xref: /openbmc/linux/kernel/sched/rt.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 		     HRTIMER_MODE_REL_HARD);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		/*
62 		 * SCHED_DEADLINE updates the bandwidth, as a run away
63 		 * RT task with a DL task could hog a CPU. But DL does
64 		 * not reset the period. If a deadline task was running
65 		 * without an RT task running, it can cause RT tasks to
66 		 * throttle when they start up. Kick the timer right away
67 		 * to update the period.
68 		 */
69 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 		hrtimer_start_expires(&rt_b->rt_period_timer,
71 				      HRTIMER_MODE_ABS_PINNED_HARD);
72 	}
73 	raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75 
76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78 	struct rt_prio_array *array;
79 	int i;
80 
81 	array = &rt_rq->active;
82 	for (i = 0; i < MAX_RT_PRIO; i++) {
83 		INIT_LIST_HEAD(array->queue + i);
84 		__clear_bit(i, array->bitmap);
85 	}
86 	/* delimiter for bitsearch: */
87 	__set_bit(MAX_RT_PRIO, array->bitmap);
88 
89 #if defined CONFIG_SMP
90 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 	rt_rq->highest_prio.next = MAX_RT_PRIO;
92 	rt_rq->rt_nr_migratory = 0;
93 	rt_rq->overloaded = 0;
94 	plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 	/* We start is dequeued state, because no RT tasks are queued */
97 	rt_rq->rt_queued = 0;
98 
99 	rt_rq->rt_time = 0;
100 	rt_rq->rt_throttled = 0;
101 	rt_rq->rt_runtime = 0;
102 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104 
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110 
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112 
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 	return container_of(rt_se, struct task_struct, rt);
119 }
120 
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123 	return rt_rq->rq;
124 }
125 
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128 	return rt_se->rt_rq;
129 }
130 
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133 	struct rt_rq *rt_rq = rt_se->rt_rq;
134 
135 	return rt_rq->rq;
136 }
137 
138 void free_rt_sched_group(struct task_group *tg)
139 {
140 	int i;
141 
142 	if (tg->rt_se)
143 		destroy_rt_bandwidth(&tg->rt_bandwidth);
144 
145 	for_each_possible_cpu(i) {
146 		if (tg->rt_rq)
147 			kfree(tg->rt_rq[i]);
148 		if (tg->rt_se)
149 			kfree(tg->rt_se[i]);
150 	}
151 
152 	kfree(tg->rt_rq);
153 	kfree(tg->rt_se);
154 }
155 
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 		struct sched_rt_entity *rt_se, int cpu,
158 		struct sched_rt_entity *parent)
159 {
160 	struct rq *rq = cpu_rq(cpu);
161 
162 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 	rt_rq->rt_nr_boosted = 0;
164 	rt_rq->rq = rq;
165 	rt_rq->tg = tg;
166 
167 	tg->rt_rq[cpu] = rt_rq;
168 	tg->rt_se[cpu] = rt_se;
169 
170 	if (!rt_se)
171 		return;
172 
173 	if (!parent)
174 		rt_se->rt_rq = &rq->rt;
175 	else
176 		rt_se->rt_rq = parent->my_q;
177 
178 	rt_se->my_q = rt_rq;
179 	rt_se->parent = parent;
180 	INIT_LIST_HEAD(&rt_se->run_list);
181 }
182 
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185 	struct rt_rq *rt_rq;
186 	struct sched_rt_entity *rt_se;
187 	int i;
188 
189 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 	if (!tg->rt_rq)
191 		goto err;
192 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 	if (!tg->rt_se)
194 		goto err;
195 
196 	init_rt_bandwidth(&tg->rt_bandwidth,
197 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198 
199 	for_each_possible_cpu(i) {
200 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 				     GFP_KERNEL, cpu_to_node(i));
202 		if (!rt_rq)
203 			goto err;
204 
205 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 				     GFP_KERNEL, cpu_to_node(i));
207 		if (!rt_se)
208 			goto err_free_rq;
209 
210 		init_rt_rq(rt_rq);
211 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 	}
214 
215 	return 1;
216 
217 err_free_rq:
218 	kfree(rt_rq);
219 err:
220 	return 0;
221 }
222 
223 #else /* CONFIG_RT_GROUP_SCHED */
224 
225 #define rt_entity_is_task(rt_se) (1)
226 
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229 	return container_of(rt_se, struct task_struct, rt);
230 }
231 
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234 	return container_of(rt_rq, struct rq, rt);
235 }
236 
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239 	struct task_struct *p = rt_task_of(rt_se);
240 
241 	return task_rq(p);
242 }
243 
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246 	struct rq *rq = rq_of_rt_se(rt_se);
247 
248 	return &rq->rt;
249 }
250 
251 void free_rt_sched_group(struct task_group *tg) { }
252 
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 	return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258 
259 #ifdef CONFIG_SMP
260 
261 static void pull_rt_task(struct rq *this_rq);
262 
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265 	/* Try to pull RT tasks here if we lower this rq's prio */
266 	return rq->rt.highest_prio.curr > prev->prio;
267 }
268 
269 static inline int rt_overloaded(struct rq *rq)
270 {
271 	return atomic_read(&rq->rd->rto_count);
272 }
273 
274 static inline void rt_set_overload(struct rq *rq)
275 {
276 	if (!rq->online)
277 		return;
278 
279 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280 	/*
281 	 * Make sure the mask is visible before we set
282 	 * the overload count. That is checked to determine
283 	 * if we should look at the mask. It would be a shame
284 	 * if we looked at the mask, but the mask was not
285 	 * updated yet.
286 	 *
287 	 * Matched by the barrier in pull_rt_task().
