xref: /openbmc/linux/kernel/sched/sched.h (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Scheduler internal types and methods:
4   */
5  #ifndef _KERNEL_SCHED_SCHED_H
6  #define _KERNEL_SCHED_SCHED_H
7  
8  #include <linux/sched/affinity.h>
9  #include <linux/sched/autogroup.h>
10  #include <linux/sched/cpufreq.h>
11  #include <linux/sched/deadline.h>
12  #include <linux/sched.h>
13  #include <linux/sched/loadavg.h>
14  #include <linux/sched/mm.h>
15  #include <linux/sched/rseq_api.h>
16  #include <linux/sched/signal.h>
17  #include <linux/sched/smt.h>
18  #include <linux/sched/stat.h>
19  #include <linux/sched/sysctl.h>
20  #include <linux/sched/task_flags.h>
21  #include <linux/sched/task.h>
22  #include <linux/sched/topology.h>
23  
24  #include <linux/atomic.h>
25  #include <linux/bitmap.h>
26  #include <linux/bug.h>
27  #include <linux/capability.h>
28  #include <linux/cgroup_api.h>
29  #include <linux/cgroup.h>
30  #include <linux/context_tracking.h>
31  #include <linux/cpufreq.h>
32  #include <linux/cpumask_api.h>
33  #include <linux/ctype.h>
34  #include <linux/file.h>
35  #include <linux/fs_api.h>
36  #include <linux/hrtimer_api.h>
37  #include <linux/interrupt.h>
38  #include <linux/irq_work.h>
39  #include <linux/jiffies.h>
40  #include <linux/kref_api.h>
41  #include <linux/kthread.h>
42  #include <linux/ktime_api.h>
43  #include <linux/lockdep_api.h>
44  #include <linux/lockdep.h>
45  #include <linux/minmax.h>
46  #include <linux/mm.h>
47  #include <linux/module.h>
48  #include <linux/mutex_api.h>
49  #include <linux/plist.h>
50  #include <linux/poll.h>
51  #include <linux/proc_fs.h>
52  #include <linux/profile.h>
53  #include <linux/psi.h>
54  #include <linux/rcupdate.h>
55  #include <linux/seq_file.h>
56  #include <linux/seqlock.h>
57  #include <linux/softirq.h>
58  #include <linux/spinlock_api.h>
59  #include <linux/static_key.h>
60  #include <linux/stop_machine.h>
61  #include <linux/syscalls_api.h>
62  #include <linux/syscalls.h>
63  #include <linux/tick.h>
64  #include <linux/topology.h>
65  #include <linux/types.h>
66  #include <linux/u64_stats_sync_api.h>
67  #include <linux/uaccess.h>
68  #include <linux/wait_api.h>
69  #include <linux/wait_bit.h>
70  #include <linux/workqueue_api.h>
71  
72  #include <trace/events/power.h>
73  #include <trace/events/sched.h>
74  
75  #include "../workqueue_internal.h"
76  
77  #ifdef CONFIG_CGROUP_SCHED
78  #include <linux/cgroup.h>
79  #include <linux/psi.h>
80  #endif
81  
82  #ifdef CONFIG_SCHED_DEBUG
83  # include <linux/static_key.h>
84  #endif
85  
86  #ifdef CONFIG_PARAVIRT
87  # include <asm/paravirt.h>
88  # include <asm/paravirt_api_clock.h>
89  #endif
90  
91  #include <asm/barrier.h>
92  
93  #include "cpupri.h"
94  #include "cpudeadline.h"
95  
96  #ifdef CONFIG_SCHED_DEBUG
97  # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
98  #else
99  # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
100  #endif
101  
102  struct rq;
103  struct cpuidle_state;
104  
105  /* task_struct::on_rq states: */
106  #define TASK_ON_RQ_QUEUED	1
107  #define TASK_ON_RQ_MIGRATING	2
108  
109  extern __read_mostly int scheduler_running;
110  
111  extern unsigned long calc_load_update;
112  extern atomic_long_t calc_load_tasks;
113  
114  extern unsigned int sysctl_sched_child_runs_first;
115  
116  extern void calc_global_load_tick(struct rq *this_rq);
117  extern long calc_load_fold_active(struct rq *this_rq, long adjust);
118  
119  extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
120  
121  extern unsigned int sysctl_sched_rt_period;
122  extern int sysctl_sched_rt_runtime;
123  extern int sched_rr_timeslice;
124  
125  /*
126   * Helpers for converting nanosecond timing to jiffy resolution
127   */
128  #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
129  
130  /*
131   * Increase resolution of nice-level calculations for 64-bit architectures.
132   * The extra resolution improves shares distribution and load balancing of
133   * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
134   * hierarchies, especially on larger systems. This is not a user-visible change
135   * and does not change the user-interface for setting shares/weights.
136   *
137   * We increase resolution only if we have enough bits to allow this increased
138   * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
139   * are pretty high and the returns do not justify the increased costs.
140   *
141   * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
142   * increase coverage and consistency always enable it on 64-bit platforms.
143   */
144  #ifdef CONFIG_64BIT
145  # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
146  # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
147  # define scale_load_down(w) \
148  ({ \
149  	unsigned long __w = (w); \
150  	if (__w) \
151  		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
152  	__w; \
153  })
154  #else
155  # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
156  # define scale_load(w)		(w)
157  # define scale_load_down(w)	(w)
158  #endif
159  
160  /*
161   * Task weight (visible to users) and its load (invisible to users) have
162   * independent resolution, but they should be well calibrated. We use
163   * scale_load() and scale_load_down(w) to convert between them. The
164   * following must be true:
165   *
166   *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
167   *
168   */
169  #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
170  
171  /*
172   * Single value that decides SCHED_DEADLINE internal math precision.
173   * 10 -> just above 1us
174   * 9  -> just above 0.5us
175   */
176  #define DL_SCALE		10
177  
178  /*
179   * Single value that denotes runtime == period, ie unlimited time.
180   */
181  #define RUNTIME_INF		((u64)~0ULL)
182  
idle_policy(int policy)183  static inline int idle_policy(int policy)
184  {
185  	return policy == SCHED_IDLE;
186  }
fair_policy(int policy)187  static inline int fair_policy(int policy)
188  {
189  	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
190  }
191  
rt_policy(int policy)192  static inline int rt_policy(int policy)
193  {
194  	return policy == SCHED_FIFO || policy == SCHED_RR;
195  }
196  
dl_policy(int policy)197  static inline int dl_policy(int policy)
198  {
199  	return policy == SCHED_DEADLINE;
200  }
valid_policy(int policy)201  static inline bool valid_policy(int policy)
202  {
203  	return idle_policy(policy) || fair_policy(policy) ||
204  		rt_policy(policy) || dl_policy(policy);
205  }
206  
task_has_idle_policy(struct task_struct * p)207  static inline int task_has_idle_policy(struct task_struct *p)
208  {
209  	return idle_policy(p->policy);
210  }
211  
task_has_rt_policy(struct task_struct * p)212  static inline int task_has_rt_policy(struct task_struct *p)
213  {
214  	return rt_policy(p->policy);
215  }
216  
task_has_dl_policy(struct task_struct * p)217  static inline int task_has_dl_policy(struct task_struct *p)
218  {
219  	return dl_policy(p->policy);
220  }
221  
222  #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
223  
update_avg(u64 * avg,u64 sample)224  static inline void update_avg(u64 *avg, u64 sample)
225  {
226  	s64 diff = sample - *avg;
227  	*avg += diff / 8;
228  }
229  
230  /*
231   * Shifting a value by an exponent greater *or equal* to the size of said value
232   * is UB; cap at size-1.
233   */
234  #define shr_bound(val, shift)							\
235  	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
236  
237  /*
238   * !! For sched_setattr_nocheck() (kernel) only !!
239   *
240   * This is actually gross. :(
241   *
242   * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
243   * tasks, but still be able to sleep. We need this on platforms that cannot
244   * atomically change clock frequency. Remove once fast switching will be
245   * available on such platforms.
246   *
247   * SUGOV stands for SchedUtil GOVernor.
248   */
249  #define SCHED_FLAG_SUGOV	0x10000000
250  
251  #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
252  
dl_entity_is_special(const struct sched_dl_entity * dl_se)253  static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
254  {
255  #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
256  	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
257  #else
258  	return false;
259  #endif
260  }
261  
262  /*
263   * Tells if entity @a should preempt entity @b.
264   */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)265  static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
266  				     const struct sched_dl_entity *b)
267  {
268  	return dl_entity_is_special(a) ||
269  	       dl_time_before(a->deadline, b->deadline);
270  }
271  
272  /*
273   * This is the priority-queue data structure of the RT scheduling class:
274   */
275  struct rt_prio_array {
276  	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
277  	struct list_head queue[MAX_RT_PRIO];
278  };
279  
280  struct rt_bandwidth {
281  	/* nests inside the rq lock: */
282  	raw_spinlock_t		rt_runtime_lock;
283  	ktime_t			rt_period;
284  	u64			rt_runtime;
285  	struct hrtimer		rt_period_timer;
286  	unsigned int		rt_period_active;
287  };
288  
dl_bandwidth_enabled(void)289  static inline int dl_bandwidth_enabled(void)
290  {
291  	return sysctl_sched_rt_runtime >= 0;
292  }
293  
294  /*
295   * To keep the bandwidth of -deadline tasks under control
296   * we need some place where:
297   *  - store the maximum -deadline bandwidth of each cpu;
298   *  - cache the fraction of bandwidth that is currently allocated in
299   *    each root domain;
300   *
301   * This is all done in the data structure below. It is similar to the
302   * one used for RT-throttling (rt_bandwidth), with the main difference
303   * that, since here we are only interested in admission control, we
304   * do not decrease any runtime while the group "executes", neither we
305   * need a timer to replenish it.
306   *
307   * With respect to SMP, bandwidth is given on a per root domain basis,
308   * meaning that:
309   *  - bw (< 100%) is the deadline bandwidth of each CPU;
310   *  - total_bw is the currently allocated bandwidth in each root domain;
311   */
312  struct dl_bw {
313  	raw_spinlock_t		lock;
314  	u64			bw;
315  	u64			total_bw;
316  };
317  
318  extern void init_dl_bw(struct dl_bw *dl_b);
319  extern int  sched_dl_global_validate(void);
320  extern void sched_dl_do_global(void);
321  extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
322  extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
323  extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
324  extern bool __checkparam_dl(const struct sched_attr *attr);
325  extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
326  extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
327  extern int  dl_bw_check_overflow(int cpu);
328  
329  #ifdef CONFIG_CGROUP_SCHED
330  
331  struct cfs_rq;
332  struct rt_rq;
333  
334  extern struct list_head task_groups;
335  
336  struct cfs_bandwidth {
337  #ifdef CONFIG_CFS_BANDWIDTH
338  	raw_spinlock_t		lock;
339  	ktime_t			period;
340  	u64			quota;
341  	u64			runtime;
342  	u64			burst;
343  	u64			runtime_snap;
344  	s64			hierarchical_quota;
345  
346  	u8			idle;
347  	u8			period_active;
348  	u8			slack_started;
349  	struct hrtimer		period_timer;
350  	struct hrtimer		slack_timer;
351  	struct list_head	throttled_cfs_rq;
352  
353  	/* Statistics: */
354  	int			nr_periods;
355  	int			nr_throttled;
356  	int			nr_burst;
357  	u64			throttled_time;
358  	u64			burst_time;
359  #endif
360  };
361  
362  /* Task group related information */
363  struct task_group {
364  	struct cgroup_subsys_state css;
365  
366  #ifdef CONFIG_FAIR_GROUP_SCHED
367  	/* schedulable entities of this group on each CPU */
368  	struct sched_entity	**se;
369  	/* runqueue "owned" by this group on each CPU */
370  	struct cfs_rq		**cfs_rq;
371  	unsigned long		shares;
372  
373  	/* A positive value indicates that this is a SCHED_IDLE group. */
374  	int			idle;
375  
376  #ifdef	CONFIG_SMP
377  	/*
378  	 * load_avg can be heavily contended at clock tick time, so put
379  	 * it in its own cacheline separated from the fields above which
380  	 * will also be accessed at each tick.
381  	 */
382  	atomic_long_t		load_avg ____cacheline_aligned;
383  #endif
384  #endif
385  
386  #ifdef CONFIG_RT_GROUP_SCHED
387  	struct sched_rt_entity	**rt_se;
388  	struct rt_rq		**rt_rq;
389  
390  	struct rt_bandwidth	rt_bandwidth;
391  #endif
392  
393  	struct rcu_head		rcu;
394  	struct list_head	list;
395  
396  	struct task_group	*parent;
397  	struct list_head	siblings;
398  	struct list_head	children;
399  
400  #ifdef CONFIG_SCHED_AUTOGROUP
401  	struct autogroup	*autogroup;
402  #endif
403  
404  	struct cfs_bandwidth	cfs_bandwidth;
405  
406  #ifdef CONFIG_UCLAMP_TASK_GROUP
407  	/* The two decimal precision [%] value requested from user-space */
408  	unsigned int		uclamp_pct[UCLAMP_CNT];
409  	/* Clamp values requested for a task group */
410  	struct uclamp_se	uclamp_req[UCLAMP_CNT];
411  	/* Effective clamp values used for a task group */
412  	struct uclamp_se	uclamp[UCLAMP_CNT];
413  #endif
414  
415  };
416  
417  #ifdef CONFIG_FAIR_GROUP_SCHED
418  #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
419  
420  /*
421   * A weight of 0 or 1 can cause arithmetics problems.
422   * A weight of a cfs_rq is the sum of weights of which entities
423   * are queued on this cfs_rq, so a weight of a entity should not be
424   * too large, so as the shares value of a task group.
425   * (The default weight is 1024 - so there's no practical
426   *  limitation from this.)
427   */
428  #define MIN_SHARES		(1UL <<  1)
429  #define MAX_SHARES		(1UL << 18)
430  #endif
431  
432  typedef int (*tg_visitor)(struct task_group *, void *);
433  
434  extern int walk_tg_tree_from(struct task_group *from,
435  			     tg_visitor down, tg_visitor up, void *data);
436  
437  /*
438   * Iterate the full tree, calling @down when first entering a node and @up when
439   * leaving it for the final time.
