned long		cpumask[];
1807 };
1808 
1809 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1810 {
1811 	return to_cpumask(sg->cpumask);
1812 }
1813 
1814 /*
1815  * See build_balance_mask().
1816  */
1817 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1818 {
1819 	return to_cpumask(sg->sgc->cpumask);
1820 }
1821 
1822 /**
1823  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1824  * @group: The group whose first CPU is to be returned.
1825  */
1826 static inline unsigned int group_first_cpu(struct sched_group *group)
1827 {
1828 	return cpumask_first(sched_group_span(group));
1829 }
1830 
1831 extern int group_balance_cpu(struct sched_group *sg);
1832 
1833 #ifdef CONFIG_SCHED_DEBUG
1834 void update_sched_domain_debugfs(void);
1835 void dirty_sched_domain_sysctl(int cpu);
1836 #else
1837 static inline void update_sched_domain_debugfs(void)
1838 {
1839 }
1840 static inline void dirty_sched_domain_sysctl(int cpu)
1841 {
1842 }
1843 #endif
1844 
1845 extern int sched_update_scaling(void);
1846 
1847 extern void flush_smp_call_function_from_idle(void);
1848 
1849 #else /* !CONFIG_SMP: */
1850 static inline void flush_smp_call_function_from_idle(void) { }
1851 #endif
1852 
1853 #include "stats.h"
1854 #include "autogroup.h"
1855 
1856 #ifdef CONFIG_CGROUP_SCHED
1857 
1858 /*
1859  * Return the group to which this tasks belongs.
1860  *
1861  * We cannot use task_css() and friends because the cgroup subsystem
1862  * changes that value before the cgroup_subsys::attach() method is called,
1863  * therefore we cannot pin it and might observe the wrong value.
1864  *
1865  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1866  * core changes this before calling sched_move_task().
1867  *
1868  * Instead we use a 'copy' which is updated from sched_move_task() while
1869  * holding both task_struct::pi_lock and rq::lock.
1870  */
1871 static inline struct task_group *task_group(struct task_struct *p)
1872 {
1873 	return p->sched_task_group;
1874 }
1875 
1876 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1877 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1878 {
1879 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1880 	struct task_group *tg = task_group(p);
1881 #endif
1882 
1883 #ifdef CONFIG_FAIR_GROUP_SCHED
1884 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1885 	p->se.cfs_rq = tg->cfs_rq[cpu];
1886 	p->se.parent = tg->se[cpu];
1887 #endif
1888 
1889 #ifdef CONFIG_RT_GROUP_SCHED
1890 	p->rt.rt_rq  = tg->rt_rq[cpu];
1891 	p->rt.parent = tg->rt_se[cpu];
1892 #endif
1893 }
1894 
1895 #else /* CONFIG_CGROUP_SCHED */
1896 
1897 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1898 static inline struct task_group *task_group(struct task_struct *p)
1899 {
1900 	return NULL;
1901 }
1902 
1903 #endif /* CONFIG_CGROUP_SCHED */
1904 
1905 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1906 {
1907 	set_task_rq(p, cpu);
1908 #ifdef CONFIG_SMP
1909 	/*
1910 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1911 	 * successfully executed on another CPU. We must ensure that updates of
1912 	 * per-task data have been completed by this moment.
1913 	 */
1914 	smp_wmb();
1915 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1916 	p->wake_cpu = cpu;
1917 #endif
1918 }
1919 
1920 /*
1921  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1922  */
1923 #ifdef CONFIG_SCHED_DEBUG
1924 # include <linux/static_key.h>
1925 # define const_debug __read_mostly
1926 #else
1927 # define const_debug const
1928 #endif
1929 
1930 #define SCHED_FEAT(name, enabled)	\
1931 	__SCHED_FEAT_##name ,
1932 
1933 enum {
1934 #include "features.h"
1935 	__SCHED_FEAT_NR,
1936 };
1937 
1938 #undef SCHED_FEAT
1939 
1940 #ifdef CONFIG_SCHED_DEBUG
1941 
1942 /*
1943  * To support run-time toggling of sched features, all the translation units
1944  * (but core.c) reference the sysctl_sched_features defined in core.c.
1945  */
1946 extern const_debug unsigned int sysctl_sched_features;
1947 
1948 #ifdef CONFIG_JUMP_LABEL
1949 #define SCHED_FEAT(name, enabled)					\
1950 static __always_inline bool static_branch_##name(struct static_key *key) \
1951 {									\
1952 	return static_key_##enabled(key);				\
1953 }
1954 
1955 #include "features.h"
1956 #undef SCHED_FEAT
1957 
1958 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1959 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1960 
1961 #else /* !CONFIG_JUMP_LABEL */
1962 
1963 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1964 
1965 #endif /* CONFIG_JUMP_LABEL */
1966 
1967 #else /* !SCHED_DEBUG */
1968 
1969 /*
1970  * Each translation unit has its own copy of sysctl_sched_features to allow
1971  * constants propagation at compile time and compiler optimization based on
1972  * features default.
