1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74
75 #include "../workqueue_internal.h"
76
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90
91 #include <asm/barrier.h>
92
93 #include "cpupri.h"
94 #include "cpudeadline.h"
95
96 #ifdef CONFIG_SCHED_DEBUG
97 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
98 #else
99 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
100 #endif
101
102 struct rq;
103 struct cpuidle_state;
104
105 /* task_struct::on_rq states: */
106 #define TASK_ON_RQ_QUEUED 1
107 #define TASK_ON_RQ_MIGRATING 2
108
109 extern __read_mostly int scheduler_running;
110
111 extern unsigned long calc_load_update;
112 extern atomic_long_t calc_load_tasks;
113
114 extern unsigned int sysctl_sched_child_runs_first;
115
116 extern void calc_global_load_tick(struct rq *this_rq);
117 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
118
119 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
120
121 extern unsigned int sysctl_sched_rt_period;
122 extern int sysctl_sched_rt_runtime;
123 extern int sched_rr_timeslice;
124
125 /*
126 * Helpers for converting nanosecond timing to jiffy resolution
127 */
128 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
129
130 /*
131 * Increase resolution of nice-level calculations for 64-bit architectures.
132 * The extra resolution improves shares distribution and load balancing of
133 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
134 * hierarchies, especially on larger systems. This is not a user-visible change
135 * and does not change the user-interface for setting shares/weights.
136 *
137 * We increase resolution only if we have enough bits to allow this increased
138 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
139 * are pretty high and the returns do not justify the increased costs.
140 *
141 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
142 * increase coverage and consistency always enable it on 64-bit platforms.
143 */
144 #ifdef CONFIG_64BIT
145 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
146 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
147 # define scale_load_down(w) \
148 ({ \
149 unsigned long __w = (w); \
150 if (__w) \
151 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
152 __w; \
153 })
154 #else
155 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
156 # define scale_load(w) (w)
157 # define scale_load_down(w) (w)
158 #endif
159
160 /*
161 * Task weight (visible to users) and its load (invisible to users) have
162 * independent resolution, but they should be well calibrated. We use
163 * scale_load() and scale_load_down(w) to convert between them. The
164 * following must be true:
165 *
166 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
167 *
168 */
169 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
170
171 /*
172 * Single value that decides SCHED_DEADLINE internal math precision.
173 * 10 -> just above 1us
174 * 9 -> just above 0.5us
175 */
176 #define DL_SCALE 10
177
178 /*
179 * Single value that denotes runtime == period, ie unlimited time.
180 */
181 #define RUNTIME_INF ((u64)~0ULL)
182
idle_policy(int policy)183 static inline int idle_policy(int policy)
184 {
185 return policy == SCHED_IDLE;
186 }
fair_policy(int policy)187 static inline int fair_policy(int policy)
188 {
189 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
190 }
191
rt_policy(int policy)192 static inline int rt_policy(int policy)
193 {
194 return policy == SCHED_FIFO || policy == SCHED_RR;
195 }
196
dl_policy(int policy)197 static inline int dl_policy(int policy)
198 {
199 return policy == SCHED_DEADLINE;
200 }
valid_policy(int policy)201 static inline bool valid_policy(int policy)
202 {
203 return idle_policy(policy) || fair_policy(policy) ||
204 rt_policy(policy) || dl_policy(policy);
205 }
206
task_has_idle_policy(struct task_struct * p)207 static inline int task_has_idle_policy(struct task_struct *p)
208 {
209 return idle_policy(p->policy);
210 }
211
task_has_rt_policy(struct task_struct * p)212 static inline int task_has_rt_policy(struct task_struct *p)
213 {
214 return rt_policy(p->policy);
215 }
216
task_has_dl_policy(struct task_struct * p)217 static inline int task_has_dl_policy(struct task_struct *p)
218 {
219 return dl_policy(p->policy);
220 }
221
222 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
223
update_avg(u64 * avg,u64 sample)224 static inline void update_avg(u64 *avg, u64 sample)
225 {
226 s64 diff = sample - *avg;
227 *avg += diff / 8;
228 }
229
230 /*
231 * Shifting a value by an exponent greater *or equal* to the size of said value
232 * is UB; cap at size-1.
233 */
234 #define shr_bound(val, shift) \
235 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
236
237 /*
238 * !! For sched_setattr_nocheck() (kernel) only !!
239 *
240 * This is actually gross. :(
241 *
242 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
243 * tasks, but still be able to sleep. We need this on platforms that cannot
244 * atomically change clock frequency. Remove once fast switching will be
245 * available on such platforms.
246 *
247 * SUGOV stands for SchedUtil GOVernor.
248 */
249 #define SCHED_FLAG_SUGOV 0x10000000
250
251 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
252
dl_entity_is_special(const struct sched_dl_entity * dl_se)253 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
254 {
255 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
256 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
257 #else
258 return false;
259 #endif
260 }
261
262 /*
263 * Tells if entity @a should preempt entity @b.
264 */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)265 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
266 const struct sched_dl_entity *b)
267 {
268 return dl_entity_is_special(a) ||
269 dl_time_before(a->deadline, b->deadline);
270 }
271
272 /*
273 * This is the priority-queue data structure of the RT scheduling class:
274 */
275 struct rt_prio_array {
276 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
277 struct list_head queue[MAX_RT_PRIO];
278 };
279
280 struct rt_bandwidth {
281 /* nests inside the rq lock: */
282 raw_spinlock_t rt_runtime_lock;
283 ktime_t rt_period;
284 u64 rt_runtime;
285 struct hrtimer rt_period_timer;
286 unsigned int rt_period_active;
287 };
288
289 void __dl_clear_params(struct task_struct *p);
290
dl_bandwidth_enabled(void)291 static inline int dl_bandwidth_enabled(void)
292 {
293 return sysctl_sched_rt_runtime >= 0;
294 }
295
296 /*
297 * To keep the bandwidth of -deadline tasks under control
298 * we need some place where:
299 * - store the maximum -deadline bandwidth of each cpu;
300 * - cache the fraction of bandwidth that is currently allocated in
301 * each root domain;
302 *
303 * This is all done in the data structure below. It is similar to the
304 * one used for RT-throttling (rt_bandwidth), with the main difference
305 * that, since here we are only interested in admission control, we
306 * do not decrease any runtime while the group "executes", neither we
307 * need a timer to replenish it.
308 *
309 * With respect to SMP, bandwidth is given on a per root domain basis,
310 * meaning that:
311 * - bw (< 100%) is the deadline bandwidth of each CPU;
312 * - total_bw is the currently allocated bandwidth in each root domain;
313 */
314 struct dl_bw {
315 raw_spinlock_t lock;
316 u64 bw;
317 u64 total_bw;
318 };
319
320 extern void init_dl_bw(struct dl_bw *dl_b);
321 extern int sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
324 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
325 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
326 extern bool __checkparam_dl(const struct sched_attr *attr);
327 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
328 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
329 extern int dl_bw_check_overflow(int cpu);
330
331 #ifdef CONFIG_CGROUP_SCHED
332
333 struct cfs_rq;
334 struct rt_rq;
335
336 extern struct list_head task_groups;
337
338 struct cfs_bandwidth {
339 #ifdef CONFIG_CFS_BANDWIDTH
340 raw_spinlock_t lock;
341 ktime_t period;
342 u64 quota;
343 u64 runtime;
344 u64 burst;
345 u64 runtime_snap;
346 s64 hierarchical_quota;
347
348 u8 idle;
349 u8 period_active;
350 u8 slack_started;
351 struct hrtimer period_timer;
352 struct hrtimer slack_timer;
353 struct list_head throttled_cfs_rq;
354
355 /* Statistics: */
356 int nr_periods;
357 int nr_throttled;
358 int nr_burst;
359 u64 throttled_time;
360 u64 burst_time;
361 #endif
362 };
363
364 /* Task group related information */
365 struct task_group {
366 struct cgroup_subsys_state css;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 /* schedulable entities of this group on each CPU */
370 struct sched_entity **se;
371 /* runqueue "owned" by this group on each CPU */
372 struct cfs_rq **cfs_rq;
373 unsigned long shares;
374
375 /* A positive value indicates that this is a SCHED_IDLE group. */
376 int idle;
377
378 #ifdef CONFIG_SMP
379 /*
380 * load_avg can be heavily contended at clock tick time, so put
381 * it in its own cacheline separated from the fields above which
382 * will also be accessed at each tick.
383 */
384 atomic_long_t load_avg ____cacheline_aligned;
385 #endif
386 #endif
387
388 #ifdef CONFIG_RT_GROUP_SCHED
389 struct sched_rt_entity **rt_se;
390 struct rt_rq **rt_rq;
391
392 struct rt_bandwidth rt_bandwidth;
393 #endif
394
395 struct rcu_head rcu;
396 struct list_head list;
397
398 struct task_group *parent;
399 struct list_head siblings;
400 struct list_head children;
401
402 #ifdef CONFIG_SCHED_AUTOGROUP
403 struct autogroup *autogroup;
404 #endif
405
406 struct cfs_bandwidth cfs_bandwidth;
407
408 #ifdef CONFIG_UCLAMP_TASK_GROUP
409 /* The two decimal precision [%] value requested from user-space */
410 unsigned int uclamp_pct[UCLAMP_CNT];
411 /* Clamp values requested for a task group */
412 struct uclamp_se uclamp_req[UCLAMP_CNT];
413 /* Effective clamp values used for a task group */
414 struct uclamp_se uclamp[UCLAMP_CNT];
415 #endif
416
417 };
418
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
421
422 /*
423 * A weight of 0 or 1 can cause arithmetics problems.
424 * A weight of a cfs_rq is the sum of weights of which entities
425 * are queued on this cfs_rq, so a weight of a entity should not be
426 * too large, so as the shares value of a task group.
427 * (The default weight is 1024 - so there's no practical
428 * limitation from this.)
429 */
430 #define MIN_SHARES (1UL << 1)
431 #define MAX_SHARES (1UL << 18)
432 #endif
433
434 typedef int (*tg_visitor)(struct task_group *, void *);
435
436 extern int walk_tg_tree_from(struct task_group *from,
437 tg_visitor down, tg_visitor up, void *data);
438
439 /*
440 * Iterate the full tree, calling @down when first entering a node and @up when
441 * leaving it for the final time.
442 *
443 * Caller must hold rcu_lock or sufficient equivalent.
444 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)445 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
446 {
447 return walk_tg_tree_from(&root_task_group, down, up, data);
448 }
449
450 extern int tg_nop(struct task_group *tg, void *data);
451
452 extern void free_fair_sched_group(struct task_group *tg);
453 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
454 extern void online_fair_sched_group(struct task_group *tg);
455 extern void unregister_fair_sched_group(struct task_group *tg);
456 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
457 struct sched_entity *se, int cpu,
458 struct sched_entity *parent);
459 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
460
461 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
462 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
463 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
464 extern bool cfs_task_bw_constrained(struct task_struct *p);
465
466 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
467 struct sched_rt_entity *rt_se, int cpu,
468 struct sched_rt_entity *parent);
469 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
470 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
471 extern long sched_group_rt_runtime(struct task_group *tg);
472 extern long sched_group_rt_period(struct task_group *tg);
473 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
474
475 extern struct task_group *sched_create_group(struct task_group *parent);
476 extern void sched_online_group(struct task_group *tg,
477 struct task_group *parent);
478 extern void sched_destroy_group(struct task_group *tg);
479 extern void sched_release_group(struct task_group *tg);
480
481 extern void sched_move_task(struct task_struct *tsk);
482
483 #ifdef CONFIG_FAIR_GROUP_SCHED
484 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
485
486 extern int sched_group_set_idle(struct task_group *tg, long idle);
487
488 #ifdef CONFIG_SMP
489 extern void set_task_rq_fair(struct sched_entity *se,
490 struct cfs_rq *prev, struct cfs_rq *next);
491 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)492 static inline void set_task_rq_fair(struct sched_entity *se,
493 struct cfs_rq *prev, struct cfs_rq *next) { }
494 #endif /* CONFIG_SMP */
495 #endif /* CONFIG_FAIR_GROUP_SCHED */
496
497 #else /* CONFIG_CGROUP_SCHED */
498
499 struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)500 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
501
502 #endif /* CONFIG_CGROUP_SCHED */
503
504 extern void unregister_rt_sched_group(struct task_group *tg);
505 extern void free_rt_sched_group(struct task_group *tg);
506 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
507
508 /*
509 * u64_u32_load/u64_u32_store
510 *
511 * Use a copy of a u64 value to protect against data race. This is only
512 * applicable for 32-bits architectures.