440   *
441   * Caller must hold rcu_lock or sufficient equivalent.
442   */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)443  static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444  {
445  	return walk_tg_tree_from(&root_task_group, down, up, data);
446  }
447  
448  extern int tg_nop(struct task_group *tg, void *data);
449  
450  extern void free_fair_sched_group(struct task_group *tg);
451  extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
452  extern void online_fair_sched_group(struct task_group *tg);
453  extern void unregister_fair_sched_group(struct task_group *tg);
454  extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455  			struct sched_entity *se, int cpu,
456  			struct sched_entity *parent);
457  extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
458  
459  extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
460  extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
461  extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462  extern bool cfs_task_bw_constrained(struct task_struct *p);
463  
464  extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
465  		struct sched_rt_entity *rt_se, int cpu,
466  		struct sched_rt_entity *parent);
467  extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
468  extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
469  extern long sched_group_rt_runtime(struct task_group *tg);
470  extern long sched_group_rt_period(struct task_group *tg);
471  extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
472  
473  extern struct task_group *sched_create_group(struct task_group *parent);
474  extern void sched_online_group(struct task_group *tg,
475  			       struct task_group *parent);
476  extern void sched_destroy_group(struct task_group *tg);
477  extern void sched_release_group(struct task_group *tg);
478  
479  extern void sched_move_task(struct task_struct *tsk);
480  
481  #ifdef CONFIG_FAIR_GROUP_SCHED
482  extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
483  
484  extern int sched_group_set_idle(struct task_group *tg, long idle);
485  
486  #ifdef CONFIG_SMP
487  extern void set_task_rq_fair(struct sched_entity *se,
488  			     struct cfs_rq *prev, struct cfs_rq *next);
489  #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)490  static inline void set_task_rq_fair(struct sched_entity *se,
491  			     struct cfs_rq *prev, struct cfs_rq *next) { }
492  #endif /* CONFIG_SMP */
493  #endif /* CONFIG_FAIR_GROUP_SCHED */
494  
495  #else /* CONFIG_CGROUP_SCHED */
496  
497  struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)498  static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
499  
500  #endif	/* CONFIG_CGROUP_SCHED */
501  
502  extern void unregister_rt_sched_group(struct task_group *tg);
503  extern void free_rt_sched_group(struct task_group *tg);
504  extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
505  
506  /*
507   * u64_u32_load/u64_u32_store
508   *
509   * Use a copy of a u64 value to protect against data race. This is only
510   * applicable for 32-bits architectures.
511   */
512  #ifdef CONFIG_64BIT
513  # define u64_u32_load_copy(var, copy)       var
514  # define u64_u32_store_copy(var, copy, val) (var = val)
515  #else
516  # define u64_u32_load_copy(var, copy)					\
517  ({									\
518  	u64 __val, __val_copy;						\
519  	do {								\
520  		__val_copy = copy;					\
521  		/*							\
522  		 * paired with u64_u32_store_copy(), ordering access	\
523  		 * to var and copy.					\
524  		 */							\
525  		smp_rmb();						\
526  		__val = var;						\
527  	} while (__val != __val_copy);					\
528  	__val;								\
529  })
530  # define u64_u32_store_copy(var, copy, val)				\
531  do {									\
532  	typeof(val) __val = (val);					\
533  	var = __val;							\
534  	/*								\
535  	 * paired with u64_u32_load_copy(), ordering access to var and	\
536  	 * copy.							\
537  	 */								\
538  	smp_wmb();							\
539  	copy = __val;							\
540  } while (0)
541  #endif
542  # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
543  # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
544  
545  /* CFS-related fields in a runqueue */
546  struct cfs_rq {
547  	struct load_weight	load;
548  	unsigned int		nr_running;
549  	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
550  	unsigned int		idle_nr_running;   /* SCHED_IDLE */
551  	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
552  
553  	s64			avg_vruntime;
554  	u64			avg_load;
555  
556  	u64			exec_clock;
557  	u64			min_vruntime;
558  #ifdef CONFIG_SCHED_CORE
559  	unsigned int		forceidle_seq;
560  	u64			min_vruntime_fi;
561  #endif
562  
563  #ifndef CONFIG_64BIT
564  	u64			min_vruntime_copy;
565  #endif
566  
567  	struct rb_root_cached	tasks_timeline;
568  
569  	/*
570  	 * 'curr' points to currently running entity on this cfs_rq.
571  	 * It is set to NULL otherwise (i.e when none are currently running).
572  	 */
573  	struct sched_entity	*curr;
574  	struct sched_entity	*next;
575  
576  #ifdef	CONFIG_SCHED_DEBUG
577  	unsigned int		nr_spread_over;
578  #endif
579  
580  #ifdef CONFIG_SMP
581  	/*
582  	 * CFS load tracking
583  	 */
584  	struct sched_avg	avg;
585  #ifndef CONFIG_64BIT
586  	u64			last_update_time_copy;
587  #endif
588  	struct {
589  		raw_spinlock_t	lock ____cacheline_aligned;
590  		int		nr;
591  		unsigned long	load_avg;
592  		unsigned long	util_avg;
593  		unsigned long	runnable_avg;
594  	} removed;
595  
596  #ifdef CONFIG_FAIR_GROUP_SCHED
597  	unsigned long		tg_load_avg_contrib;
598  	long			propagate;
599  	long			prop_runnable_sum;
600  
601  	/*
602  	 *   h_load = weight * f(tg)
603  	 *
604  	 * Where f(tg) is the recursive weight fraction assigned to
605  	 * this group.
606  	 */
607  	unsigned long		h_load;
608  	u64			last_h_load_update;
609  	struct sched_entity	*h_load_next;
610  #endif /* CONFIG_FAIR_GROUP_SCHED */
611  #endif /* CONFIG_SMP */
612  
613  #ifdef CONFIG_FAIR_GROUP_SCHED
614  	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
615  
616  	/*
617  	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
618  	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
619  	 * (like users, containers etc.)
620  	 *
621  	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
622  	 * This list is used during load balance.
623  	 */
624  	int			on_list;
625  	struct list_head	leaf_cfs_rq_list;
626  	struct task_group	*tg;	/* group that "owns" this runqueue */
627  
628  	/* Locally cached copy of our task_group's idle value */
629  	int			idle;
630  
631  #ifdef CONFIG_CFS_BANDWIDTH
632  	int			runtime_enabled;
633  	s64			runtime_remaining;
634  
635  	u64			throttled_pelt_idle;
636  #ifndef CONFIG_64BIT
637  	u64                     throttled_pelt_idle_copy;
638  #endif
639  	u64			throttled_clock;
640  	u64			throttled_clock_pelt;
641  	u64			throttled_clock_pelt_time;
642  	u64			throttled_clock_self;
643  	u64			throttled_clock_self_time;
644  	int			throttled;
645  	int			throttle_count;
646  	struct list_head	throttled_list;
647  #ifdef CONFIG_SMP
648  	struct list_head	throttled_csd_list;
649  #endif
650  #endif /* CONFIG_CFS_BANDWIDTH */
651  #endif /* CONFIG_FAIR_GROUP_SCHED */
652  };
653  
rt_bandwidth_enabled(void)654  static inline int rt_bandwidth_enabled(void)
655  {
656  	return sysctl_sched_rt_runtime >= 0;
657  }
658  
659  /* RT IPI pull logic requires IRQ_WORK */
660  #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
661  # define HAVE_RT_PUSH_IPI
662  #endif
663  
664  /* Real-Time classes' related field in a runqueue: */
665  struct rt_rq {
666  	struct rt_prio_array	active;
667  	unsigned int		rt_nr_running;
668  	unsigned int		rr_nr_running;
669  #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
670  	struct {
671  		int		curr; /* highest queued rt task prio */
672  #ifdef CONFIG_SMP
673  		int		next; /* next highest */
674  #endif
675  	} highest_prio;
676  #endif
677  #ifdef CONFIG_SMP
678  	unsigned int		rt_nr_migratory;
679  	unsigned int		rt_nr_total;
680  	int			overloaded;
681  	struct plist_head	pushable_tasks;
682  
683  #endif /* CONFIG_SMP */
684  	int			rt_queued;
685  
686  	int			rt_throttled;
687  	u64			rt_time;
688  	u64			rt_runtime;
689  	/* Nests inside the rq lock: */
690  	raw_spinlock_t		rt_runtime_lock;
691  
692  #ifdef CONFIG_RT_GROUP_SCHED
693  	unsigned int		rt_nr_boosted;
694  
695  	struct rq		*rq;
696  	struct task_group	*tg;
697  #endif
698  };
699  
rt_rq_is_runnable(struct rt_rq * rt_rq)700  static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
701  {
702  	return rt_rq->rt_queued && rt_rq->rt_nr_running;
703  }
704  
705  /* Deadline class' related fields in a runqueue */
706  struct dl_rq {
707  	/* runqueue is an rbtree, ordered by deadline */
708  	struct rb_root_cached	root;
709  
710  	unsigned int		dl_nr_running;
711  
712  #ifdef CONFIG_SMP
713  	/*
714  	 * Deadline values of the currently executing and the
715  	 * earliest ready task on this rq. Caching these facilitates
716  	 * the decision whether or not a ready but not running task
717  	 * should migrate somewhere else.
718  	 */
719  	struct {
720  		u64		curr;
721  		u64		next;
722  	} earliest_dl;
723  
724  	unsigned int		dl_nr_migratory;
725  	int			overloaded;
726  
727  	/*
728  	 * Tasks on this rq that can be pushed away. They are kept in
729  	 * an rb-tree, ordered by tasks' deadlines, with caching
730  	 * of the leftmost (earliest deadline) element.
731  	 */
732  	struct rb_root_cached	pushable_dl_tasks_root;
733  #else
734  	struct dl_bw		dl_bw;
735  #endif
736  	/*
737  	 * "Active utilization" for this runqueue: increased when a
738  	 * task wakes up (becomes TASK_RUNNING) and decreased when a
739  	 * task blocks
740  	 */
741  	u64			running_bw;
742  
743  	/*
744  	 * Utilization of the tasks "assigned" to this runqueue (including
745  	 * the tasks that are in runqueue and the tasks that executed on this
746  	 * CPU and blocked). Increased when a task moves to this runqueue, and
747  	 * decreased when the task moves away (migrates, changes scheduling
748  	 * policy, or terminates).
749  	 * This is needed to compute the "inactive utilization" for the
750  	 * runqueue (inactive utilization = this_bw - running_bw).
751  	 */
752  	u64			this_bw;
753  	u64			extra_bw;
754  
755  	/*
756  	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
757  	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
758  	 */
759  	u64			max_bw;
760  
761  	/*
762  	 * Inverse of the fraction of CPU utilization that can be reclaimed
763  	 * by the GRUB algorithm.
764  	 */
765  	u64			bw_ratio;
766  };
767  
768  #ifdef CONFIG_FAIR_GROUP_SCHED
769  /* An entity is a task if it doesn't "own" a runqueue */
770  #define entity_is_task(se)	(!se->my_q)
771  
se_update_runnable(struct sched_entity * se)772  static inline void se_update_runnable(struct sched_entity *se)
773  {
774  	if (!entity_is_task(se))
775  		se->runnable_weight = se->my_q->h_nr_running;
776  }
777  
se_runnable(struct sched_entity * se)778  static inline long se_runnable(struct sched_entity *se)
779  {
780  	if (entity_is_task(se))
781  		return !!se->on_rq;
782  	else
783  		return se->runnable_weight;
784  }
785  
786  #else
787  #define entity_is_task(se)	1
788  
se_update_runnable(struct sched_entity * se)789  static inline void se_update_runnable(struct sched_entity *se) {}
790  
se_runnable(struct sched_entity * se)791  static inline long se_runnable(struct sched_entity *se)
792  {
793  	return !!se->on_rq;
794  }
795  #endif
796  
797  #ifdef CONFIG_SMP
798  /*
799   * XXX we want to get rid of these helpers and use the full load resolution.
800   */
se_weight(struct sched_entity * se)801  static inline long se_weight(struct sched_entity *se)
802  {
803  	return scale_load_down(se->load.weight);
804  }
805  
806  
sched_asym_prefer(int a,int b)807  static inline bool sched_asym_prefer(int a, int b)
808  {
809  	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
810  }
811  
812  struct perf_domain {
813  	struct em_perf_domain *em_pd;
814  	struct perf_domain *next;
815  	struct rcu_head rcu;
816  };
817  
818  /* Scheduling group status flags */
819  #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
820  #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
821  
822  /*
823   * We add the notion of a root-domain which will be used to define per-domain
824   * variables. Each exclusive cpuset essentially defines an island domain by
825   * fully partitioning the member CPUs from any other cpuset. Whenever a new
826   * exclusive cpuset is created, we also create and attach a new root-domain
827   * object.
828   *
829   */
830  struct root_domain {
831  	atomic_t		refcount;
832  	atomic_t		rto_count;
833  	struct rcu_head		rcu;
834  	cpumask_var_t		span;
835  	cpumask_var_t		online;
836  
837  	/*
838  	 * Indicate pullable load on at least one CPU, e.g:
839  	 * - More than one runnable task
840  	 * - Running task is misfit
841  	 */
842  	int			overload;
843  
844  	/* Indicate one or more cpus over-utilized (tipping point) */
845  	int			overutilized;
846  
847  	/*
848  	 * The bit corresponding to a CPU gets set here if such CPU has more
849  	 * than one runnable -deadline task (as it is below for RT tasks).
850  	 */
851  	cpumask_var_t		dlo_mask;
852  	atomic_t		dlo_count;
853  	struct dl_bw		dl_bw;
854  	struct cpudl		cpudl;
855  
856  	/*
857  	 * Indicate whether a root_domain's dl_bw has been checked or
858  	 * updated. It's monotonously increasing value.
859  	 *
860  	 * Also, some corner cases, like 'wrap around' is dangerous, but given
861  	 * that u64 is 'big enough'. So that shouldn't be a concern.