288 	 */
289 	smp_wmb();
290 	atomic_inc(&rq->rd->rto_count);
291 }
292 
293 static inline void rt_clear_overload(struct rq *rq)
294 {
295 	if (!rq->online)
296 		return;
297 
298 	/* the order here really doesn't matter */
299 	atomic_dec(&rq->rd->rto_count);
300 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302 
303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 		if (!rt_rq->overloaded) {
307 			rt_set_overload(rq_of_rt_rq(rt_rq));
308 			rt_rq->overloaded = 1;
309 		}
310 	} else if (rt_rq->overloaded) {
311 		rt_clear_overload(rq_of_rt_rq(rt_rq));
312 		rt_rq->overloaded = 0;
313 	}
314 }
315 
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318 	struct task_struct *p;
319 
320 	if (!rt_entity_is_task(rt_se))
321 		return;
322 
323 	p = rt_task_of(rt_se);
324 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325 
326 	rt_rq->rt_nr_total++;
327 	if (p->nr_cpus_allowed > 1)
328 		rt_rq->rt_nr_migratory++;
329 
330 	update_rt_migration(rt_rq);
331 }
332 
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335 	struct task_struct *p;
336 
337 	if (!rt_entity_is_task(rt_se))
338 		return;
339 
340 	p = rt_task_of(rt_se);
341 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342 
343 	rt_rq->rt_nr_total--;
344 	if (p->nr_cpus_allowed > 1)
345 		rt_rq->rt_nr_migratory--;
346 
347 	update_rt_migration(rt_rq);
348 }
349 
350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352 	return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354 
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357 
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360 
361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363 	if (!has_pushable_tasks(rq))
364 		return;
365 
366 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368 
369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373 
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 	plist_node_init(&p->pushable_tasks, p->prio);
378 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 
380 	/* Update the highest prio pushable task */
381 	if (p->prio < rq->rt.highest_prio.next)
382 		rq->rt.highest_prio.next = p->prio;
383 }
384 
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 
389 	/* Update the new highest prio pushable task */
390 	if (has_pushable_tasks(rq)) {
391 		p = plist_first_entry(&rq->rt.pushable_tasks,
392 				      struct task_struct, pushable_tasks);
393 		rq->rt.highest_prio.next = p->prio;
394 	} else
395 		rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397 
398 #else
399 
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403 
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407 
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412 
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417 
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420 	return false;
421 }
422 
423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426 
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431 
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434 
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 	return rt_se->on_rq;
438 }
439 
440 #ifdef CONFIG_RT_GROUP_SCHED
441 
442 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
443 {
444 	if (!rt_rq->tg)
445 		return RUNTIME_INF;
446 
447 	return rt_rq->rt_runtime;
448 }
449 
450 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
451 {
452 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
453 }
454 
455 typedef struct task_group *rt_rq_iter_t;
456 
457 static inline struct task_group *next_task_group(struct task_group *tg)
458 {
459 	do {
460 		tg = list_entry_rcu(tg->list.next,
461 			typeof(struct task_group), list);
462 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
463 
464 	if (&tg->list == &task_groups)
465 		tg = NULL;
466 
467 	return tg;
468 }
469 
470 #define for_each_rt_rq(rt_rq, iter, rq)					\
471 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
472 		(iter = next_task_group(iter)) &&			\
473 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
474 
475 #define for_each_sched_rt_entity(rt_se) \
476 	for (; rt_se; rt_se = rt_se->parent)
477 
478 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
479 {
480 	return rt_se->my_q;
481 }
482 
483 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
484 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485 
486 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
487 {
488 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
489 	struct rq *rq = rq_of_rt_rq(rt_rq);
490 	struct sched_rt_entity *rt_se;
491 
492 	int cpu = cpu_of(rq);
493 
494 	rt_se = rt_rq->tg->rt_se[cpu];
495 
496 	if (rt_rq->rt_nr_running) {
497 		if (!rt_se)
498 			enqueue_top_rt_rq(rt_rq);
499 		else if (!on_rt_rq(rt_se))
500 			enqueue_rt_entity(rt_se, 0);
501 
502 		if (rt_rq->highest_prio.curr < curr->prio)
503 			resched_curr(rq);
504 	}
505 }
506 
507 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
508 {
509 	struct sched_rt_entity *rt_se;
510 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
511 
512 	rt_se = rt_rq->tg->rt_se[cpu];
513 
514 	if (!rt_se) {
515 		dequeue_top_rt_rq(rt_rq);
516 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
517 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
518 	}
519 	else if (on_rt_rq(rt_se))
520 		dequeue_rt_entity(rt_se, 0);
521 }
522 
523 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
524 {
525 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
526 }
527 
528 static int rt_se_boosted(struct sched_rt_entity *rt_se)
529 {
530 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
531 	struct task_struct *p;
532 
533 	if (rt_rq)
534 		return !!rt_rq->rt_nr_boosted;
535 
536 	p = rt_task_of(rt_se);
537 	return p->prio != p->normal_prio;
538 }
539 
540 #ifdef CONFIG_SMP
541 static inline const struct cpumask *sched_rt_period_mask(void)
542 {
543 	return this_rq()->rd->span;
544 }
545 #else
546 static inline const struct cpumask *sched_rt_period_mask(void)
547 {
548 	return cpu_online_mask;
549 }
550 #endif
551 
552 static inline
553 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
554 {
555 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
556 }
557 
558 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
559 {
560 	return &rt_rq->tg->rt_bandwidth;
561 }
562 
563 #else /* !CONFIG_RT_GROUP_SCHED */
564 
565 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
566 {
567 	return rt_rq->rt_runtime;
568 }
569 
570 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
571 {
572 	return ktime_to_ns(def_rt_bandwidth.rt_period);
573 }
574 
575 typedef struct rt_rq *rt_rq_iter_t;
576 
577 #define for_each_rt_rq(rt_rq, iter, rq) \
578 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
579 
580 #define for_each_sched_rt_entity(rt_se) \
581 	for (; rt_se; rt_se = NULL)
582 
583 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
584 {
585 	return NULL;
586 }
587 
588 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
589 {
590 	struct rq *rq = rq_of_rt_rq(rt_rq);
591 
592 	if (!rt_rq->rt_nr_running)
593 		return;
594 
595 	enqueue_top_rt_rq(rt_rq);
596 	resched_curr(rq);
597 }
598 
599 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
600 {
601 	dequeue_top_rt_rq(rt_rq);
602 }
603 
604 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
605 {
606 	return rt_rq->rt_throttled;
607 }
608 
609 static inline const struct cpumask *sched_rt_period_mask(void)
610 {
611 	return cpu_online_mask;
612 }
613 
614 static inline
615 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
616 {
617 	return &cpu_rq(cpu)->rt;
618 }
619 
620 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
621 {
622 	return &def_rt_bandwidth;
623 }
624 
625 #endif /* CONFIG_RT_GROUP_SCHED */
626 
627 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
628 {
629 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
630 
631 	return (hrtimer_active(&rt_b->rt_period_timer) ||
632 		rt_rq->rt_time < rt_b->rt_runtime);
633 }
634 
635 #ifdef CONFIG_SMP
636 /*
637  * We ran out of runtime, see if we can borrow some from our neighbours.