513 */
514 #ifdef CONFIG_64BIT
515 # define u64_u32_load_copy(var, copy) var
516 # define u64_u32_store_copy(var, copy, val) (var = val)
517 #else
518 # define u64_u32_load_copy(var, copy) \
519 ({ \
520 u64 __val, __val_copy; \
521 do { \
522 __val_copy = copy; \
523 /* \
524 * paired with u64_u32_store_copy(), ordering access \
525 * to var and copy. \
526 */ \
527 smp_rmb(); \
528 __val = var; \
529 } while (__val != __val_copy); \
530 __val; \
531 })
532 # define u64_u32_store_copy(var, copy, val) \
533 do { \
534 typeof(val) __val = (val); \
535 var = __val; \
536 /* \
537 * paired with u64_u32_load_copy(), ordering access to var and \
538 * copy. \
539 */ \
540 smp_wmb(); \
541 copy = __val; \
542 } while (0)
543 #endif
544 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
545 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
546
547 /* CFS-related fields in a runqueue */
548 struct cfs_rq {
549 struct load_weight load;
550 unsigned int nr_running;
551 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
552 unsigned int idle_nr_running; /* SCHED_IDLE */
553 unsigned int idle_h_nr_running; /* SCHED_IDLE */
554
555 s64 avg_vruntime;
556 u64 avg_load;
557
558 u64 exec_clock;
559 u64 min_vruntime;
560 #ifdef CONFIG_SCHED_CORE
561 unsigned int forceidle_seq;
562 u64 min_vruntime_fi;
563 #endif
564
565 #ifndef CONFIG_64BIT
566 u64 min_vruntime_copy;
567 #endif
568
569 struct rb_root_cached tasks_timeline;
570
571 /*
572 * 'curr' points to currently running entity on this cfs_rq.
573 * It is set to NULL otherwise (i.e when none are currently running).
574 */
575 struct sched_entity *curr;
576 struct sched_entity *next;
577
578 #ifdef CONFIG_SCHED_DEBUG
579 unsigned int nr_spread_over;
580 #endif
581
582 #ifdef CONFIG_SMP
583 /*
584 * CFS load tracking
585 */
586 struct sched_avg avg;
587 #ifndef CONFIG_64BIT
588 u64 last_update_time_copy;
589 #endif
590 struct {
591 raw_spinlock_t lock ____cacheline_aligned;
592 int nr;
593 unsigned long load_avg;
594 unsigned long util_avg;
595 unsigned long runnable_avg;
596 } removed;
597
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 unsigned long tg_load_avg_contrib;
600 long propagate;
601 long prop_runnable_sum;
602
603 /*
604 * h_load = weight * f(tg)
605 *
606 * Where f(tg) is the recursive weight fraction assigned to
607 * this group.
608 */
609 unsigned long h_load;
610 u64 last_h_load_update;
611 struct sched_entity *h_load_next;
612 #endif /* CONFIG_FAIR_GROUP_SCHED */
613 #endif /* CONFIG_SMP */
614
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
617
618 /*
619 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
620 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
621 * (like users, containers etc.)
622 *
623 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
624 * This list is used during load balance.
625 */
626 int on_list;
627 struct list_head leaf_cfs_rq_list;
628 struct task_group *tg; /* group that "owns" this runqueue */
629
630 /* Locally cached copy of our task_group's idle value */
631 int idle;
632
633 #ifdef CONFIG_CFS_BANDWIDTH
634 int runtime_enabled;
635 s64 runtime_remaining;
636
637 u64 throttled_pelt_idle;
638 #ifndef CONFIG_64BIT
639 u64 throttled_pelt_idle_copy;
640 #endif
641 u64 throttled_clock;
642 u64 throttled_clock_pelt;
643 u64 throttled_clock_pelt_time;
644 u64 throttled_clock_self;
645 u64 throttled_clock_self_time;
646 int throttled;
647 int throttle_count;
648 struct list_head throttled_list;
649 #ifdef CONFIG_SMP
650 struct list_head throttled_csd_list;
651 #endif
652 #endif /* CONFIG_CFS_BANDWIDTH */
653 #endif /* CONFIG_FAIR_GROUP_SCHED */
654 };
655
rt_bandwidth_enabled(void)656 static inline int rt_bandwidth_enabled(void)
657 {
658 return sysctl_sched_rt_runtime >= 0;
659 }
660
661 /* RT IPI pull logic requires IRQ_WORK */
662 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
663 # define HAVE_RT_PUSH_IPI
664 #endif
665
666 /* Real-Time classes' related field in a runqueue: */
667 struct rt_rq {
668 struct rt_prio_array active;
669 unsigned int rt_nr_running;
670 unsigned int rr_nr_running;
671 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
672 struct {
673 int curr; /* highest queued rt task prio */
674 #ifdef CONFIG_SMP
675 int next; /* next highest */
676 #endif
677 } highest_prio;
678 #endif
679 #ifdef CONFIG_SMP
680 unsigned int rt_nr_migratory;
681 unsigned int rt_nr_total;
682 int overloaded;
683 struct plist_head pushable_tasks;
684
685 #endif /* CONFIG_SMP */
686 int rt_queued;
687
688 int rt_throttled;
689 u64 rt_time;
690 u64 rt_runtime;
691 /* Nests inside the rq lock: */
692 raw_spinlock_t rt_runtime_lock;
693
694 #ifdef CONFIG_RT_GROUP_SCHED
695 unsigned int rt_nr_boosted;
696
697 struct rq *rq;
698 struct task_group *tg;
699 #endif
700 };
701
rt_rq_is_runnable(struct rt_rq * rt_rq)702 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
703 {
704 return rt_rq->rt_queued && rt_rq->rt_nr_running;
705 }
706
707 /* Deadline class' related fields in a runqueue */
708 struct dl_rq {
709 /* runqueue is an rbtree, ordered by deadline */
710 struct rb_root_cached root;
711
712 unsigned int dl_nr_running;
713
714 #ifdef CONFIG_SMP
715 /*
716 * Deadline values of the currently executing and the
717 * earliest ready task on this rq. Caching these facilitates
718 * the decision whether or not a ready but not running task
719 * should migrate somewhere else.
720 */
721 struct {
722 u64 curr;
723 u64 next;
724 } earliest_dl;
725
726 unsigned int dl_nr_migratory;
727 int overloaded;
728
729 /*
730 * Tasks on this rq that can be pushed away. They are kept in
731 * an rb-tree, ordered by tasks' deadlines, with caching
732 * of the leftmost (earliest deadline) element.
733 */
734 struct rb_root_cached pushable_dl_tasks_root;
735 #else
736 struct dl_bw dl_bw;
737 #endif
738 /*
739 * "Active utilization" for this runqueue: increased when a
740 * task wakes up (becomes TASK_RUNNING) and decreased when a
741 * task blocks
742 */
743 u64 running_bw;
744
745 /*
746 * Utilization of the tasks "assigned" to this runqueue (including
747 * the tasks that are in runqueue and the tasks that executed on this
748 * CPU and blocked). Increased when a task moves to this runqueue, and
749 * decreased when the task moves away (migrates, changes scheduling
750 * policy, or terminates).
751 * This is needed to compute the "inactive utilization" for the
752 * runqueue (inactive utilization = this_bw - running_bw).
753 */
754 u64 this_bw;
755 u64 extra_bw;
756
757 /*
758 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
759 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
760 */
761 u64 max_bw;
762
763 /*
764 * Inverse of the fraction of CPU utilization that can be reclaimed
765 * by the GRUB algorithm.
766 */
767 u64 bw_ratio;
768 };
769
770 #ifdef CONFIG_FAIR_GROUP_SCHED
771 /* An entity is a task if it doesn't "own" a runqueue */
772 #define entity_is_task(se) (!se->my_q)
773
se_update_runnable(struct sched_entity * se)774 static inline void se_update_runnable(struct sched_entity *se)
775 {
776 if (!entity_is_task(se))
777 se->runnable_weight = se->my_q->h_nr_running;
778 }
779
se_runnable(struct sched_entity * se)780 static inline long se_runnable(struct sched_entity *se)
781 {
782 if (entity_is_task(se))
783 return !!se->on_rq;
784 else
785 return se->runnable_weight;
786 }
787
788 #else
789 #define entity_is_task(se) 1
790
se_update_runnable(struct sched_entity * se)791 static inline void se_update_runnable(struct sched_entity *se) {}
792
se_runnable(struct sched_entity * se)793 static inline long se_runnable(struct sched_entity *se)
794 {
795 return !!se->on_rq;
796 }
797 #endif
798
799 #ifdef CONFIG_SMP
800 /*
801 * XXX we want to get rid of these helpers and use the full load resolution.
802 */
se_weight(struct sched_entity * se)803 static inline long se_weight(struct sched_entity *se)
804 {
805 return scale_load_down(se->load.weight);
806 }
807
808
sched_asym_prefer(int a,int b)809 static inline bool sched_asym_prefer(int a, int b)
810 {
811 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
812 }
813
814 struct perf_domain {
815 struct em_perf_domain *em_pd;
816 struct perf_domain *next;
817 struct rcu_head rcu;
818 };
819
820 /* Scheduling group status flags */
821 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
822 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
823
824 /*
825 * We add the notion of a root-domain which will be used to define per-domain
826 * variables. Each exclusive cpuset essentially defines an island domain by
827 * fully partitioning the member CPUs from any other cpuset. Whenever a new
828 * exclusive cpuset is created, we also create and attach a new root-domain
829 * object.
830 *
831 */
832 struct root_domain {
833 atomic_t refcount;
834 atomic_t rto_count;
835 struct rcu_head rcu;
836 cpumask_var_t span;
837 cpumask_var_t online;
838
839 /*
840 * Indicate pullable load on at least one CPU, e.g:
841 * - More than one runnable task
842 * - Running task is misfit
843 */
844 int overload;
845
846 /* Indicate one or more cpus over-utilized (tipping point) */
847 int overutilized;
848
849 /*
850 * The bit corresponding to a CPU gets set here if such CPU has more
851 * than one runnable -deadline task (as it is below for RT tasks).
852 */
853 cpumask_var_t dlo_mask;
854 atomic_t dlo_count;
855 struct dl_bw dl_bw;
856 struct cpudl cpudl;
857
858 /*
859 * Indicate whether a root_domain's dl_bw has been checked or
860 * updated. It's monotonously increasing value.
861 *
862 * Also, some corner cases, like 'wrap around' is dangerous, but given
863 * that u64 is 'big enough'. So that shouldn't be a concern.
864 */
865 u64 visit_gen;
866
867 #ifdef HAVE_RT_PUSH_IPI
868 /*
869 * For IPI pull requests, loop across the rto_mask.
870 */
871 struct irq_work rto_push_work;
872 raw_spinlock_t rto_lock;
873 /* These are only updated and read within rto_lock */
874 int rto_loop;
875 int rto_cpu;
876 /* These atomics are updated outside of a lock */
877 atomic_t rto_loop_next;
878 atomic_t rto_loop_start;
879 #endif
880 /*
881 * The "RT overload" flag: it gets set if a CPU has more than
882 * one runnable RT task.
883 */
884 cpumask_var_t rto_mask;
885 struct cpupri cpupri;
886
887 unsigned long max_cpu_capacity;
888
889 /*
890 * NULL-terminated list of performance domains intersecting with the
891 * CPUs of the rd. Protected by RCU.
892 */
893 struct perf_domain __rcu *pd;
894 };
895
896 extern void init_defrootdomain(void);
897 extern int sched_init_domains(const struct cpumask *cpu_map);
898 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
899 extern void sched_get_rd(struct root_domain *rd);
900 extern void sched_put_rd(struct root_domain *rd);
901
902 #ifdef HAVE_RT_PUSH_IPI
903 extern void rto_push_irq_work_func(struct irq_work *work);
904 #endif
905 #endif /* CONFIG_SMP */
906
907 #ifdef CONFIG_UCLAMP_TASK
908 /*
909 * struct uclamp_bucket - Utilization clamp bucket
910 * @value: utilization clamp value for tasks on this clamp bucket
911 * @tasks: number of RUNNABLE tasks on this clamp bucket
912 *
913 * Keep track of how many tasks are RUNNABLE for a given utilization
914 * clamp value.
915 */
916 struct uclamp_bucket {
917 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
918 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
919 };
920
921 /*
922 * struct uclamp_rq - rq's utilization clamp
923 * @value: currently active clamp values for a rq
924 * @bucket: utilization clamp buckets affecting a rq
925 *
926 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
927 * A clamp value is affecting a rq when there is at least one task RUNNABLE
928 * (or actually running) with that value.
929 *
930 * There are up to UCLAMP_CNT possible different clamp values, currently there
931 * are only two: minimum utilization and maximum utilization.
932 *
933 * All utilization clamping values are MAX aggregated, since:
934 * - for util_min: we want to run the CPU at least at the max of the minimum
935 * utilization required by its currently RUNNABLE tasks.
936 * - for util_max: we want to allow the CPU to run up to the max of the
937 * maximum utilization allowed by its currently RUNNABLE tasks.