862  	 */
863  	u64 visit_gen;
864  
865  #ifdef HAVE_RT_PUSH_IPI
866  	/*
867  	 * For IPI pull requests, loop across the rto_mask.
868  	 */
869  	struct irq_work		rto_push_work;
870  	raw_spinlock_t		rto_lock;
871  	/* These are only updated and read within rto_lock */
872  	int			rto_loop;
873  	int			rto_cpu;
874  	/* These atomics are updated outside of a lock */
875  	atomic_t		rto_loop_next;
876  	atomic_t		rto_loop_start;
877  #endif
878  	/*
879  	 * The "RT overload" flag: it gets set if a CPU has more than
880  	 * one runnable RT task.
881  	 */
882  	cpumask_var_t		rto_mask;
883  	struct cpupri		cpupri;
884  
885  	unsigned long		max_cpu_capacity;
886  
887  	/*
888  	 * NULL-terminated list of performance domains intersecting with the
889  	 * CPUs of the rd. Protected by RCU.
890  	 */
891  	struct perf_domain __rcu *pd;
892  };
893  
894  extern void init_defrootdomain(void);
895  extern int sched_init_domains(const struct cpumask *cpu_map);
896  extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
897  extern void sched_get_rd(struct root_domain *rd);
898  extern void sched_put_rd(struct root_domain *rd);
899  
900  #ifdef HAVE_RT_PUSH_IPI
901  extern void rto_push_irq_work_func(struct irq_work *work);
902  #endif
903  #endif /* CONFIG_SMP */
904  
905  #ifdef CONFIG_UCLAMP_TASK
906  /*
907   * struct uclamp_bucket - Utilization clamp bucket
908   * @value: utilization clamp value for tasks on this clamp bucket
909   * @tasks: number of RUNNABLE tasks on this clamp bucket
910   *
911   * Keep track of how many tasks are RUNNABLE for a given utilization
912   * clamp value.
913   */
914  struct uclamp_bucket {
915  	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
916  	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
917  };
918  
919  /*
920   * struct uclamp_rq - rq's utilization clamp
921   * @value: currently active clamp values for a rq
922   * @bucket: utilization clamp buckets affecting a rq
923   *
924   * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
925   * A clamp value is affecting a rq when there is at least one task RUNNABLE
926   * (or actually running) with that value.
927   *
928   * There are up to UCLAMP_CNT possible different clamp values, currently there
929   * are only two: minimum utilization and maximum utilization.
930   *
931   * All utilization clamping values are MAX aggregated, since:
932   * - for util_min: we want to run the CPU at least at the max of the minimum
933   *   utilization required by its currently RUNNABLE tasks.
934   * - for util_max: we want to allow the CPU to run up to the max of the
935   *   maximum utilization allowed by its currently RUNNABLE tasks.
936   *
937   * Since on each system we expect only a limited number of different
938   * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
939   * the metrics required to compute all the per-rq utilization clamp values.
940   */
941  struct uclamp_rq {
942  	unsigned int value;
943  	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
944  };
945  
946  DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
947  #endif /* CONFIG_UCLAMP_TASK */
948  
949  struct rq;
950  struct balance_callback {
951  	struct balance_callback *next;
952  	void (*func)(struct rq *rq);
953  };
954  
955  /*
956   * This is the main, per-CPU runqueue data structure.
957   *
958   * Locking rule: those places that want to lock multiple runqueues
959   * (such as the load balancing or the thread migration code), lock
960   * acquire operations must be ordered by ascending &runqueue.
961   */
962  struct rq {
963  	/* runqueue lock: */
964  	raw_spinlock_t		__lock;
965  
966  	/*
967  	 * nr_running and cpu_load should be in the same cacheline because
968  	 * remote CPUs use both these fields when doing load calculation.
969  	 */
970  	unsigned int		nr_running;
971  #ifdef CONFIG_NUMA_BALANCING
972  	unsigned int		nr_numa_running;
973  	unsigned int		nr_preferred_running;
974  	unsigned int		numa_migrate_on;
975  #endif
976  #ifdef CONFIG_NO_HZ_COMMON
977  #ifdef CONFIG_SMP
978  	unsigned long		last_blocked_load_update_tick;
979  	unsigned int		has_blocked_load;
980  	call_single_data_t	nohz_csd;
981  #endif /* CONFIG_SMP */
982  	unsigned int		nohz_tick_stopped;
983  	atomic_t		nohz_flags;
984  #endif /* CONFIG_NO_HZ_COMMON */
985  
986  #ifdef CONFIG_SMP
987  	unsigned int		ttwu_pending;
988  #endif
989  	u64			nr_switches;
990  
991  #ifdef CONFIG_UCLAMP_TASK
992  	/* Utilization clamp values based on CPU's RUNNABLE tasks */
993  	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
994  	unsigned int		uclamp_flags;
995  #define UCLAMP_FLAG_IDLE 0x01
996  #endif
997  
998  	struct cfs_rq		cfs;
999  	struct rt_rq		rt;
1000  	struct dl_rq		dl;
1001  
1002  #ifdef CONFIG_FAIR_GROUP_SCHED
1003  	/* list of leaf cfs_rq on this CPU: */
1004  	struct list_head	leaf_cfs_rq_list;
1005  	struct list_head	*tmp_alone_branch;
1006  #endif /* CONFIG_FAIR_GROUP_SCHED */
1007  
1008  	/*
1009  	 * This is part of a global counter where only the total sum
1010  	 * over all CPUs matters. A task can increase this counter on
1011  	 * one CPU and if it got migrated afterwards it may decrease
1012  	 * it on another CPU. Always updated under the runqueue lock:
1013  	 */
1014  	unsigned int		nr_uninterruptible;
1015  
1016  	struct task_struct __rcu	*curr;
1017  	struct task_struct	*idle;
1018  	struct task_struct	*stop;
1019  	unsigned long		next_balance;
1020  	struct mm_struct	*prev_mm;
1021  
1022  	unsigned int		clock_update_flags;
1023  	u64			clock;
1024  	/* Ensure that all clocks are in the same cache line */
1025  	u64			clock_task ____cacheline_aligned;
1026  	u64			clock_pelt;
1027  	unsigned long		lost_idle_time;
1028  	u64			clock_pelt_idle;
1029  	u64			clock_idle;
1030  #ifndef CONFIG_64BIT
1031  	u64			clock_pelt_idle_copy;
1032  	u64			clock_idle_copy;
1033  #endif
1034  
1035  	atomic_t		nr_iowait;
1036  
1037  #ifdef CONFIG_SCHED_DEBUG
1038  	u64 last_seen_need_resched_ns;
1039  	int ticks_without_resched;
1040  #endif
1041  
1042  #ifdef CONFIG_MEMBARRIER
1043  	int membarrier_state;
1044  #endif
1045  
1046  #ifdef CONFIG_SMP
1047  	struct root_domain		*rd;
1048  	struct sched_domain __rcu	*sd;
1049  
1050  	unsigned long		cpu_capacity;
1051  	unsigned long		cpu_capacity_orig;
1052  
1053  	struct balance_callback *balance_callback;
1054  
1055  	unsigned char		nohz_idle_balance;
1056  	unsigned char		idle_balance;
1057  
1058  	unsigned long		misfit_task_load;
1059  
1060  	/* For active balancing */
1061  	int			active_balance;
1062  	int			push_cpu;
1063  	struct cpu_stop_work	active_balance_work;
1064  
1065  	/* CPU of this runqueue: */
1066  	int			cpu;
1067  	int			online;
1068  
1069  	struct list_head cfs_tasks;
1070  
1071  	struct sched_avg	avg_rt;
1072  	struct sched_avg	avg_dl;
1073  #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1074  	struct sched_avg	avg_irq;
1075  #endif
1076  #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1077  	struct sched_avg	avg_thermal;
1078  #endif
1079  	u64			idle_stamp;
1080  	u64			avg_idle;
1081  
1082  	unsigned long		wake_stamp;
1083  	u64			wake_avg_idle;
1084  
1085  	/* This is used to determine avg_idle's max value */
1086  	u64			max_idle_balance_cost;
1087  
1088  #ifdef CONFIG_HOTPLUG_CPU
1089  	struct rcuwait		hotplug_wait;
1090  #endif
1091  #endif /* CONFIG_SMP */
1092  
1093  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1094  	u64			prev_irq_time;
1095  	u64			psi_irq_time;
1096  #endif
1097  #ifdef CONFIG_PARAVIRT
1098  	u64			prev_steal_time;
1099  #endif
1100  #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1101  	u64			prev_steal_time_rq;
1102  #endif
1103  
1104  	/* calc_load related fields */
1105  	unsigned long		calc_load_update;
1106  	long			calc_load_active;
1107  
1108  #ifdef CONFIG_SCHED_HRTICK
1109  #ifdef CONFIG_SMP
1110  	call_single_data_t	hrtick_csd;
1111  #endif
1112  	struct hrtimer		hrtick_timer;
1113  	ktime_t 		hrtick_time;
1114  #endif
1115  
1116  #ifdef CONFIG_SCHEDSTATS
1117  	/* latency stats */
1118  	struct sched_info	rq_sched_info;
1119  	unsigned long long	rq_cpu_time;
1120  	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1121  
1122  	/* sys_sched_yield() stats */
1123  	unsigned int		yld_count;
1124  
1125  	/* schedule() stats */
1126  	unsigned int		sched_count;
1127  	unsigned int		sched_goidle;
1128  
1129  	/* try_to_wake_up() stats */
1130  	unsigned int		ttwu_count;
1131  	unsigned int		ttwu_local;
1132  #endif
1133  
1134  #ifdef CONFIG_CPU_IDLE
1135  	/* Must be inspected within a rcu lock section */
1136  	struct cpuidle_state	*idle_state;
1137  #endif
1138  
1139  #ifdef CONFIG_SMP
1140  	unsigned int		nr_pinned;
1141  #endif
1142  	unsigned int		push_busy;
1143  	struct cpu_stop_work	push_work;
1144  
1145  #ifdef CONFIG_SCHED_CORE
1146  	/* per rq */
1147  	struct rq		*core;
1148  	struct task_struct	*core_pick;
1149  	unsigned int		core_enabled;
1150  	unsigned int		core_sched_seq;
1151  	struct rb_root		core_tree;
1152  
1153  	/* shared state -- careful with sched_core_cpu_deactivate() */
1154  	unsigned int		core_task_seq;
1155  	unsigned int		core_pick_seq;
1156  	unsigned long		core_cookie;
1157  	unsigned int		core_forceidle_count;
1158  	unsigned int		core_forceidle_seq;
1159  	unsigned int		core_forceidle_occupation;
1160  	u64			core_forceidle_start;
1161  #endif
1162  
1163  	/* Scratch cpumask to be temporarily used under rq_lock */
1164  	cpumask_var_t		scratch_mask;
1165  
1166  #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1167  	call_single_data_t	cfsb_csd;
1168  	struct list_head	cfsb_csd_list;
1169  #endif
1170  };
1171  
1172  #ifdef CONFIG_FAIR_GROUP_SCHED
1173  
1174  /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1175  static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1176  {
1177  	return cfs_rq->rq;
1178  }
1179  
1180  #else
1181  
rq_of(struct cfs_rq * cfs_rq)1182  static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1183  {
1184  	return container_of(cfs_rq, struct rq, cfs);
1185  }
1186  #endif
1187  
cpu_of(struct rq * rq)1188  static inline int cpu_of(struct rq *rq)
1189  {
1190  #ifdef CONFIG_SMP
1191  	return rq->cpu;
1192  #else
1193  	return 0;
1194  #endif
1195  }
1196  
1197  #define MDF_PUSH	0x01
1198  
is_migration_disabled(struct task_struct * p)1199  static inline bool is_migration_disabled(struct task_struct *p)
1200  {
1201  #ifdef CONFIG_SMP
1202  	return p->migration_disabled;
1203  #else
1204  	return false;
1205  #endif
1206  }
1207  
1208  DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1209  
1210  #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1211  #define this_rq()		this_cpu_ptr(&runqueues)
1212  #define task_rq(p)		cpu_rq(task_cpu(p))
1213  #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1214  #define raw_rq()		raw_cpu_ptr(&runqueues)
1215  
1216  struct sched_group;
1217  #ifdef CONFIG_SCHED_CORE
1218  static inline struct cpumask *sched_group_span(struct sched_group *sg);
1219  
1220  DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1221  
sched_core_enabled(struct rq * rq)1222  static inline bool sched_core_enabled(struct rq *rq)
1223  {
1224  	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1225  }
1226  
sched_core_disabled(void)1227  static inline bool sched_core_disabled(void)
1228  {
1229  	return !static_branch_unlikely(&__sched_core_enabled);
1230  }
1231  
1232  /*
1233   * Be careful with this function; not for general use. The return value isn't
1234   * stable unless you actually hold a relevant rq->__lock.
1235   */
rq_lockp(struct rq * rq)1236  static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1237  {
1238  	if (sched_core_enabled(rq))
1239  		return &rq->core->__lock;
1240  
1241  	return &rq->__lock;
1242  }
1243  
__rq_lockp(struct rq * rq)1244  static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1245  {
1246  	if (rq->core_enabled)
1247  		return &rq->core->__lock;
1248  
1249  	return &rq->__lock;
1250  }
1251  
1252  bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1253  			bool fi);
1254  void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1255  
1256  /*
1257   * Helpers to check if the CPU's core cookie matches with the task's cookie
1258   * when core scheduling is enabled.
1259   * A special case is that the task's cookie always matches with CPU's core
1260   * cookie if the CPU is in an idle core.
1261   */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1262  static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1263  {
1264  	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1265  	if (!sched_core_enabled(rq))
1266  		return true;
1267  
1268  	return rq->core->core_cookie == p->core_cookie;
1269  }
1270  
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1271  static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1272  {
1273  	bool idle_core = true;
1274  	int cpu;
1275  
1276  	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277  	if (!sched_core_enabled(rq))
1278  		return true;
1279  
1280  	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1281  		if (!available_idle_cpu(cpu)) {
1282  			idle_core = false;
1283  			break;
1284  		}
1285  	}
1286  
1287  	/*
1288  	 * A CPU in an idle core is always the best choice for tasks with
1289  	 * cookies.