1973  */
1974 #define SCHED_FEAT(name, enabled)	\
1975 	(1UL << __SCHED_FEAT_##name) * enabled |
1976 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1977 #include "features.h"
1978 	0;
1979 #undef SCHED_FEAT
1980 
1981 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1982 
1983 #endif /* SCHED_DEBUG */
1984 
1985 extern struct static_key_false sched_numa_balancing;
1986 extern struct static_key_false sched_schedstats;
1987 
1988 static inline u64 global_rt_period(void)
1989 {
1990 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1991 }
1992 
1993 static inline u64 global_rt_runtime(void)
1994 {
1995 	if (sysctl_sched_rt_runtime < 0)
1996 		return RUNTIME_INF;
1997 
1998 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1999 }
2000 
2001 static inline int task_current(struct rq *rq, struct task_struct *p)
2002 {
2003 	return rq->curr == p;
2004 }
2005 
2006 static inline int task_running(struct rq *rq, struct task_struct *p)
2007 {
2008 #ifdef CONFIG_SMP
2009 	return p->on_cpu;
2010 #else
2011 	return task_current(rq, p);
2012 #endif
2013 }
2014 
2015 static inline int task_on_rq_queued(struct task_struct *p)
2016 {
2017 	return p->on_rq == TASK_ON_RQ_QUEUED;
2018 }
2019 
2020 static inline int task_on_rq_migrating(struct task_struct *p)
2021 {
2022 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2023 }
2024 
2025 /* Wake flags. The first three directly map to some SD flag value */
2026 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2027 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2028 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2029 
2030 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2031 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2032 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2033 
2034 #ifdef CONFIG_SMP
2035 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2036 static_assert(WF_FORK == SD_BALANCE_FORK);
2037 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2038 #endif
2039 
2040 /*
2041  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2042  * of tasks with abnormal "nice" values across CPUs the contribution that
2043  * each task makes to its run queue's load is weighted according to its
2044  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2045  * scaled version of the new time slice allocation that they receive on time
2046  * slice expiry etc.
2047  */
2048 
2049 #define WEIGHT_IDLEPRIO		3
2050 #define WMULT_IDLEPRIO		1431655765
2051 
2052 extern const int		sched_prio_to_weight[40];
2053 extern const u32		sched_prio_to_wmult[40];
2054 
2055 /*
2056  * {de,en}queue flags:
2057  *
2058  * DEQUEUE_SLEEP  - task is no longer runnable
2059  * ENQUEUE_WAKEUP - task just became runnable
2060  *
2061  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2062  *                are in a known state which allows modification. Such pairs
2063  *                should preserve as much state as possible.
2064  *
2065  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2066  *        in the runqueue.
2067  *
2068  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2069  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2070  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2071  *
2072  */
2073 
2074 #define DEQUEUE_SLEEP		0x01
2075 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2076 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2077 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2078 
2079 #define ENQUEUE_WAKEUP		0x01
2080 #define ENQUEUE_RESTORE		0x02
2081 #define ENQUEUE_MOVE		0x04
2082 #define ENQUEUE_NOCLOCK		0x08
2083 
2084 #define ENQUEUE_HEAD		0x10
2085 #define ENQUEUE_REPLENISH	0x20
2086 #ifdef CONFIG_SMP
2087 #define ENQUEUE_MIGRATED	0x40
2088 #else
2089 #define ENQUEUE_MIGRATED	0x00
2090 #endif
2091 
2092 #define RETRY_TASK		((void *)-1UL)
2093 
2094 struct sched_class {
2095 
2096 #ifdef CONFIG_UCLAMP_TASK
2097 	int uclamp_enabled;
2098 #endif
2099 
2100 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2101 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2102 	void (*yield_task)   (struct rq *rq);
2103 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2104 
2105 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2106 
2107 	struct task_struct *(*pick_next_task)(struct rq *rq);
2108 
2109 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2110 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2111 
2112 #ifdef CONFIG_SMP
2113 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2114 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2115 
2116 	struct task_struct * (*pick_task)(struct rq *rq);
2117 
2118 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2119 
2120 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2121 
2122 	void (*set_cpus_allowed)(struct task_struct *p,
2123 				 const struct cpumask *newmask,
2124 				 u32 flags);
2125 
2126 	void (*rq_online)(struct rq *rq);
2127 	void (*rq_offline)(struct rq *rq);
2128 
2129 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2130 #endif
2131 
2132 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2133 	void (*task_fork)(struct task_struct *p);
2134 	void (*task_dead)(struct task_struct *p);
2135 
2136 	/*
2137 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2138 	 * cannot assume the switched_from/switched_to pair is serialized by
2139 	 * rq->lock. They are however serialized by p->pi_lock.
