1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/tick.h> 10 #include <linux/slab.h> 11 12 #include "cpupri.h" 13 #include "cpudeadline.h" 14 #include "cpuacct.h" 15 16 struct rq; 17 struct cpuidle_state; 18 19 /* task_struct::on_rq states: */ 20 #define TASK_ON_RQ_QUEUED 1 21 #define TASK_ON_RQ_MIGRATING 2 22 23 extern __read_mostly int scheduler_running; 24 25 extern unsigned long calc_load_update; 26 extern atomic_long_t calc_load_tasks; 27 28 extern long calc_load_fold_active(struct rq *this_rq); 29 extern void update_cpu_load_active(struct rq *this_rq); 30 31 /* 32 * Helpers for converting nanosecond timing to jiffy resolution 33 */ 34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 35 36 /* 37 * Increase resolution of nice-level calculations for 64-bit architectures. 38 * The extra resolution improves shares distribution and load balancing of 39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 40 * hierarchies, especially on larger systems. This is not a user-visible change 41 * and does not change the user-interface for setting shares/weights. 42 * 43 * We increase resolution only if we have enough bits to allow this increased 44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 46 * increased costs. 47 */ 48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 49 # define SCHED_LOAD_RESOLUTION 10 50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 52 #else 53 # define SCHED_LOAD_RESOLUTION 0 54 # define scale_load(w) (w) 55 # define scale_load_down(w) (w) 56 #endif 57 58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 60 61 #define NICE_0_LOAD SCHED_LOAD_SCALE 62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 63 64 /* 65 * Single value that decides SCHED_DEADLINE internal math precision. 66 * 10 -> just above 1us 67 * 9 -> just above 0.5us 68 */ 69 #define DL_SCALE (10) 70 71 /* 72 * These are the 'tuning knobs' of the scheduler: 73 */ 74 75 /* 76 * single value that denotes runtime == period, ie unlimited time. 77 */ 78 #define RUNTIME_INF ((u64)~0ULL) 79 80 static inline int fair_policy(int policy) 81 { 82 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 83 } 84 85 static inline int rt_policy(int policy) 86 { 87 return policy == SCHED_FIFO || policy == SCHED_RR; 88 } 89 90 static inline int dl_policy(int policy) 91 { 92 return policy == SCHED_DEADLINE; 93 } 94 95 static inline int task_has_rt_policy(struct task_struct *p) 96 { 97 return rt_policy(p->policy); 98 } 99 100 static inline int task_has_dl_policy(struct task_struct *p) 101 { 102 return dl_policy(p->policy); 103 } 104 105 static inline bool dl_time_before(u64 a, u64 b) 106 { 107 return (s64)(a - b) < 0; 108 } 109 110 /* 111 * Tells if entity @a should preempt entity @b. 112 */ 113 static inline bool 114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 115 { 116 return dl_time_before(a->deadline, b->deadline); 117 } 118 119 /* 120 * This is the priority-queue data structure of the RT scheduling class: 121 */ 122 struct rt_prio_array { 123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 124 struct list_head queue[MAX_RT_PRIO]; 125 }; 126 127 struct rt_bandwidth { 128 /* nests inside the rq lock: */ 129 raw_spinlock_t rt_runtime_lock; 130 ktime_t rt_period; 131 u64 rt_runtime; 132 struct hrtimer rt_period_timer; 133 }; 134 135 void __dl_clear_params(struct task_struct *p); 136 137 /* 138 * To keep the bandwidth of -deadline tasks and groups under control 139 * we need some place where: 140 * - store the maximum -deadline bandwidth of the system (the group); 141 * - cache the fraction of that bandwidth that is currently allocated. 142 * 143 * This is all done in the data structure below. It is similar to the 144 * one used for RT-throttling (rt_bandwidth), with the main difference 145 * that, since here we are only interested in admission control, we 146 * do not decrease any runtime while the group "executes", neither we 147 * need a timer to replenish it. 148 * 149 * With respect to SMP, the bandwidth is given on a per-CPU basis, 150 * meaning that: 151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 152 * - dl_total_bw array contains, in the i-eth element, the currently 153 * allocated bandwidth on the i-eth CPU. 154 * Moreover, groups consume bandwidth on each CPU, while tasks only 155 * consume bandwidth on the CPU they're running on. 156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 157 * that will be shown the next time the proc or cgroup controls will 158 * be red. It on its turn can be changed by writing on its own 159 * control. 160 */ 161 struct dl_bandwidth { 162 raw_spinlock_t dl_runtime_lock; 163 u64 dl_runtime; 164 u64 dl_period; 165 }; 166 167 static inline int dl_bandwidth_enabled(void) 168 { 169 return sysctl_sched_rt_runtime >= 0; 170 } 171 172 extern struct dl_bw *dl_bw_of(int i); 173 174 struct dl_bw { 175 raw_spinlock_t lock; 176 u64 bw, total_bw; 177 }; 178 179 static inline 180 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 181 { 182 dl_b->total_bw -= tsk_bw; 183 } 184 185 static inline 186 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 187 { 188 dl_b->total_bw += tsk_bw; 189 } 190 191 static inline 192 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 193 { 194 return dl_b->bw != -1 && 195 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 196 } 197 198 extern struct mutex sched_domains_mutex; 199 200 #ifdef CONFIG_CGROUP_SCHED 201 202 #include <linux/cgroup.h> 203 204 struct cfs_rq; 205 struct rt_rq; 206 207 extern struct list_head task_groups; 208 209 struct cfs_bandwidth { 210 #ifdef CONFIG_CFS_BANDWIDTH 211 raw_spinlock_t lock; 212 ktime_t period; 213 u64 quota, runtime; 214 s64 hierarchical_quota; 215 u64 runtime_expires; 216 217 int idle, timer_active; 218 struct hrtimer period_timer, slack_timer; 219 struct list_head throttled_cfs_rq; 220 221 /* statistics */ 222 int nr_periods, nr_throttled; 223 u64 throttled_time; 224 #endif 225 }; 226 227 /* task group related information */ 228 struct task_group { 