638  */
639 static void do_balance_runtime(struct rt_rq *rt_rq)
640 {
641 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
642 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
643 	int i, weight;
644 	u64 rt_period;
645 
646 	weight = cpumask_weight(rd->span);
647 
648 	raw_spin_lock(&rt_b->rt_runtime_lock);
649 	rt_period = ktime_to_ns(rt_b->rt_period);
650 	for_each_cpu(i, rd->span) {
651 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
652 		s64 diff;
653 
654 		if (iter == rt_rq)
655 			continue;
656 
657 		raw_spin_lock(&iter->rt_runtime_lock);
658 		/*
659 		 * Either all rqs have inf runtime and there's nothing to steal
660 		 * or __disable_runtime() below sets a specific rq to inf to
661 		 * indicate its been disabled and disalow stealing.
662 		 */
663 		if (iter->rt_runtime == RUNTIME_INF)
664 			goto next;
665 
666 		/*
667 		 * From runqueues with spare time, take 1/n part of their
668 		 * spare time, but no more than our period.
669 		 */
670 		diff = iter->rt_runtime - iter->rt_time;
671 		if (diff > 0) {
672 			diff = div_u64((u64)diff, weight);
673 			if (rt_rq->rt_runtime + diff > rt_period)
674 				diff = rt_period - rt_rq->rt_runtime;
675 			iter->rt_runtime -= diff;
676 			rt_rq->rt_runtime += diff;
677 			if (rt_rq->rt_runtime == rt_period) {
678 				raw_spin_unlock(&iter->rt_runtime_lock);
679 				break;
680 			}
681 		}
682 next:
683 		raw_spin_unlock(&iter->rt_runtime_lock);
684 	}
685 	raw_spin_unlock(&rt_b->rt_runtime_lock);
686 }
687 
688 /*
689  * Ensure this RQ takes back all the runtime it lend to its neighbours.
690  */
691 static void __disable_runtime(struct rq *rq)
692 {
693 	struct root_domain *rd = rq->rd;
694 	rt_rq_iter_t iter;
695 	struct rt_rq *rt_rq;
696 
697 	if (unlikely(!scheduler_running))
698 		return;
699 
700 	for_each_rt_rq(rt_rq, iter, rq) {
701 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
702 		s64 want;
703 		int i;
704 
705 		raw_spin_lock(&rt_b->rt_runtime_lock);
706 		raw_spin_lock(&rt_rq->rt_runtime_lock);
707 		/*
708 		 * Either we're all inf and nobody needs to borrow, or we're
709 		 * already disabled and thus have nothing to do, or we have
710 		 * exactly the right amount of runtime to take out.
711 		 */
712 		if (rt_rq->rt_runtime == RUNTIME_INF ||
713 				rt_rq->rt_runtime == rt_b->rt_runtime)
714 			goto balanced;
715 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
716 
717 		/*
718 		 * Calculate the difference between what we started out with
719 		 * and what we current have, that's the amount of runtime
720 		 * we lend and now have to reclaim.
721 		 */
722 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
723 
724 		/*
725 		 * Greedy reclaim, take back as much as we can.
726 		 */
727 		for_each_cpu(i, rd->span) {
728 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
729 			s64 diff;
730 
731 			/*
732 			 * Can't reclaim from ourselves or disabled runqueues.
733 			 */
734 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
735 				continue;
736 
737 			raw_spin_lock(&iter->rt_runtime_lock);
738 			if (want > 0) {
739 				diff = min_t(s64, iter->rt_runtime, want);
740 				iter->rt_runtime -= diff;
741 				want -= diff;
742 			} else {
743 				iter->rt_runtime -= want;
744 				want -= want;
745 			}
746 			raw_spin_unlock(&iter->rt_runtime_lock);
747 
748 			if (!want)
749 				break;
750 		}
751 
752 		raw_spin_lock(&rt_rq->rt_runtime_lock);
753 		/*
754 		 * We cannot be left wanting - that would mean some runtime
755 		 * leaked out of the system.
756 		 */
757 		BUG_ON(want);
758 balanced:
759 		/*
760 		 * Disable all the borrow logic by pretending we have inf
761 		 * runtime - in which case borrowing doesn't make sense.
762 		 */
763 		rt_rq->rt_runtime = RUNTIME_INF;
764 		rt_rq->rt_throttled = 0;
765 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 		raw_spin_unlock(&rt_b->rt_runtime_lock);
767 
768 		/* Make rt_rq available for pick_next_task() */
769 		sched_rt_rq_enqueue(rt_rq);
770 	}
771 }
772 
773 static void __enable_runtime(struct rq *rq)
774 {
775 	rt_rq_iter_t iter;
776 	struct rt_rq *rt_rq;
777 
778 	if (unlikely(!scheduler_running))
779 		return;
780 
781 	/*
782 	 * Reset each runqueue's bandwidth settings
783 	 */
784 	for_each_rt_rq(rt_rq, iter, rq) {
785 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
786 
787 		raw_spin_lock(&rt_b->rt_runtime_lock);
788 		raw_spin_lock(&rt_rq->rt_runtime_lock);
789 		rt_rq->rt_runtime = rt_b->rt_runtime;
790 		rt_rq->rt_time = 0;
791 		rt_rq->rt_throttled = 0;
792 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
793 		raw_spin_unlock(&rt_b->rt_runtime_lock);
794 	}
795 }
796 
797 static void balance_runtime(struct rt_rq *rt_rq)
798 {
799 	if (!sched_feat(RT_RUNTIME_SHARE))
800 		return;
801 
802 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
803 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
804 		do_balance_runtime(rt_rq);
805 		raw_spin_lock(&rt_rq->rt_runtime_lock);
806 	}
807 }
808 #else /* !CONFIG_SMP */
809 static inline void balance_runtime(struct rt_rq *rt_rq) {}
810 #endif /* CONFIG_SMP */
811 
812 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
813 {
814 	int i, idle = 1, throttled = 0;
815 	const struct cpumask *span;
816 
817 	span = sched_rt_period_mask();
818 #ifdef CONFIG_RT_GROUP_SCHED
819 	/*
820 	 * FIXME: isolated CPUs should really leave the root task group,
821 	 * whether they are isolcpus or were isolated via cpusets, lest
822 	 * the timer run on a CPU which does not service all runqueues,
823 	 * potentially leaving other CPUs indefinitely throttled.  If
824 	 * isolation is really required, the user will turn the throttle
825 	 * off to kill the perturbations it causes anyway.  Meanwhile,
826 	 * this maintains functionality for boot and/or troubleshooting.
827 	 */
828 	if (rt_b == &root_task_group.rt_bandwidth)
829 		span = cpu_online_mask;
830 #endif
831 	for_each_cpu(i, span) {
832 		int enqueue = 0;
833 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
834 		struct rq *rq = rq_of_rt_rq(rt_rq);
835 		int skip;
836 
837 		/*
838 		 * When span == cpu_online_mask, taking each rq->lock
839 		 * can be time-consuming. Try to avoid it when possible.