2140 	 */
2141 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2142 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2143 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2144 			      int oldprio);
2145 
2146 	unsigned int (*get_rr_interval)(struct rq *rq,
2147 					struct task_struct *task);
2148 
2149 	void (*update_curr)(struct rq *rq);
2150 
2151 #define TASK_SET_GROUP		0
2152 #define TASK_MOVE_GROUP		1
2153 
2154 #ifdef CONFIG_FAIR_GROUP_SCHED
2155 	void (*task_change_group)(struct task_struct *p, int type);
2156 #endif
2157 };
2158 
2159 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2160 {
2161 	WARN_ON_ONCE(rq->curr != prev);
2162 	prev->sched_class->put_prev_task(rq, prev);
2163 }
2164 
2165 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2166 {
2167 	next->sched_class->set_next_task(rq, next, false);
2168 }
2169 
2170 
2171 /*
2172  * Helper to define a sched_class instance; each one is placed in a separate
2173  * section which is ordered by the linker script:
2174  *
2175  *   include/asm-generic/vmlinux.lds.h
2176  *
2177  * Also enforce alignment on the instance, not the type, to guarantee layout.
2178  */
2179 #define DEFINE_SCHED_CLASS(name) \
2180 const struct sched_class name##_sched_class \
2181 	__aligned(__alignof__(struct sched_class)) \
2182 	__section("__" #name "_sched_class")
2183 
2184 /* Defined in include/asm-generic/vmlinux.lds.h */
2185 extern struct sched_class __begin_sched_classes[];
2186 extern struct sched_class __end_sched_classes[];
2187 
2188 #define sched_class_highest (__end_sched_classes - 1)
2189 #define sched_class_lowest  (__begin_sched_classes - 1)
2190 
2191 #define for_class_range(class, _from, _to) \
2192 	for (class = (_from); class != (_to); class--)
2193 
2194 #define for_each_class(class) \
2195 	for_class_range(class, sched_class_highest, sched_class_lowest)
2196 
2197 extern const struct sched_class stop_sched_class;
2198 extern const struct sched_class dl_sched_class;
2199 extern const struct sched_class rt_sched_class;
2200 extern const struct sched_class fair_sched_class;
2201 extern const struct sched_class idle_sched_class;
2202 
2203 static inline bool sched_stop_runnable(struct rq *rq)
2204 {
2205 	return rq->stop && task_on_rq_queued(rq->stop);
2206 }
2207 
2208 static inline bool sched_dl_runnable(struct rq *rq)
2209 {
2210 	return rq->dl.dl_nr_running > 0;
2211 }
2212 
2213 static inline bool sched_rt_runnable(struct rq *rq)
2214 {
2215 	return rq->rt.rt_queued > 0;
2216 }
2217 
2218 static inline bool sched_fair_runnable(struct rq *rq)
2219 {
2220 	return rq->cfs.nr_running > 0;
2221 }
2222 
2223 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2224 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2225 
2226 #define SCA_CHECK		0x01
2227 #define SCA_MIGRATE_DISABLE	0x02
2228 #define SCA_MIGRATE_ENABLE	0x04
2229 #define SCA_USER		0x08
2230 
2231 #ifdef CONFIG_SMP
2232 
2233 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2234 
2235 extern void trigger_load_balance(struct rq *rq);
2236 
2237 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2238 
2239 static inline struct task_struct *get_push_task(struct rq *rq)
2240 {
2241 	struct task_struct *p = rq->curr;
2242 
2243 	lockdep_assert_rq_held(rq);
2244 
2245 	if (rq->push_busy)
2246 		return NULL;
2247 
2248 	if (p->nr_cpus_allowed == 1)
2249 		return NULL;
2250 
2251 	if (p->migration_disabled)
2252 		return NULL;
2253 
2254 	rq->push_busy = true;
2255 	return get_task_struct(p);
2256 }
2257 
2258 extern int push_cpu_stop(void *arg);
2259 
2260 #endif
2261 
2262 #ifdef CONFIG_CPU_IDLE
2263 static inline void idle_set_state(struct rq *rq,
2264 				  struct cpuidle_state *idle_state)
2265 {
2266 	rq->idle_state = idle_state;
2267 }
2268 
2269 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2270 {
2271 	SCHED_WARN_ON(!rcu_read_lock_held());
2272 