229 struct cgroup_subsys_state css; 230 231 #ifdef CONFIG_FAIR_GROUP_SCHED 232 /* schedulable entities of this group on each cpu */ 233 struct sched_entity **se; 234 /* runqueue "owned" by this group on each cpu */ 235 struct cfs_rq **cfs_rq; 236 unsigned long shares; 237 238 #ifdef CONFIG_SMP 239 atomic_long_t load_avg; 240 atomic_t runnable_avg; 241 #endif 242 #endif 243 244 #ifdef CONFIG_RT_GROUP_SCHED 245 struct sched_rt_entity **rt_se; 246 struct rt_rq **rt_rq; 247 248 struct rt_bandwidth rt_bandwidth; 249 #endif 250 251 struct rcu_head rcu; 252 struct list_head list; 253 254 struct task_group *parent; 255 struct list_head siblings; 256 struct list_head children; 257 258 #ifdef CONFIG_SCHED_AUTOGROUP 259 struct autogroup *autogroup; 260 #endif 261 262 struct cfs_bandwidth cfs_bandwidth; 263 }; 264 265 #ifdef CONFIG_FAIR_GROUP_SCHED 266 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 267 268 /* 269 * A weight of 0 or 1 can cause arithmetics problems. 270 * A weight of a cfs_rq is the sum of weights of which entities 271 * are queued on this cfs_rq, so a weight of a entity should not be 272 * too large, so as the shares value of a task group. 273 * (The default weight is 1024 - so there's no practical 274 * limitation from this.) 275 */ 276 #define MIN_SHARES (1UL << 1) 277 #define MAX_SHARES (1UL << 18) 278 #endif 279 280 typedef int (*tg_visitor)(struct task_group *, void *); 281 282 extern int walk_tg_tree_from(struct task_group *from, 283 tg_visitor down, tg_visitor up, void *data); 284 285 /* 286 * Iterate the full tree, calling @down when first entering a node and @up when 287 * leaving it for the final time. 288 * 289 * Caller must hold rcu_lock or sufficient equivalent. 290 */ 291 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 292 { 293 return walk_tg_tree_from(&root_task_group, down, up, data); 294 } 295 296 extern int tg_nop(struct task_group *tg, void *data); 297 298 extern void free_fair_sched_group(struct task_group *tg); 299 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 300 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 301 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 302 struct sched_entity *se, int cpu, 303 struct sched_entity *parent); 304 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 305 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 306 307 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 308 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); 309 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 310 311 extern void free_rt_sched_group(struct task_group *tg); 312 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 313 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 314 struct sched_rt_entity *rt_se, int cpu, 315 struct sched_rt_entity *parent); 316 317 extern struct task_group *sched_create_group(struct task_group *parent); 318 extern void sched_online_group(struct task_group *tg, 319 struct task_group *parent); 320 extern void sched_destroy_group(struct task_group *tg); 321 extern void sched_offline_group(struct task_group *tg); 322 323 extern void sched_move_task(struct task_struct *tsk); 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 327 #endif 328 329 #else /* CONFIG_CGROUP_SCHED */ 330 331 struct cfs_bandwidth { }; 332 333 #endif /* CONFIG_CGROUP_SCHED */ 334 335 /* CFS-related fields in a runqueue */ 336 struct cfs_rq { 337 struct load_weight load; 338 unsigned int nr_running, h_nr_running; 339 340 u64 exec_clock; 341 u64 min_vruntime; 342 #ifndef CONFIG_64BIT 343 u64 min_vruntime_copy; 344 #endif 345 346 struct rb_root tasks_timeline; 347 struct rb_node *rb_leftmost; 348 349 /* 350 * 'curr' points to currently running entity on this cfs_rq. 351 * It is set to NULL otherwise (i.e when none are currently running). 352 */ 353 struct sched_entity *curr, *next, *last, *skip; 354 355 #ifdef CONFIG_SCHED_DEBUG 356 unsigned int nr_spread_over; 357 #endif 358 359 #ifdef CONFIG_SMP 360 /* 361 * CFS Load tracking 362 * Under CFS, load is tracked on a per-entity basis and aggregated up. 363 * This allows for the description of both thread and group usage (in 364 * the FAIR_GROUP_SCHED case). 365 */ 366 unsigned long runnable_load_avg, blocked_load_avg; 367 atomic64_t decay_counter; 368 u64 last_decay; 369 atomic_long_t removed_load; 370 371 #ifdef CONFIG_FAIR_GROUP_SCHED 372 /* Required to track per-cpu representation of a task_group */ 373 u32 tg_runnable_contrib; 374 unsigned long tg_load_contrib; 375 376 /* 377 * h_load = weight * f(tg) 378 * 379 * Where f(tg) is the recursive weight fraction assigned to 380 * this group. 381 */ 382 unsigned long h_load; 383 u64 last_h_load_update; 384 struct sched_entity *h_load_next; 385 #endif /* CONFIG_FAIR_GROUP_SCHED */ 386 #endif /* CONFIG_SMP */ 387 388 #ifdef CONFIG_FAIR_GROUP_SCHED 389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 390 391 /* 392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 394 * (like users, containers etc.) 395 * 396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 397 * list is used during load balance. 398 */ 399 int on_list; 400 struct list_head leaf_cfs_rq_list; 401 struct task_group *tg; /* group that "owns" this runqueue */ 402 403 #ifdef CONFIG_CFS_BANDWIDTH 404 int runtime_enabled; 405 u64 runtime_expires; 406 s64 runtime_remaining; 407 408 u64 throttled_clock, throttled_clock_task; 409 u64 throttled_clock_task_time; 410 int throttled, throttle_count; 411 struct list_head throttled_list; 412 #endif /* CONFIG_CFS_BANDWIDTH */ 413 #endif /* CONFIG_FAIR_GROUP_SCHED */ 414 }; 415 416 static inline int rt_bandwidth_enabled(void) 417 { 418 return sysctl_sched_rt_runtime >= 0; 419 } 420 421 /* Real-Time classes' related field in a runqueue: */ 422 struct rt_rq { 423 struct rt_prio_array active; 424 unsigned int rt_nr_running; 425 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 426 struct { 427 int curr; /* highest queued rt task prio */ 428 #ifdef CONFIG_SMP 429 int next; /* next highest */ 