1290  	 */
1291  	return idle_core || rq->core->core_cookie == p->core_cookie;
1292  }
1293  
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1294  static inline bool sched_group_cookie_match(struct rq *rq,
1295  					    struct task_struct *p,
1296  					    struct sched_group *group)
1297  {
1298  	int cpu;
1299  
1300  	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1301  	if (!sched_core_enabled(rq))
1302  		return true;
1303  
1304  	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1305  		if (sched_core_cookie_match(cpu_rq(cpu), p))
1306  			return true;
1307  	}
1308  	return false;
1309  }
1310  
sched_core_enqueued(struct task_struct * p)1311  static inline bool sched_core_enqueued(struct task_struct *p)
1312  {
1313  	return !RB_EMPTY_NODE(&p->core_node);
1314  }
1315  
1316  extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1317  extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1318  
1319  extern void sched_core_get(void);
1320  extern void sched_core_put(void);
1321  
1322  #else /* !CONFIG_SCHED_CORE */
1323  
sched_core_enabled(struct rq * rq)1324  static inline bool sched_core_enabled(struct rq *rq)
1325  {
1326  	return false;
1327  }
1328  
sched_core_disabled(void)1329  static inline bool sched_core_disabled(void)
1330  {
1331  	return true;
1332  }
1333  
rq_lockp(struct rq * rq)1334  static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1335  {
1336  	return &rq->__lock;
1337  }
1338  
__rq_lockp(struct rq * rq)1339  static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1340  {
1341  	return &rq->__lock;
1342  }
1343  
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1344  static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1345  {
1346  	return true;
1347  }
1348  
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1349  static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1350  {
1351  	return true;
1352  }
1353  
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1354  static inline bool sched_group_cookie_match(struct rq *rq,
1355  					    struct task_struct *p,
1356  					    struct sched_group *group)
1357  {
1358  	return true;
1359  }
1360  #endif /* CONFIG_SCHED_CORE */
1361  
lockdep_assert_rq_held(struct rq * rq)1362  static inline void lockdep_assert_rq_held(struct rq *rq)
1363  {
1364  	lockdep_assert_held(__rq_lockp(rq));
1365  }
1366  
1367  extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1368  extern bool raw_spin_rq_trylock(struct rq *rq);
1369  extern void raw_spin_rq_unlock(struct rq *rq);
1370  
raw_spin_rq_lock(struct rq * rq)1371  static inline void raw_spin_rq_lock(struct rq *rq)
1372  {
1373  	raw_spin_rq_lock_nested(rq, 0);
1374  }
1375  
raw_spin_rq_lock_irq(struct rq * rq)1376  static inline void raw_spin_rq_lock_irq(struct rq *rq)
1377  {
1378  	local_irq_disable();
1379  	raw_spin_rq_lock(rq);
1380  }
1381  
raw_spin_rq_unlock_irq(struct rq * rq)1382  static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1383  {
1384  	raw_spin_rq_unlock(rq);
1385  	local_irq_enable();
1386  }
1387  
_raw_spin_rq_lock_irqsave(struct rq * rq)1388  static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1389  {
1390  	unsigned long flags;
1391  	local_irq_save(flags);
1392  	raw_spin_rq_lock(rq);
1393  	return flags;
1394  }
1395  
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1396  static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1397  {
1398  	raw_spin_rq_unlock(rq);
1399  	local_irq_restore(flags);
1400  }
1401  
1402  #define raw_spin_rq_lock_irqsave(rq, flags)	\
1403  do {						\
1404  	flags = _raw_spin_rq_lock_irqsave(rq);	\
1405  } while (0)
1406  
1407  #ifdef CONFIG_SCHED_SMT
1408  extern void __update_idle_core(struct rq *rq);
1409  
update_idle_core(struct rq * rq)1410  static inline void update_idle_core(struct rq *rq)
1411  {
1412  	if (static_branch_unlikely(&sched_smt_present))
1413  		__update_idle_core(rq);
1414  }
1415  
1416  #else
update_idle_core(struct rq * rq)1417  static inline void update_idle_core(struct rq *rq) { }
1418  #endif
1419  
1420  #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1421  static inline struct task_struct *task_of(struct sched_entity *se)
1422  {
1423  	SCHED_WARN_ON(!entity_is_task(se));
1424  	return container_of(se, struct task_struct, se);
1425  }
1426  
task_cfs_rq(struct task_struct * p)1427  static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1428  {
1429  	return p->se.cfs_rq;
1430  }
1431  
1432  /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1433  static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1434  {
1435  	return se->cfs_rq;
1436  }
1437  
1438  /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1439  static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1440  {
1441  	return grp->my_q;
1442  }
1443  
1444  #else
1445  
1446  #define task_of(_se)	container_of(_se, struct task_struct, se)
1447  
task_cfs_rq(const struct task_struct * p)1448  static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1449  {
1450  	return &task_rq(p)->cfs;
1451  }
1452  
cfs_rq_of(const struct sched_entity * se)1453  static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1454  {
1455  	const struct task_struct *p = task_of(se);
1456  	struct rq *rq = task_rq(p);
1457  
1458  	return &rq->cfs;
1459  }
1460  
1461  /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1462  static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1463  {
1464  	return NULL;
1465  }
1466  #endif
1467  
1468  extern void update_rq_clock(struct rq *rq);
1469  
1470  /*
1471   * rq::clock_update_flags bits
1472   *
1473   * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1474   *  call to __schedule(). This is an optimisation to avoid
1475   *  neighbouring rq clock updates.
1476   *
1477   * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1478   *  in effect and calls to update_rq_clock() are being ignored.
1479   *
1480   * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1481   *  made to update_rq_clock() since the last time rq::lock was pinned.
1482   *
1483   * If inside of __schedule(), clock_update_flags will have been
1484   * shifted left (a left shift is a cheap operation for the fast path
1485   * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1486   *
1487   *	if (rq-clock_update_flags >= RQCF_UPDATED)
1488   *
1489   * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1490   * one position though, because the next rq_unpin_lock() will shift it
1491   * back.
1492   */
1493  #define RQCF_REQ_SKIP		0x01
1494  #define RQCF_ACT_SKIP		0x02
1495  #define RQCF_UPDATED		0x04
1496  
assert_clock_updated(struct rq * rq)1497  static inline void assert_clock_updated(struct rq *rq)
1498  {
1499  	/*
1500  	 * The only reason for not seeing a clock update since the
1501  	 * last rq_pin_lock() is if we're currently skipping updates.
1502  	 */
1503  	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1504  }
1505  
rq_clock(struct rq * rq)1506  static inline u64 rq_clock(struct rq *rq)
1507  {
1508  	lockdep_assert_rq_held(rq);
1509  	assert_clock_updated(rq);
1510  
1511  	return rq->clock;
1512  }
1513  
rq_clock_task(struct rq * rq)1514  static inline u64 rq_clock_task(struct rq *rq)
1515  {
1516  	lockdep_assert_rq_held(rq);
1517  	assert_clock_updated(rq);
1518  
1519  	return rq->clock_task;
1520  }
1521  
1522  /**
1523   * By default the decay is the default pelt decay period.
1524   * The decay shift can change the decay period in
1525   * multiples of 32.
1526   *  Decay shift		Decay period(ms)
1527   *	0			32
1528   *	1			64
1529   *	2			128
1530   *	3			256
1531   *	4			512
1532   */
1533  extern int sched_thermal_decay_shift;
1534  
rq_clock_thermal(struct rq * rq)1535  static inline u64 rq_clock_thermal(struct rq *rq)
1536  {
1537  	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1538  }
1539  
rq_clock_skip_update(struct rq * rq)1540  static inline void rq_clock_skip_update(struct rq *rq)
1541  {
1542  	lockdep_assert_rq_held(rq);
1543  	rq->clock_update_flags |= RQCF_REQ_SKIP;
1544  }
1545  
1546  /*
1547   * See rt task throttling, which is the only time a skip
1548   * request is canceled.
1549   */
rq_clock_cancel_skipupdate(struct rq * rq)1550  static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1551  {
1552  	lockdep_assert_rq_held(rq);
1553  	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1554  }
1555  
1556  /*
1557   * During cpu offlining and rq wide unthrottling, we can trigger
1558   * an update_rq_clock() for several cfs and rt runqueues (Typically
1559   * when using list_for_each_entry_*)
1560   * rq_clock_start_loop_update() can be called after updating the clock
1561   * once and before iterating over the list to prevent multiple update.
1562   * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1563   * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1564   */
rq_clock_start_loop_update(struct rq * rq)1565  static inline void rq_clock_start_loop_update(struct rq *rq)
1566  {
1567  	lockdep_assert_rq_held(rq);
1568  	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1569  	rq->clock_update_flags |= RQCF_ACT_SKIP;
1570  }
1571  
rq_clock_stop_loop_update(struct rq * rq)1572  static inline void rq_clock_stop_loop_update(struct rq *rq)
1573  {
1574  	lockdep_assert_rq_held(rq);
1575  	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1576  }
1577  
1578  struct rq_flags {
1579  	unsigned long flags;
1580  	struct pin_cookie cookie;
1581  #ifdef CONFIG_SCHED_DEBUG
1582  	/*
1583  	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1584  	 * current pin context is stashed here in case it needs to be
1585  	 * restored in rq_repin_lock().
1586  	 */
1587  	unsigned int clock_update_flags;
1588  #endif
1589  };
1590  
1591  extern struct balance_callback balance_push_callback;
1592  
1593  /*
1594   * Lockdep annotation that avoids accidental unlocks; it's like a
1595   * sticky/continuous lockdep_assert_held().
1596   *
1597   * This avoids code that has access to 'struct rq *rq' (basically everything in
1598   * the scheduler) from accidentally unlocking the rq if they do not also have a
1599   * copy of the (on-stack) 'struct rq_flags rf'.
1600   *
1601   * Also see Documentation/locking/lockdep-design.rst.
1602   */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1603  static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1604  {
1605  	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1606  
1607  #ifdef CONFIG_SCHED_DEBUG
1608  	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1609  	rf->clock_update_flags = 0;
1610  #ifdef CONFIG_SMP
1611  	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1612  #endif
1613  #endif
1614  }
1615  
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1616  static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1617  {
1618  #ifdef CONFIG_SCHED_DEBUG
1619  	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1620  		rf->clock_update_flags = RQCF_UPDATED;
1621  #endif
1622  
1623  	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1624  }
1625  
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1626  static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1627  {
1628  	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1629  
1630  #ifdef CONFIG_SCHED_DEBUG
1631  	/*
1632  	 * Restore the value we stashed in @rf for this pin context.
1633  	 */
1634  	rq->clock_update_flags |= rf->clock_update_flags;
1635  #endif
1636  }
1637  
1638  struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1639  	__acquires(rq->lock);
1640  
1641  struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1642  	__acquires(p->pi_lock)
1643  	__acquires(rq->lock);
1644  
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1645  static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1646  	__releases(rq->lock)
1647  {
1648  	rq_unpin_lock(rq, rf);
1649  	raw_spin_rq_unlock(rq);
1650  }
1651  
1652  static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1653  task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1654  	__releases(rq->lock)
1655  	__releases(p->pi_lock)
1656  {
1657  	rq_unpin_lock(rq, rf);
1658  	raw_spin_rq_unlock(rq);
1659  	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1660  }
1661  
1662  static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1663  rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1664  	__acquires(rq->lock)
1665  {
1666  	raw_spin_rq_lock_irqsave(rq, rf->flags);
1667  	rq_pin_lock(rq, rf);
1668  }
1669  
1670  static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1671  rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1672  	__acquires(rq->lock)
1673  {
1674  	raw_spin_rq_lock_irq(rq);
1675  	rq_pin_lock(rq, rf);
1676  }
1677  
1678  static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1679  rq_lock(struct rq *rq, struct rq_flags *rf)
1680  	__acquires(rq->lock)
1681  {
1682  	raw_spin_rq_lock(rq);
1683  	rq_pin_lock(rq, rf);
1684  }
1685  
1686  static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1687  rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1688  	__releases(rq->lock)
1689  {
1690  	rq_unpin_lock(rq, rf);
1691  	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1692  }
1693  
1694  static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1695  rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1696  	__releases(rq->lock)
1697  {
1698  	rq_unpin_lock(rq, rf);
1699  	raw_spin_rq_unlock_irq(rq);
1700  }
1701  
1702  static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1703  rq_unlock(struct rq *rq, struct rq_flags *rf)
1704  	__releases(rq->lock)
1705  {
1706  	rq_unpin_lock(rq, rf);
1707  	raw_spin_rq_unlock(rq);
1708  }
1709  
1710  DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1711  		    rq_lock(_T->lock, &_T->rf),
1712  		    rq_unlock(_T->lock, &_T->rf),
1713  		    struct rq_flags rf)
1714  
1715  DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1716  		    rq_lock_irq(_T->lock, &_T->rf),
1717  		    rq_unlock_irq(_T->lock, &_T->rf),
1718  		    struct rq_flags rf)
1719  
1720  DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1721  		    rq_lock_irqsave(_T->lock, &_T->rf),
1722  		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1723  		    struct rq_flags rf)
1724  
1725  static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1726  this_rq_lock_irq(struct rq_flags *rf)
1727  	__acquires(rq->lock)
1728  {
1729  	struct rq *rq;
1730  
1731  	local_irq_disable();
1732  	rq = this_rq();
1733  	rq_lock(rq, rf);
1734  	return rq;
1735  }
1736  
1737  #ifdef CONFIG_NUMA
1738  enum numa_topology_type {
1739  	NUMA_DIRECT,
1740  	NUMA_GLUELESS_MESH,
1741  	NUMA_BACKPLANE,
1742  };
1743  extern enum numa_topology_type sched_numa_topology_type;
1744  extern int sched_max_numa_distance;
1745  extern bool find_numa_distance(int distance);
1746  extern void sched_init_numa(int offline_node);
1747  extern void sched_update_numa(int cpu, bool online);
1748  extern void sched_domains_numa_masks_set(unsigned int cpu);
1749  extern void sched_domains_numa_masks_clear(unsigned int cpu);
1750  extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1751  #else
sched_init_numa(int offline_node)1752  static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1753  static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1754  static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1755  static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1756  static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1757  {
1758  	return nr_cpu_ids;
1759  }
1760  #endif
1761  
1762  #ifdef CONFIG_NUMA_BALANCING
1763  /* The regions in numa_faults array from task_struct */
1764  enum numa_faults_stats {
1765  	NUMA_MEM = 0,
1766  	NUMA_CPU,
1767  	NUMA_MEMBUF,
1768  	NUMA_CPUBUF
1769  };
1770  extern void sched_setnuma(struct task_struct *p, int node);
1771  extern int migrate_task_to(struct task_struct *p, int cpu);
1772  extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1773  			int cpu, int scpu);
1774  extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1775  #else
1776  static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1777  init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1778  {
1779  }
1780  #endif /* CONFIG_NUMA_BALANCING */
1781  
1782  #ifdef CONFIG_SMP
1783  
1784  static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1785  queue_balance_callback(struct rq *rq,
1786  		       struct balance_callback *head,
1787  		       void (*func)(struct rq *rq))
1788  {
1789  	lockdep_assert_rq_held(rq);
1790  
1791  	/*
1792  	 * Don't (re)queue an already queued item; nor queue anything when
1793  	 * balance_push() is active, see the comment with
1794  	 * balance_push_callback.