2273 	return rq->idle_state;
2274 }
2275 #else
2276 static inline void idle_set_state(struct rq *rq,
2277 				  struct cpuidle_state *idle_state)
2278 {
2279 }
2280 
2281 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2282 {
2283 	return NULL;
2284 }
2285 #endif
2286 
2287 extern void schedule_idle(void);
2288 
2289 extern void sysrq_sched_debug_show(void);
2290 extern void sched_init_granularity(void);
2291 extern void update_max_interval(void);
2292 
2293 extern void init_sched_dl_class(void);
2294 extern void init_sched_rt_class(void);
2295 extern void init_sched_fair_class(void);
2296 
2297 extern void reweight_task(struct task_struct *p, int prio);
2298 
2299 extern void resched_curr(struct rq *rq);
2300 extern void resched_cpu(int cpu);
2301 
2302 extern struct rt_bandwidth def_rt_bandwidth;
2303 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2304 
2305 extern struct dl_bandwidth def_dl_bandwidth;
2306 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2307 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2308 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2309 
2310 #define BW_SHIFT		20
2311 #define BW_UNIT			(1 << BW_SHIFT)
2312 #define RATIO_SHIFT		8
2313 #define MAX_BW_BITS		(64 - BW_SHIFT)
2314 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2315 unsigned long to_ratio(u64 period, u64 runtime);
2316 
2317 extern void init_entity_runnable_average(struct sched_entity *se);
2318 extern void post_init_entity_util_avg(struct task_struct *p);
2319 
2320 #ifdef CONFIG_NO_HZ_FULL
2321 extern bool sched_can_stop_tick(struct rq *rq);
2322 extern int __init sched_tick_offload_init(void);
2323 
2324 /*
2325  * Tick may be needed by tasks in the runqueue depending on their policy and
2326  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2327  * nohz mode if necessary.
2328  */
2329 static inline void sched_update_tick_dependency(struct rq *rq)
2330 {
2331 	int cpu = cpu_of(rq);
2332 
2333 	if (!tick_nohz_full_cpu(cpu))
2334 		return;
2335 
2336 	if (sched_can_stop_tick(rq))
2337 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2338 	else
2339 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2340 }
2341 #else
2342 static inline int sched_tick_offload_init(void) { return 0; }
2343 static inline void sched_update_tick_dependency(struct rq *rq) { }
2344 #endif
2345 
2346 static inline void add_nr_running(struct rq *rq, unsigned count)
2347 {
2348 	unsigned prev_nr = rq->nr_running;
2349 
2350 	rq->nr_running = prev_nr + count;
2351 	if (trace_sched_update_nr_running_tp_enabled()) {
2352 		call_trace_sched_update_nr_running(rq, count);
2353 	}
2354 
2355 #ifdef CONFIG_SMP
2356 	if (prev_nr < 2 && rq->nr_running >= 2) {
2357 		if (!READ_ONCE(rq->rd->overload))
2358 			WRITE_ONCE(rq->rd->overload, 1);
2359 	}
2360 #endif
2361 
2362 	sched_update_tick_dependency(rq);
2363 }
2364 
2365 static inline void sub_nr_running(struct rq *rq, unsigned count)
2366 {
2367 	rq->nr_running -= count;
2368 	if (trace_sched_update_nr_running_tp_enabled()) {
2369 		call_trace_sched_update_nr_running(rq, -count);
2370 	}
2371 
2372 	/* Check if we still need preemption */
2373 	sched_update_tick_dependency(rq);
2374 }
2375 
2376 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2377 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2378 
2379 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2380 
2381 extern const_debug unsigned int sysctl_sched_nr_migrate;
2382 extern const_debug unsigned int sysctl_sched_migration_cost;
2383 
2384 #ifdef CONFIG_SCHED_DEBUG
2385 extern unsigned int sysctl_sched_latency;
2386 extern unsigned int sysctl_sched_min_granularity;
2387 extern unsigned int sysctl_sched_idle_min_granularity;
2388 extern unsigned int sysctl_sched_wakeup_granularity;
2389 extern int sysctl_resched_latency_warn_ms;
2390 extern int sysctl_resched_latency_warn_once;
2391 