430 #endif 431 } highest_prio; 432 #endif 433 #ifdef CONFIG_SMP 434 unsigned long rt_nr_migratory; 435 unsigned long rt_nr_total; 436 int overloaded; 437 struct plist_head pushable_tasks; 438 #endif 439 int rt_queued; 440 441 int rt_throttled; 442 u64 rt_time; 443 u64 rt_runtime; 444 /* Nests inside the rq lock: */ 445 raw_spinlock_t rt_runtime_lock; 446 447 #ifdef CONFIG_RT_GROUP_SCHED 448 unsigned long rt_nr_boosted; 449 450 struct rq *rq; 451 struct task_group *tg; 452 #endif 453 }; 454 455 /* Deadline class' related fields in a runqueue */ 456 struct dl_rq { 457 /* runqueue is an rbtree, ordered by deadline */ 458 struct rb_root rb_root; 459 struct rb_node *rb_leftmost; 460 461 unsigned long dl_nr_running; 462 463 #ifdef CONFIG_SMP 464 /* 465 * Deadline values of the currently executing and the 466 * earliest ready task on this rq. Caching these facilitates 467 * the decision wether or not a ready but not running task 468 * should migrate somewhere else. 469 */ 470 struct { 471 u64 curr; 472 u64 next; 473 } earliest_dl; 474 475 unsigned long dl_nr_migratory; 476 int overloaded; 477 478 /* 479 * Tasks on this rq that can be pushed away. They are kept in 480 * an rb-tree, ordered by tasks' deadlines, with caching 481 * of the leftmost (earliest deadline) element. 482 */ 483 struct rb_root pushable_dl_tasks_root; 484 struct rb_node *pushable_dl_tasks_leftmost; 485 #else 486 struct dl_bw dl_bw; 487 #endif 488 }; 489 490 #ifdef CONFIG_SMP 491 492 /* 493 * We add the notion of a root-domain which will be used to define per-domain 494 * variables. Each exclusive cpuset essentially defines an island domain by 495 * fully partitioning the member cpus from any other cpuset. Whenever a new 496 * exclusive cpuset is created, we also create and attach a new root-domain 497 * object. 498 * 499 */ 500 struct root_domain { 501 atomic_t refcount; 502 atomic_t rto_count; 503 struct rcu_head rcu; 504 cpumask_var_t span; 505 cpumask_var_t online; 506 507 /* Indicate more than one runnable task for any CPU */ 508 bool overload; 509 510 /* 511 * The bit corresponding to a CPU gets set here if such CPU has more 512 * than one runnable -deadline task (as it is below for RT tasks). 513 */ 514 cpumask_var_t dlo_mask; 515 atomic_t dlo_count; 516 struct dl_bw dl_bw; 517 struct cpudl cpudl; 518 519 /* 520 * The "RT overload" flag: it gets set if a CPU has more than 521 * one runnable RT task. 522 */ 523 cpumask_var_t rto_mask; 524 struct cpupri cpupri; 525 }; 526 527 extern struct root_domain def_root_domain; 528 529 #endif /* CONFIG_SMP */ 530 531 /* 532 * This is the main, per-CPU runqueue data structure. 533 * 534 * Locking rule: those places that want to lock multiple runqueues 535 * (such as the load balancing or the thread migration code), lock 536 * acquire operations must be ordered by ascending &runqueue. 537 */ 538 struct rq { 539 /* runqueue lock: */ 540 raw_spinlock_t lock; 541 542 /* 543 * nr_running and cpu_load should be in the same cacheline because 544 * remote CPUs use both these fields when doing load calculation. 545 */ 546 unsigned int nr_running; 547 #ifdef CONFIG_NUMA_BALANCING 548 unsigned int nr_numa_running; 549 unsigned int nr_preferred_running; 550 #endif 551 #define CPU_LOAD_IDX_MAX 5 552 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 553 unsigned long last_load_update_tick; 554 #ifdef CONFIG_NO_HZ_COMMON 555 u64 nohz_stamp; 556 unsigned long nohz_flags; 557 #endif 558 #ifdef CONFIG_NO_HZ_FULL 559 unsigned long last_sched_tick; 560 #endif 561 /* capture load from *all* tasks on this cpu: */ 562 struct load_weight load; 563 unsigned long nr_load_updates; 564 u64 nr_switches; 565 566 struct cfs_rq cfs; 567 struct rt_rq rt; 568 struct dl_rq dl; 569 570 #ifdef CONFIG_FAIR_GROUP_SCHED 571 /* list of leaf cfs_rq on this cpu: */ 572 struct list_head leaf_cfs_rq_list; 573 574 struct sched_avg avg; 575 #endif /* CONFIG_FAIR_GROUP_SCHED */ 576 577 /* 578 * This is part of a global counter where only the total sum 579 * over all CPUs matters. A task can increase this counter on 580 * one CPU and if it got migrated afterwards it may decrease 581 * it on another CPU. Always updated under the runqueue lock: 582 */ 583 unsigned long nr_uninterruptible; 584 585 struct task_struct *curr, *idle, *stop; 586 unsigned long next_balance; 587 struct mm_struct *prev_mm; 588 589 unsigned int clock_skip_update; 590 u64 clock; 591 u64 clock_task; 592 593 atomic_t nr_iowait; 594 595 #ifdef CONFIG_SMP 596 struct root_domain *rd; 597 struct sched_domain *sd; 598 599 unsigned long cpu_capacity; 600 601 unsigned char idle_balance; 602 /* For active balancing */ 603 int post_schedule; 604 int active_balance; 605 int push_cpu; 606 struct cpu_stop_work active_balance_work; 607 /* cpu of this runqueue: */ 608 int cpu; 609 int online; 610 611 struct list_head cfs_tasks; 612 613 u64 rt_avg; 614 u64 age_stamp; 615 u64 idle_stamp; 616 u64 avg_idle; 617 618 /* This is used to determine avg_idle's max value */ 619 u64 max_idle_balance_cost; 620 #endif 621 622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 623 u64 prev_irq_time; 624 #endif 625 #ifdef CONFIG_PARAVIRT 626 u64 prev_steal_time; 627 #endif 628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 629 u64 prev_steal_time_rq; 630 #endif 631 632 /* calc_load related fields */ 633 unsigned long calc_load_update; 634 long calc_load_active; 635 636 #ifdef CONFIG_SCHED_HRTICK 637 #ifdef CONFIG_SMP 638 int hrtick_csd_pending; 639 struct call_single_data hrtick_csd; 640 #endif 641 struct hrtimer hrtick_timer; 642 #endif 643 644 #ifdef CONFIG_SCHEDSTATS 645 /* latency stats */ 646 struct sched_info rq_sched_info; 647 unsigned long long rq_cpu_time; 648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 649 650 /* sys_sched_yield() stats */ 651 unsigned int yld_count; 652 653 /* schedule() stats */ 654 unsigned int sched_count; 655 unsigned int sched_goidle; 656 657 /* try_to_wake_up() stats */ 658 unsigned int ttwu_count; 659 unsigned int ttwu_local; 