938 *
939 * Since on each system we expect only a limited number of different
940 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
941 * the metrics required to compute all the per-rq utilization clamp values.
942 */
943 struct uclamp_rq {
944 unsigned int value;
945 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
946 };
947
948 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
949 #endif /* CONFIG_UCLAMP_TASK */
950
951 struct rq;
952 struct balance_callback {
953 struct balance_callback *next;
954 void (*func)(struct rq *rq);
955 };
956
957 /*
958 * This is the main, per-CPU runqueue data structure.
959 *
960 * Locking rule: those places that want to lock multiple runqueues
961 * (such as the load balancing or the thread migration code), lock
962 * acquire operations must be ordered by ascending &runqueue.
963 */
964 struct rq {
965 /* runqueue lock: */
966 raw_spinlock_t __lock;
967
968 /*
969 * nr_running and cpu_load should be in the same cacheline because
970 * remote CPUs use both these fields when doing load calculation.
971 */
972 unsigned int nr_running;
973 #ifdef CONFIG_NUMA_BALANCING
974 unsigned int nr_numa_running;
975 unsigned int nr_preferred_running;
976 unsigned int numa_migrate_on;
977 #endif
978 #ifdef CONFIG_NO_HZ_COMMON
979 #ifdef CONFIG_SMP
980 unsigned long last_blocked_load_update_tick;
981 unsigned int has_blocked_load;
982 call_single_data_t nohz_csd;
983 #endif /* CONFIG_SMP */
984 unsigned int nohz_tick_stopped;
985 atomic_t nohz_flags;
986 #endif /* CONFIG_NO_HZ_COMMON */
987
988 #ifdef CONFIG_SMP
989 unsigned int ttwu_pending;
990 #endif
991 u64 nr_switches;
992
993 #ifdef CONFIG_UCLAMP_TASK
994 /* Utilization clamp values based on CPU's RUNNABLE tasks */
995 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
996 unsigned int uclamp_flags;
997 #define UCLAMP_FLAG_IDLE 0x01
998 #endif
999
1000 struct cfs_rq cfs;
1001 struct rt_rq rt;
1002 struct dl_rq dl;
1003
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 /* list of leaf cfs_rq on this CPU: */
1006 struct list_head leaf_cfs_rq_list;
1007 struct list_head *tmp_alone_branch;
1008 #endif /* CONFIG_FAIR_GROUP_SCHED */
1009
1010 /*
1011 * This is part of a global counter where only the total sum
1012 * over all CPUs matters. A task can increase this counter on
1013 * one CPU and if it got migrated afterwards it may decrease
1014 * it on another CPU. Always updated under the runqueue lock:
1015 */
1016 unsigned int nr_uninterruptible;
1017
1018 struct task_struct __rcu *curr;
1019 struct task_struct *idle;
1020 struct task_struct *stop;
1021 unsigned long next_balance;
1022 struct mm_struct *prev_mm;
1023
1024 unsigned int clock_update_flags;
1025 u64 clock;
1026 /* Ensure that all clocks are in the same cache line */
1027 u64 clock_task ____cacheline_aligned;
1028 u64 clock_pelt;
1029 unsigned long lost_idle_time;
1030 u64 clock_pelt_idle;
1031 u64 clock_idle;
1032 #ifndef CONFIG_64BIT
1033 u64 clock_pelt_idle_copy;
1034 u64 clock_idle_copy;
1035 #endif
1036
1037 atomic_t nr_iowait;
1038
1039 #ifdef CONFIG_SCHED_DEBUG
1040 u64 last_seen_need_resched_ns;
1041 int ticks_without_resched;
1042 #endif
1043
1044 #ifdef CONFIG_MEMBARRIER
1045 int membarrier_state;
1046 #endif
1047
1048 #ifdef CONFIG_SMP
1049 struct root_domain *rd;
1050 struct sched_domain __rcu *sd;
1051
1052 unsigned long cpu_capacity;
1053 unsigned long cpu_capacity_orig;
1054
1055 struct balance_callback *balance_callback;
1056
1057 unsigned char nohz_idle_balance;
1058 unsigned char idle_balance;
1059
1060 unsigned long misfit_task_load;
1061
1062 /* For active balancing */
1063 int active_balance;
1064 int push_cpu;
1065 struct cpu_stop_work active_balance_work;
1066
1067 /* CPU of this runqueue: */
1068 int cpu;
1069 int online;
1070
1071 struct list_head cfs_tasks;
1072
1073 struct sched_avg avg_rt;
1074 struct sched_avg avg_dl;
1075 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1076 struct sched_avg avg_irq;
1077 #endif
1078 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1079 struct sched_avg avg_thermal;
1080 #endif
1081 u64 idle_stamp;
1082 u64 avg_idle;
1083
1084 unsigned long wake_stamp;
1085 u64 wake_avg_idle;
1086
1087 /* This is used to determine avg_idle's max value */
1088 u64 max_idle_balance_cost;
1089
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 struct rcuwait hotplug_wait;
1092 #endif
1093 #endif /* CONFIG_SMP */
1094
1095 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1096 u64 prev_irq_time;
1097 u64 psi_irq_time;
1098 #endif
1099 #ifdef CONFIG_PARAVIRT
1100 u64 prev_steal_time;
1101 #endif
1102 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1103 u64 prev_steal_time_rq;
1104 #endif
1105
1106 /* calc_load related fields */
1107 unsigned long calc_load_update;
1108 long calc_load_active;
1109
1110 #ifdef CONFIG_SCHED_HRTICK
1111 #ifdef CONFIG_SMP
1112 call_single_data_t hrtick_csd;
1113 #endif
1114 struct hrtimer hrtick_timer;
1115 ktime_t hrtick_time;
1116 #endif
1117
1118 #ifdef CONFIG_SCHEDSTATS
1119 /* latency stats */
1120 struct sched_info rq_sched_info;
1121 unsigned long long rq_cpu_time;
1122 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1123
1124 /* sys_sched_yield() stats */
1125 unsigned int yld_count;
1126
1127 /* schedule() stats */
1128 unsigned int sched_count;
1129 unsigned int sched_goidle;
1130
1131 /* try_to_wake_up() stats */
1132 unsigned int ttwu_count;
1133 unsigned int ttwu_local;
1134 #endif
1135
1136 #ifdef CONFIG_CPU_IDLE
1137 /* Must be inspected within a rcu lock section */
1138 struct cpuidle_state *idle_state;
1139 #endif
1140
1141 #ifdef CONFIG_SMP
1142 unsigned int nr_pinned;
1143 #endif
1144 unsigned int push_busy;
1145 struct cpu_stop_work push_work;
1146
1147 #ifdef CONFIG_SCHED_CORE
1148 /* per rq */
1149 struct rq *core;
1150 struct task_struct *core_pick;
1151 unsigned int core_enabled;
1152 unsigned int core_sched_seq;
1153 struct rb_root core_tree;
1154
1155 /* shared state -- careful with sched_core_cpu_deactivate() */
1156 unsigned int core_task_seq;
1157 unsigned int core_pick_seq;
1158 unsigned long core_cookie;
1159 unsigned int core_forceidle_count;
1160 unsigned int core_forceidle_seq;
1161 unsigned int core_forceidle_occupation;
1162 u64 core_forceidle_start;
1163 #endif
1164
1165 /* Scratch cpumask to be temporarily used under rq_lock */
1166 cpumask_var_t scratch_mask;
1167
1168 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1169 call_single_data_t cfsb_csd;
1170 struct list_head cfsb_csd_list;
1171 #endif
1172 };
1173
1174 #ifdef CONFIG_FAIR_GROUP_SCHED
1175
1176 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1177 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1178 {
1179 return cfs_rq->rq;
1180 }
1181
1182 #else
1183
rq_of(struct cfs_rq * cfs_rq)1184 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1185 {
1186 return container_of(cfs_rq, struct rq, cfs);
1187 }
1188 #endif
1189
cpu_of(struct rq * rq)1190 static inline int cpu_of(struct rq *rq)
1191 {
1192 #ifdef CONFIG_SMP
1193 return rq->cpu;
1194 #else
1195 return 0;
1196 #endif
1197 }
1198
1199 #define MDF_PUSH 0x01
1200
is_migration_disabled(struct task_struct * p)1201 static inline bool is_migration_disabled(struct task_struct *p)
1202 {
1203 #ifdef CONFIG_SMP
1204 return p->migration_disabled;
1205 #else
1206 return false;
1207 #endif
1208 }
1209
1210 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1211
1212 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1213 #define this_rq() this_cpu_ptr(&runqueues)
1214 #define task_rq(p) cpu_rq(task_cpu(p))
1215 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1216 #define raw_rq() raw_cpu_ptr(&runqueues)
1217
1218 struct sched_group;
1219 #ifdef CONFIG_SCHED_CORE
1220 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1221
1222 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1223
sched_core_enabled(struct rq * rq)1224 static inline bool sched_core_enabled(struct rq *rq)
1225 {
1226 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1227 }
1228
sched_core_disabled(void)1229 static inline bool sched_core_disabled(void)
1230 {
1231 return !static_branch_unlikely(&__sched_core_enabled);
1232 }
1233
1234 /*
1235 * Be careful with this function; not for general use. The return value isn't
1236 * stable unless you actually hold a relevant rq->__lock.
1237 */
rq_lockp(struct rq * rq)1238 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1239 {
1240 if (sched_core_enabled(rq))
1241 return &rq->core->__lock;
1242
1243 return &rq->__lock;
1244 }
1245
__rq_lockp(struct rq * rq)1246 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1247 {
1248 if (rq->core_enabled)
1249 return &rq->core->__lock;
1250
1251 return &rq->__lock;
1252 }
1253
1254 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1255 bool fi);
1256 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1257
1258 /*
1259 * Helpers to check if the CPU's core cookie matches with the task's cookie
1260 * when core scheduling is enabled.
1261 * A special case is that the task's cookie always matches with CPU's core
1262 * cookie if the CPU is in an idle core.
1263 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1264 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1265 {
1266 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1267 if (!sched_core_enabled(rq))
1268 return true;
1269
1270 return rq->core->core_cookie == p->core_cookie;
1271 }
1272
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1273 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1274 {
1275 bool idle_core = true;
1276 int cpu;
1277
1278 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1279 if (!sched_core_enabled(rq))
1280 return true;
1281
1282 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1283 if (!available_idle_cpu(cpu)) {
1284 idle_core = false;
1285 break;
1286 }
1287 }
1288
1289 /*
1290 * A CPU in an idle core is always the best choice for tasks with
1291 * cookies.