2392 extern unsigned int sysctl_sched_tunable_scaling;
2393 
2394 extern unsigned int sysctl_numa_balancing_scan_delay;
2395 extern unsigned int sysctl_numa_balancing_scan_period_min;
2396 extern unsigned int sysctl_numa_balancing_scan_period_max;
2397 extern unsigned int sysctl_numa_balancing_scan_size;
2398 #endif
2399 
2400 #ifdef CONFIG_SCHED_HRTICK
2401 
2402 /*
2403  * Use hrtick when:
2404  *  - enabled by features
2405  *  - hrtimer is actually high res
2406  */
2407 static inline int hrtick_enabled(struct rq *rq)
2408 {
2409 	if (!cpu_active(cpu_of(rq)))
2410 		return 0;
2411 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2412 }
2413 
2414 static inline int hrtick_enabled_fair(struct rq *rq)
2415 {
2416 	if (!sched_feat(HRTICK))
2417 		return 0;
2418 	return hrtick_enabled(rq);
2419 }
2420 
2421 static inline int hrtick_enabled_dl(struct rq *rq)
2422 {
2423 	if (!sched_feat(HRTICK_DL))
2424 		return 0;
2425 	return hrtick_enabled(rq);
2426 }
2427 
2428 void hrtick_start(struct rq *rq, u64 delay);
2429 
2430 #else
2431 
2432 static inline int hrtick_enabled_fair(struct rq *rq)
2433 {
2434 	return 0;
2435 }
2436 
2437 static inline int hrtick_enabled_dl(struct rq *rq)
2438 {
2439 	return 0;
2440 }
2441 
2442 static inline int hrtick_enabled(struct rq *rq)
2443 {
2444 	return 0;
2445 }
2446 
2447 #endif /* CONFIG_SCHED_HRTICK */
2448 
2449 #ifndef arch_scale_freq_tick
2450 static __always_inline
2451 void arch_scale_freq_tick(void)
2452 {
2453 }
2454 #endif
2455 
2456 #ifndef arch_scale_freq_capacity
2457 /**
2458  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2459  * @cpu: the CPU in question.
2460  *
2461  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2462  *
2463  *     f_curr
2464  *     ------ * SCHED_CAPACITY_SCALE
2465  *     f_max
2466  */
2467 static __always_inline
2468 unsigned long arch_scale_freq_capacity(int cpu)
2469 {
2470 	return SCHED_CAPACITY_SCALE;
2471 }
2472 #endif
2473 
2474 
2475 #ifdef CONFIG_SMP
2476 
2477 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2478 {
2479 #ifdef CONFIG_SCHED_CORE
2480 	/*
2481 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2482 	 * order by core-id first and cpu-id second.
2483 	 *
2484 	 * Notably:
2485 	 *
2486 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2487 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2488 	 *
2489 	 * when only cpu-id is considered.
2490 	 */
2491 	if (rq1->core->cpu < rq2->core->cpu)
2492 		return true;
2493 	if (rq1->core->cpu > rq2->core->cpu)
2494 		return false;
2495 
2496 	/*
2497 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2498 	 */
2499 #endif
2500 	return rq1->cpu < rq2->cpu;
2501 }
2502 
2503 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2504 
2505 #ifdef CONFIG_PREEMPTION
2506 
2507 /*
2508  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2509  * way at the expense of forcing extra atomic operations in all
2510  * invocations.  This assures that the double_lock is acquired using the
2511  * same underlying policy as the spinlock_t on this architecture, which
2512  * reduces latency compared to the unfair variant below.  However, it
2513  * also adds more overhead and therefore may reduce throughput.
2514  */
2515 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2516 	__releases(this_rq->lock)
2517 	__acquires(busiest->lock)
2518 	__acquires(this_rq->lock)
2519 {
2520 	raw_spin_rq_unlock(this_rq);
2521 	double_rq_lock(this_rq, busiest);
2522 
2523 	return 1;
2524 }
2525 
2526 #else
2527 /*
2528  * Unfair double_lock_balance: Optimizes throughput at the expense of
2529  * latency by eliminating extra atomic operations when the locks are
2530  * already in proper order on entry.  This favors lower CPU-ids and will
2531  * grant the double lock to lower CPUs over higher ids under contention,
2532  * regardless of entry order into the function.