660 #endif 661 662 #ifdef CONFIG_SMP 663 struct llist_head wake_list; 664 #endif 665 666 #ifdef CONFIG_CPU_IDLE 667 /* Must be inspected within a rcu lock section */ 668 struct cpuidle_state *idle_state; 669 #endif 670 }; 671 672 static inline int cpu_of(struct rq *rq) 673 { 674 #ifdef CONFIG_SMP 675 return rq->cpu; 676 #else 677 return 0; 678 #endif 679 } 680 681 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 682 683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 684 #define this_rq() this_cpu_ptr(&runqueues) 685 #define task_rq(p) cpu_rq(task_cpu(p)) 686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 687 #define raw_rq() raw_cpu_ptr(&runqueues) 688 689 static inline u64 __rq_clock_broken(struct rq *rq) 690 { 691 return ACCESS_ONCE(rq->clock); 692 } 693 694 static inline u64 rq_clock(struct rq *rq) 695 { 696 lockdep_assert_held(&rq->lock); 697 return rq->clock; 698 } 699 700 static inline u64 rq_clock_task(struct rq *rq) 701 { 702 lockdep_assert_held(&rq->lock); 703 return rq->clock_task; 704 } 705 706 #define RQCF_REQ_SKIP 0x01 707 #define RQCF_ACT_SKIP 0x02 708 709 static inline void rq_clock_skip_update(struct rq *rq, bool skip) 710 { 711 lockdep_assert_held(&rq->lock); 712 if (skip) 713 rq->clock_skip_update |= RQCF_REQ_SKIP; 714 else 715 rq->clock_skip_update &= ~RQCF_REQ_SKIP; 716 } 717 718 #ifdef CONFIG_NUMA 719 enum numa_topology_type { 720 NUMA_DIRECT, 721 NUMA_GLUELESS_MESH, 722 NUMA_BACKPLANE, 723 }; 724 extern enum numa_topology_type sched_numa_topology_type; 725 extern int sched_max_numa_distance; 726 extern bool find_numa_distance(int distance); 727 #endif 728 729 #ifdef CONFIG_NUMA_BALANCING 730 /* The regions in numa_faults array from task_struct */ 731 enum numa_faults_stats { 732 NUMA_MEM = 0, 733 NUMA_CPU, 734 NUMA_MEMBUF, 735 NUMA_CPUBUF 736 }; 737 extern void sched_setnuma(struct task_struct *p, int node); 738 extern int migrate_task_to(struct task_struct *p, int cpu); 739 extern int migrate_swap(struct task_struct *, struct task_struct *); 740 #endif /* CONFIG_NUMA_BALANCING */ 741 742 #ifdef CONFIG_SMP 743 744 extern void sched_ttwu_pending(void); 745 746 #define rcu_dereference_check_sched_domain(p) \ 747 rcu_dereference_check((p), \ 748 lockdep_is_held(&sched_domains_mutex)) 749 750 /* 751 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 752 * See detach_destroy_domains: synchronize_sched for details. 753 * 754 * The domain tree of any CPU may only be accessed from within 755 * preempt-disabled sections. 756 */ 757 #define for_each_domain(cpu, __sd) \ 758 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 759 __sd; __sd = __sd->parent) 760 761 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 762 763 /** 764 * highest_flag_domain - Return highest sched_domain containing flag. 765 * @cpu: The cpu whose highest level of sched domain is to 766 * be returned. 767 * @flag: The flag to check for the highest sched_domain 768 * for the given cpu. 769 * 770 * Returns the highest sched_domain of a cpu which contains the given flag. 771 */ 772 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 773 { 774 struct sched_domain *sd, *hsd = NULL; 775 776 for_each_domain(cpu, sd) { 777 if (!(sd->flags & flag)) 778 break; 779 hsd = sd; 780 } 781 782 return hsd; 783 } 784 785 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 786 { 787 struct sched_domain *sd; 788 789 for_each_domain(cpu, sd) { 790 if (sd->flags & flag) 791 break; 792 } 793 794 return sd; 795 } 796 797 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 798 DECLARE_PER_CPU(int, sd_llc_size); 799 DECLARE_PER_CPU(int, sd_llc_id); 800 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 801 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 802 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 803 804 struct sched_group_capacity { 805 atomic_t ref; 806 /* 807 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 808 * for a single CPU. 809 */ 810 unsigned int capacity, capacity_orig; 811 unsigned long next_update; 812 int imbalance; /* XXX unrelated to capacity but shared group state */ 813 /* 814 * Number of busy cpus in this group. 815 */ 816 atomic_t nr_busy_cpus; 817 818 unsigned long cpumask[0]; /* iteration mask */ 819 }; 820 821 struct sched_group { 822 struct sched_group *next; /* Must be a circular list */ 823 atomic_t ref; 824 825 unsigned int group_weight; 826 struct sched_group_capacity *sgc; 827 828 /* 829 * The CPUs this group covers. 830 * 831 * NOTE: this field is variable length. (Allocated dynamically 832 * by attaching extra space to the end of the structure, 833 * depending on how many CPUs the kernel has booted up with) 834 */ 835 unsigned long cpumask[0]; 836 }; 837 838 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 839 { 840 return to_cpumask(sg->cpumask); 841 } 842 843 /* 844 * cpumask masking which cpus in the group are allowed to iterate up the domain 845 * tree. 846 */ 847 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 848 { 849 return to_cpumask(sg->sgc->cpumask); 850 } 851 852 /** 853 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 854 * @group: The group whose first cpu is to be returned. 855 */ 856 static inline unsigned int group_first_cpu(struct sched_group *group) 857 { 858 return cpumask_first(sched_group_cpus(group)); 859 } 860 861 extern int group_balance_cpu(struct sched_group *sg); 862 863 #else 864 865 static inline void sched_ttwu_pending(void) { } 866 867 #endif /* CONFIG_SMP */ 868 869 #include "stats.h" 870 #include "auto_group.h" 871 872 #ifdef CONFIG_CGROUP_SCHED 873 874 /* 875 * Return the group to which this tasks belongs. 876 * 877 * We cannot use task_css() and friends because the cgroup subsystem 878 * changes that value before the cgroup_subsys::attach() method is called, 879 * therefore we cannot pin it and might observe the wrong value. 880 * 881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 882 * core changes this before calling sched_move_task(). 