1795  	 */
1796  	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1797  		return;
1798  
1799  	head->func = func;
1800  	head->next = rq->balance_callback;
1801  	rq->balance_callback = head;
1802  }
1803  
1804  #define rcu_dereference_check_sched_domain(p) \
1805  	rcu_dereference_check((p), \
1806  			      lockdep_is_held(&sched_domains_mutex))
1807  
1808  /*
1809   * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1810   * See destroy_sched_domains: call_rcu for details.
1811   *
1812   * The domain tree of any CPU may only be accessed from within
1813   * preempt-disabled sections.
1814   */
1815  #define for_each_domain(cpu, __sd) \
1816  	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1817  			__sd; __sd = __sd->parent)
1818  
1819  /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1820  #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1821  static const unsigned int SD_SHARED_CHILD_MASK =
1822  #include <linux/sched/sd_flags.h>
1823  0;
1824  #undef SD_FLAG
1825  
1826  /**
1827   * highest_flag_domain - Return highest sched_domain containing flag.
1828   * @cpu:	The CPU whose highest level of sched domain is to
1829   *		be returned.
1830   * @flag:	The flag to check for the highest sched_domain
1831   *		for the given CPU.
1832   *
1833   * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1834   * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1835   */
highest_flag_domain(int cpu,int flag)1836  static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1837  {
1838  	struct sched_domain *sd, *hsd = NULL;
1839  
1840  	for_each_domain(cpu, sd) {
1841  		if (sd->flags & flag) {
1842  			hsd = sd;
1843  			continue;
1844  		}
1845  
1846  		/*
1847  		 * Stop the search if @flag is known to be shared at lower
1848  		 * levels. It will not be found further up.
1849  		 */
1850  		if (flag & SD_SHARED_CHILD_MASK)
1851  			break;
1852  	}
1853  
1854  	return hsd;
1855  }
1856  
lowest_flag_domain(int cpu,int flag)1857  static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1858  {
1859  	struct sched_domain *sd;
1860  
1861  	for_each_domain(cpu, sd) {
1862  		if (sd->flags & flag)
1863  			break;
1864  	}
1865  
1866  	return sd;
1867  }
1868  
1869  DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1870  DECLARE_PER_CPU(int, sd_llc_size);
1871  DECLARE_PER_CPU(int, sd_llc_id);
1872  DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1873  DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1874  DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1875  DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1876  extern struct static_key_false sched_asym_cpucapacity;
1877  
sched_asym_cpucap_active(void)1878  static __always_inline bool sched_asym_cpucap_active(void)
1879  {
1880  	return static_branch_unlikely(&sched_asym_cpucapacity);
1881  }
1882  
1883  struct sched_group_capacity {
1884  	atomic_t		ref;
1885  	/*
1886  	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1887  	 * for a single CPU.
1888  	 */
1889  	unsigned long		capacity;
1890  	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1891  	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1892  	unsigned long		next_update;
1893  	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1894  
1895  #ifdef CONFIG_SCHED_DEBUG
1896  	int			id;
1897  #endif
1898  
1899  	unsigned long		cpumask[];		/* Balance mask */
1900  };
1901  
1902  struct sched_group {
1903  	struct sched_group	*next;			/* Must be a circular list */
1904  	atomic_t		ref;
1905  
1906  	unsigned int		group_weight;
1907  	unsigned int		cores;
1908  	struct sched_group_capacity *sgc;
1909  	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1910  	int			flags;
1911  
1912  	/*
1913  	 * The CPUs this group covers.
1914  	 *
1915  	 * NOTE: this field is variable length. (Allocated dynamically
1916  	 * by attaching extra space to the end of the structure,
1917  	 * depending on how many CPUs the kernel has booted up with)
1918  	 */
1919  	unsigned long		cpumask[];
1920  };
1921  
sched_group_span(struct sched_group * sg)1922  static inline struct cpumask *sched_group_span(struct sched_group *sg)
1923  {
1924  	return to_cpumask(sg->cpumask);
1925  }
1926  
1927  /*
1928   * See build_balance_mask().
1929   */
group_balance_mask(struct sched_group * sg)1930  static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1931  {
1932  	return to_cpumask(sg->sgc->cpumask);
1933  }
1934  
1935  extern int group_balance_cpu(struct sched_group *sg);
1936  
1937  #ifdef CONFIG_SCHED_DEBUG
1938  void update_sched_domain_debugfs(void);
1939  void dirty_sched_domain_sysctl(int cpu);
1940  #else
update_sched_domain_debugfs(void)1941  static inline void update_sched_domain_debugfs(void)
1942  {
1943  }
dirty_sched_domain_sysctl(int cpu)1944  static inline void dirty_sched_domain_sysctl(int cpu)
1945  {
1946  }
1947  #endif
1948  
1949  extern int sched_update_scaling(void);
1950  
task_user_cpus(struct task_struct * p)1951  static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1952  {
1953  	if (!p->user_cpus_ptr)
1954  		return cpu_possible_mask; /* &init_task.cpus_mask */
1955  	return p->user_cpus_ptr;
1956  }
1957  #endif /* CONFIG_SMP */
1958  
1959  #include "stats.h"
1960  
1961  #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1962  
1963  extern void __sched_core_account_forceidle(struct rq *rq);
1964  
sched_core_account_forceidle(struct rq * rq)1965  static inline void sched_core_account_forceidle(struct rq *rq)
1966  {
1967  	if (schedstat_enabled())
1968  		__sched_core_account_forceidle(rq);
1969  }
1970  
1971  extern void __sched_core_tick(struct rq *rq);
1972  
sched_core_tick(struct rq * rq)1973  static inline void sched_core_tick(struct rq *rq)
1974  {
1975  	if (sched_core_enabled(rq) && schedstat_enabled())
1976  		__sched_core_tick(rq);
1977  }
1978  
1979  #else
1980  
sched_core_account_forceidle(struct rq * rq)1981  static inline void sched_core_account_forceidle(struct rq *rq) {}
1982  
sched_core_tick(struct rq * rq)1983  static inline void sched_core_tick(struct rq *rq) {}
1984  
1985  #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1986  
1987  #ifdef CONFIG_CGROUP_SCHED
1988  
1989  /*
1990   * Return the group to which this tasks belongs.
1991   *
1992   * We cannot use task_css() and friends because the cgroup subsystem
1993   * changes that value before the cgroup_subsys::attach() method is called,
1994   * therefore we cannot pin it and might observe the wrong value.
1995   *
1996   * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1997   * core changes this before calling sched_move_task().
1998   *
1999   * Instead we use a 'copy' which is updated from sched_move_task() while
2000   * holding both task_struct::pi_lock and rq::lock.
2001   */
task_group(struct task_struct * p)2002  static inline struct task_group *task_group(struct task_struct *p)
2003  {
2004  	return p->sched_task_group;
2005  }
2006  
2007  /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2008  static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2009  {
2010  #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2011  	struct task_group *tg = task_group(p);
2012  #endif
2013  
2014  #ifdef CONFIG_FAIR_GROUP_SCHED
2015  	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2016  	p->se.cfs_rq = tg->cfs_rq[cpu];
2017  	p->se.parent = tg->se[cpu];
2018  	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2019  #endif
2020  
2021  #ifdef CONFIG_RT_GROUP_SCHED
2022  	p->rt.rt_rq  = tg->rt_rq[cpu];
2023  	p->rt.parent = tg->rt_se[cpu];
2024  #endif
2025  }
2026  
2027  #else /* CONFIG_CGROUP_SCHED */
2028  
set_task_rq(struct task_struct * p,unsigned int cpu)2029  static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2030  static inline struct task_group *task_group(struct task_struct *p)
2031  {
2032  	return NULL;
2033  }
2034  
2035  #endif /* CONFIG_CGROUP_SCHED */
2036  
__set_task_cpu(struct task_struct * p,unsigned int cpu)2037  static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2038  {
2039  	set_task_rq(p, cpu);
2040  #ifdef CONFIG_SMP
2041  	/*
2042  	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2043  	 * successfully executed on another CPU. We must ensure that updates of
2044  	 * per-task data have been completed by this moment.
2045  	 */
2046  	smp_wmb();
2047  	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2048  	p->wake_cpu = cpu;
2049  #endif
2050  }
2051  
2052  /*
2053   * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2054   */
2055  #ifdef CONFIG_SCHED_DEBUG
2056  # define const_debug __read_mostly
2057  #else
2058  # define const_debug const
2059  #endif
2060  
2061  #define SCHED_FEAT(name, enabled)	\
2062  	__SCHED_FEAT_##name ,
2063  
2064  enum {
2065  #include "features.h"
2066  	__SCHED_FEAT_NR,
2067  };
2068  
2069  #undef SCHED_FEAT
2070  
2071  #ifdef CONFIG_SCHED_DEBUG
2072  
2073  /*
2074   * To support run-time toggling of sched features, all the translation units
2075   * (but core.c) reference the sysctl_sched_features defined in core.c.
2076   */
2077  extern const_debug unsigned int sysctl_sched_features;
2078  
2079  #ifdef CONFIG_JUMP_LABEL
2080  #define SCHED_FEAT(name, enabled)					\
2081  static __always_inline bool static_branch_##name(struct static_key *key) \
2082  {									\
2083  	return static_key_##enabled(key);				\
2084  }
2085  
2086  #include "features.h"
2087  #undef SCHED_FEAT
2088  
2089  extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2090  #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2091  
2092  #else /* !CONFIG_JUMP_LABEL */
2093  
2094  #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2095  
2096  #endif /* CONFIG_JUMP_LABEL */
2097  
2098  #else /* !SCHED_DEBUG */
2099  
2100  /*
2101   * Each translation unit has its own copy of sysctl_sched_features to allow
2102   * constants propagation at compile time and compiler optimization based on
2103   * features default.
2104   */
2105  #define SCHED_FEAT(name, enabled)	\
2106  	(1UL << __SCHED_FEAT_##name) * enabled |
2107  static const_debug __maybe_unused unsigned int sysctl_sched_features =
2108  #include "features.h"
2109  	0;
2110  #undef SCHED_FEAT
2111  
2112  #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2113  
2114  #endif /* SCHED_DEBUG */
2115  
2116  extern struct static_key_false sched_numa_balancing;
2117  extern struct static_key_false sched_schedstats;
2118  
global_rt_period(void)2119  static inline u64 global_rt_period(void)
2120  {
2121  	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2122  }
2123  
global_rt_runtime(void)2124  static inline u64 global_rt_runtime(void)
2125  {
2126  	if (sysctl_sched_rt_runtime < 0)
2127  		return RUNTIME_INF;
2128  
2129  	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2130  }
2131  
task_current(struct rq * rq,struct task_struct * p)2132  static inline int task_current(struct rq *rq, struct task_struct *p)
2133  {
2134  	return rq->curr == p;
2135  }
2136  
task_on_cpu(struct rq * rq,struct task_struct * p)2137  static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2138  {
2139  #ifdef CONFIG_SMP
2140  	return p->on_cpu;
2141  #else
2142  	return task_current(rq, p);
2143  #endif
2144  }
2145  
task_on_rq_queued(struct task_struct * p)2146  static inline int task_on_rq_queued(struct task_struct *p)
2147  {
2148  	return p->on_rq == TASK_ON_RQ_QUEUED;
2149  }
2150  
task_on_rq_migrating(struct task_struct * p)2151  static inline int task_on_rq_migrating(struct task_struct *p)
2152  {
2153  	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2154  }
2155  
2156  /* Wake flags. The first three directly map to some SD flag value */
2157  #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2158  #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2159  #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2160  
2161  #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2162  #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2163  #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2164  
2165  #ifdef CONFIG_SMP
2166  static_assert(WF_EXEC == SD_BALANCE_EXEC);
2167  static_assert(WF_FORK == SD_BALANCE_FORK);
2168  static_assert(WF_TTWU == SD_BALANCE_WAKE);
2169  #endif
2170  
2171  /*
2172   * To aid in avoiding the subversion of "niceness" due to uneven distribution
2173   * of tasks with abnormal "nice" values across CPUs the contribution that
2174   * each task makes to its run queue's load is weighted according to its
2175   * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2176   * scaled version of the new time slice allocation that they receive on time
2177   * slice expiry etc.
2178   */
2179  
2180  #define WEIGHT_IDLEPRIO		3
2181  #define WMULT_IDLEPRIO		1431655765
2182  
2183  extern const int		sched_prio_to_weight[40];
2184  extern const u32		sched_prio_to_wmult[40];
2185  
2186  /*
2187   * {de,en}queue flags:
2188   *
2189   * DEQUEUE_SLEEP  - task is no longer runnable
2190   * ENQUEUE_WAKEUP - task just became runnable
2191   *
2192   * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2193   *                are in a known state which allows modification. Such pairs
2194   *                should preserve as much state as possible.
2195   *
2196   * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2197   *        in the runqueue.