840 		 */
841 		raw_spin_lock(&rt_rq->rt_runtime_lock);
842 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
843 			rt_rq->rt_runtime = rt_b->rt_runtime;
844 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
845 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 		if (skip)
847 			continue;
848 
849 		raw_spin_lock(&rq->lock);
850 		update_rq_clock(rq);
851 
852 		if (rt_rq->rt_time) {
853 			u64 runtime;
854 
855 			raw_spin_lock(&rt_rq->rt_runtime_lock);
856 			if (rt_rq->rt_throttled)
857 				balance_runtime(rt_rq);
858 			runtime = rt_rq->rt_runtime;
859 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
860 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
861 				rt_rq->rt_throttled = 0;
862 				enqueue = 1;
863 
864 				/*
865 				 * When we're idle and a woken (rt) task is
866 				 * throttled check_preempt_curr() will set
867 				 * skip_update and the time between the wakeup
868 				 * and this unthrottle will get accounted as
869 				 * 'runtime'.
870 				 */
871 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
872 					rq_clock_cancel_skipupdate(rq);
873 			}
874 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
875 				idle = 0;
876 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
877 		} else if (rt_rq->rt_nr_running) {
878 			idle = 0;
879 			if (!rt_rq_throttled(rt_rq))
880 				enqueue = 1;
881 		}
882 		if (rt_rq->rt_throttled)
883 			throttled = 1;
884 
885 		if (enqueue)
886 			sched_rt_rq_enqueue(rt_rq);
887 		raw_spin_unlock(&rq->lock);
888 	}
889 
890 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
891 		return 1;
892 
893 	return idle;
894 }
895 
896 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
897 {
898 #ifdef CONFIG_RT_GROUP_SCHED
899 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
900 
901 	if (rt_rq)
902 		return rt_rq->highest_prio.curr;
903 #endif
904 
905 	return rt_task_of(rt_se)->prio;
906 }
907 
908 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
909 {
910 	u64 runtime = sched_rt_runtime(rt_rq);
911 
912 	if (rt_rq->rt_throttled)
913 		return rt_rq_throttled(rt_rq);
914 
915 	if (runtime >= sched_rt_period(rt_rq))
916 		return 0;
917 
918 	balance_runtime(rt_rq);
919 	runtime = sched_rt_runtime(rt_rq);
920 	if (runtime == RUNTIME_INF)
921 		return 0;
922 
923 	if (rt_rq->rt_time > runtime) {
924 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
925 
926 		/*
927 		 * Don't actually throttle groups that have no runtime assigned
928 		 * but accrue some time due to boosting.
929 		 */
930 		if (likely(rt_b->rt_runtime)) {
931 			rt_rq->rt_throttled = 1;
932 			printk_deferred_once("sched: RT throttling activated\n");
933 		} else {
934 			/*
935 			 * In case we did anyway, make it go away,
936 			 * replenishment is a joke, since it will replenish us
937 			 * with exactly 0 ns.
938 			 */
939 			rt_rq->rt_time = 0;
940 		}
941 
942 		if (rt_rq_throttled(rt_rq)) {
943 			sched_rt_rq_dequeue(rt_rq);
944 			return 1;
945 		}
946 	}
947 
948 	return 0;
949 }
950 
951 /*
952  * Update the current task's runtime statistics. Skip current tasks that
953  * are not in our scheduling class.
954  */
955 static void update_curr_rt(struct rq *rq)
956 {
957 	struct task_struct *curr = rq->curr;
958 	struct sched_rt_entity *rt_se = &curr->rt;
959 	u64 delta_exec;
960 	u64 now;
961 
962 	if (curr->sched_class != &rt_sched_class)
963 		return;
964 
965 	now = rq_clock_task(rq);
966 	delta_exec = now - curr->se.exec_start;
967 	if (unlikely((s64)delta_exec <= 0))
968 		return;
969 
970 	schedstat_set(curr->se.statistics.exec_max,
971 		      max(curr->se.statistics.exec_max, delta_exec));
972 
973 	curr->se.sum_exec_runtime += delta_exec;
974 	account_group_exec_runtime(curr, delta_exec);
975 
976 	curr->se.exec_start = now;
977 	cgroup_account_cputime(curr, delta_exec);
978 
979 	if (!rt_bandwidth_enabled())
980 		return;
981 
982 	for_each_sched_rt_entity(rt_se) {
983 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
984 
985 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
986 			raw_spin_lock(&rt_rq->rt_runtime_lock);
987 			rt_rq->rt_time += delta_exec;
988 			if (sched_rt_runtime_exceeded(rt_rq))
989 				resched_curr(rq);
990 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
991 		}
992 	}
993 }
994 
995 static void
996 dequeue_top_rt_rq(struct rt_rq *rt_rq)
997 {
998 	struct rq *rq = rq_of_rt_rq(rt_rq);
999 
1000 	BUG_ON(&rq->rt != rt_rq);
1001 
1002 	if (!rt_rq->rt_queued)
1003 		return;
1004 
1005 	BUG_ON(!rq->nr_running);
1006 
1007 	sub_nr_running(rq, rt_rq->rt_nr_running);
1008 	rt_rq->rt_queued = 0;
1009 
1010 }
1011 
1012 static void
1013 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1014 {
1015 	struct rq *rq = rq_of_rt_rq(rt_rq);
1016 
1017 	BUG_ON(&rq->rt != rt_rq);
1018 
1019 	if (rt_rq->rt_queued)
1020 		return;
1021 
1022 	if (rt_rq_throttled(rt_rq))
1023 		return;
1024 
1025 	if (rt_rq->rt_nr_running) {
1026 		add_nr_running(rq, rt_rq->rt_nr_running);
1027 		rt_rq->rt_queued = 1;
1028 	}
1029 
1030 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1031 	cpufreq_update_util(rq, 0);
1032 }
1033 
1034 #if defined CONFIG_SMP
1035 
1036 static void
1037 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1038 {
1039 	struct rq *rq = rq_of_rt_rq(rt_rq);
1040 
1041 #ifdef CONFIG_RT_GROUP_SCHED
1042 	/*
1043 	 * Change rq's cpupri only if rt_rq is the top queue.
1044 	 */
1045 	if (&rq->rt != rt_rq)
1046 		return;
1047 #endif
1048 	if (rq->online && prio < prev_prio)
1049 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1050 }
1051 
1052 static void
1053 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1054 {
1055 	struct rq *rq = rq_of_rt_rq(rt_rq);
1056 
1057 #ifdef CONFIG_RT_GROUP_SCHED
1058 	/*
1059 	 * Change rq's cpupri only if rt_rq is the top queue.