883 * 884 * Instead we use a 'copy' which is updated from sched_move_task() while 885 * holding both task_struct::pi_lock and rq::lock. 886 */ 887 static inline struct task_group *task_group(struct task_struct *p) 888 { 889 return p->sched_task_group; 890 } 891 892 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 893 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 894 { 895 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 896 struct task_group *tg = task_group(p); 897 #endif 898 899 #ifdef CONFIG_FAIR_GROUP_SCHED 900 p->se.cfs_rq = tg->cfs_rq[cpu]; 901 p->se.parent = tg->se[cpu]; 902 #endif 903 904 #ifdef CONFIG_RT_GROUP_SCHED 905 p->rt.rt_rq = tg->rt_rq[cpu]; 906 p->rt.parent = tg->rt_se[cpu]; 907 #endif 908 } 909 910 #else /* CONFIG_CGROUP_SCHED */ 911 912 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 913 static inline struct task_group *task_group(struct task_struct *p) 914 { 915 return NULL; 916 } 917 918 #endif /* CONFIG_CGROUP_SCHED */ 919 920 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 921 { 922 set_task_rq(p, cpu); 923 #ifdef CONFIG_SMP 924 /* 925 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 926 * successfuly executed on another CPU. We must ensure that updates of 927 * per-task data have been completed by this moment. 928 */ 929 smp_wmb(); 930 task_thread_info(p)->cpu = cpu; 931 p->wake_cpu = cpu; 932 #endif 933 } 934 935 /* 936 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 937 */ 938 #ifdef CONFIG_SCHED_DEBUG 939 # include <linux/static_key.h> 940 # define const_debug __read_mostly 941 #else 942 # define const_debug const 943 #endif 944 945 extern const_debug unsigned int sysctl_sched_features; 946 947 #define SCHED_FEAT(name, enabled) \ 948 __SCHED_FEAT_##name , 949 950 enum { 951 #include "features.h" 952 __SCHED_FEAT_NR, 953 }; 954 955 #undef SCHED_FEAT 956 957 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 958 #define SCHED_FEAT(name, enabled) \ 959 static __always_inline bool static_branch_##name(struct static_key *key) \ 960 { \ 961 return static_key_##enabled(key); \ 962 } 963 964 #include "features.h" 965 966 #undef SCHED_FEAT 967 968 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 969 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 970 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 971 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 972 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 973 974 #ifdef CONFIG_NUMA_BALANCING 975 #define sched_feat_numa(x) sched_feat(x) 976 #ifdef CONFIG_SCHED_DEBUG 977 #define numabalancing_enabled sched_feat_numa(NUMA) 978 #else 979 extern bool numabalancing_enabled; 980 #endif /* CONFIG_SCHED_DEBUG */ 981 #else 982 #define sched_feat_numa(x) (0) 983 #define numabalancing_enabled (0) 984 #endif /* CONFIG_NUMA_BALANCING */ 985 986 static inline u64 global_rt_period(void) 987 { 988 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 989 } 990 991 static inline u64 global_rt_runtime(void) 992 { 993 if (sysctl_sched_rt_runtime < 0) 994 return RUNTIME_INF; 995 996 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 997 } 998 999 static inline int task_current(struct rq *rq, struct task_struct *p) 1000 { 1001 return rq->curr == p; 1002 } 1003 1004 static inline int task_running(struct rq *rq, struct task_struct *p) 1005 { 1006 #ifdef CONFIG_SMP 1007 return p->on_cpu; 1008 #else 1009 return task_current(rq, p); 1010 #endif 1011 } 1012 1013 static inline int task_on_rq_queued(struct task_struct *p) 1014 { 1015 return p->on_rq == TASK_ON_RQ_QUEUED; 1016 } 1017 1018 static inline int task_on_rq_migrating(struct task_struct *p) 1019 { 1020 return p->on_rq == TASK_ON_RQ_MIGRATING; 1021 } 1022 1023 #ifndef prepare_arch_switch 1024 # define prepare_arch_switch(next) do { } while (0) 1025 #endif 1026 #ifndef finish_arch_switch 1027 # define finish_arch_switch(prev) do { } while (0) 1028 #endif 1029 #ifndef finish_arch_post_lock_switch 1030 # define finish_arch_post_lock_switch() do { } while (0) 1031 #endif 1032 1033 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1034 { 1035 #ifdef CONFIG_SMP 1036 /* 1037 * We can optimise this out completely for !SMP, because the 1038 * SMP rebalancing from interrupt is the only thing that cares 1039 * here. 1040 */ 1041 next->on_cpu = 1; 1042 #endif 1043 } 1044 1045 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1046 { 1047 #ifdef CONFIG_SMP 1048 /* 1049 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1050 * We must ensure this doesn't happen until the switch is completely 1051 * finished. 1052 */ 1053 smp_wmb(); 1054 prev->on_cpu = 0; 1055 #endif 1056 #ifdef CONFIG_DEBUG_SPINLOCK 1057 /* this is a valid case when another task releases the spinlock */ 1058 rq->lock.owner = current; 1059 #endif 1060 /* 1061 * If we are tracking spinlock dependencies then we have to 1062 * fix up the runqueue lock - which gets 'carried over' from 1063 * prev into current: 1064 */ 1065 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1066 1067 raw_spin_unlock_irq(&rq->lock); 1068 } 1069 1070 /* 1071 * wake flags 1072 */ 1073 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1074 #define WF_FORK 0x02 /* child wakeup after fork */ 1075 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1076 1077 /* 1078 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1079 * of tasks with abnormal "nice" values across CPUs the contribution that 1080 * each task makes to its run queue's load is weighted according to its 1081 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1082 * scaled version of the new time slice allocation that they receive on time 1083 * slice expiry etc. 1084 */ 1085 1086 #define WEIGHT_IDLEPRIO 3 1087 #define WMULT_IDLEPRIO 1431655765 1088 1089 /* 1090 * Nice levels are multiplicative, with a gentle 10% change for every 1091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1092 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1093 * that remained on nice 0. 