2198   *
2199   * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2200   *
2201   * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2202   *
2203   * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2204   * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2205   * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2206   *
2207   */
2208  
2209  #define DEQUEUE_SLEEP		0x01
2210  #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2211  #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2212  #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2213  #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2214  
2215  #define ENQUEUE_WAKEUP		0x01
2216  #define ENQUEUE_RESTORE		0x02
2217  #define ENQUEUE_MOVE		0x04
2218  #define ENQUEUE_NOCLOCK		0x08
2219  
2220  #define ENQUEUE_HEAD		0x10
2221  #define ENQUEUE_REPLENISH	0x20
2222  #ifdef CONFIG_SMP
2223  #define ENQUEUE_MIGRATED	0x40
2224  #else
2225  #define ENQUEUE_MIGRATED	0x00
2226  #endif
2227  #define ENQUEUE_INITIAL		0x80
2228  #define ENQUEUE_MIGRATING	0x100
2229  
2230  #define RETRY_TASK		((void *)-1UL)
2231  
2232  struct affinity_context {
2233  	const struct cpumask *new_mask;
2234  	struct cpumask *user_mask;
2235  	unsigned int flags;
2236  };
2237  
2238  extern s64 update_curr_common(struct rq *rq);
2239  
2240  struct sched_class {
2241  
2242  #ifdef CONFIG_UCLAMP_TASK
2243  	int uclamp_enabled;
2244  #endif
2245  
2246  	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2247  	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2248  	void (*yield_task)   (struct rq *rq);
2249  	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2250  
2251  	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2252  
2253  	struct task_struct *(*pick_next_task)(struct rq *rq);
2254  
2255  	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2256  	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2257  
2258  #ifdef CONFIG_SMP
2259  	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2260  	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2261  
2262  	struct task_struct * (*pick_task)(struct rq *rq);
2263  
2264  	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2265  
2266  	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2267  
2268  	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2269  
2270  	void (*rq_online)(struct rq *rq);
2271  	void (*rq_offline)(struct rq *rq);
2272  
2273  	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2274  #endif
2275  
2276  	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2277  	void (*task_fork)(struct task_struct *p);
2278  	void (*task_dead)(struct task_struct *p);
2279  
2280  	/*
2281  	 * The switched_from() call is allowed to drop rq->lock, therefore we
2282  	 * cannot assume the switched_from/switched_to pair is serialized by
2283  	 * rq->lock. They are however serialized by p->pi_lock.
2284  	 */
2285  	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2286  	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2287  	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2288  			      int oldprio);
2289  
2290  	unsigned int (*get_rr_interval)(struct rq *rq,
2291  					struct task_struct *task);
2292  
2293  	void (*update_curr)(struct rq *rq);
2294  
2295  #ifdef CONFIG_FAIR_GROUP_SCHED
2296  	void (*task_change_group)(struct task_struct *p);
2297  #endif
2298  
2299  #ifdef CONFIG_SCHED_CORE
2300  	int (*task_is_throttled)(struct task_struct *p, int cpu);
2301  #endif
2302  };
2303  
put_prev_task(struct rq * rq,struct task_struct * prev)2304  static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2305  {
2306  	WARN_ON_ONCE(rq->curr != prev);
2307  	prev->sched_class->put_prev_task(rq, prev);
2308  }
2309  
set_next_task(struct rq * rq,struct task_struct * next)2310  static inline void set_next_task(struct rq *rq, struct task_struct *next)
2311  {
2312  	next->sched_class->set_next_task(rq, next, false);
2313  }
2314  
2315  
2316  /*
2317   * Helper to define a sched_class instance; each one is placed in a separate
2318   * section which is ordered by the linker script:
2319   *
2320   *   include/asm-generic/vmlinux.lds.h
2321   *
2322   * *CAREFUL* they are laid out in *REVERSE* order!!!
2323   *
2324   * Also enforce alignment on the instance, not the type, to guarantee layout.
2325   */
2326  #define DEFINE_SCHED_CLASS(name) \
2327  const struct sched_class name##_sched_class \
2328  	__aligned(__alignof__(struct sched_class)) \
2329  	__section("__" #name "_sched_class")
2330  
2331  /* Defined in include/asm-generic/vmlinux.lds.h */
2332  extern struct sched_class __sched_class_highest[];
2333  extern struct sched_class __sched_class_lowest[];
2334  
2335  #define for_class_range(class, _from, _to) \
2336  	for (class = (_from); class < (_to); class++)
2337  
2338  #define for_each_class(class) \
2339  	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2340  
2341  #define sched_class_above(_a, _b)	((_a) < (_b))
2342  
2343  extern const struct sched_class stop_sched_class;
2344  extern const struct sched_class dl_sched_class;
2345  extern const struct sched_class rt_sched_class;
2346  extern const struct sched_class fair_sched_class;
2347  extern const struct sched_class idle_sched_class;
2348  
sched_stop_runnable(struct rq * rq)2349  static inline bool sched_stop_runnable(struct rq *rq)
2350  {
2351  	return rq->stop && task_on_rq_queued(rq->stop);
2352  }
2353  
sched_dl_runnable(struct rq * rq)2354  static inline bool sched_dl_runnable(struct rq *rq)
2355  {
2356  	return rq->dl.dl_nr_running > 0;
2357  }
2358  
sched_rt_runnable(struct rq * rq)2359  static inline bool sched_rt_runnable(struct rq *rq)
2360  {
2361  	return rq->rt.rt_queued > 0;
2362  }
2363  
sched_fair_runnable(struct rq * rq)2364  static inline bool sched_fair_runnable(struct rq *rq)
2365  {
2366  	return rq->cfs.nr_running > 0;
2367  }
2368  
2369  extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2370  extern struct task_struct *pick_next_task_idle(struct rq *rq);
2371  
2372  #define SCA_CHECK		0x01
2373  #define SCA_MIGRATE_DISABLE	0x02
2374  #define SCA_MIGRATE_ENABLE	0x04
2375  #define SCA_USER		0x08
2376  
2377  #ifdef CONFIG_SMP
2378  
2379  extern void update_group_capacity(struct sched_domain *sd, int cpu);
2380  
2381  extern void trigger_load_balance(struct rq *rq);
2382  
2383  extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2384  
get_push_task(struct rq * rq)2385  static inline struct task_struct *get_push_task(struct rq *rq)
2386  {
2387  	struct task_struct *p = rq->curr;
2388  
2389  	lockdep_assert_rq_held(rq);
2390  
2391  	if (rq->push_busy)
2392  		return NULL;
2393  
2394  	if (p->nr_cpus_allowed == 1)
2395  		return NULL;
2396  
2397  	if (p->migration_disabled)
2398  		return NULL;
2399  
2400  	rq->push_busy = true;
2401  	return get_task_struct(p);
2402  }
2403  
2404  extern int push_cpu_stop(void *arg);
2405  
2406  #endif
2407  
2408  #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2409  static inline void idle_set_state(struct rq *rq,
2410  				  struct cpuidle_state *idle_state)
2411  {
2412  	rq->idle_state = idle_state;
2413  }
2414  
idle_get_state(struct rq * rq)2415  static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2416  {
2417  	SCHED_WARN_ON(!rcu_read_lock_held());
2418  
2419  	return rq->idle_state;
2420  }
2421  #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2422  static inline void idle_set_state(struct rq *rq,
2423  				  struct cpuidle_state *idle_state)
2424  {
2425  }
2426  
idle_get_state(struct rq * rq)2427  static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2428  {
2429  	return NULL;
2430  }
2431  #endif
2432  
2433  extern void schedule_idle(void);
2434  asmlinkage void schedule_user(void);
2435  
2436  extern void sysrq_sched_debug_show(void);
2437  extern void sched_init_granularity(void);
2438  extern void update_max_interval(void);
2439  
2440  extern void init_sched_dl_class(void);
2441  extern void init_sched_rt_class(void);
2442  extern void init_sched_fair_class(void);
2443  
2444  extern void reweight_task(struct task_struct *p, const struct load_weight *lw);
2445  
2446  extern void resched_curr(struct rq *rq);
2447  extern void resched_cpu(int cpu);
2448  
2449  extern struct rt_bandwidth def_rt_bandwidth;
2450  extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2451  extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2452  
2453  extern void init_dl_entity(struct sched_dl_entity *dl_se);
2454  
2455  #define BW_SHIFT		20
2456  #define BW_UNIT			(1 << BW_SHIFT)
2457  #define RATIO_SHIFT		8
2458  #define MAX_BW_BITS		(64 - BW_SHIFT)
2459  #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2460  unsigned long to_ratio(u64 period, u64 runtime);
2461  
2462  extern void init_entity_runnable_average(struct sched_entity *se);
2463  extern void post_init_entity_util_avg(struct task_struct *p);
2464  
2465  #ifdef CONFIG_NO_HZ_FULL
2466  extern bool sched_can_stop_tick(struct rq *rq);
2467  extern int __init sched_tick_offload_init(void);
2468  
2469  /*
2470   * Tick may be needed by tasks in the runqueue depending on their policy and
2471   * requirements. If tick is needed, lets send the target an IPI to kick it out of
2472   * nohz mode if necessary.
2473   */
sched_update_tick_dependency(struct rq * rq)2474  static inline void sched_update_tick_dependency(struct rq *rq)
2475  {
2476  	int cpu = cpu_of(rq);
2477  
2478  	if (!tick_nohz_full_cpu(cpu))
2479  		return;
2480  
2481  	if (sched_can_stop_tick(rq))
2482  		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2483  	else
2484  		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2485  }
2486  #else
sched_tick_offload_init(void)2487  static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2488  static inline void sched_update_tick_dependency(struct rq *rq) { }
2489  #endif
2490  
add_nr_running(struct rq * rq,unsigned count)2491  static inline void add_nr_running(struct rq *rq, unsigned count)
2492  {
2493  	unsigned prev_nr = rq->nr_running;
2494  
2495  	rq->nr_running = prev_nr + count;
2496  	if (trace_sched_update_nr_running_tp_enabled()) {
2497  		call_trace_sched_update_nr_running(rq, count);
2498  	}
2499  
2500  #ifdef CONFIG_SMP
2501  	if (prev_nr < 2 && rq->nr_running >= 2) {
2502  		if (!READ_ONCE(rq->rd->overload))
2503  			WRITE_ONCE(rq->rd->overload, 1);
2504  	}
2505  #endif
2506  
2507  	sched_update_tick_dependency(rq);
2508  }
2509  
sub_nr_running(struct rq * rq,unsigned count)2510  static inline void sub_nr_running(struct rq *rq, unsigned count)
2511  {
2512  	rq->nr_running -= count;
2513  	if (trace_sched_update_nr_running_tp_enabled()) {
2514  		call_trace_sched_update_nr_running(rq, -count);
2515  	}
2516  
2517  	/* Check if we still need preemption */
2518  	sched_update_tick_dependency(rq);
2519  }
2520  
2521  extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2522  extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2523  
2524  extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2525  
2526  #ifdef CONFIG_PREEMPT_RT
2527  #define SCHED_NR_MIGRATE_BREAK 8
2528  #else
2529  #define SCHED_NR_MIGRATE_BREAK 32
2530  #endif
2531  
2532  extern const_debug unsigned int sysctl_sched_nr_migrate;
2533  extern const_debug unsigned int sysctl_sched_migration_cost;
2534  
2535  extern unsigned int sysctl_sched_base_slice;
2536  
2537  #ifdef CONFIG_SCHED_DEBUG
2538  extern int sysctl_resched_latency_warn_ms;
2539  extern int sysctl_resched_latency_warn_once;
2540  
2541  extern unsigned int sysctl_sched_tunable_scaling;
2542  
2543  extern unsigned int sysctl_numa_balancing_scan_delay;
2544  extern unsigned int sysctl_numa_balancing_scan_period_min;
2545  extern unsigned int sysctl_numa_balancing_scan_period_max;
2546  extern unsigned int sysctl_numa_balancing_scan_size;
2547  extern unsigned int sysctl_numa_balancing_hot_threshold;
2548  #endif
2549  
2550  #ifdef CONFIG_SCHED_HRTICK
2551  
2552  /*
2553   * Use hrtick when:
2554   *  - enabled by features
2555   *  - hrtimer is actually high res
2556   */
hrtick_enabled(struct rq * rq)2557  static inline int hrtick_enabled(struct rq *rq)
2558  {
2559  	if (!cpu_active(cpu_of(rq)))
2560  		return 0;
2561  	return hrtimer_is_hres_active(&rq->hrtick_timer);
2562  }
2563  
hrtick_enabled_fair(struct rq * rq)2564  static inline int hrtick_enabled_fair(struct rq *rq)
2565  {
2566  	if (!sched_feat(HRTICK))
2567  		return 0;
2568  	return hrtick_enabled(rq);
2569  }
2570  
hrtick_enabled_dl(struct rq * rq)2571  static inline int hrtick_enabled_dl(struct rq *rq)
2572  {
2573  	if (!sched_feat(HRTICK_DL))
2574  		return 0;
2575  	return hrtick_enabled(rq);
2576  }
2577  
2578  void hrtick_start(struct rq *rq, u64 delay);
2579  
2580  #else
2581  
hrtick_enabled_fair(struct rq * rq)2582  static inline int hrtick_enabled_fair(struct rq *rq)
2583  {
2584  	return 0;
2585  }
2586  
hrtick_enabled_dl(struct rq * rq)2587  static inline int hrtick_enabled_dl(struct rq *rq)
2588  {
2589  	return 0;
2590  }
2591  
hrtick_enabled(struct rq * rq)2592  static inline int hrtick_enabled(struct rq *rq)
2593  {
2594  	return 0;
2595  }
2596  
2597  #endif /* CONFIG_SCHED_HRTICK */
2598  
2599  #ifndef arch_scale_freq_tick
2600  static __always_inline
arch_scale_freq_tick(void)2601  void arch_scale_freq_tick(void)
2602  {
2603  }
2604  #endif
2605  
2606  #ifndef arch_scale_freq_capacity
2607  /**
2608   * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2609   * @cpu: the CPU in question.