1060 	 */
1061 	if (&rq->rt != rt_rq)
1062 		return;
1063 #endif
1064 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1065 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1066 }
1067 
1068 #else /* CONFIG_SMP */
1069 
1070 static inline
1071 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1072 static inline
1073 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1074 
1075 #endif /* CONFIG_SMP */
1076 
1077 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1078 static void
1079 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1080 {
1081 	int prev_prio = rt_rq->highest_prio.curr;
1082 
1083 	if (prio < prev_prio)
1084 		rt_rq->highest_prio.curr = prio;
1085 
1086 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1087 }
1088 
1089 static void
1090 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1091 {
1092 	int prev_prio = rt_rq->highest_prio.curr;
1093 
1094 	if (rt_rq->rt_nr_running) {
1095 
1096 		WARN_ON(prio < prev_prio);
1097 
1098 		/*
1099 		 * This may have been our highest task, and therefore
1100 		 * we may have some recomputation to do
1101 		 */
1102 		if (prio == prev_prio) {
1103 			struct rt_prio_array *array = &rt_rq->active;
1104 
1105 			rt_rq->highest_prio.curr =
1106 				sched_find_first_bit(array->bitmap);
1107 		}
1108 
1109 	} else
1110 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1111 
1112 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1113 }
1114 
1115 #else
1116 
1117 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119 
1120 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1121 
1122 #ifdef CONFIG_RT_GROUP_SCHED
1123 
1124 static void
1125 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126 {
1127 	if (rt_se_boosted(rt_se))
1128 		rt_rq->rt_nr_boosted++;
1129 
1130 	if (rt_rq->tg)
1131 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1132 }
1133 
1134 static void
1135 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136 {
1137 	if (rt_se_boosted(rt_se))
1138 		rt_rq->rt_nr_boosted--;
1139 
1140 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1141 }
1142 
1143 #else /* CONFIG_RT_GROUP_SCHED */
1144 
1145 static void
1146 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147 {
1148 	start_rt_bandwidth(&def_rt_bandwidth);
1149 }
1150 
1151 static inline
1152 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1153 
1154 #endif /* CONFIG_RT_GROUP_SCHED */
1155 
1156 static inline
1157 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1158 {
1159 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 
1161 	if (group_rq)
1162 		return group_rq->rt_nr_running;
1163 	else
1164 		return 1;
1165 }
1166 
1167 static inline
1168 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1169 {
1170 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171 	struct task_struct *tsk;
1172 
1173 	if (group_rq)
1174 		return group_rq->rr_nr_running;
1175 
1176 	tsk = rt_task_of(rt_se);
1177 
1178 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1179 }
1180 
1181 static inline
1182 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183 {
1184 	int prio = rt_se_prio(rt_se);
1185 
1186 	WARN_ON(!rt_prio(prio));
1187 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1188 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1189 
1190 	inc_rt_prio(rt_rq, prio);
1191 	inc_rt_migration(rt_se, rt_rq);
1192 	inc_rt_group(rt_se, rt_rq);
1193 }
1194 
1195 static inline
1196 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197 {
1198 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1199 	WARN_ON(!rt_rq->rt_nr_running);
1200 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1201 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1202 
1203 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1204 	dec_rt_migration(rt_se, rt_rq);
1205 	dec_rt_group(rt_se, rt_rq);
1206 }
1207 
1208 /*
1209  * Change rt_se->run_list location unless SAVE && !MOVE
1210  *
1211  * assumes ENQUEUE/DEQUEUE flags match
1212  */
1213 static inline bool move_entity(unsigned int flags)
1214 {
1215 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1216 		return false;
1217 
1218 	return true;
1219 }
1220 
1221 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1222 {
1223 	list_del_init(&rt_se->run_list);
1224 
1225 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1226 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1227 
1228 	rt_se->on_list = 0;
1229 }
1230 
1231 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1232 {
1233 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1234 	struct rt_prio_array *array = &rt_rq->active;
1235 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1236 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1237 
1238 	/*
1239 	 * Don't enqueue the group if its throttled, or when empty.
1240 	 * The latter is a consequence of the former when a child group
1241 	 * get throttled and the current group doesn't have any other
1242 	 * active members.
1243 	 */
1244 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1245 		if (rt_se->on_list)
1246 			__delist_rt_entity(rt_se, array);
1247 		return;
1248 	}
1249 
1250 	if (move_entity(flags)) {
1251 		WARN_ON_ONCE(rt_se->on_list);
1252 		if (flags & ENQUEUE_HEAD)
1253 			list_add(&rt_se->run_list, queue);
1254 		else
1255 			list_add_tail(&rt_se->run_list, queue);
1256 
1257 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1258 		rt_se->on_list = 1;
1259 	}
1260 	rt_se->on_rq = 1;
1261 
1262 	inc_rt_tasks(rt_se, rt_rq);
1263 }
1264 
1265 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1266 {
1267 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1268 	struct rt_prio_array *array = &rt_rq->active;
1269 
1270 	if (move_entity(flags)) {
1271 		WARN_ON_ONCE(!rt_se->on_list);
1272 		__delist_rt_entity(rt_se, array);
1273 	}
1274 	rt_se->on_rq = 0;
1275 
1276 	dec_rt_tasks(rt_se, rt_rq);
1277 }
1278 
1279 /*
1280  * Because the prio of an upper entry depends on the lower
1281  * entries, we must remove entries top - down.
1282  */
1283 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1284 {
1285 	struct sched_rt_entity *back = NULL;
1286 
1287 	for_each_sched_rt_entity(rt_se) {
1288 		rt_se->back = back;
1289 		back = rt_se;
1290 	}
1291 
1292 	dequeue_top_rt_rq(rt_rq_of_se(back));
1293 
1294 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1295 		if (on_rt_rq(rt_se))
1296 			__dequeue_rt_entity(rt_se, flags);
1297 	}
1298 }
1299 
1300 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301 {
1302 	struct rq *rq = rq_of_rt_se(rt_se);
1303 
1304 	dequeue_rt_stack(rt_se, flags);
1305 	for_each_sched_rt_entity(rt_se)
1306 		__enqueue_rt_entity(rt_se, flags);
1307 	enqueue_top_rt_rq(&rq->rt);
1308 }
1309 
1310 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1311 {
1312 	struct rq *rq = rq_of_rt_se(rt_se);
1313 
1314 	dequeue_rt_stack(rt_se, flags);
1315 
1316 	for_each_sched_rt_entity(rt_se) {
1317 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1318 
1319 		if (rt_rq && rt_rq->rt_nr_running)
1320 			__enqueue_rt_entity(rt_se, flags);
1321 	}
1322 	enqueue_top_rt_rq(&rq->rt);
1323 }
1324 
1325 /*
1326  * Adding/removing a task to/from a priority array:
1327  */
1328 static void
1329 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1330 {
1331 	struct sched_rt_entity *rt_se = &p->rt;
1332 
1333 	if (flags & ENQUEUE_WAKEUP)
1334 		rt_se->timeout = 0;
1335 
1336 	enqueue_rt_entity(rt_se, flags);
1337 
1338 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339 		enqueue_pushable_task(rq, p);
1340 }
1341 
1342 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343 {
1344 	struct sched_rt_entity *rt_se = &p->rt;
1345 
1346 	update_curr_rt(rq);
1347 	dequeue_rt_entity(rt_se, flags);
1348 
1349 	dequeue_pushable_task(rq, p);
1350 }
1351 
1352 /*
1353  * Put task to the head or the end of the run list without the overhead of
1354  * dequeue followed by enqueue.