1094 * 1095 * The "10% effect" is relative and cumulative: from _any_ nice level, 1096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1098 * If a task goes up by ~10% and another task goes down by ~10% then 1099 * the relative distance between them is ~25%.) 1100 */ 1101 static const int prio_to_weight[40] = { 1102 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1103 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1104 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1105 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1106 /* 0 */ 1024, 820, 655, 526, 423, 1107 /* 5 */ 335, 272, 215, 172, 137, 1108 /* 10 */ 110, 87, 70, 56, 45, 1109 /* 15 */ 36, 29, 23, 18, 15, 1110 }; 1111 1112 /* 1113 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1114 * 1115 * In cases where the weight does not change often, we can use the 1116 * precalculated inverse to speed up arithmetics by turning divisions 1117 * into multiplications: 1118 */ 1119 static const u32 prio_to_wmult[40] = { 1120 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1121 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1122 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1123 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1124 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1125 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1126 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1127 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1128 }; 1129 1130 #define ENQUEUE_WAKEUP 1 1131 #define ENQUEUE_HEAD 2 1132 #ifdef CONFIG_SMP 1133 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1134 #else 1135 #define ENQUEUE_WAKING 0 1136 #endif 1137 #define ENQUEUE_REPLENISH 8 1138 1139 #define DEQUEUE_SLEEP 1 1140 1141 #define RETRY_TASK ((void *)-1UL) 1142 1143 struct sched_class { 1144 const struct sched_class *next; 1145 1146 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1147 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1148 void (*yield_task) (struct rq *rq); 1149 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1150 1151 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1152 1153 /* 1154 * It is the responsibility of the pick_next_task() method that will 1155 * return the next task to call put_prev_task() on the @prev task or 1156 * something equivalent. 1157 * 1158 * May return RETRY_TASK when it finds a higher prio class has runnable 1159 * tasks. 1160 */ 1161 struct task_struct * (*pick_next_task) (struct rq *rq, 1162 struct task_struct *prev); 1163 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1164 1165 #ifdef CONFIG_SMP 1166 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1167 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1168 1169 void (*post_schedule) (struct rq *this_rq); 1170 void (*task_waking) (struct task_struct *task); 1171 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1172 1173 void (*set_cpus_allowed)(struct task_struct *p, 1174 const struct cpumask *newmask); 1175 1176 void (*rq_online)(struct rq *rq); 1177 void (*rq_offline)(struct rq *rq); 1178 #endif 1179 1180 void (*set_curr_task) (struct rq *rq); 1181 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1182 void (*task_fork) (struct task_struct *p); 1183 void (*task_dead) (struct task_struct *p); 1184 1185 /* 1186 * The switched_from() call is allowed to drop rq->lock, therefore we 1187 * cannot assume the switched_from/switched_to pair is serliazed by 1188 * rq->lock. They are however serialized by p->pi_lock. 1189 */ 1190 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1191 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1192 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1193 int oldprio); 1194 1195 unsigned int (*get_rr_interval) (struct rq *rq, 1196 struct task_struct *task); 1197 1198 void (*update_curr) (struct rq *rq); 1199 1200 #ifdef CONFIG_FAIR_GROUP_SCHED 1201 void (*task_move_group) (struct task_struct *p, int on_rq); 1202 #endif 1203 }; 1204 1205 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1206 { 1207 prev->sched_class->put_prev_task(rq, prev); 1208 } 1209 1210 #define sched_class_highest (&stop_sched_class) 1211 #define for_each_class(class) \ 1212 for (class = sched_class_highest; class; class = class->next) 1213 1214 extern const struct sched_class stop_sched_class; 1215 extern const struct sched_class dl_sched_class; 1216 extern const struct sched_class rt_sched_class; 1217 extern const struct sched_class fair_sched_class; 1218 extern const struct sched_class idle_sched_class; 1219 1220 1221 #ifdef CONFIG_SMP 1222 1223 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1224 1225 extern void trigger_load_balance(struct rq *rq); 1226 1227 extern void idle_enter_fair(struct rq *this_rq); 1228 extern void idle_exit_fair(struct rq *this_rq); 1229 1230 #else 1231 1232 static inline void idle_enter_fair(struct rq *rq) { } 1233 static inline void idle_exit_fair(struct rq *rq) { } 1234 1235 #endif 1236 1237 #ifdef CONFIG_CPU_IDLE 1238 static inline void idle_set_state(struct rq *rq, 1239 struct cpuidle_state *idle_state) 1240 { 1241 rq->idle_state = idle_state; 1242 } 1243 1244 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1245 { 1246 WARN_ON(!rcu_read_lock_held()); 1247 return rq->idle_state; 1248 } 1249 #else 1250 static inline void idle_set_state(struct rq *rq, 1251 struct cpuidle_state *idle_state) 1252 { 1253 } 1254 1255 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1256 { 1257 return NULL; 1258 } 1259 #endif 1260 1261 extern void sysrq_sched_debug_show(void); 1262 extern void sched_init_granularity(void); 1263 extern void update_max_interval(void); 1264 1265 extern void init_sched_dl_class(void); 1266 extern void init_sched_rt_class(void); 1267 extern void init_sched_fair_class(void); 1268 extern void init_sched_dl_class(void); 1269 1270 extern void resched_curr(struct rq *rq); 1271 extern void resched_cpu(int cpu); 1272 1273 extern struct rt_bandwidth def_rt_bandwidth; 1274 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1275 1276 extern struct