2533  */
2534 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2535 	__releases(this_rq->lock)
2536 	__acquires(busiest->lock)
2537 	__acquires(this_rq->lock)
2538 {
2539 	if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2540 		return 0;
2541 
2542 	if (likely(raw_spin_rq_trylock(busiest)))
2543 		return 0;
2544 
2545 	if (rq_order_less(this_rq, busiest)) {
2546 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2547 		return 0;
2548 	}
2549 
2550 	raw_spin_rq_unlock(this_rq);
2551 	double_rq_lock(this_rq, busiest);
2552 
2553 	return 1;
2554 }
2555 
2556 #endif /* CONFIG_PREEMPTION */
2557 
2558 /*
2559  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2560  */
2561 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2562 {
2563 	lockdep_assert_irqs_disabled();
2564 
2565 	return _double_lock_balance(this_rq, busiest);
2566 }
2567 
2568 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2569 	__releases(busiest->lock)
2570 {
2571 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2572 		raw_spin_rq_unlock(busiest);
2573 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2574 }
2575 
2576 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2577 {
2578 	if (l1 > l2)
2579 		swap(l1, l2);
2580 
2581 	spin_lock(l1);
2582 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2583 }
2584 
2585 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2586 {
2587 	if (l1 > l2)
2588 		swap(l1, l2);
2589 
2590 	spin_lock_irq(l1);
2591 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2592 }
2593 
2594 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2595 {
2596 	if (l1 > l2)
2597 		swap(l1, l2);
2598 
2599 	raw_spin_lock(l1);
2600 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2601 }
2602 
2603 /*
2604  * double_rq_unlock - safely unlock two runqueues
2605  *
2606  * Note this does not restore interrupts like task_rq_unlock,
2607  * you need to do so manually after calling.
2608  */
2609 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2610 	__releases(rq1->lock)
2611 	__releases(rq2->lock)
2612 {
2613 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2614 		raw_spin_rq_unlock(rq2);
2615 	else
2616 		__release(rq2->lock);
2617 	raw_spin_rq_unlock(rq1);
2618 }
2619 
2620 extern void set_rq_online (struct rq *rq);
2621 extern void set_rq_offline(struct rq *rq);
2622 extern bool sched_smp_initialized;
2623 
2624 #else /* CONFIG_SMP */
2625 
2626 /*
2627  * double_rq_lock - safely lock two runqueues
2628  *
2629  * Note this does not disable interrupts like task_rq_lock,
2630  * you need to do so manually before calling.
2631  */
2632 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2633 	__acquires(rq1->lock)
2634 	__acquires(rq2->lock)
2635 {
2636 	BUG_ON(!irqs_disabled());
2637 	BUG_ON(rq1 != rq2);
2638 	raw_spin_rq_lock(rq1);
2639 	__acquire(rq2->lock);	/* Fake it out ;) */
2640 }
2641 
2642 /*
2643  * double_rq_unlock - safely unlock two runqueues
2644  *
2645  * Note this does not restore interrupts like task_rq_unlock,
2646  * you need to do so manually after calling.
2647  */
2648 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2649 	__releases(rq1->lock)
2650 	__releases(rq2->lock)
2651 {
2652 	BUG_ON(rq1 != rq2);
2653 	raw_spin_rq_unlock(rq1);
2654 	__release(rq2->lock);
2655 }
2656 
2657 #endif
2658 
2659 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2660 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2661 
2662 #ifdef	CONFIG_SCHED_DEBUG
2663 extern bool sched_debug_verbose;
2664 
2665 extern void print_cfs_stats(struct seq_file *m, int cpu);
2666 extern void print_rt_stats(struct seq_file *m, int cpu);
2667 extern void print_dl_stats(struct seq_file *m, int cpu);
2668 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2669 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2670 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2671 
2672 extern void resched_latency_warn(int cpu, u64 latency);
2673 #ifdef CONFIG_NUMA_BALANCING
2674 extern void
2675 show_numa_stats(struct task_struct *p, struct seq_file *m);
2676 extern void
2677 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2678 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2679 #endif /* CONFIG_NUMA_BALANCING */
2680 #else
2681 static inline void resched_latency_warn(int cpu, u64 latency) {}
2682 #endif /* CONFIG_SCHED_DEBUG */
2683 
2684 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2685 extern void init_rt_rq(struct rt_rq *rt_rq);
2686 extern void init_dl_rq(struct dl_rq *dl_rq);
2687 
2688 extern void cfs_bandwidth_usage_inc(void);
2689 extern void cfs_bandwidth_usage_dec(void);
2690 
2691 #ifdef CONFIG_NO_HZ_COMMON
2692 #define NOHZ_BALANCE_KICK_BIT	0
2693 #define NOHZ_STATS_KICK_BIT	1
2694 #define NOHZ_NEWILB_KICK_BIT	2
2695 #define NOHZ_NEXT_KICK_BIT	3
2696 
2697 /* Run rebalance_domains() */
2698 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2699 /* Update blocked load */
2700 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2701 /* Update blocked load when entering idle */
2702 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2703 /* Update nohz.next_balance */
2704 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2705 
2706 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2707 
2708 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2709 
2710 extern void nohz_balance_exit_idle(struct rq *rq);
2711 #else
2712 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2713 #endif
2714 
2715 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2716 extern void nohz_run_idle_balance(int cpu);
2717 #else
2718 static inline void nohz_run_idle_balance(int cpu) { }
2719 #endif
2720 
2721 #ifdef CONFIG_SMP
2722 static inline
2723 void __dl_update(struct dl_bw *dl_b, s64 bw)
2724 {
2725 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2726 	int i;
2727 
2728 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2729 			 "sched RCU must be held");
2730 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2731 		struct rq *rq = cpu_rq(i);
2732 
2733 		rq->dl.extra_bw += bw;
2734 	}
2735 }
2736 #else
2737 static inline
2738 void __dl_update(struct dl_bw *dl_b, s64 bw)
2739 {
2740 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2741 
2742 	dl->extra_bw += bw;
2743 }
2744 #endif
2745 
2746 
2747 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2748 struct irqtime {
2749 	u64			total;
2750 	u64			tick_delta;
2751 	u64			irq_start_time;
2752 	struct u64_stats_sync	sync;
2753 };
2754 
2755 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2756 
2757 /*
2758  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2759  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2760  * and never move forward.