1292 */
1293 return idle_core || rq->core->core_cookie == p->core_cookie;
1294 }
1295
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1296 static inline bool sched_group_cookie_match(struct rq *rq,
1297 struct task_struct *p,
1298 struct sched_group *group)
1299 {
1300 int cpu;
1301
1302 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1303 if (!sched_core_enabled(rq))
1304 return true;
1305
1306 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1307 if (sched_core_cookie_match(cpu_rq(cpu), p))
1308 return true;
1309 }
1310 return false;
1311 }
1312
sched_core_enqueued(struct task_struct * p)1313 static inline bool sched_core_enqueued(struct task_struct *p)
1314 {
1315 return !RB_EMPTY_NODE(&p->core_node);
1316 }
1317
1318 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1319 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1320
1321 extern void sched_core_get(void);
1322 extern void sched_core_put(void);
1323
1324 #else /* !CONFIG_SCHED_CORE */
1325
sched_core_enabled(struct rq * rq)1326 static inline bool sched_core_enabled(struct rq *rq)
1327 {
1328 return false;
1329 }
1330
sched_core_disabled(void)1331 static inline bool sched_core_disabled(void)
1332 {
1333 return true;
1334 }
1335
rq_lockp(struct rq * rq)1336 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1337 {
1338 return &rq->__lock;
1339 }
1340
__rq_lockp(struct rq * rq)1341 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1342 {
1343 return &rq->__lock;
1344 }
1345
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1346 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1347 {
1348 return true;
1349 }
1350
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1351 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1352 {
1353 return true;
1354 }
1355
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1356 static inline bool sched_group_cookie_match(struct rq *rq,
1357 struct task_struct *p,
1358 struct sched_group *group)
1359 {
1360 return true;
1361 }
1362 #endif /* CONFIG_SCHED_CORE */
1363
lockdep_assert_rq_held(struct rq * rq)1364 static inline void lockdep_assert_rq_held(struct rq *rq)
1365 {
1366 lockdep_assert_held(__rq_lockp(rq));
1367 }
1368
1369 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1370 extern bool raw_spin_rq_trylock(struct rq *rq);
1371 extern void raw_spin_rq_unlock(struct rq *rq);
1372
raw_spin_rq_lock(struct rq * rq)1373 static inline void raw_spin_rq_lock(struct rq *rq)
1374 {
1375 raw_spin_rq_lock_nested(rq, 0);
1376 }
1377
raw_spin_rq_lock_irq(struct rq * rq)1378 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1379 {
1380 local_irq_disable();
1381 raw_spin_rq_lock(rq);
1382 }
1383
raw_spin_rq_unlock_irq(struct rq * rq)1384 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1385 {
1386 raw_spin_rq_unlock(rq);
1387 local_irq_enable();
1388 }
1389
_raw_spin_rq_lock_irqsave(struct rq * rq)1390 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1391 {
1392 unsigned long flags;
1393 local_irq_save(flags);
1394 raw_spin_rq_lock(rq);
1395 return flags;
1396 }
1397
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1398 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1399 {
1400 raw_spin_rq_unlock(rq);
1401 local_irq_restore(flags);
1402 }
1403
1404 #define raw_spin_rq_lock_irqsave(rq, flags) \
1405 do { \
1406 flags = _raw_spin_rq_lock_irqsave(rq); \
1407 } while (0)
1408
1409 #ifdef CONFIG_SCHED_SMT
1410 extern void __update_idle_core(struct rq *rq);
1411
update_idle_core(struct rq * rq)1412 static inline void update_idle_core(struct rq *rq)
1413 {
1414 if (static_branch_unlikely(&sched_smt_present))
1415 __update_idle_core(rq);
1416 }
1417
1418 #else
update_idle_core(struct rq * rq)1419 static inline void update_idle_core(struct rq *rq) { }
1420 #endif
1421
1422 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1423 static inline struct task_struct *task_of(struct sched_entity *se)
1424 {
1425 SCHED_WARN_ON(!entity_is_task(se));
1426 return container_of(se, struct task_struct, se);
1427 }
1428
task_cfs_rq(struct task_struct * p)1429 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1430 {
1431 return p->se.cfs_rq;
1432 }
1433
1434 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1435 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1436 {
1437 return se->cfs_rq;
1438 }
1439
1440 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1442 {
1443 return grp->my_q;
1444 }
1445
1446 #else
1447
1448 #define task_of(_se) container_of(_se, struct task_struct, se)
1449
task_cfs_rq(const struct task_struct * p)1450 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1451 {
1452 return &task_rq(p)->cfs;
1453 }
1454
cfs_rq_of(const struct sched_entity * se)1455 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1456 {
1457 const struct task_struct *p = task_of(se);
1458 struct rq *rq = task_rq(p);
1459
1460 return &rq->cfs;
1461 }
1462
1463 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1464 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1465 {
1466 return NULL;
1467 }
1468 #endif
1469
1470 extern void update_rq_clock(struct rq *rq);
1471
1472 /*
1473 * rq::clock_update_flags bits
1474 *
1475 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1476 * call to __schedule(). This is an optimisation to avoid
1477 * neighbouring rq clock updates.
1478 *
1479 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1480 * in effect and calls to update_rq_clock() are being ignored.
1481 *
1482 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1483 * made to update_rq_clock() since the last time rq::lock was pinned.
1484 *
1485 * If inside of __schedule(), clock_update_flags will have been
1486 * shifted left (a left shift is a cheap operation for the fast path
1487 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1488 *
1489 * if (rq-clock_update_flags >= RQCF_UPDATED)
1490 *
1491 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1492 * one position though, because the next rq_unpin_lock() will shift it
1493 * back.
1494 */
1495 #define RQCF_REQ_SKIP 0x01
1496 #define RQCF_ACT_SKIP 0x02
1497 #define RQCF_UPDATED 0x04
1498
assert_clock_updated(struct rq * rq)1499 static inline void assert_clock_updated(struct rq *rq)
1500 {
1501 /*
1502 * The only reason for not seeing a clock update since the
1503 * last rq_pin_lock() is if we're currently skipping updates.
1504 */
1505 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1506 }
1507
rq_clock(struct rq * rq)1508 static inline u64 rq_clock(struct rq *rq)
1509 {
1510 lockdep_assert_rq_held(rq);
1511 assert_clock_updated(rq);
1512
1513 return rq->clock;
1514 }
1515
rq_clock_task(struct rq * rq)1516 static inline u64 rq_clock_task(struct rq *rq)
1517 {
1518 lockdep_assert_rq_held(rq);
1519 assert_clock_updated(rq);
1520
1521 return rq->clock_task;
1522 }
1523
1524 /**
1525 * By default the decay is the default pelt decay period.
1526 * The decay shift can change the decay period in
1527 * multiples of 32.
1528 * Decay shift Decay period(ms)
1529 * 0 32
1530 * 1 64
1531 * 2 128
1532 * 3 256
1533 * 4 512
1534 */
1535 extern int sched_thermal_decay_shift;
1536
rq_clock_thermal(struct rq * rq)1537 static inline u64 rq_clock_thermal(struct rq *rq)
1538 {
1539 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1540 }
1541
rq_clock_skip_update(struct rq * rq)1542 static inline void rq_clock_skip_update(struct rq *rq)
1543 {
1544 lockdep_assert_rq_held(rq);
1545 rq->clock_update_flags |= RQCF_REQ_SKIP;
1546 }
1547
1548 /*
1549 * See rt task throttling, which is the only time a skip
1550 * request is canceled.
1551 */
rq_clock_cancel_skipupdate(struct rq * rq)1552 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1553 {
1554 lockdep_assert_rq_held(rq);
1555 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1556 }
1557
1558 /*
1559 * During cpu offlining and rq wide unthrottling, we can trigger
1560 * an update_rq_clock() for several cfs and rt runqueues (Typically
1561 * when using list_for_each_entry_*)
1562 * rq_clock_start_loop_update() can be called after updating the clock
1563 * once and before iterating over the list to prevent multiple update.
1564 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1565 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1566 */
rq_clock_start_loop_update(struct rq * rq)1567 static inline void rq_clock_start_loop_update(struct rq *rq)
1568 {
1569 lockdep_assert_rq_held(rq);
1570 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1571 rq->clock_update_flags |= RQCF_ACT_SKIP;
1572 }
1573
rq_clock_stop_loop_update(struct rq * rq)1574 static inline void rq_clock_stop_loop_update(struct rq *rq)
1575 {
1576 lockdep_assert_rq_held(rq);
1577 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1578 }
1579
1580 struct rq_flags {
1581 unsigned long flags;
1582 struct pin_cookie cookie;
1583 #ifdef CONFIG_SCHED_DEBUG
1584 /*
1585 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1586 * current pin context is stashed here in case it needs to be
1587 * restored in rq_repin_lock().
1588 */
1589 unsigned int clock_update_flags;
1590 #endif
1591 };
1592
1593 extern struct balance_callback balance_push_callback;
1594
1595 /*
1596 * Lockdep annotation that avoids accidental unlocks; it's like a
1597 * sticky/continuous lockdep_assert_held().
1598 *
1599 * This avoids code that has access to 'struct rq *rq' (basically everything in
1600 * the scheduler) from accidentally unlocking the rq if they do not also have a
1601 * copy of the (on-stack) 'struct rq_flags rf'.
1602 *
1603 * Also see Documentation/locking/lockdep-design.rst.
1604 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1605 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1606 {
1607 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1608
1609 #ifdef CONFIG_SCHED_DEBUG
1610 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1611 rf->clock_update_flags = 0;
1612 #ifdef CONFIG_SMP
1613 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1614 #endif
1615 #endif
1616 }
1617
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1618 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1619 {
1620 #ifdef CONFIG_SCHED_DEBUG
1621 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1622 rf->clock_update_flags = RQCF_UPDATED;
1623 #endif
1624
1625 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1626 }
1627
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1628 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1629 {
1630 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1631
1632 #ifdef CONFIG_SCHED_DEBUG
1633 /*
1634 * Restore the value we stashed in @rf for this pin context.
1635 */
1636 rq->clock_update_flags |= rf->clock_update_flags;
1637 #endif
1638 }
1639
1640 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1641 __acquires(rq->lock);
1642
1643 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1644 __acquires(p->pi_lock)
1645 __acquires(rq->lock);
1646
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1647 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1648 __releases(rq->lock)
1649 {
1650 rq_unpin_lock(rq, rf);
1651 raw_spin_rq_unlock(rq);
1652 }
1653
1654 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1655 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1656 __releases(rq->lock)
1657 __releases(p->pi_lock)
1658 {
1659 rq_unpin_lock(rq, rf);
1660 raw_spin_rq_unlock(rq);
1661 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1662 }
1663
1664 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1665 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1666 __acquires(rq->lock)
1667 {
1668 raw_spin_rq_lock_irqsave(rq, rf->flags);
1669 rq_pin_lock(rq, rf);
1670 }
1671
1672 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1673 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1674 __acquires(rq->lock)
1675 {
1676 raw_spin_rq_lock_irq(rq);
1677 rq_pin_lock(rq, rf);
1678 }
1679
1680 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1681 rq_lock(struct rq *rq, struct rq_flags *rf)
1682 __acquires(rq->lock)
1683 {
1684 raw_spin_rq_lock(rq);
1685 rq_pin_lock(rq, rf);
1686 }
1687
1688 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1689 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1690 __releases(rq->lock)
1691 {
1692 rq_unpin_lock(rq, rf);
1693 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1694 }
1695
1696 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1697 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1698 __releases(rq->lock)
1699 {
1700 rq_unpin_lock(rq, rf);
1701 raw_spin_rq_unlock_irq(rq);
1702 }
1703
1704 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1705 rq_unlock(struct rq *rq, struct rq_flags *rf)
1706 __releases(rq->lock)
1707 {
1708 rq_unpin_lock(rq, rf);
1709 raw_spin_rq_unlock(rq);
1710 }
1711
1712 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1713 rq_lock(_T->lock, &_T->rf),
1714 rq_unlock(_T->lock, &_T->rf),
1715 struct rq_flags rf)
1716
1717 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1718 rq_lock_irq(_T->lock, &_T->rf),
1719 rq_unlock_irq(_T->lock, &_T->rf),
1720 struct rq_flags rf)
1721
1722 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1723 rq_lock_irqsave(_T->lock, &_T->rf),
1724 rq_unlock_irqrestore(_T->lock, &_T->rf),
1725 struct rq_flags rf)
1726
1727 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1728 this_rq_lock_irq(struct rq_flags *rf)
1729 __acquires(rq->lock)
1730 {
1731 struct rq *rq;
1732
1733 local_irq_disable();
1734 rq = this_rq();
1735 rq_lock(rq, rf);
1736 return rq;
1737 }
1738
1739 #ifdef CONFIG_NUMA
1740 enum numa_topology_type {
1741 NUMA_DIRECT,
1742 NUMA_GLUELESS_MESH,
1743 NUMA_BACKPLANE,
1744 };
1745 extern enum numa_topology_type sched_numa_topology_type;
1746 extern int sched_max_numa_distance;
1747 extern bool find_numa_distance(int distance);
1748 extern void sched_init_numa(int offline_node);
1749 extern void sched_update_numa(int cpu, bool online);
1750 extern void sched_domains_numa_masks_set(unsigned int cpu);
1751 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1752 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1753 #else
sched_init_numa(int offline_node)1754 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1755 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1756 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1757 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1758 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1759 {
1760 return nr_cpu_ids;
1761 }
1762 #endif
1763
1764 #ifdef CONFIG_NUMA_BALANCING
1765 /* The regions in numa_faults array from task_struct */
1766 enum numa_faults_stats {
1767 NUMA_MEM = 0,
1768 NUMA_CPU,
1769 NUMA_MEMBUF,
1770 NUMA_CPUBUF
1771 };
1772 extern void sched_setnuma(struct task_struct *p, int node);
1773 extern int migrate_task_to(struct task_struct *p, int cpu);
1774 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1775 int cpu, int scpu);
1776 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1777 #else
1778 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1779 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1780 {
1781 }
1782 #endif /* CONFIG_NUMA_BALANCING */
1783
1784 #ifdef CONFIG_SMP
1785
1786 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1787 queue_balance_callback(struct rq *rq,
1788 struct balance_callback *head,
1789 void (*func)(struct rq *rq))
1790 {
1791 lockdep_assert_rq_held(rq);
1792
1793 /*
1794 * Don't (re)queue an already queued item; nor queue anything when
1795 * balance_push() is active, see the comment with
1796 * balance_push_callback.
1797 */
1798 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1799 return;
1800
1801 head->func = func;
1802 head->next = rq->balance_callback;
1803 rq->balance_callback = head;
1804 }
1805
1806 #define rcu_dereference_check_sched_domain(p) \
1807 rcu_dereference_check((p), \
1808 lockdep_is_held(&sched_domains_mutex))
1809
1810 /*
1811 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1812 * See destroy_sched_domains: call_rcu for details.
1813 *
1814 * The domain tree of any CPU may only be accessed from within
1815 * preempt-disabled sections.