dl_bandwidth def_dl_bandwidth; 1277 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1278 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1279 1280 unsigned long to_ratio(u64 period, u64 runtime); 1281 1282 extern void update_idle_cpu_load(struct rq *this_rq); 1283 1284 extern void init_task_runnable_average(struct task_struct *p); 1285 1286 static inline void add_nr_running(struct rq *rq, unsigned count) 1287 { 1288 unsigned prev_nr = rq->nr_running; 1289 1290 rq->nr_running = prev_nr + count; 1291 1292 if (prev_nr < 2 && rq->nr_running >= 2) { 1293 #ifdef CONFIG_SMP 1294 if (!rq->rd->overload) 1295 rq->rd->overload = true; 1296 #endif 1297 1298 #ifdef CONFIG_NO_HZ_FULL 1299 if (tick_nohz_full_cpu(rq->cpu)) { 1300 /* 1301 * Tick is needed if more than one task runs on a CPU. 1302 * Send the target an IPI to kick it out of nohz mode. 1303 * 1304 * We assume that IPI implies full memory barrier and the 1305 * new value of rq->nr_running is visible on reception 1306 * from the target. 1307 */ 1308 tick_nohz_full_kick_cpu(rq->cpu); 1309 } 1310 #endif 1311 } 1312 } 1313 1314 static inline void sub_nr_running(struct rq *rq, unsigned count) 1315 { 1316 rq->nr_running -= count; 1317 } 1318 1319 static inline void rq_last_tick_reset(struct rq *rq) 1320 { 1321 #ifdef CONFIG_NO_HZ_FULL 1322 rq->last_sched_tick = jiffies; 1323 #endif 1324 } 1325 1326 extern void update_rq_clock(struct rq *rq); 1327 1328 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1329 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1330 1331 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1332 1333 extern const_debug unsigned int sysctl_sched_time_avg; 1334 extern const_debug unsigned int sysctl_sched_nr_migrate; 1335 extern const_debug unsigned int sysctl_sched_migration_cost; 1336 1337 static inline u64 sched_avg_period(void) 1338 { 1339 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1340 } 1341 1342 #ifdef CONFIG_SCHED_HRTICK 1343 1344 /* 1345 * Use hrtick when: 1346 * - enabled by features 1347 * - hrtimer is actually high res 1348 */ 1349 static inline int hrtick_enabled(struct rq *rq) 1350 { 1351 if (!sched_feat(HRTICK)) 1352 return 0; 1353 if (!cpu_active(cpu_of(rq))) 1354 return 0; 1355 return hrtimer_is_hres_active(&rq->hrtick_timer); 1356 } 1357 1358 void hrtick_start(struct rq *rq, u64 delay); 1359 1360 #else 1361 1362 static inline int hrtick_enabled(struct rq *rq) 1363 { 1364 return 0; 1365 } 1366 1367 #endif /* CONFIG_SCHED_HRTICK */ 1368 1369 #ifdef CONFIG_SMP 1370 extern void sched_avg_update(struct rq *rq); 1371 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1372 { 1373 rq->rt_avg += rt_delta; 1374 sched_avg_update(rq); 1375 } 1376 #else 1377 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1378 static inline void sched_avg_update(struct rq *rq) { } 1379 #endif 1380 1381 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1382 1383 /* 1384 * __task_rq_lock - lock the rq @p resides on. 1385 */ 1386 static inline struct rq *__task_rq_lock(struct task_struct *p) 1387 __acquires(rq->lock) 1388 { 1389 struct rq *rq; 1390 1391 lockdep_assert_held(&p->pi_lock); 1392 1393 for (;;) { 1394 rq = task_rq(p); 1395 raw_spin_lock(&rq->lock); 1396 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 1397 return rq; 1398 raw_spin_unlock(&rq->lock); 1399 1400 while (unlikely(task_on_rq_migrating(p))) 1401 cpu_relax(); 1402 } 1403 } 1404 1405 /* 1406 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 1407 */ 1408 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 1409 __acquires(p->pi_lock) 1410 __acquires(rq->lock) 1411 { 1412 struct rq *rq; 1413 1414 for (;;) { 1415 raw_spin_lock_irqsave(&p->pi_lock, *flags); 1416 rq = task_rq(p); 1417 raw_spin_lock(&rq->lock); 1418 /* 1419 * move_queued_task() task_rq_lock() 1420 * 1421 * ACQUIRE (rq->lock) 1422 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 1423 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 1424 * [S] ->cpu = new_cpu [L] task_rq() 1425 * [L] ->on_rq 1426 * RELEASE (rq->lock) 1427 * 1428 * If we observe the old cpu in task_rq_lock, the acquire of 1429 * the old rq->lock will fully serialize against the stores. 1430 * 1431 * If we observe the new cpu in task_rq_lock, the acquire will 1432 * pair with the WMB to ensure we must then also see migrating. 1433 */ 1434 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 1435 return rq; 1436 raw_spin_unlock(&rq->lock); 1437 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1438 1439 while (unlikely(task_on_rq_migrating(p))) 1440 cpu_relax(); 1441 } 1442 } 1443 1444 static inline void __task_rq_unlock(struct rq *rq) 1445 __releases(rq->lock) 1446 { 1447 raw_spin_unlock(&rq->lock); 1448 } 1449 1450 static inline void 1451 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 1452 __releases(rq->lock) 1453 __releases(p->pi_lock) 1454 { 1455 raw_spin_unlock(&rq->lock); 1456 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1457 } 1458 1459 #ifdef CONFIG_SMP 1460 #ifdef CONFIG_PREEMPT 1461 1462 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1463 1464 /* 1465 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1466 * way at the expense of forcing extra atomic operations in all 1467 * invocations. This assures that the double_lock is acquired using the 1468 * same underlying policy as the spinlock_t on this architecture, which 1469 * reduces latency compared to the unfair variant below. However, it 1470 * also adds more overhead and therefore may reduce throughput. 1471 */ 1472 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1473 __releases(this_rq->lock) 1474 __acquires(busiest->lock) 1475 __acquires(this_rq->lock) 1476 { 1477 raw_spin_unlock(&this_rq->lock); 1478 double_rq_lock(this_rq, busiest); 1479 1480 return 1; 1481 } 1482 1483 #else 1484 /* 1485 * Unfair double_lock_balance: Optimizes throughput at the expense of 1486 * latency by eliminating extra atomic operations when the locks are 1487 * already in proper order on entry. This favors lower cpu-ids and will 1488 * grant the double lock to lower cpus over higher ids under contention, 1489 * regardless of entry order into the function. 