2761  */
2762 static inline u64 irq_time_read(int cpu)
2763 {
2764 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2765 	unsigned int seq;
2766 	u64 total;
2767 
2768 	do {
2769 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2770 		total = irqtime->total;
2771 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2772 
2773 	return total;
2774 }
2775 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2776 
2777 #ifdef CONFIG_CPU_FREQ
2778 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2779 
2780 /**
2781  * cpufreq_update_util - Take a note about CPU utilization changes.
2782  * @rq: Runqueue to carry out the update for.
2783  * @flags: Update reason flags.
2784  *
2785  * This function is called by the scheduler on the CPU whose utilization is
2786  * being updated.
2787  *
2788  * It can only be called from RCU-sched read-side critical sections.
2789  *
2790  * The way cpufreq is currently arranged requires it to evaluate the CPU
2791  * performance state (frequency/voltage) on a regular basis to prevent it from
2792  * being stuck in a completely inadequate performance level for too long.
2793  * That is not guaranteed to happen if the updates are only triggered from CFS
2794  * and DL, though, because they may not be coming in if only RT tasks are
2795  * active all the time (or there are RT tasks only).
2796  *
2797  * As a workaround for that issue, this function is called periodically by the
2798  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2799  * but that really is a band-aid.  Going forward it should be replaced with
2800  * solutions targeted more specifically at RT tasks.
2801  */
2802 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2803 {
2804 	struct update_util_data *data;
2805 
2806 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2807 						  cpu_of(rq)));
2808 	if (data)
2809 		data->func(data, rq_clock(rq), flags);
2810 }
2811 #else
2812 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2813 #endif /* CONFIG_CPU_FREQ */
2814 
2815 #ifdef CONFIG_UCLAMP_TASK
2816 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2817 
2818 /**
2819  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2820  * @rq:		The rq to clamp against. Must not be NULL.
2821  * @util:	The util value to clamp.
2822  * @p:		The task to clamp against. Can be NULL if you want to clamp
2823  *		against @rq only.
2824  *
2825  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2826  *
2827  * If sched_uclamp_used static key is disabled, then just return the util
2828  * without any clamping since uclamp aggregation at the rq level in the fast
2829  * path is disabled, rendering this operation a NOP.
2830  *
2831  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2832  * will return the correct effective uclamp value of the task even if the
2833  * static key is disabled.
2834  */
2835 static __always_inline
2836 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2837 				  struct task_struct *p)
2838 {
2839 	unsigned long min_util = 0;
2840 	unsigned long max_util = 0;
2841 
2842 	if (!static_branch_likely(&sched_uclamp_used))
2843 		return util;
2844 
2845 	if (p) {
2846 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2847 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2848 
2849 		/*
2850 		 * Ignore last runnable task's max clamp, as this task will
2851 		 * reset it. Similarly, no need to read the rq's min clamp.
2852 		 */
2853 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2854 			goto out;
2855 	}
2856 
2857 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2858 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2859 out:
2860 	/*
2861 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2862 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2863 	 * inversion. Fix it now when the clamps are applied.
2864 	 */
2865 	if (unlikely(min_util >= max_util))
2866 		return min_util;
2867 
2868 	return clamp(util, min_util, max_util);
2869 }
2870 
2871 /*
2872  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2873  * by default in the fast path and only gets turned on once userspace performs
2874  * an operation that requires it.
2875  *
2876  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2877  * hence is active.