2610   *
2611   * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2612   *
2613   *     f_curr
2614   *     ------ * SCHED_CAPACITY_SCALE
2615   *     f_max
2616   */
2617  static __always_inline
arch_scale_freq_capacity(int cpu)2618  unsigned long arch_scale_freq_capacity(int cpu)
2619  {
2620  	return SCHED_CAPACITY_SCALE;
2621  }
2622  #endif
2623  
2624  #ifdef CONFIG_SCHED_DEBUG
2625  /*
2626   * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2627   * acquire rq lock instead of rq_lock(). So at the end of these two functions
2628   * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2629   * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2630   */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2631  static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2632  {
2633  	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2634  	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2635  #ifdef CONFIG_SMP
2636  	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2637  #endif
2638  }
2639  #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2640  static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2641  #endif
2642  
2643  #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2644  __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2645  static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2646  { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2647    _lock; return _t; }
2648  
2649  #ifdef CONFIG_SMP
2650  
rq_order_less(struct rq * rq1,struct rq * rq2)2651  static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2652  {
2653  #ifdef CONFIG_SCHED_CORE
2654  	/*
2655  	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2656  	 * order by core-id first and cpu-id second.
2657  	 *
2658  	 * Notably:
2659  	 *
2660  	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2661  	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2662  	 *
2663  	 * when only cpu-id is considered.
2664  	 */
2665  	if (rq1->core->cpu < rq2->core->cpu)
2666  		return true;
2667  	if (rq1->core->cpu > rq2->core->cpu)
2668  		return false;
2669  
2670  	/*
2671  	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2672  	 */
2673  #endif
2674  	return rq1->cpu < rq2->cpu;
2675  }
2676  
2677  extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2678  
2679  #ifdef CONFIG_PREEMPTION
2680  
2681  /*
2682   * fair double_lock_balance: Safely acquires both rq->locks in a fair
2683   * way at the expense of forcing extra atomic operations in all
2684   * invocations.  This assures that the double_lock is acquired using the
2685   * same underlying policy as the spinlock_t on this architecture, which
2686   * reduces latency compared to the unfair variant below.  However, it
2687   * also adds more overhead and therefore may reduce throughput.
2688   */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2689  static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2690  	__releases(this_rq->lock)
2691  	__acquires(busiest->lock)
2692  	__acquires(this_rq->lock)
2693  {
2694  	raw_spin_rq_unlock(this_rq);
2695  	double_rq_lock(this_rq, busiest);
2696  
2697  	return 1;
2698  }
2699  
2700  #else
2701  /*
2702   * Unfair double_lock_balance: Optimizes throughput at the expense of
2703   * latency by eliminating extra atomic operations when the locks are
2704   * already in proper order on entry.  This favors lower CPU-ids and will
2705   * grant the double lock to lower CPUs over higher ids under contention,
2706   * regardless of entry order into the function.
2707   */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2708  static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2709  	__releases(this_rq->lock)
2710  	__acquires(busiest->lock)
2711  	__acquires(this_rq->lock)
2712  {
2713  	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2714  	    likely(raw_spin_rq_trylock(busiest))) {
2715  		double_rq_clock_clear_update(this_rq, busiest);
2716  		return 0;
2717  	}
2718  
2719  	if (rq_order_less(this_rq, busiest)) {
2720  		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2721  		double_rq_clock_clear_update(this_rq, busiest);
2722  		return 0;
2723  	}
2724  
2725  	raw_spin_rq_unlock(this_rq);
2726  	double_rq_lock(this_rq, busiest);
2727  
2728  	return 1;
2729  }
2730  
2731  #endif /* CONFIG_PREEMPTION */
2732  
2733  /*
2734   * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2735   */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2736  static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2737  {
2738  	lockdep_assert_irqs_disabled();
2739  
2740  	return _double_lock_balance(this_rq, busiest);
2741  }
2742  
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2743  static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2744  	__releases(busiest->lock)
2745  {
2746  	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2747  		raw_spin_rq_unlock(busiest);
2748  	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2749  }
2750  
double_lock(spinlock_t * l1,spinlock_t * l2)2751  static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2752  {
2753  	if (l1 > l2)
2754  		swap(l1, l2);
2755  
2756  	spin_lock(l1);
2757  	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2758  }
2759  
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2760  static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2761  {
2762  	if (l1 > l2)
2763  		swap(l1, l2);
2764  
2765  	spin_lock_irq(l1);
2766  	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2767  }
2768  
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2769  static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2770  {
2771  	if (l1 > l2)
2772  		swap(l1, l2);
2773  
2774  	raw_spin_lock(l1);
2775  	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2776  }
2777  
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2778  static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2779  {
2780  	raw_spin_unlock(l1);
2781  	raw_spin_unlock(l2);
2782  }
2783  
2784  DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2785  		    double_raw_lock(_T->lock, _T->lock2),
2786  		    double_raw_unlock(_T->lock, _T->lock2))
2787  
2788  /*
2789   * double_rq_unlock - safely unlock two runqueues
2790   *
2791   * Note this does not restore interrupts like task_rq_unlock,
2792   * you need to do so manually after calling.
2793   */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2794  static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2795  	__releases(rq1->lock)
2796  	__releases(rq2->lock)
2797  {
2798  	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2799  		raw_spin_rq_unlock(rq2);
2800  	else
2801  		__release(rq2->lock);
2802  	raw_spin_rq_unlock(rq1);
2803  }
2804  
2805  extern void set_rq_online (struct rq *rq);
2806  extern void set_rq_offline(struct rq *rq);
2807  extern bool sched_smp_initialized;
2808  
2809  #else /* CONFIG_SMP */
2810  
2811  /*
2812   * double_rq_lock - safely lock two runqueues
2813   *
2814   * Note this does not disable interrupts like task_rq_lock,
2815   * you need to do so manually before calling.
2816   */
double_rq_lock(struct rq * rq1,struct rq * rq2)2817  static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2818  	__acquires(rq1->lock)
2819  	__acquires(rq2->lock)
2820  {
2821  	WARN_ON_ONCE(!irqs_disabled());
2822  	WARN_ON_ONCE(rq1 != rq2);
2823  	raw_spin_rq_lock(rq1);
2824  	__acquire(rq2->lock);	/* Fake it out ;) */
2825  	double_rq_clock_clear_update(rq1, rq2);
2826  }
2827  
2828  /*
2829   * double_rq_unlock - safely unlock two runqueues
2830   *
2831   * Note this does not restore interrupts like task_rq_unlock,
2832   * you need to do so manually after calling.
2833   */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2834  static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2835  	__releases(rq1->lock)
2836  	__releases(rq2->lock)
2837  {
2838  	WARN_ON_ONCE(rq1 != rq2);
2839  	raw_spin_rq_unlock(rq1);
2840  	__release(rq2->lock);
2841  }
2842  
2843  #endif
2844  
2845  DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2846  		    double_rq_lock(_T->lock, _T->lock2),
2847  		    double_rq_unlock(_T->lock, _T->lock2))
2848  
2849  extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2850  extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2851  
2852  #ifdef	CONFIG_SCHED_DEBUG
2853  extern bool sched_debug_verbose;
2854  
2855  extern void print_cfs_stats(struct seq_file *m, int cpu);
2856  extern void print_rt_stats(struct seq_file *m, int cpu);
2857  extern void print_dl_stats(struct seq_file *m, int cpu);
2858  extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2859  extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2860  extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2861  
2862  extern void resched_latency_warn(int cpu, u64 latency);
2863  #ifdef CONFIG_NUMA_BALANCING
2864  extern void
2865  show_numa_stats(struct task_struct *p, struct seq_file *m);
2866  extern void
2867  print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2868  	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2869  #endif /* CONFIG_NUMA_BALANCING */
2870  #else
resched_latency_warn(int cpu,u64 latency)2871  static inline void resched_latency_warn(int cpu, u64 latency) {}
2872  #endif /* CONFIG_SCHED_DEBUG */
2873  
2874  extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2875  extern void init_rt_rq(struct rt_rq *rt_rq);
2876  extern void init_dl_rq(struct dl_rq *dl_rq);
2877  
2878  extern void cfs_bandwidth_usage_inc(void);
2879  extern void cfs_bandwidth_usage_dec(void);
2880  
2881  #ifdef CONFIG_NO_HZ_COMMON
2882  #define NOHZ_BALANCE_KICK_BIT	0
2883  #define NOHZ_STATS_KICK_BIT	1
2884  #define NOHZ_NEWILB_KICK_BIT	2
2885  #define NOHZ_NEXT_KICK_BIT	3
2886  
2887  /* Run rebalance_domains() */
2888  #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2889  /* Update blocked load */
2890  #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2891  /* Update blocked load when entering idle */
2892  #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2893  /* Update nohz.next_balance */
2894  #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2895  
2896  #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2897  
2898  #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2899  
2900  extern void nohz_balance_exit_idle(struct rq *rq);
2901  #else
nohz_balance_exit_idle(struct rq * rq)2902  static inline void nohz_balance_exit_idle(struct rq *rq) { }
2903  #endif
2904  
2905  #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2906  extern void nohz_run_idle_balance(int cpu);
2907  #else
nohz_run_idle_balance(int cpu)2908  static inline void nohz_run_idle_balance(int cpu) { }
2909  #endif
2910  
2911  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2912  struct irqtime {
2913  	u64			total;
2914  	u64			tick_delta;
2915  	u64			irq_start_time;
2916  	struct u64_stats_sync	sync;
2917  };
2918  
2919  DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2920  
2921  /*
2922   * Returns the irqtime minus the softirq time computed by ksoftirqd.
2923   * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2924   * and never move forward.
2925   */
irq_time_read(int cpu)2926  static inline u64 irq_time_read(int cpu)
2927  {
2928  	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2929  	unsigned int seq;
2930  	u64 total;
2931  
2932  	do {
2933  		seq = __u64_stats_fetch_begin(&irqtime->sync);
2934  		total = irqtime->total;
2935  	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2936  
2937  	return total;
2938  }
2939  #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2940  
2941  #ifdef CONFIG_CPU_FREQ
2942  DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2943  
2944  /**
2945   * cpufreq_update_util - Take a note about CPU utilization changes.
2946   * @rq: Runqueue to carry out the update for.
2947   * @flags: Update reason flags.
2948   *
2949   * This function is called by the scheduler on the CPU whose utilization is
2950   * being updated.
2951   *
2952   * It can only be called from RCU-sched read-side critical sections.
2953   *
2954   * The way cpufreq is currently arranged requires it to evaluate the CPU
2955   * performance state (frequency/voltage) on a regular basis to prevent it from
2956   * being stuck in a completely inadequate performance level for too long.
2957   * That is not guaranteed to happen if the updates are only triggered from CFS
2958   * and DL, though, because they may not be coming in if only RT tasks are
2959   * active all the time (or there are RT tasks only).
2960   *
2961   * As a workaround for that issue, this function is called periodically by the
2962   * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2963   * but that really is a band-aid.  Going forward it should be replaced with
2964   * solutions targeted more specifically at RT tasks.
2965   */
cpufreq_update_util(struct rq * rq,unsigned int flags)2966  static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2967  {
2968  	struct update_util_data *data;
2969  
2970  	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2971  						  cpu_of(rq)));
2972  	if (data)
2973  		data->func(data, rq_clock(rq), flags);
2974  }
2975  #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2976  static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2977  #endif /* CONFIG_CPU_FREQ */
2978  
2979  #ifdef arch_scale_freq_capacity
2980  # ifndef arch_scale_freq_invariant
2981  #  define arch_scale_freq_invariant()	true
2982  # endif
2983  #else
2984  # define arch_scale_freq_invariant()	false
2985  #endif
2986  
2987  #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2988  static inline unsigned long capacity_orig_of(int cpu)
2989  {
2990  	return cpu_rq(cpu)->cpu_capacity_orig;
2991  }
2992  
2993  /**
2994   * enum cpu_util_type - CPU utilization type
2995   * @FREQUENCY_UTIL:	Utilization used to select frequency
2996   * @ENERGY_UTIL:	Utilization used during energy calculation
2997   *
2998   * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2999   * need to be aggregated differently depending on the usage made of them. This
3000   * enum is used within effective_cpu_util() to differentiate the types of
3001   * utilization expected by the callers, and adjust the aggregation accordingly.
3002   */
3003  enum cpu_util_type {
3004  	FREQUENCY_UTIL,
3005  	ENERGY_UTIL,
3006  };
3007  
3008  unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3009  				 enum cpu_util_type type,
3010  				 struct task_struct *p);
3011  
3012  /*
3013   * Verify the fitness of task @p to run on @cpu taking into account the
3014   * CPU original capacity and the runtime/deadline ratio of the task.
3015   *
3016   * The function will return true if the original capacity of @cpu is
3017   * greater than or equal to task's deadline density right shifted by
3018   * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3019   */
dl_task_fits_capacity(struct task_struct * p,int cpu)3020  static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3021  {
3022  	unsigned long cap = arch_scale_cpu_capacity(cpu);
3023  
3024  	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3025  }
3026  
cpu_bw_dl(struct rq * rq)3027  static inline unsigned long cpu_bw_dl(struct rq *rq)
3028  {
3029  	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3030  }
3031  
cpu_util_dl(struct rq * rq)3032  static inline unsigned long cpu_util_dl(struct rq *rq)
3033  {
3034  	return READ_ONCE(rq->avg_dl.util_avg);
3035  }
3036  
3037  
3038  extern unsigned long cpu_util_cfs(int cpu);
3039  extern unsigned long cpu_util_cfs_boost(int cpu);
3040  
cpu_util_rt(struct rq * rq)3041  static inline unsigned long cpu_util_rt(struct rq *rq)
3042  {
3043  	return READ_ONCE(rq->avg_rt.util_avg);
3044  }
3045  #endif
3046  
3047  #ifdef CONFIG_UCLAMP_TASK
3048  unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3049  
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3050  static inline unsigned long uclamp_rq_get(struct rq *rq,
3051  					  enum uclamp_id clamp_id)
3052  {
3053  	return READ_ONCE(rq->uclamp[clamp_id].value);
3054  }
3055  
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3056  static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3057  				 unsigned int value)
3058  {
3059  	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3060  }
3061  
uclamp_rq_is_idle(struct rq * rq)3062  static inline bool uclamp_rq_is_idle(struct rq *rq)
3063  {
3064  	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3065  }
3066  
3067  /**
3068   * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3069   * @rq:		The rq to clamp against. Must not be NULL.