1355  */
1356 static void
1357 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1358 {
1359 	if (on_rt_rq(rt_se)) {
1360 		struct rt_prio_array *array = &rt_rq->active;
1361 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1362 
1363 		if (head)
1364 			list_move(&rt_se->run_list, queue);
1365 		else
1366 			list_move_tail(&rt_se->run_list, queue);
1367 	}
1368 }
1369 
1370 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1371 {
1372 	struct sched_rt_entity *rt_se = &p->rt;
1373 	struct rt_rq *rt_rq;
1374 
1375 	for_each_sched_rt_entity(rt_se) {
1376 		rt_rq = rt_rq_of_se(rt_se);
1377 		requeue_rt_entity(rt_rq, rt_se, head);
1378 	}
1379 }
1380 
1381 static void yield_task_rt(struct rq *rq)
1382 {
1383 	requeue_task_rt(rq, rq->curr, 0);
1384 }
1385 
1386 #ifdef CONFIG_SMP
1387 static int find_lowest_rq(struct task_struct *task);
1388 
1389 static int
1390 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1391 {
1392 	struct task_struct *curr;
1393 	struct rq *rq;
1394 
1395 	/* For anything but wake ups, just return the task_cpu */
1396 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1397 		goto out;
1398 
1399 	rq = cpu_rq(cpu);
1400 
1401 	rcu_read_lock();
1402 	curr = READ_ONCE(rq->curr); /* unlocked access */
1403 
1404 	/*
1405 	 * If the current task on @p's runqueue is an RT task, then
1406 	 * try to see if we can wake this RT task up on another
1407 	 * runqueue. Otherwise simply start this RT task
1408 	 * on its current runqueue.
1409 	 *
1410 	 * We want to avoid overloading runqueues. If the woken
1411 	 * task is a higher priority, then it will stay on this CPU
1412 	 * and the lower prio task should be moved to another CPU.
1413 	 * Even though this will probably make the lower prio task
1414 	 * lose its cache, we do not want to bounce a higher task
1415 	 * around just because it gave up its CPU, perhaps for a
1416 	 * lock?
1417 	 *
1418 	 * For equal prio tasks, we just let the scheduler sort it out.
1419 	 *
1420 	 * Otherwise, just let it ride on the affined RQ and the
1421 	 * post-schedule router will push the preempted task away
1422 	 *
1423 	 * This test is optimistic, if we get it wrong the load-balancer
1424 	 * will have to sort it out.
1425 	 */
1426 	if (curr && unlikely(rt_task(curr)) &&
1427 	    (curr->nr_cpus_allowed < 2 ||
1428 	     curr->prio <= p->prio)) {
1429 		int target = find_lowest_rq(p);
1430 
1431 		/*
1432 		 * Don't bother moving it if the destination CPU is
1433 		 * not running a lower priority task.
1434 		 */
1435 		if (target != -1 &&
1436 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1437 			cpu = target;
1438 	}
1439 	rcu_read_unlock();
1440 
1441 out:
1442 	return cpu;
1443 }
1444 
1445 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1446 {
1447 	/*
1448 	 * Current can't be migrated, useless to reschedule,
1449 	 * let's hope p can move out.
1450 	 */
1451 	if (rq->curr->nr_cpus_allowed == 1 ||
1452 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1453 		return;
1454 
1455 	/*
1456 	 * p is migratable, so let's not schedule it and
1457 	 * see if it is pushed or pulled somewhere else.
1458 	 */
1459 	if (p->nr_cpus_allowed != 1
1460 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1461 		return;
1462 
1463 	/*
1464 	 * There appear to be other CPUs that can accept
1465 	 * the current task but none can run 'p', so lets reschedule
1466 	 * to try and push the current task away:
1467 	 */
1468 	requeue_task_rt(rq, p, 1);
1469 	resched_curr(rq);
1470 }
1471 
1472 #endif /* CONFIG_SMP */
1473 
1474 /*
1475  * Preempt the current task with a newly woken task if needed:
1476  */
1477 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1478 {
1479 	if (p->prio < rq->curr->prio) {
1480 		resched_curr(rq);
1481 		return;
1482 	}
1483 
1484 #ifdef CONFIG_SMP
1485 	/*
1486 	 * If:
1487 	 *
1488 	 * - the newly woken task is of equal priority to the current task
1489 	 * - the newly woken task is non-migratable while current is migratable
1490 	 * - current will be preempted on the next reschedule
1491 	 *
1492 	 * we should check to see if current can readily move to a different
1493 	 * cpu.  If so, we will reschedule to allow the push logic to try
1494 	 * to move current somewhere else, making room for our non-migratable
1495 	 * task.