2878  */
2879 static inline bool uclamp_is_used(void)
2880 {
2881 	return static_branch_likely(&sched_uclamp_used);
2882 }
2883 #else /* CONFIG_UCLAMP_TASK */
2884 static inline
2885 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2886 				  struct task_struct *p)
2887 {
2888 	return util;
2889 }
2890 
2891 static inline bool uclamp_is_used(void)
2892 {
2893 	return false;
2894 }
2895 #endif /* CONFIG_UCLAMP_TASK */
2896 
2897 #ifdef arch_scale_freq_capacity
2898 # ifndef arch_scale_freq_invariant
2899 #  define arch_scale_freq_invariant()	true
2900 # endif
2901 #else
2902 # define arch_scale_freq_invariant()	false
2903 #endif
2904 
2905 #ifdef CONFIG_SMP
2906 static inline unsigned long capacity_orig_of(int cpu)
2907 {
2908 	return cpu_rq(cpu)->cpu_capacity_orig;
2909 }
2910 
2911 /**
2912  * enum cpu_util_type - CPU utilization type
2913  * @FREQUENCY_UTIL:	Utilization used to select frequency
2914  * @ENERGY_UTIL:	Utilization used during energy calculation
2915  *
2916  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2917  * need to be aggregated differently depending on the usage made of them. This
2918  * enum is used within effective_cpu_util() to differentiate the types of
2919  * utilization expected by the callers, and adjust the aggregation accordingly.
2920  */
2921 enum cpu_util_type {
2922 	FREQUENCY_UTIL,
2923 	ENERGY_UTIL,
2924 };
2925 
2926 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2927 				 unsigned long max, enum cpu_util_type type,
2928 				 struct task_struct *p);
2929 
2930 static inline unsigned long cpu_bw_dl(struct rq *rq)
2931 {
2932 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2933 }
2934 
2935 static inline unsigned long cpu_util_dl(struct rq *rq)
2936 {
2937 	return READ_ONCE(rq->avg_dl.util_avg);
2938 }
2939 
2940 static inline unsigned long cpu_util_cfs(struct rq *rq)
2941 {
2942 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2943 
2944 	if (sched_feat(UTIL_EST)) {
2945 		util = max_t(unsigned long, util,
2946 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2947 	}
2948 
2949 	return util;
2950 }
2951 
2952 static inline unsigned long cpu_util_rt(struct rq *rq)
2953 {
2954 	return READ_ONCE(rq->avg_rt.util_avg);
2955 }
2956 #endif
2957 
2958 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2959 static inline unsigned long cpu_util_irq(struct rq *rq)
2960 {
2961 	return rq->avg_irq.util_avg;
2962 }
2963 
2964 static inline
2965 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2966 {
2967 	util *= (max - irq);
2968 	util /= max;
2969 
2970 	return util;
2971 
2972 }
2973 #else
2974 static inline unsigned long cpu_util_irq(struct rq *rq)
2975 {
2976 	return 0;
2977 }
2978 
2979 static inline
2980 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2981 {
2982 	return util;
2983 }
2984 #endif
2985 
2986 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2987 
2988 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2989 
2990 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2991 
2992 static inline bool sched_energy_enabled(void)
2993 {
2994 	return static_branch_unlikely(&sched_energy_present);
2995 }
2996 
2997 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2998 
2999 #define perf_domain_span(pd) NULL
3000 static inline bool sched_energy_enabled(void) { return false; }
3001 
3002 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3003 
3004 #ifdef CONFIG_MEMBARRIER
3005 /*
3006  * The scheduler provides memory barriers required by membarrier between:
3007  * - prior user-space memory accesses and store to rq->membarrier_state,
3008  * - store to rq->membarrier_state and following user-space memory accesses.
3009  * In the same way it provides those guarantees around store to rq->curr.
3010  */
3011 static inline void membarrier_switch_mm(struct rq *rq,
3012 					struct mm_struct *prev_mm,
3013 					struct mm_struct *next_mm)
3014 {
3015 	int membarrier_state;
3016 
3017 	if (prev_mm == next_mm)
3018 		return;
3019 
3020 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3021 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3022 		return;
3023 
3024 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3025 }
3026 #else
3027 static inline void membarrier_switch_mm(struct rq *rq,
3028 					struct mm_struct *prev_mm,
3029 					struct mm_struct *next_mm)
3030 {
3031 }
3032 #endif
3033 
3034 #ifdef CONFIG_SMP
3035 static inline bool is_per_cpu_kthread(struct task_struct *p)
3036 {
3037 	if (!(p->flags & PF_KTHREAD))
3038 		return false;
3039 
3040 	if (p->nr_cpus_allowed != 1)
3041 		return false;
3042 
3043 	return true;
3044 }
3045 #endif
3046 
3047 extern void swake_up_all_locked(struct swait_queue_head *q);
3048 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3049 
3050 #ifdef CONFIG_PREEMPT_DYNAMIC
3051 extern int preempt_dynamic_mode;
3052 extern int sched_dynamic_mode(const char *str);
3053 extern void sched_dynamic_update(int mode);
3054 #endif
3055 
3056