1490 */ 1491 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1492 __releases(this_rq->lock) 1493 __acquires(busiest->lock) 1494 __acquires(this_rq->lock) 1495 { 1496 int ret = 0; 1497 1498 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1499 if (busiest < this_rq) { 1500 raw_spin_unlock(&this_rq->lock); 1501 raw_spin_lock(&busiest->lock); 1502 raw_spin_lock_nested(&this_rq->lock, 1503 SINGLE_DEPTH_NESTING); 1504 ret = 1; 1505 } else 1506 raw_spin_lock_nested(&busiest->lock, 1507 SINGLE_DEPTH_NESTING); 1508 } 1509 return ret; 1510 } 1511 1512 #endif /* CONFIG_PREEMPT */ 1513 1514 /* 1515 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1516 */ 1517 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1518 { 1519 if (unlikely(!irqs_disabled())) { 1520 /* printk() doesn't work good under rq->lock */ 1521 raw_spin_unlock(&this_rq->lock); 1522 BUG_ON(1); 1523 } 1524 1525 return _double_lock_balance(this_rq, busiest); 1526 } 1527 1528 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1529 __releases(busiest->lock) 1530 { 1531 raw_spin_unlock(&busiest->lock); 1532 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1533 } 1534 1535 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1536 { 1537 if (l1 > l2) 1538 swap(l1, l2); 1539 1540 spin_lock(l1); 1541 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1542 } 1543 1544 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1545 { 1546 if (l1 > l2) 1547 swap(l1, l2); 1548 1549 spin_lock_irq(l1); 1550 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1551 } 1552 1553 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1554 { 1555 if (l1 > l2) 1556 swap(l1, l2); 1557 1558 raw_spin_lock(l1); 1559 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1560 } 1561 1562 /* 1563 * double_rq_lock - safely lock two runqueues 1564 * 1565 * Note this does not disable interrupts like task_rq_lock, 1566 * you need to do so manually before calling. 1567 */ 1568 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1569 __acquires(rq1->lock) 1570 __acquires(rq2->lock) 1571 { 1572 BUG_ON(!irqs_disabled()); 1573 if (rq1 == rq2) { 1574 raw_spin_lock(&rq1->lock); 1575 __acquire(rq2->lock); /* Fake it out ;) */ 1576 } else { 1577 if (rq1 < rq2) { 1578 raw_spin_lock(&rq1->lock); 1579 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1580 } else { 1581 raw_spin_lock(&rq2->lock); 1582 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1583 } 1584 } 1585 } 1586 1587 /* 1588 * double_rq_unlock - safely unlock two runqueues 1589 * 1590 * Note this does not restore interrupts like task_rq_unlock, 1591 * you need to do so manually after calling. 1592 */ 1593 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1594 __releases(rq1->lock) 1595 __releases(rq2->lock) 1596 { 1597 raw_spin_unlock(&rq1->lock); 1598 if (rq1 != rq2) 1599 raw_spin_unlock(&rq2->lock); 1600 else 1601 __release(rq2->lock); 1602 } 1603 1604 #else /* CONFIG_SMP */ 1605 1606 /* 1607 * double_rq_lock - safely lock two runqueues 1608 * 1609 * Note this does not disable interrupts like task_rq_lock, 1610 * you need to do so manually before calling. 1611 */ 1612 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1613 __acquires(rq1->lock) 1614 __acquires(rq2->lock) 1615 { 1616 BUG_ON(!irqs_disabled()); 1617 BUG_ON(rq1 != rq2); 1618 raw_spin_lock(&rq1->lock); 1619 __acquire(rq2->lock); /* Fake it out ;) */ 1620 } 1621 1622 /* 1623 * double_rq_unlock - safely unlock two runqueues 1624 * 1625 * Note this does not restore interrupts like task_rq_unlock, 1626 * you need to do so manually after calling. 1627 */ 1628 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1629 __releases(rq1->lock) 1630 __releases(rq2->lock) 1631 { 1632 BUG_ON(rq1 != rq2); 1633 raw_spin_unlock(&rq1->lock); 1634 __release(rq2->lock); 1635 } 1636 1637 #endif 1638 1639 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1640 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1641 extern void print_cfs_stats(struct seq_file *m, int cpu); 1642 extern void print_rt_stats(struct seq_file *m, int cpu); 1643 extern void print_dl_stats(struct seq_file *m, int cpu); 1644 1645 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1646 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1647 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1648 1649 extern void cfs_bandwidth_usage_inc(void); 1650 extern void cfs_bandwidth_usage_dec(void); 1651 1652 #ifdef CONFIG_NO_HZ_COMMON 1653 enum rq_nohz_flag_bits { 1654 NOHZ_TICK_STOPPED, 1655 NOHZ_BALANCE_KICK, 1656 }; 1657 1658 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1659 #endif 1660 1661 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1662 1663 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1664 DECLARE_PER_CPU(u64, cpu_softirq_time); 1665 1666 #ifndef CONFIG_64BIT 1667 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1668 1669 static inline void irq_time_write_begin(void) 1670 { 1671 __this_cpu_inc(irq_time_seq.sequence); 1672 smp_wmb(); 1673 } 1674 1675 static inline void irq_time_write_end(void) 1676 { 1677 smp_wmb(); 1678 __this_cpu_inc(irq_time_seq.sequence); 1679 } 1680 1681 static inline u64 irq_time_read(int cpu) 1682 { 1683 u64 irq_time; 1684 unsigned seq; 1685 1686 do { 1687 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1688 irq_time = per_cpu(cpu_softirq_time, cpu) + 1689 per_cpu(cpu_hardirq_time, cpu); 1690 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1691 1692 return irq_time; 1693 } 1694 #else /* CONFIG_64BIT */ 1695 static inline void irq_time_write_begin(void) 1696 { 1697 } 1698 1699 static inline void irq_time_write_end(void) 1700 { 1701 } 1702 1703 static inline u64 irq_time_read(int cpu) 1704 { 1705 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1706 } 1707 #endif /* CONFIG_64BIT */ 1708 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1709