3070   * @util:	The util value to clamp.
3071   * @p:		The task to clamp against. Can be NULL if you want to clamp
3072   *		against @rq only.
3073   *
3074   * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3075   *
3076   * If sched_uclamp_used static key is disabled, then just return the util
3077   * without any clamping since uclamp aggregation at the rq level in the fast
3078   * path is disabled, rendering this operation a NOP.
3079   *
3080   * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3081   * will return the correct effective uclamp value of the task even if the
3082   * static key is disabled.
3083   */
3084  static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3085  unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3086  				  struct task_struct *p)
3087  {
3088  	unsigned long min_util = 0;
3089  	unsigned long max_util = 0;
3090  
3091  	if (!static_branch_likely(&sched_uclamp_used))
3092  		return util;
3093  
3094  	if (p) {
3095  		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3096  		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3097  
3098  		/*
3099  		 * Ignore last runnable task's max clamp, as this task will
3100  		 * reset it. Similarly, no need to read the rq's min clamp.
3101  		 */
3102  		if (uclamp_rq_is_idle(rq))
3103  			goto out;
3104  	}
3105  
3106  	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3107  	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3108  out:
3109  	/*
3110  	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3111  	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3112  	 * inversion. Fix it now when the clamps are applied.
3113  	 */
3114  	if (unlikely(min_util >= max_util))
3115  		return min_util;
3116  
3117  	return clamp(util, min_util, max_util);
3118  }
3119  
3120  /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3121  static inline bool uclamp_rq_is_capped(struct rq *rq)
3122  {
3123  	unsigned long rq_util;
3124  	unsigned long max_util;
3125  
3126  	if (!static_branch_likely(&sched_uclamp_used))
3127  		return false;
3128  
3129  	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3130  	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3131  
3132  	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3133  }
3134  
3135  /*
3136   * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3137   * by default in the fast path and only gets turned on once userspace performs
3138   * an operation that requires it.
3139   *
3140   * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3141   * hence is active.
3142   */
uclamp_is_used(void)3143  static inline bool uclamp_is_used(void)
3144  {
3145  	return static_branch_likely(&sched_uclamp_used);
3146  }
3147  #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3148  static inline unsigned long uclamp_eff_value(struct task_struct *p,
3149  					     enum uclamp_id clamp_id)
3150  {
3151  	if (clamp_id == UCLAMP_MIN)
3152  		return 0;
3153  
3154  	return SCHED_CAPACITY_SCALE;
3155  }
3156  
3157  static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3158  unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3159  				  struct task_struct *p)
3160  {
3161  	return util;
3162  }
3163  
uclamp_rq_is_capped(struct rq * rq)3164  static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3165  
uclamp_is_used(void)3166  static inline bool uclamp_is_used(void)
3167  {
3168  	return false;
3169  }
3170  
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3171  static inline unsigned long uclamp_rq_get(struct rq *rq,
3172  					  enum uclamp_id clamp_id)
3173  {
3174  	if (clamp_id == UCLAMP_MIN)
3175  		return 0;
3176  
3177  	return SCHED_CAPACITY_SCALE;
3178  }
3179  
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3180  static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3181  				 unsigned int value)
3182  {
3183  }
3184  
uclamp_rq_is_idle(struct rq * rq)3185  static inline bool uclamp_rq_is_idle(struct rq *rq)
3186  {
3187  	return false;
3188  }
3189  #endif /* CONFIG_UCLAMP_TASK */
3190  
3191  #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3192  static inline unsigned long cpu_util_irq(struct rq *rq)
3193  {
3194  	return rq->avg_irq.util_avg;
3195  }
3196  
3197  static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3198  unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3199  {
3200  	util *= (max - irq);
3201  	util /= max;
3202  
3203  	return util;
3204  
3205  }
3206  #else
cpu_util_irq(struct rq * rq)3207  static inline unsigned long cpu_util_irq(struct rq *rq)
3208  {
3209  	return 0;
3210  }
3211  
3212  static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3213  unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3214  {
3215  	return util;
3216  }
3217  #endif
3218  
3219  #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3220  
3221  #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3222  
3223  DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3224  
sched_energy_enabled(void)3225  static inline bool sched_energy_enabled(void)
3226  {
3227  	return static_branch_unlikely(&sched_energy_present);
3228  }
3229  
3230  #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3231  
3232  #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3233  static inline bool sched_energy_enabled(void) { return false; }
3234  
3235  #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3236  
3237  #ifdef CONFIG_MEMBARRIER
3238  /*
3239   * The scheduler provides memory barriers required by membarrier between:
3240   * - prior user-space memory accesses and store to rq->membarrier_state,
3241   * - store to rq->membarrier_state and following user-space memory accesses.
3242   * In the same way it provides those guarantees around store to rq->curr.
3243   */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3244  static inline void membarrier_switch_mm(struct rq *rq,
3245  					struct mm_struct *prev_mm,
3246  					struct mm_struct *next_mm)
3247  {
3248  	int membarrier_state;
3249  
3250  	if (prev_mm == next_mm)
3251  		return;
3252  
3253  	membarrier_state = atomic_read(&next_mm->membarrier_state);
3254  	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3255  		return;
3256  
3257  	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3258  }
3259  #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3260  static inline void membarrier_switch_mm(struct rq *rq,
3261  					struct mm_struct *prev_mm,
3262  					struct mm_struct *next_mm)
3263  {
3264  }
3265  #endif
3266  
3267  #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3268  static inline bool is_per_cpu_kthread(struct task_struct *p)
3269  {
3270  	if (!(p->flags & PF_KTHREAD))
3271  		return false;
3272  
3273  	if (p->nr_cpus_allowed != 1)
3274  		return false;
3275  
3276  	return true;
3277  }
3278  #endif
3279  
3280  extern void swake_up_all_locked(struct swait_queue_head *q);
3281  extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3282  
3283  extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3284  
3285  #ifdef CONFIG_PREEMPT_DYNAMIC
3286  extern int preempt_dynamic_mode;
3287  extern int sched_dynamic_mode(const char *str);
3288  extern void sched_dynamic_update(int mode);
3289  #endif
3290  
3291  #ifdef CONFIG_SCHED_MM_CID
3292  
3293  #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3294  #define MM_CID_SCAN_DELAY	100			/* 100ms */
3295  
3296  extern raw_spinlock_t cid_lock;
3297  extern int use_cid_lock;
3298  
3299  extern void sched_mm_cid_migrate_from(struct task_struct *t);
3300  extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3301  extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3302  extern void init_sched_mm_cid(struct task_struct *t);
3303  
__mm_cid_put(struct mm_struct * mm,int cid)3304  static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3305  {
3306  	if (cid < 0)
3307  		return;
3308  	cpumask_clear_cpu(cid, mm_cidmask(mm));
3309  }
3310  
3311  /*
3312   * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3313   * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3314   * be held to transition to other states.
3315   *
3316   * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3317   * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3318   */
mm_cid_put_lazy(struct task_struct * t)3319  static inline void mm_cid_put_lazy(struct task_struct *t)
3320  {
3321  	struct mm_struct *mm = t->mm;
3322  	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3323  	int cid;
3324  
3325  	lockdep_assert_irqs_disabled();
3326  	cid = __this_cpu_read(pcpu_cid->cid);
3327  	if (!mm_cid_is_lazy_put(cid) ||
3328  	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3329  		return;
3330  	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3331  }
3332  
mm_cid_pcpu_unset(struct mm_struct * mm)3333  static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3334  {
3335  	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3336  	int cid, res;
3337  
3338  	lockdep_assert_irqs_disabled();
3339  	cid = __this_cpu_read(pcpu_cid->cid);
3340  	for (;;) {
3341  		if (mm_cid_is_unset(cid))
3342  			return MM_CID_UNSET;
3343  		/*
3344  		 * Attempt transition from valid or lazy-put to unset.
3345  		 */
3346  		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3347  		if (res == cid)
3348  			break;
3349  		cid = res;
3350  	}
3351  	return cid;
3352  }
3353  
mm_cid_put(struct mm_struct * mm)3354  static inline void mm_cid_put(struct mm_struct *mm)
3355  {
3356  	int cid;
3357  
3358  	lockdep_assert_irqs_disabled();
3359  	cid = mm_cid_pcpu_unset(mm);
3360  	if (cid == MM_CID_UNSET)
3361  		return;
3362  	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3363  }
3364  
__mm_cid_try_get(struct mm_struct * mm)3365  static inline int __mm_cid_try_get(struct mm_struct *mm)
3366  {
3367  	struct cpumask *cpumask;
3368  	int cid;
3369  
3370  	cpumask = mm_cidmask(mm);
3371  	/*
3372  	 * Retry finding first zero bit if the mask is temporarily
3373  	 * filled. This only happens during concurrent remote-clear
3374  	 * which owns a cid without holding a rq lock.
3375  	 */
3376  	for (;;) {
3377  		cid = cpumask_first_zero(cpumask);
3378  		if (cid < nr_cpu_ids)
3379  			break;
3380  		cpu_relax();
3381  	}
3382  	if (cpumask_test_and_set_cpu(cid, cpumask))
3383  		return -1;
3384  	return cid;
3385  }
3386  
3387  /*
3388   * Save a snapshot of the current runqueue time of this cpu
3389   * with the per-cpu cid value, allowing to estimate how recently it was used.
3390   */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3391  static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3392  {
3393  	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3394  
3395  	lockdep_assert_rq_held(rq);
3396  	WRITE_ONCE(pcpu_cid->time, rq->clock);
3397  }
3398  
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3399  static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3400  {
3401  	int cid;
3402  
3403  	/*
3404  	 * All allocations (even those using the cid_lock) are lock-free. If
3405  	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3406  	 * guarantee forward progress.
3407  	 */
3408  	if (!READ_ONCE(use_cid_lock)) {
3409  		cid = __mm_cid_try_get(mm);
3410  		if (cid >= 0)
3411  			goto end;
3412  		raw_spin_lock(&cid_lock);
3413  	} else {
3414  		raw_spin_lock(&cid_lock);
3415  		cid = __mm_cid_try_get(mm);
3416  		if (cid >= 0)
3417  			goto unlock;
3418  	}
3419  
3420  	/*
3421  	 * cid concurrently allocated. Retry while forcing following
3422  	 * allocations to use the cid_lock to ensure forward progress.
3423  	 */
3424  	WRITE_ONCE(use_cid_lock, 1);
3425  	/*
3426  	 * Set use_cid_lock before allocation. Only care about program order
3427  	 * because this is only required for forward progress.
3428  	 */
3429  	barrier();
3430  	/*
3431  	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3432  	 * all newcoming allocations observe the use_cid_lock flag set.
3433  	 */
3434  	do {
3435  		cid = __mm_cid_try_get(mm);
3436  		cpu_relax();
3437  	} while (cid < 0);
3438  	/*
3439  	 * Allocate before clearing use_cid_lock. Only care about
3440  	 * program order because this is for forward progress.
3441  	 */
3442  	barrier();
3443  	WRITE_ONCE(use_cid_lock, 0);
3444  unlock:
3445  	raw_spin_unlock(&cid_lock);
3446  end:
3447  	mm_cid_snapshot_time(rq, mm);
3448  	return cid;
3449  }
3450  
mm_cid_get(struct rq * rq,struct mm_struct * mm)3451  static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3452  {
3453  	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3454  	struct cpumask *cpumask;
3455  	int cid;
3456  
3457  	lockdep_assert_rq_held(rq);
3458  	cpumask = mm_cidmask(mm);
3459  	cid = __this_cpu_read(pcpu_cid->cid);
3460  	if (mm_cid_is_valid(cid)) {
3461  		mm_cid_snapshot_time(rq, mm);
3462  		return cid;
3463  	}
3464  	if (mm_cid_is_lazy_put(cid)) {
3465  		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3466  			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3467  	}
3468  	cid = __mm_cid_get(rq, mm);
3469  	__this_cpu_write(pcpu_cid->cid, cid);
3470  	return cid;
3471  }
3472  
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3473  static inline void switch_mm_cid(struct rq *rq,
3474  				 struct task_struct *prev,
3475  				 struct task_struct *next)
3476  {
3477  	/*
3478  	 * Provide a memory barrier between rq->curr store and load of
3479  	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3480  	 *
3481  	 * Should be adapted if context_switch() is modified.
3482  	 */
3483  	if (!next->mm) {                                // to kernel
3484  		/*
3485  		 * user -> kernel transition does not guarantee a barrier, but
3486  		 * we can use the fact that it performs an atomic operation in
3487  		 * mmgrab().
3488  		 */
3489  		if (prev->mm)                           // from user
3490  			smp_mb__after_mmgrab();
3491  		/*
3492  		 * kernel -> kernel transition does not change rq->curr->mm
3493  		 * state. It stays NULL.
3494  		 */
3495  	} else {                                        // to user
3496  		/*
3497  		 * kernel -> user transition does not provide a barrier
3498  		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3499  		 * Provide it here.
3500  		 */
3501  		if (!prev->mm) {                        // from kernel
3502  			smp_mb();
3503  		} else {				// from user
3504  			/*
3505  			 * user->user transition relies on an implicit
3506  			 * memory barrier in switch_mm() when
3507  			 * current->mm changes. If the architecture
3508  			 * switch_mm() does not have an implicit memory
3509  			 * barrier, it is emitted here.  If current->mm
3510  			 * is unchanged, no barrier is needed.
3511  			 */
3512  			smp_mb__after_switch_mm();
3513  		}
3514  	}
3515  	if (prev->mm_cid_active) {
3516  		mm_cid_snapshot_time(rq, prev->mm);
3517  		mm_cid_put_lazy(prev);
3518  		prev->mm_cid = -1;
3519  	}
3520  	if (next->mm_cid_active)
3521  		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3522  }
3523  
3524  #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3525  static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3526  static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3527  static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3528  static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3529  static inline void init_sched_mm_cid(struct task_struct *t) { }
3530  #endif
3531  
3532  extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3533  extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3534  
3535  #endif /* _KERNEL_SCHED_SCHED_H */
3536