1816 */
1817 #define for_each_domain(cpu, __sd) \
1818 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1819 __sd; __sd = __sd->parent)
1820
1821 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1822 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1823 static const unsigned int SD_SHARED_CHILD_MASK =
1824 #include <linux/sched/sd_flags.h>
1825 0;
1826 #undef SD_FLAG
1827
1828 /**
1829 * highest_flag_domain - Return highest sched_domain containing flag.
1830 * @cpu: The CPU whose highest level of sched domain is to
1831 * be returned.
1832 * @flag: The flag to check for the highest sched_domain
1833 * for the given CPU.
1834 *
1835 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1836 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1837 */
highest_flag_domain(int cpu,int flag)1838 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1839 {
1840 struct sched_domain *sd, *hsd = NULL;
1841
1842 for_each_domain(cpu, sd) {
1843 if (sd->flags & flag) {
1844 hsd = sd;
1845 continue;
1846 }
1847
1848 /*
1849 * Stop the search if @flag is known to be shared at lower
1850 * levels. It will not be found further up.
1851 */
1852 if (flag & SD_SHARED_CHILD_MASK)
1853 break;
1854 }
1855
1856 return hsd;
1857 }
1858
lowest_flag_domain(int cpu,int flag)1859 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1860 {
1861 struct sched_domain *sd;
1862
1863 for_each_domain(cpu, sd) {
1864 if (sd->flags & flag)
1865 break;
1866 }
1867
1868 return sd;
1869 }
1870
1871 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1872 DECLARE_PER_CPU(int, sd_llc_size);
1873 DECLARE_PER_CPU(int, sd_llc_id);
1874 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1875 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1876 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1877 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1878 extern struct static_key_false sched_asym_cpucapacity;
1879
sched_asym_cpucap_active(void)1880 static __always_inline bool sched_asym_cpucap_active(void)
1881 {
1882 return static_branch_unlikely(&sched_asym_cpucapacity);
1883 }
1884
1885 struct sched_group_capacity {
1886 atomic_t ref;
1887 /*
1888 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1889 * for a single CPU.
1890 */
1891 unsigned long capacity;
1892 unsigned long min_capacity; /* Min per-CPU capacity in group */
1893 unsigned long max_capacity; /* Max per-CPU capacity in group */
1894 unsigned long next_update;
1895 int imbalance; /* XXX unrelated to capacity but shared group state */
1896
1897 #ifdef CONFIG_SCHED_DEBUG
1898 int id;
1899 #endif
1900
1901 unsigned long cpumask[]; /* Balance mask */
1902 };
1903
1904 struct sched_group {
1905 struct sched_group *next; /* Must be a circular list */
1906 atomic_t ref;
1907
1908 unsigned int group_weight;
1909 unsigned int cores;
1910 struct sched_group_capacity *sgc;
1911 int asym_prefer_cpu; /* CPU of highest priority in group */
1912 int flags;
1913
1914 /*
1915 * The CPUs this group covers.
1916 *
1917 * NOTE: this field is variable length. (Allocated dynamically
1918 * by attaching extra space to the end of the structure,
1919 * depending on how many CPUs the kernel has booted up with)
1920 */
1921 unsigned long cpumask[];
1922 };
1923
sched_group_span(struct sched_group * sg)1924 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1925 {
1926 return to_cpumask(sg->cpumask);
1927 }
1928
1929 /*
1930 * See build_balance_mask().
1931 */
group_balance_mask(struct sched_group * sg)1932 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1933 {
1934 return to_cpumask(sg->sgc->cpumask);
1935 }
1936
1937 extern int group_balance_cpu(struct sched_group *sg);
1938
1939 #ifdef CONFIG_SCHED_DEBUG
1940 void update_sched_domain_debugfs(void);
1941 void dirty_sched_domain_sysctl(int cpu);
1942 #else
update_sched_domain_debugfs(void)1943 static inline void update_sched_domain_debugfs(void)
1944 {
1945 }
dirty_sched_domain_sysctl(int cpu)1946 static inline void dirty_sched_domain_sysctl(int cpu)
1947 {
1948 }
1949 #endif
1950
1951 extern int sched_update_scaling(void);
1952
task_user_cpus(struct task_struct * p)1953 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1954 {
1955 if (!p->user_cpus_ptr)
1956 return cpu_possible_mask; /* &init_task.cpus_mask */
1957 return p->user_cpus_ptr;
1958 }
1959 #endif /* CONFIG_SMP */
1960
1961 #include "stats.h"
1962
1963 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1964
1965 extern void __sched_core_account_forceidle(struct rq *rq);
1966
sched_core_account_forceidle(struct rq * rq)1967 static inline void sched_core_account_forceidle(struct rq *rq)
1968 {
1969 if (schedstat_enabled())
1970 __sched_core_account_forceidle(rq);
1971 }
1972
1973 extern void __sched_core_tick(struct rq *rq);
1974
sched_core_tick(struct rq * rq)1975 static inline void sched_core_tick(struct rq *rq)
1976 {
1977 if (sched_core_enabled(rq) && schedstat_enabled())
1978 __sched_core_tick(rq);
1979 }
1980
1981 #else
1982
sched_core_account_forceidle(struct rq * rq)1983 static inline void sched_core_account_forceidle(struct rq *rq) {}
1984
sched_core_tick(struct rq * rq)1985 static inline void sched_core_tick(struct rq *rq) {}
1986
1987 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1988
1989 #ifdef CONFIG_CGROUP_SCHED
1990
1991 /*
1992 * Return the group to which this tasks belongs.
1993 *
1994 * We cannot use task_css() and friends because the cgroup subsystem
1995 * changes that value before the cgroup_subsys::attach() method is called,
1996 * therefore we cannot pin it and might observe the wrong value.
1997 *
1998 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1999 * core changes this before calling sched_move_task().
2000 *
2001 * Instead we use a 'copy' which is updated from sched_move_task() while
2002 * holding both task_struct::pi_lock and rq::lock.
2003 */
task_group(struct task_struct * p)2004 static inline struct task_group *task_group(struct task_struct *p)
2005 {
2006 return p->sched_task_group;
2007 }
2008
2009 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2010 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2011 {
2012 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2013 struct task_group *tg = task_group(p);
2014 #endif
2015
2016 #ifdef CONFIG_FAIR_GROUP_SCHED
2017 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2018 p->se.cfs_rq = tg->cfs_rq[cpu];
2019 p->se.parent = tg->se[cpu];
2020 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2021 #endif
2022
2023 #ifdef CONFIG_RT_GROUP_SCHED
2024 p->rt.rt_rq = tg->rt_rq[cpu];
2025 p->rt.parent = tg->rt_se[cpu];
2026 #endif
2027 }
2028
2029 #else /* CONFIG_CGROUP_SCHED */
2030
set_task_rq(struct task_struct * p,unsigned int cpu)2031 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2032 static inline struct task_group *task_group(struct task_struct *p)
2033 {
2034 return NULL;
2035 }
2036
2037 #endif /* CONFIG_CGROUP_SCHED */
2038
__set_task_cpu(struct task_struct * p,unsigned int cpu)2039 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2040 {
2041 set_task_rq(p, cpu);
2042 #ifdef CONFIG_SMP
2043 /*
2044 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2045 * successfully executed on another CPU. We must ensure that updates of
2046 * per-task data have been completed by this moment.
2047 */
2048 smp_wmb();
2049 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2050 p->wake_cpu = cpu;
2051 #endif
2052 }
2053
2054 /*
2055 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2056 */
2057 #ifdef CONFIG_SCHED_DEBUG
2058 # define const_debug __read_mostly
2059 #else
2060 # define const_debug const
2061 #endif
2062
2063 #define SCHED_FEAT(name, enabled) \
2064 __SCHED_FEAT_##name ,
2065
2066 enum {
2067 #include "features.h"
2068 __SCHED_FEAT_NR,
2069 };
2070
2071 #undef SCHED_FEAT
2072
2073 #ifdef CONFIG_SCHED_DEBUG
2074
2075 /*
2076 * To support run-time toggling of sched features, all the translation units
2077 * (but core.c) reference the sysctl_sched_features defined in core.c.
2078 */
2079 extern const_debug unsigned int sysctl_sched_features;
2080
2081 #ifdef CONFIG_JUMP_LABEL
2082 #define SCHED_FEAT(name, enabled) \
2083 static __always_inline bool static_branch_##name(struct static_key *key) \
2084 { \
2085 return static_key_##enabled(key); \
2086 }
2087
2088 #include "features.h"
2089 #undef SCHED_FEAT
2090
2091 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2092 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2093
2094 #else /* !CONFIG_JUMP_LABEL */
2095
2096 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2097
2098 #endif /* CONFIG_JUMP_LABEL */
2099
2100 #else /* !SCHED_DEBUG */
2101
2102 /*
2103 * Each translation unit has its own copy of sysctl_sched_features to allow
2104 * constants propagation at compile time and compiler optimization based on
2105 * features default.
2106 */
2107 #define SCHED_FEAT(name, enabled) \
2108 (1UL << __SCHED_FEAT_##name) * enabled |
2109 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2110 #include "features.h"
2111 0;
2112 #undef SCHED_FEAT
2113
2114 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2115
2116 #endif /* SCHED_DEBUG */
2117
2118 extern struct static_key_false sched_numa_balancing;
2119 extern struct static_key_false sched_schedstats;
2120
global_rt_period(void)2121 static inline u64 global_rt_period(void)
2122 {
2123 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2124 }
2125
global_rt_runtime(void)2126 static inline u64 global_rt_runtime(void)
2127 {
2128 if (sysctl_sched_rt_runtime < 0)
2129 return RUNTIME_INF;
2130
2131 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2132 }
2133
task_current(struct rq * rq,struct task_struct * p)2134 static inline int task_current(struct rq *rq, struct task_struct *p)
2135 {
2136 return rq->curr == p;
2137 }
2138
task_on_cpu(struct rq * rq,struct task_struct * p)2139 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2140 {
2141 #ifdef CONFIG_SMP
2142 return p->on_cpu;
2143 #else
2144 return task_current(rq, p);
2145 #endif
2146 }
2147
task_on_rq_queued(struct task_struct * p)2148 static inline int task_on_rq_queued(struct task_struct *p)
2149 {
2150 return p->on_rq == TASK_ON_RQ_QUEUED;
2151 }
2152
task_on_rq_migrating(struct task_struct * p)2153 static inline int task_on_rq_migrating(struct task_struct *p)
2154 {
2155 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2156 }
2157
2158 /* Wake flags. The first three directly map to some SD flag value */
2159 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2160 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2161 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2162
2163 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2164 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2165 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2166
2167 #ifdef CONFIG_SMP
2168 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2169 static_assert(WF_FORK == SD_BALANCE_FORK);
2170 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2171 #endif
2172
2173 /*
2174 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2175 * of tasks with abnormal "nice" values across CPUs the contribution that
2176 * each task makes to its run queue's load is weighted according to its
2177 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2178 * scaled version of the new time slice allocation that they receive on time
2179 * slice expiry etc.
2180 */
2181
2182 #define WEIGHT_IDLEPRIO 3
2183 #define WMULT_IDLEPRIO 1431655765
2184
2185 extern const int sched_prio_to_weight[40];
2186 extern const u32 sched_prio_to_wmult[40];
2187
2188 /*
2189 * {de,en}queue flags:
2190 *
2191 * DEQUEUE_SLEEP - task is no longer runnable
2192 * ENQUEUE_WAKEUP - task just became runnable
2193 *
2194 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2195 * are in a known state which allows modification. Such pairs
2196 * should preserve as much state as possible.
2197 *
2198 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2199 * in the runqueue.
2200 *
2201 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2202 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2203 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2204 *
2205 */
2206
2207 #define DEQUEUE_SLEEP 0x01
2208 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2209 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2210 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2211
2212 #define ENQUEUE_WAKEUP 0x01
2213 #define ENQUEUE_RESTORE 0x02
2214 #define ENQUEUE_MOVE 0x04
2215 #define ENQUEUE_NOCLOCK 0x08
2216
2217 #define ENQUEUE_HEAD 0x10
2218 #define ENQUEUE_REPLENISH 0x20
2219 #ifdef CONFIG_SMP
2220 #define ENQUEUE_MIGRATED 0x40
2221 #else
2222 #define ENQUEUE_MIGRATED 0x00
2223 #endif
2224 #define ENQUEUE_INITIAL 0x80
2225
2226 #define RETRY_TASK ((void *)-1UL)
2227
2228 struct affinity_context {
2229 const struct cpumask *new_mask;
2230 struct cpumask *user_mask;
2231 unsigned int flags;
2232 };
2233
2234 struct sched_class {
2235
2236 #ifdef CONFIG_UCLAMP_TASK
2237 int uclamp_enabled;
2238 #endif
2239
2240 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2241 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2242 void (*yield_task) (struct rq *rq);
2243 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2244
2245 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2246
2247 struct task_struct *(*pick_next_task)(struct rq *rq);
2248
2249 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2250 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2251
2252 #ifdef CONFIG_SMP
2253 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2254 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2255
2256 struct task_struct * (*pick_task)(struct rq *rq);
2257
2258 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2259
2260 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2261
2262 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2263
2264 void (*rq_online)(struct rq *rq);
2265 void (*rq_offline)(struct rq *rq);
2266
2267 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2268 #endif
2269
2270 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2271 void (*task_fork)(struct task_struct *p);
2272 void (*task_dead)(struct task_struct *p);
2273
2274 /*
2275 * The switched_from() call is allowed to drop rq->lock, therefore we
2276 * cannot assume the switched_from/switched_to pair is serialized by
2277 * rq->lock. They are however serialized by p->pi_lock.