1496 	 */
1497 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1498 		check_preempt_equal_prio(rq, p);
1499 #endif
1500 }
1501 
1502 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p)
1503 {
1504 	p->se.exec_start = rq_clock_task(rq);
1505 
1506 	/* The running task is never eligible for pushing */
1507 	dequeue_pushable_task(rq, p);
1508 
1509 	/*
1510 	 * If prev task was rt, put_prev_task() has already updated the
1511 	 * utilization. We only care of the case where we start to schedule a
1512 	 * rt task
1513 	 */
1514 	if (rq->curr->sched_class != &rt_sched_class)
1515 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1516 
1517 	rt_queue_push_tasks(rq);
1518 }
1519 
1520 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1521 						   struct rt_rq *rt_rq)
1522 {
1523 	struct rt_prio_array *array = &rt_rq->active;
1524 	struct sched_rt_entity *next = NULL;
1525 	struct list_head *queue;
1526 	int idx;
1527 
1528 	idx = sched_find_first_bit(array->bitmap);
1529 	BUG_ON(idx >= MAX_RT_PRIO);
1530 
1531 	queue = array->queue + idx;
1532 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1533 
1534 	return next;
1535 }
1536 
1537 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1538 {
1539 	struct sched_rt_entity *rt_se;
1540 	struct rt_rq *rt_rq  = &rq->rt;
1541 
1542 	do {
1543 		rt_se = pick_next_rt_entity(rq, rt_rq);
1544 		BUG_ON(!rt_se);
1545 		rt_rq = group_rt_rq(rt_se);
1546 	} while (rt_rq);
1547 
1548 	return rt_task_of(rt_se);
1549 }
1550 
1551 static struct task_struct *
1552 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1553 {
1554 	struct task_struct *p;
1555 	struct rt_rq *rt_rq = &rq->rt;
1556 
1557 	WARN_ON_ONCE(prev || rf);
1558 
1559 	if (!rt_rq->rt_queued)
1560 		return NULL;
1561 
1562 	p = _pick_next_task_rt(rq);
1563 
1564 	set_next_task_rt(rq, p);
1565 
1566 	return p;
1567 }
1568 
1569 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1570 {
1571 	update_curr_rt(rq);
1572 
1573 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1574 
1575 	/*
1576 	 * The previous task needs to be made eligible for pushing
1577 	 * if it is still active
1578 	 */
1579 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1580 		enqueue_pushable_task(rq, p);
1581 
1582 	if (rf && !on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1583 		/*
1584 		 * This is OK, because current is on_cpu, which avoids it being
1585 		 * picked for load-balance and preemption/IRQs are still
1586 		 * disabled avoiding further scheduler activity on it and we've
1587 		 * not yet started the picking loop.
1588 		 */
1589 		rq_unpin_lock(rq, rf);
1590 		pull_rt_task(rq);
1591 		rq_repin_lock(rq, rf);
1592 	}
1593 }
1594 
1595 #ifdef CONFIG_SMP
1596 
1597 /* Only try algorithms three times */
1598 #define RT_MAX_TRIES 3
1599 
1600 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1601 {
1602 	if (!task_running(rq, p) &&
1603 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1604 		return 1;
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Return the highest pushable rq's task, which is suitable to be executed
1611  * on the CPU, NULL otherwise
1612  */
1613 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1614 {
1615 	struct plist_head *head = &rq->rt.pushable_tasks;
1616 	struct task_struct *p;
1617 
1618 	if (!has_pushable_tasks(rq))
1619 		return NULL;
1620 
1621 	plist_for_each_entry(p, head, pushable_tasks) {
1622 		if (pick_rt_task(rq, p, cpu))
1623 			return p;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1630 
1631 static int find_lowest_rq(struct task_struct *task)
1632 {
1633 	struct sched_domain *sd;
1634 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1635 	int this_cpu = smp_processor_id();
1636 	int cpu      = task_cpu(task);
1637 
1638 	/* Make sure the mask is initialized first */
1639 	if (unlikely(!lowest_mask))
1640 		return -1;
1641 
1642 	if (task->nr_cpus_allowed == 1)
1643 		return -1; /* No other targets possible */
1644 
1645 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1646 		return -1; /* No targets found */
1647 
1648 	/*
1649 	 * At this point we have built a mask of CPUs representing the
1650 	 * lowest priority tasks in the system.  Now we want to elect
1651 	 * the best one based on our affinity and topology.
1652 	 *
1653 	 * We prioritize the last CPU that the task executed on since
1654 	 * it is most likely cache-hot in that location.
1655 	 */
1656 	if (cpumask_test_cpu(cpu, lowest_mask))
1657 		return cpu;
1658 
1659 	/*
1660 	 * Otherwise, we consult the sched_domains span maps to figure
1661 	 * out which CPU is logically closest to our hot cache data.
1662 	 */
1663 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1664 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1665 
1666 	rcu_read_lock();
1667 	for_each_domain(cpu, sd) {
1668 		if (sd->flags & SD_WAKE_AFFINE) {
1669 			int best_cpu;
1670 
1671 			/*
1672 			 * "this_cpu" is cheaper to preempt than a
1673 			 * remote processor.
1674 			 */
1675 			if (this_cpu != -1 &&
1676 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1677 				rcu_read_unlock();
1678 				return this_cpu;
1679 			}
1680 
1681 			best_cpu = cpumask_first_and(lowest_mask,
1682 						     sched_domain_span(sd));
1683 			if (best_cpu < nr_cpu_ids) {
1684 				rcu_read_unlock();
1685 				return best_cpu;
1686 			}
1687 		}
1688 	}
1689 	rcu_read_unlock();
1690 
1691 	/*
1692 	 * And finally, if there were no matches within the domains
1693 	 * just give the caller *something* to work with from the compatible
1694 	 * locations.
1695 	 */
1696 	if (this_cpu != -1)
1697 		return this_cpu;
1698 
1699 	cpu = cpumask_any(lowest_mask);
1700 	if (cpu < nr_cpu_ids)
1701 		return cpu;
1702 
1703 	return -1;
1704 }
1705 
1706 /* Will lock the rq it finds */
1707 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1708 {
1709 	struct rq *lowest_rq = NULL;
1710 	int tries;
1711 	int cpu;
1712 
1713 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1714 		cpu = find_lowest_rq(task);
1715 
1716 		if ((cpu == -1) || (cpu == rq->cpu))
1717 			break;
1718 
1719 		lowest_rq = cpu_rq(cpu);
1720 
1721 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1722 			/*
1723 			 * Target rq has tasks of equal or higher priority,
1724 			 * retrying does not release any lock and is unlikely
1725 			 * to yield a different result.
1726 			 */
1727 			lowest_rq = NULL;
1728 			break;
1729 		}
1730 
1731 		/* if the prio of this runqueue changed, try again */
1732 		if (double_lock_balance(rq, lowest_rq)) {
1733 			/*
1734 			 * We had to unlock the run queue. In
1735 			 * the mean time, task could have
1736 			 * migrated already or had its affinity changed.
1737 			 * Also make sure that it wasn't scheduled on its rq.