2278 */
2279 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2280 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2281 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2282 int oldprio);
2283
2284 unsigned int (*get_rr_interval)(struct rq *rq,
2285 struct task_struct *task);
2286
2287 void (*update_curr)(struct rq *rq);
2288
2289 #ifdef CONFIG_FAIR_GROUP_SCHED
2290 void (*task_change_group)(struct task_struct *p);
2291 #endif
2292
2293 #ifdef CONFIG_SCHED_CORE
2294 int (*task_is_throttled)(struct task_struct *p, int cpu);
2295 #endif
2296 };
2297
put_prev_task(struct rq * rq,struct task_struct * prev)2298 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2299 {
2300 WARN_ON_ONCE(rq->curr != prev);
2301 prev->sched_class->put_prev_task(rq, prev);
2302 }
2303
set_next_task(struct rq * rq,struct task_struct * next)2304 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2305 {
2306 next->sched_class->set_next_task(rq, next, false);
2307 }
2308
2309
2310 /*
2311 * Helper to define a sched_class instance; each one is placed in a separate
2312 * section which is ordered by the linker script:
2313 *
2314 * include/asm-generic/vmlinux.lds.h
2315 *
2316 * *CAREFUL* they are laid out in *REVERSE* order!!!
2317 *
2318 * Also enforce alignment on the instance, not the type, to guarantee layout.
2319 */
2320 #define DEFINE_SCHED_CLASS(name) \
2321 const struct sched_class name##_sched_class \
2322 __aligned(__alignof__(struct sched_class)) \
2323 __section("__" #name "_sched_class")
2324
2325 /* Defined in include/asm-generic/vmlinux.lds.h */
2326 extern struct sched_class __sched_class_highest[];
2327 extern struct sched_class __sched_class_lowest[];
2328
2329 #define for_class_range(class, _from, _to) \
2330 for (class = (_from); class < (_to); class++)
2331
2332 #define for_each_class(class) \
2333 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2334
2335 #define sched_class_above(_a, _b) ((_a) < (_b))
2336
2337 extern const struct sched_class stop_sched_class;
2338 extern const struct sched_class dl_sched_class;
2339 extern const struct sched_class rt_sched_class;
2340 extern const struct sched_class fair_sched_class;
2341 extern const struct sched_class idle_sched_class;
2342
sched_stop_runnable(struct rq * rq)2343 static inline bool sched_stop_runnable(struct rq *rq)
2344 {
2345 return rq->stop && task_on_rq_queued(rq->stop);
2346 }
2347
sched_dl_runnable(struct rq * rq)2348 static inline bool sched_dl_runnable(struct rq *rq)
2349 {
2350 return rq->dl.dl_nr_running > 0;
2351 }
2352
sched_rt_runnable(struct rq * rq)2353 static inline bool sched_rt_runnable(struct rq *rq)
2354 {
2355 return rq->rt.rt_queued > 0;
2356 }
2357
sched_fair_runnable(struct rq * rq)2358 static inline bool sched_fair_runnable(struct rq *rq)
2359 {
2360 return rq->cfs.nr_running > 0;
2361 }
2362
2363 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2364 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2365
2366 #define SCA_CHECK 0x01
2367 #define SCA_MIGRATE_DISABLE 0x02
2368 #define SCA_MIGRATE_ENABLE 0x04
2369 #define SCA_USER 0x08
2370
2371 #ifdef CONFIG_SMP
2372
2373 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2374
2375 extern void trigger_load_balance(struct rq *rq);
2376
2377 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2378
get_push_task(struct rq * rq)2379 static inline struct task_struct *get_push_task(struct rq *rq)
2380 {
2381 struct task_struct *p = rq->curr;
2382
2383 lockdep_assert_rq_held(rq);
2384
2385 if (rq->push_busy)
2386 return NULL;
2387
2388 if (p->nr_cpus_allowed == 1)
2389 return NULL;
2390
2391 if (p->migration_disabled)
2392 return NULL;
2393
2394 rq->push_busy = true;
2395 return get_task_struct(p);
2396 }
2397
2398 extern int push_cpu_stop(void *arg);
2399
2400 #endif
2401
2402 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2403 static inline void idle_set_state(struct rq *rq,
2404 struct cpuidle_state *idle_state)
2405 {
2406 rq->idle_state = idle_state;
2407 }
2408
idle_get_state(struct rq * rq)2409 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2410 {
2411 SCHED_WARN_ON(!rcu_read_lock_held());
2412
2413 return rq->idle_state;
2414 }
2415 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2416 static inline void idle_set_state(struct rq *rq,
2417 struct cpuidle_state *idle_state)
2418 {
2419 }
2420
idle_get_state(struct rq * rq)2421 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2422 {
2423 return NULL;
2424 }
2425 #endif
2426
2427 extern void schedule_idle(void);
2428 asmlinkage void schedule_user(void);
2429
2430 extern void sysrq_sched_debug_show(void);
2431 extern void sched_init_granularity(void);
2432 extern void update_max_interval(void);
2433
2434 extern void init_sched_dl_class(void);
2435 extern void init_sched_rt_class(void);
2436 extern void init_sched_fair_class(void);
2437
2438 extern void reweight_task(struct task_struct *p, const struct load_weight *lw);
2439
2440 extern void resched_curr(struct rq *rq);
2441 extern void resched_cpu(int cpu);
2442
2443 extern struct rt_bandwidth def_rt_bandwidth;
2444 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2445 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2446
2447 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2448 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2449
2450 #define BW_SHIFT 20
2451 #define BW_UNIT (1 << BW_SHIFT)
2452 #define RATIO_SHIFT 8
2453 #define MAX_BW_BITS (64 - BW_SHIFT)
2454 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2455 unsigned long to_ratio(u64 period, u64 runtime);
2456
2457 extern void init_entity_runnable_average(struct sched_entity *se);
2458 extern void post_init_entity_util_avg(struct task_struct *p);
2459
2460 #ifdef CONFIG_NO_HZ_FULL
2461 extern bool sched_can_stop_tick(struct rq *rq);
2462 extern int __init sched_tick_offload_init(void);
2463
2464 /*
2465 * Tick may be needed by tasks in the runqueue depending on their policy and
2466 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2467 * nohz mode if necessary.
2468 */
sched_update_tick_dependency(struct rq * rq)2469 static inline void sched_update_tick_dependency(struct rq *rq)
2470 {
2471 int cpu = cpu_of(rq);
2472
2473 if (!tick_nohz_full_cpu(cpu))
2474 return;
2475
2476 if (sched_can_stop_tick(rq))
2477 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2478 else
2479 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2480 }
2481 #else
sched_tick_offload_init(void)2482 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2483 static inline void sched_update_tick_dependency(struct rq *rq) { }
2484 #endif
2485
add_nr_running(struct rq * rq,unsigned count)2486 static inline void add_nr_running(struct rq *rq, unsigned count)
2487 {
2488 unsigned prev_nr = rq->nr_running;
2489
2490 rq->nr_running = prev_nr + count;
2491 if (trace_sched_update_nr_running_tp_enabled()) {
2492 call_trace_sched_update_nr_running(rq, count);
2493 }
2494
2495 #ifdef CONFIG_SMP
2496 if (prev_nr < 2 && rq->nr_running >= 2) {
2497 if (!READ_ONCE(rq->rd->overload))
2498 WRITE_ONCE(rq->rd->overload, 1);
2499 }
2500 #endif
2501
2502 sched_update_tick_dependency(rq);
2503 }
2504
sub_nr_running(struct rq * rq,unsigned count)2505 static inline void sub_nr_running(struct rq *rq, unsigned count)
2506 {
2507 rq->nr_running -= count;
2508 if (trace_sched_update_nr_running_tp_enabled()) {
2509 call_trace_sched_update_nr_running(rq, -count);
2510 }
2511
2512 /* Check if we still need preemption */
2513 sched_update_tick_dependency(rq);
2514 }
2515
2516 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2517 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2518
2519 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2520
2521 #ifdef CONFIG_PREEMPT_RT
2522 #define SCHED_NR_MIGRATE_BREAK 8
2523 #else
2524 #define SCHED_NR_MIGRATE_BREAK 32
2525 #endif
2526
2527 extern const_debug unsigned int sysctl_sched_nr_migrate;
2528 extern const_debug unsigned int sysctl_sched_migration_cost;
2529
2530 extern unsigned int sysctl_sched_base_slice;
2531
2532 #ifdef CONFIG_SCHED_DEBUG
2533 extern int sysctl_resched_latency_warn_ms;
2534 extern int sysctl_resched_latency_warn_once;
2535
2536 extern unsigned int sysctl_sched_tunable_scaling;
2537
2538 extern unsigned int sysctl_numa_balancing_scan_delay;
2539 extern unsigned int sysctl_numa_balancing_scan_period_min;
2540 extern unsigned int sysctl_numa_balancing_scan_period_max;
2541 extern unsigned int sysctl_numa_balancing_scan_size;
2542 extern unsigned int sysctl_numa_balancing_hot_threshold;
2543 #endif
2544
2545 #ifdef CONFIG_SCHED_HRTICK
2546
2547 /*
2548 * Use hrtick when:
2549 * - enabled by features
2550 * - hrtimer is actually high res
2551 */
hrtick_enabled(struct rq * rq)2552 static inline int hrtick_enabled(struct rq *rq)
2553 {
2554 if (!cpu_active(cpu_of(rq)))
2555 return 0;
2556 return hrtimer_is_hres_active(&rq->hrtick_timer);
2557 }
2558
hrtick_enabled_fair(struct rq * rq)2559 static inline int hrtick_enabled_fair(struct rq *rq)
2560 {
2561 if (!sched_feat(HRTICK))
2562 return 0;
2563 return hrtick_enabled(rq);
2564 }
2565
hrtick_enabled_dl(struct rq * rq)2566 static inline int hrtick_enabled_dl(struct rq *rq)
2567 {
2568 if (!sched_feat(HRTICK_DL))
2569 return 0;
2570 return hrtick_enabled(rq);
2571 }
2572
2573 void hrtick_start(struct rq *rq, u64 delay);
2574
2575 #else
2576
hrtick_enabled_fair(struct rq * rq)2577 static inline int hrtick_enabled_fair(struct rq *rq)
2578 {
2579 return 0;
2580 }
2581
hrtick_enabled_dl(struct rq * rq)2582 static inline int hrtick_enabled_dl(struct rq *rq)
2583 {
2584 return 0;
2585 }
2586
hrtick_enabled(struct rq * rq)2587 static inline int hrtick_enabled(struct rq *rq)
2588 {
2589 return 0;
2590 }
2591
2592 #endif /* CONFIG_SCHED_HRTICK */
2593
2594 #ifndef arch_scale_freq_tick
2595 static __always_inline
arch_scale_freq_tick(void)2596 void arch_scale_freq_tick(void)
2597 {
2598 }
2599 #endif
2600
2601 #ifndef arch_scale_freq_capacity
2602 /**
2603 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2604 * @cpu: the CPU in question.
2605 *
2606 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2607 *
2608 * f_curr
2609 * ------ * SCHED_CAPACITY_SCALE
2610 * f_max
2611 */
2612 static __always_inline
arch_scale_freq_capacity(int cpu)2613 unsigned long arch_scale_freq_capacity(int cpu)
2614 {
2615 return SCHED_CAPACITY_SCALE;
2616 }
2617 #endif
2618
2619 #ifdef CONFIG_SCHED_DEBUG
2620 /*
2621 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2622 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2623 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2624 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2625 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2626 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2627 {
2628 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2629 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2630 #ifdef CONFIG_SMP
2631 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2632 #endif
2633 }
2634 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2635 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2636 #endif
2637
2638 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2639 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2640 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2641 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2642 _lock; return _t; }
2643
2644 #ifdef CONFIG_SMP
2645
rq_order_less(struct rq * rq1,struct rq * rq2)2646 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2647 {
2648 #ifdef CONFIG_SCHED_CORE
2649 /*
2650 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2651 * order by core-id first and cpu-id second.
2652 *
2653 * Notably:
2654 *
2655 * double_rq_lock(0,3); will take core-0, core-1 lock
2656 * double_rq_lock(1,2); will take core-1, core-0 lock
2657 *
2658 * when only cpu-id is considered.
2659 */
2660 if (rq1->core->cpu < rq2->core->cpu)
2661 return true;
2662 if (rq1->core->cpu > rq2->core->cpu)
2663 return false;
2664
2665 /*
2666 * __sched_core_flip() relies on SMT having cpu-id lock order.
2667 */
2668 #endif
2669 return rq1->cpu < rq2->cpu;
2670 }
2671
2672 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2673
2674 #ifdef CONFIG_PREEMPTION
2675
2676 /*
2677 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2678 * way at the expense of forcing extra atomic operations in all
2679 * invocations. This assures that the double_lock is acquired using the
2680 * same underlying policy as the spinlock_t on this architecture, which
2681 * reduces latency compared to the unfair variant below. However, it
2682 * also adds more overhead and therefore may reduce throughput.
2683 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2684 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2685 __releases(this_rq->lock)
2686 __acquires(busiest->lock)
2687 __acquires(this_rq->lock)
2688 {
2689 raw_spin_rq_unlock(this_rq);
2690 double_rq_lock(this_rq, busiest);
2691
2692 return 1;
2693 }
2694
2695 #else
2696 /*
2697 * Unfair double_lock_balance: Optimizes throughput at the expense of
2698 * latency by eliminating extra atomic operations when the locks are
2699 * already in proper order on entry. This favors lower CPU-ids and will
2700 * grant the double lock to lower CPUs over higher ids under contention,
2701 * regardless of entry order into the function.
2702 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2703 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2704 __releases(this_rq->lock)
2705 __acquires(busiest->lock)
2706 __acquires(this_rq->lock)
2707 {
2708 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2709 likely(raw_spin_rq_trylock(busiest))) {
2710 double_rq_clock_clear_update(this_rq, busiest);
2711 return 0;
2712 }
2713
2714 if (rq_order_less(this_rq, busiest)) {
2715 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2716 double_rq_clock_clear_update(this_rq, busiest);
2717 return 0;
2718 }
2719
2720 raw_spin_rq_unlock(this_rq);
2721 double_rq_lock(this_rq, busiest);
2722
2723 return 1;
2724 }
2725
2726 #endif /* CONFIG_PREEMPTION */
2727
2728 /*
2729 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2730 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2731 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2732 {
2733 lockdep_assert_irqs_disabled();
2734
2735 return _double_lock_balance(this_rq, busiest);
2736 }
2737
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2738 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2739 __releases(busiest->lock)
2740 {
2741 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2742 raw_spin_rq_unlock(busiest);
2743 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2744 }
2745
double_lock(spinlock_t * l1,spinlock_t * l2)2746 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2747 {
2748 if (l1 > l2)
2749 swap(l1, l2);
2750
2751 spin_lock(l1);
2752 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2753 }
2754
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2755 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2756 {
2757 if (l1 > l2)
2758 swap(l1, l2);
2759
2760 spin_lock_irq(l1);
2761 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2762 }
2763
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2764 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2765 {
2766 if (l1 > l2)
2767 swap(l1, l2);
2768
2769 raw_spin_lock(l1);
2770 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2771 }
2772
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2773 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2774 {
2775 raw_spin_unlock(l1);
2776 raw_spin_unlock(l2);
2777 }
2778
2779 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2780 double_raw_lock(_T->lock, _T->lock2),
2781 double_raw_unlock(_T->lock, _T->lock2))
2782
2783 /*
2784 * double_rq_unlock - safely unlock two runqueues
2785 *
2786 * Note this does not restore interrupts like task_rq_unlock,
2787 * you need to do so manually after calling.
2788 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2789 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2790 __releases(rq1->lock)
2791 __releases(rq2->lock)
2792 {
2793 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2794 raw_spin_rq_unlock(rq2);
2795 else
2796 __release(rq2->lock);
2797 raw_spin_rq_unlock(rq1);
2798 }
2799
2800 extern void set_rq_online (struct rq *rq);
2801 extern void set_rq_offline(struct rq *rq);
2802 extern bool sched_smp_initialized;
2803
2804 #else /* CONFIG_SMP */
2805
2806 /*
2807 * double_rq_lock - safely lock two runqueues
2808 *
2809 * Note this does not disable interrupts like task_rq_lock,
2810 * you need to do so manually before calling.
2811 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2812 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2813 __acquires(rq1->lock)
2814 __acquires(rq2->lock)
2815 {
2816 WARN_ON_ONCE(!irqs_disabled());
2817 WARN_ON_ONCE(rq1 != rq2);
2818 raw_spin_rq_lock(rq1);
2819 __acquire(rq2->lock); /* Fake it out ;) */
2820 double_rq_clock_clear_update(rq1, rq2);
2821 }
2822
2823 /*
2824 * double_rq_unlock - safely unlock two runqueues
2825 *
2826 * Note this does not restore interrupts like task_rq_unlock,
2827 * you need to do so manually after calling.
2828 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2829 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2830 __releases(rq1->lock)
2831 __releases(rq2->lock)
2832 {
2833 WARN_ON_ONCE(rq1 != rq2);
2834 raw_spin_rq_unlock(rq1);
2835 __release(rq2->lock);
2836 }
2837
2838 #endif
2839
2840 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2841 double_rq_lock(_T->lock, _T->lock2),
2842 double_rq_unlock(_T->lock, _T->lock2))
2843
2844 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2845 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2846
2847 #ifdef CONFIG_SCHED_DEBUG
2848 extern bool sched_debug_verbose;
2849
2850 extern void print_cfs_stats(struct seq_file *m, int cpu);
2851 extern void print_rt_stats(struct seq_file *m, int cpu);
2852 extern void print_dl_stats(struct seq_file *m, int cpu);
2853 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2854 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2855 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2856
2857 extern void resched_latency_warn(int cpu, u64 latency);
2858 #ifdef CONFIG_NUMA_BALANCING
2859 extern void
2860 show_numa_stats(struct task_struct *p, struct seq_file *m);
2861 extern void
2862 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2863 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2864 #endif /* CONFIG_NUMA_BALANCING */
2865 #else
resched_latency_warn(int cpu,u64 latency)2866 static inline void resched_latency_warn(int cpu, u64 latency) {}
2867 #endif /* CONFIG_SCHED_DEBUG */
2868
2869 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2870 extern void init_rt_rq(struct rt_rq *rt_rq);
2871 extern void init_dl_rq(struct dl_rq *dl_rq);
2872
2873 extern void cfs_bandwidth_usage_inc(void);
2874 extern void cfs_bandwidth_usage_dec(void);
2875
2876 #ifdef CONFIG_NO_HZ_COMMON
2877 #define NOHZ_BALANCE_KICK_BIT 0
2878 #define NOHZ_STATS_KICK_BIT 1
2879 #define NOHZ_NEWILB_KICK_BIT 2
2880 #define NOHZ_NEXT_KICK_BIT 3
2881
2882 /* Run rebalance_domains() */
2883 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2884 /* Update blocked load */
2885 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2886 /* Update blocked load when entering idle */
2887 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2888 /* Update nohz.next_balance */
2889 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2890
2891 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2892
2893 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2894
2895 extern void nohz_balance_exit_idle(struct rq *rq);
2896 #else
nohz_balance_exit_idle(struct rq * rq)2897 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2898 #endif
2899
2900 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2901 extern void nohz_run_idle_balance(int cpu);
2902 #else
nohz_run_idle_balance(int cpu)2903 static inline void nohz_run_idle_balance(int cpu) { }
2904 #endif
2905
2906 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2907 struct irqtime {
2908 u64 total;
2909 u64 tick_delta;
2910 u64 irq_start_time;
2911 struct u64_stats_sync sync;
2912 };
2913
2914 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2915
2916 /*
2917 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2918 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2919 * and never move forward.
2920 */
irq_time_read(int cpu)2921 static inline u64 irq_time_read(int cpu)
2922 {
2923 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2924 unsigned int seq;
2925 u64 total;
2926
2927 do {
2928 seq = __u64_stats_fetch_begin(&irqtime->sync);
2929 total = irqtime->total;
2930 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2931
2932 return total;
2933 }
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935
2936 #ifdef CONFIG_CPU_FREQ
2937 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2938
2939 /**
2940 * cpufreq_update_util - Take a note about CPU utilization changes.
2941 * @rq: Runqueue to carry out the update for.
2942 * @flags: Update reason flags.
2943 *
2944 * This function is called by the scheduler on the CPU whose utilization is
2945 * being updated.
2946 *
2947 * It can only be called from RCU-sched read-side critical sections.
2948 *
2949 * The way cpufreq is currently arranged requires it to evaluate the CPU
2950 * performance state (frequency/voltage) on a regular basis to prevent it from
2951 * being stuck in a completely inadequate performance level for too long.
2952 * That is not guaranteed to happen if the updates are only triggered from CFS
2953 * and DL, though, because they may not be coming in if only RT tasks are
2954 * active all the time (or there are RT tasks only).
2955 *
2956 * As a workaround for that issue, this function is called periodically by the
2957 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2958 * but that really is a band-aid. Going forward it should be replaced with
2959 * solutions targeted more specifically at RT tasks.
2960 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2961 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2962 {
2963 struct update_util_data *data;
2964
2965 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2966 cpu_of(rq)));
2967 if (data)
2968 data->func(data, rq_clock(rq), flags);
2969 }
2970 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2971 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2972 #endif /* CONFIG_CPU_FREQ */
2973
2974 #ifdef arch_scale_freq_capacity
2975 # ifndef arch_scale_freq_invariant
2976 # define arch_scale_freq_invariant() true
2977 # endif
2978 #else
2979 # define arch_scale_freq_invariant() false
2980 #endif
2981
2982 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2983 static inline unsigned long capacity_orig_of(int cpu)
2984 {
2985 return cpu_rq(cpu)->cpu_capacity_orig;
2986 }
2987
2988 /**
2989 * enum cpu_util_type - CPU utilization type
2990 * @FREQUENCY_UTIL: Utilization used to select frequency
2991 * @ENERGY_UTIL: Utilization used during energy calculation
2992 *
2993 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2994 * need to be aggregated differently depending on the usage made of them. This
2995 * enum is used within effective_cpu_util() to differentiate the types of
2996 * utilization expected by the callers, and adjust the aggregation accordingly.
2997 */
2998 enum cpu_util_type {
2999 FREQUENCY_UTIL,
3000 ENERGY_UTIL,
3001 };
3002
3003 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3004 enum cpu_util_type type,
3005 struct task_struct *p);
3006
3007 /*
3008 * Verify the fitness of task @p to run on @cpu taking into account the
3009 * CPU original capacity and the runtime/deadline ratio of the task.
3010 *
3011 * The function will return true if the original capacity of @cpu is
3012 * greater than or equal to task's deadline density right shifted by
3013 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3014 */
dl_task_fits_capacity(struct task_struct * p,int cpu)3015 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3016 {
3017 unsigned long cap = arch_scale_cpu_capacity(cpu);
3018
3019 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3020 }
3021
cpu_bw_dl(struct rq * rq)3022 static inline unsigned long cpu_bw_dl(struct rq *rq)
3023 {
3024 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3025 }
3026
cpu_util_dl(struct rq * rq)3027 static inline unsigned long cpu_util_dl(struct rq *rq)
3028 {
3029 return READ_ONCE(rq->avg_dl.util_avg);
3030 }
3031
3032
3033 extern unsigned long cpu_util_cfs(int cpu);
3034 extern unsigned long cpu_util_cfs_boost(int cpu);
3035
cpu_util_rt(struct rq * rq)3036 static inline unsigned long cpu_util_rt(struct rq *rq)
3037 {
3038 return READ_ONCE(rq->avg_rt.util_avg);
3039 }
3040 #endif
3041
3042 #ifdef CONFIG_UCLAMP_TASK
3043 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3044
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3045 static inline unsigned long uclamp_rq_get(struct rq *rq,
3046 enum uclamp_id clamp_id)
3047 {
3048 return READ_ONCE(rq->uclamp[clamp_id].value);
3049 }
3050
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3051 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3052 unsigned int value)
3053 {
3054 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3055 }
3056
uclamp_rq_is_idle(struct rq * rq)3057 static inline bool uclamp_rq_is_idle(struct rq *rq)
3058 {
3059 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3060 }
3061
3062 /**
3063 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3064 * @rq: The rq to clamp against. Must not be NULL.
3065 * @util: The util value to clamp.
3066 * @p: The task to clamp against. Can be NULL if you want to clamp
3067 * against @rq only.
3068 *
3069 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3070 *
3071 * If sched_uclamp_used static key is disabled, then just return the util
3072 * without any clamping since uclamp aggregation at the rq level in the fast
3073 * path is disabled, rendering this operation a NOP.
3074 *
3075 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3076 * will return the correct effective uclamp value of the task even if the
3077 * static key is disabled.
3078 */
3079 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3080 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3081 struct task_struct *p)
3082 {
3083 unsigned long min_util = 0;
3084 unsigned long max_util = 0;
3085
3086 if (!static_branch_likely(&sched_uclamp_used))
3087 return util;
3088
3089 if (p) {
3090 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3091 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3092
3093 /*
3094 * Ignore last runnable task's max clamp, as this task will
3095 * reset it. Similarly, no need to read the rq's min clamp.
3096 */
3097 if (uclamp_rq_is_idle(rq))
3098 goto out;
3099 }
3100
3101 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3102 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3103 out:
3104 /*
3105 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3106 * RUNNABLE tasks with _different_ clamps, we can end up with an
3107 * inversion. Fix it now when the clamps are applied.
3108 */
3109 if (unlikely(min_util >= max_util))
3110 return min_util;
3111
3112 return clamp(util, min_util, max_util);
3113 }
3114
3115 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3116 static inline bool uclamp_rq_is_capped(struct rq *rq)
3117 {
3118 unsigned long rq_util;
3119 unsigned long max_util;
3120
3121 if (!static_branch_likely(&sched_uclamp_used))
3122 return false;
3123
3124 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3125 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3126
3127 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3128 }
3129
3130 /*
3131 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3132 * by default in the fast path and only gets turned on once userspace performs
3133 * an operation that requires it.
3134 *
3135 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3136 * hence is active.
3137 */
uclamp_is_used(void)3138 static inline bool uclamp_is_used(void)
3139 {
3140 return static_branch_likely(&sched_uclamp_used);
3141 }
3142 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3143 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3144 enum uclamp_id clamp_id)
3145 {
3146 if (clamp_id == UCLAMP_MIN)
3147 return 0;
3148
3149 return SCHED_CAPACITY_SCALE;
3150 }
3151
3152 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3153 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3154 struct task_struct *p)
3155 {
3156 return util;
3157 }
3158
uclamp_rq_is_capped(struct rq * rq)3159 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3160
uclamp_is_used(void)3161 static inline bool uclamp_is_used(void)
3162 {
3163 return false;
3164 }
3165
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3166 static inline unsigned long uclamp_rq_get(struct rq *rq,
3167 enum uclamp_id clamp_id)
3168 {
3169 if (clamp_id == UCLAMP_MIN)
3170 return 0;
3171
3172 return SCHED_CAPACITY_SCALE;
3173 }
3174
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3175 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3176 unsigned int value)
3177 {
3178 }
3179
uclamp_rq_is_idle(struct rq * rq)3180 static inline bool uclamp_rq_is_idle(struct rq *rq)
3181 {
3182 return false;
3183 }
3184 #endif /* CONFIG_UCLAMP_TASK */
3185
3186 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3187 static inline unsigned long cpu_util_irq(struct rq *rq)
3188 {
3189 return rq->avg_irq.util_avg;
3190 }
3191
3192 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3193 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3194 {
3195 util *= (max - irq);
3196 util /= max;
3197
3198 return util;
3199
3200 }
3201 #else
cpu_util_irq(struct rq * rq)3202 static inline unsigned long cpu_util_irq(struct rq *rq)
3203 {
3204 return 0;
3205 }
3206
3207 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3208 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3209 {
3210 return util;
3211 }
3212 #endif
3213
3214 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3215
3216 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3217
3218 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3219
sched_energy_enabled(void)3220 static inline bool sched_energy_enabled(void)
3221 {
3222 return static_branch_unlikely(&sched_energy_present);
3223 }
3224
3225 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3226
3227 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3228 static inline bool sched_energy_enabled(void) { return false; }
3229
3230 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3231
3232 #ifdef CONFIG_MEMBARRIER
3233 /*
3234 * The scheduler provides memory barriers required by membarrier between:
3235 * - prior user-space memory accesses and store to rq->membarrier_state,
3236 * - store to rq->membarrier_state and following user-space memory accesses.
3237 * In the same way it provides those guarantees around store to rq->curr.
3238 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3239 static inline void membarrier_switch_mm(struct rq *rq,
3240 struct mm_struct *prev_mm,
3241 struct mm_struct *next_mm)
3242 {
3243 int membarrier_state;
3244
3245 if (prev_mm == next_mm)
3246 return;
3247
3248 membarrier_state = atomic_read(&next_mm->membarrier_state);
3249 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3250 return;
3251
3252 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3253 }
3254 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3255 static inline void membarrier_switch_mm(struct rq *rq,
3256 struct mm_struct *prev_mm,
3257 struct mm_struct *next_mm)
3258 {
3259 }
3260 #endif
3261
3262 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3263 static inline bool is_per_cpu_kthread(struct task_struct *p)
3264 {
3265 if (!(p->flags & PF_KTHREAD))
3266 return false;
3267
3268 if (p->nr_cpus_allowed != 1)
3269 return false;
3270
3271 return true;
3272 }
3273 #endif
3274
3275 extern void swake_up_all_locked(struct swait_queue_head *q);
3276 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3277
3278 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3279
3280 #ifdef CONFIG_PREEMPT_DYNAMIC
3281 extern int preempt_dynamic_mode;
3282 extern int sched_dynamic_mode(const char *str);
3283 extern void sched_dynamic_update(int mode);
3284 #endif
3285
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3286 static inline void update_current_exec_runtime(struct task_struct *curr,
3287 u64 now, u64 delta_exec)
3288 {
3289 curr->se.sum_exec_runtime += delta_exec;
3290 account_group_exec_runtime(curr, delta_exec);
3291
3292 curr->se.exec_start = now;
3293 cgroup_account_cputime(curr, delta_exec);
3294 }
3295
3296 #ifdef CONFIG_SCHED_MM_CID
3297
3298 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3299 #define MM_CID_SCAN_DELAY 100 /* 100ms */
3300
3301 extern raw_spinlock_t cid_lock;
3302 extern int use_cid_lock;
3303
3304 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3305 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3306 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3307 extern void init_sched_mm_cid(struct task_struct *t);
3308
__mm_cid_put(struct mm_struct * mm,int cid)3309 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3310 {
3311 if (cid < 0)
3312 return;
3313 cpumask_clear_cpu(cid, mm_cidmask(mm));
3314 }
3315
3316 /*
3317 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3318 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3319 * be held to transition to other states.
3320 *
3321 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3322 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3323 */
mm_cid_put_lazy(struct task_struct * t)3324 static inline void mm_cid_put_lazy(struct task_struct *t)
3325 {
3326 struct mm_struct *mm = t->mm;
3327 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3328 int cid;
3329
3330 lockdep_assert_irqs_disabled();
3331 cid = __this_cpu_read(pcpu_cid->cid);
3332 if (!mm_cid_is_lazy_put(cid) ||
3333 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3334 return;
3335 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3336 }
3337
mm_cid_pcpu_unset(struct mm_struct * mm)3338 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3339 {
3340 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3341 int cid, res;
3342
3343 lockdep_assert_irqs_disabled();
3344 cid = __this_cpu_read(pcpu_cid->cid);
3345 for (;;) {
3346 if (mm_cid_is_unset(cid))
3347 return MM_CID_UNSET;
3348 /*
3349 * Attempt transition from valid or lazy-put to unset.
3350 */
3351 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3352 if (res == cid)
3353 break;
3354 cid = res;
3355 }
3356 return cid;
3357 }
3358
mm_cid_put(struct mm_struct * mm)3359 static inline void mm_cid_put(struct mm_struct *mm)
3360 {
3361 int cid;
3362
3363 lockdep_assert_irqs_disabled();
3364 cid = mm_cid_pcpu_unset(mm);
3365 if (cid == MM_CID_UNSET)
3366 return;
3367 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3368 }
3369
__mm_cid_try_get(struct mm_struct * mm)3370 static inline int __mm_cid_try_get(struct mm_struct *mm)
3371 {
3372 struct cpumask *cpumask;
3373 int cid;
3374
3375 cpumask = mm_cidmask(mm);
3376 /*
3377 * Retry finding first zero bit if the mask is temporarily
3378 * filled. This only happens during concurrent remote-clear
3379 * which owns a cid without holding a rq lock.
3380 */
3381 for (;;) {
3382 cid = cpumask_first_zero(cpumask);
3383 if (cid < nr_cpu_ids)
3384 break;
3385 cpu_relax();
3386 }
3387 if (cpumask_test_and_set_cpu(cid, cpumask))
3388 return -1;
3389 return cid;
3390 }
3391
3392 /*
3393 * Save a snapshot of the current runqueue time of this cpu
3394 * with the per-cpu cid value, allowing to estimate how recently it was used.
3395 */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3396 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3397 {
3398 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3399
3400 lockdep_assert_rq_held(rq);
3401 WRITE_ONCE(pcpu_cid->time, rq->clock);
3402 }
3403
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3404 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3405 {
3406 int cid;
3407
3408 /*
3409 * All allocations (even those using the cid_lock) are lock-free. If
3410 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3411 * guarantee forward progress.
3412 */
3413 if (!READ_ONCE(use_cid_lock)) {
3414 cid = __mm_cid_try_get(mm);
3415 if (cid >= 0)
3416 goto end;
3417 raw_spin_lock(&cid_lock);
3418 } else {
3419 raw_spin_lock(&cid_lock);
3420 cid = __mm_cid_try_get(mm);
3421 if (cid >= 0)
3422 goto unlock;
3423 }
3424
3425 /*
3426 * cid concurrently allocated. Retry while forcing following
3427 * allocations to use the cid_lock to ensure forward progress.
3428 */
3429 WRITE_ONCE(use_cid_lock, 1);
3430 /*
3431 * Set use_cid_lock before allocation. Only care about program order
3432 * because this is only required for forward progress.
3433 */
3434 barrier();
3435 /*
3436 * Retry until it succeeds. It is guaranteed to eventually succeed once
3437 * all newcoming allocations observe the use_cid_lock flag set.
3438 */
3439 do {
3440 cid = __mm_cid_try_get(mm);
3441 cpu_relax();
3442 } while (cid < 0);
3443 /*
3444 * Allocate before clearing use_cid_lock. Only care about
3445 * program order because this is for forward progress.
3446 */
3447 barrier();
3448 WRITE_ONCE(use_cid_lock, 0);
3449 unlock:
3450 raw_spin_unlock(&cid_lock);
3451 end:
3452 mm_cid_snapshot_time(rq, mm);
3453 return cid;
3454 }
3455
mm_cid_get(struct rq * rq,struct mm_struct * mm)3456 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3457 {
3458 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3459 struct cpumask *cpumask;
3460 int cid;
3461
3462 lockdep_assert_rq_held(rq);
3463 cpumask = mm_cidmask(mm);
3464 cid = __this_cpu_read(pcpu_cid->cid);
3465 if (mm_cid_is_valid(cid)) {
3466 mm_cid_snapshot_time(rq, mm);
3467 return cid;
3468 }
3469 if (mm_cid_is_lazy_put(cid)) {
3470 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3471 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3472 }
3473 cid = __mm_cid_get(rq, mm);
3474 __this_cpu_write(pcpu_cid->cid, cid);
3475 return cid;
3476 }
3477
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3478 static inline void switch_mm_cid(struct rq *rq,
3479 struct task_struct *prev,
3480 struct task_struct *next)
3481 {
3482 /*
3483 * Provide a memory barrier between rq->curr store and load of
3484 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3485 *
3486 * Should be adapted if context_switch() is modified.
3487 */
3488 if (!next->mm) { // to kernel
3489 /*
3490 * user -> kernel transition does not guarantee a barrier, but
3491 * we can use the fact that it performs an atomic operation in
3492 * mmgrab().
3493 */
3494 if (prev->mm) // from user
3495 smp_mb__after_mmgrab();
3496 /*
3497 * kernel -> kernel transition does not change rq->curr->mm
3498 * state. It stays NULL.
3499 */
3500 } else { // to user
3501 /*
3502 * kernel -> user transition does not provide a barrier
3503 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3504 * Provide it here.
3505 */
3506 if (!prev->mm) { // from kernel
3507 smp_mb();
3508 } else { // from user
3509 /*
3510 * user->user transition relies on an implicit
3511 * memory barrier in switch_mm() when
3512 * current->mm changes. If the architecture
3513 * switch_mm() does not have an implicit memory
3514 * barrier, it is emitted here. If current->mm
3515 * is unchanged, no barrier is needed.
3516 */
3517 smp_mb__after_switch_mm();
3518 }
3519 }
3520 if (prev->mm_cid_active) {
3521 mm_cid_snapshot_time(rq, prev->mm);
3522 mm_cid_put_lazy(prev);
3523 prev->mm_cid = -1;
3524 }
3525 if (next->mm_cid_active)
3526 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3527 }
3528
3529 #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3530 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3531 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3532 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3533 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3534 static inline void init_sched_mm_cid(struct task_struct *t) { }
3535 #endif
3536
3537 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3538 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3539
3540 #endif /* _KERNEL_SCHED_SCHED_H */
3541