1738 			 */
1739 			if (unlikely(task_rq(task) != rq ||
1740 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1741 				     task_running(rq, task) ||
1742 				     !rt_task(task) ||
1743 				     !task_on_rq_queued(task))) {
1744 
1745 				double_unlock_balance(rq, lowest_rq);
1746 				lowest_rq = NULL;
1747 				break;
1748 			}
1749 		}
1750 
1751 		/* If this rq is still suitable use it. */
1752 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1753 			break;
1754 
1755 		/* try again */
1756 		double_unlock_balance(rq, lowest_rq);
1757 		lowest_rq = NULL;
1758 	}
1759 
1760 	return lowest_rq;
1761 }
1762 
1763 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1764 {
1765 	struct task_struct *p;
1766 
1767 	if (!has_pushable_tasks(rq))
1768 		return NULL;
1769 
1770 	p = plist_first_entry(&rq->rt.pushable_tasks,
1771 			      struct task_struct, pushable_tasks);
1772 
1773 	BUG_ON(rq->cpu != task_cpu(p));
1774 	BUG_ON(task_current(rq, p));
1775 	BUG_ON(p->nr_cpus_allowed <= 1);
1776 
1777 	BUG_ON(!task_on_rq_queued(p));
1778 	BUG_ON(!rt_task(p));
1779 
1780 	return p;
1781 }
1782 
1783 /*
1784  * If the current CPU has more than one RT task, see if the non
1785  * running task can migrate over to a CPU that is running a task
1786  * of lesser priority.
1787  */
1788 static int push_rt_task(struct rq *rq)
1789 {
1790 	struct task_struct *next_task;
1791 	struct rq *lowest_rq;
1792 	int ret = 0;
1793 
1794 	if (!rq->rt.overloaded)
1795 		return 0;
1796 
1797 	next_task = pick_next_pushable_task(rq);
1798 	if (!next_task)
1799 		return 0;
1800 
1801 retry:
1802 	if (WARN_ON(next_task == rq->curr))
1803 		return 0;
1804 
1805 	/*
1806 	 * It's possible that the next_task slipped in of
1807 	 * higher priority than current. If that's the case
1808 	 * just reschedule current.
1809 	 */
1810 	if (unlikely(next_task->prio < rq->curr->prio)) {
1811 		resched_curr(rq);
1812 		return 0;
1813 	}
1814 
1815 	/* We might release rq lock */
1816 	get_task_struct(next_task);
1817 
1818 	/* find_lock_lowest_rq locks the rq if found */
1819 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1820 	if (!lowest_rq) {
1821 		struct task_struct *task;
1822 		/*
1823 		 * find_lock_lowest_rq releases rq->lock
1824 		 * so it is possible that next_task has migrated.
1825 		 *
1826 		 * We need to make sure that the task is still on the same
1827 		 * run-queue and is also still the next task eligible for
1828 		 * pushing.
1829 		 */
1830 		task = pick_next_pushable_task(rq);
1831 		if (task == next_task) {
1832 			/*
1833 			 * The task hasn't migrated, and is still the next
1834 			 * eligible task, but we failed to find a run-queue
1835 			 * to push it to.  Do not retry in this case, since
1836 			 * other CPUs will pull from us when ready.
1837 			 */
1838 			goto out;
1839 		}
1840 
1841 		if (!task)
1842 			/* No more tasks, just exit */
1843 			goto out;
1844 
1845 		/*
1846 		 * Something has shifted, try again.
1847 		 */
1848 		put_task_struct(next_task);
1849 		next_task = task;
1850 		goto retry;
1851 	}
1852 
1853 	deactivate_task(rq, next_task, 0);
1854 	set_task_cpu(next_task, lowest_rq->cpu);
1855 	activate_task(lowest_rq, next_task, 0);
1856 	ret = 1;
1857 
1858 	resched_curr(lowest_rq);
1859 
1860 	double_unlock_balance(rq, lowest_rq);
1861 
1862 out:
1863 	put_task_struct(next_task);
1864 
1865 	return ret;
1866 }
1867 
1868 static void push_rt_tasks(struct rq *rq)
1869 {
1870 	/* push_rt_task will return true if it moved an RT */
1871 	while (push_rt_task(rq))
1872 		;
1873 }
1874 
1875 #ifdef HAVE_RT_PUSH_IPI
1876 
1877 /*
1878  * When a high priority task schedules out from a CPU and a lower priority
1879  * task is scheduled in, a check is made to see if there's any RT tasks
1880  * on other CPUs that are waiting to run because a higher priority RT task
1881  * is currently running on its CPU. In this case, the CPU with multiple RT
1882  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1883  * up that may be able to run one of its non-running queued RT tasks.
1884  *
1885  * All CPUs with overloaded RT tasks need to be notified as there is currently
1886  * no way to know which of these CPUs have the highest priority task waiting
1887  * to run. Instead of trying to take a spinlock on each of these CPUs,
1888  * which has shown to cause large latency when done on machines with many
1889  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1890  * RT tasks waiting to run.
1891  *
1892  * Just sending an IPI to each of the CPUs is also an issue, as on large
1893  * count CPU machines, this can cause an IPI storm on a CPU, especially
1894  * if its the only CPU with multiple RT tasks queued, and a large number
1895  * of CPUs scheduling a lower priority task at the same time.
1896  *
1897  * Each root domain has its own irq work function that can iterate over
1898  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1899  * tassk must be checked if there's one or many CPUs that are lowering
1900  * their priority, there's a single irq work iterator that will try to
1901  * push off RT tasks that are waiting to run.
1902  *
1903  * When a CPU schedules a lower priority task, it will kick off the
1904  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1905  * As it only takes the first CPU that schedules a lower priority task
1906  * to start the process, the rto_start variable is incremented and if
1907  * the atomic result is one, then that CPU will try to take the rto_lock.
1908  * This prevents high contention on the lock as the process handles all
1909  * CPUs scheduling lower priority tasks.
1910  *
1911  * All CPUs that are scheduling a lower priority task will increment the
1912  * rt_loop_next variable. This will make sure that the irq work iterator
1913  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1914  * priority task, even if the iterator is in the middle of a scan. Incrementing
1915  * the rt_loop_next will cause the iterator to perform another scan.
1916  *
1917  */
1918 static int rto_next_cpu(struct root_domain *rd)
1919 {
1920 	int next;
1921 	int cpu;
1922 
1923 	/*
1924 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1925 	 * rt_next_cpu() will simply return the first CPU found in
1926 	 * the rto_mask.
1927 	 *
1928 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1929 	 * will return the next CPU found in the rto_mask.
1930 	 *
1931 	 * If there are no more CPUs left in the rto_mask, then a check is made
1932 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1933 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1934 	 * without any locking.
1935 	 */
1936 	for (;;) {
1937 
1938 		/* When rto_cpu is -1 this acts like cpumask_first() */
1939 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1940 
1941 		rd->rto_cpu = cpu;
1942 
1943 		if (cpu < nr_cpu_ids)
1944 			return cpu;
1945 
1946 		rd->rto_cpu = -1;
1947 
1948 		/*
1949 		 * ACQUIRE ensures we see the @rto_mask changes
1950 		 * made prior to the @next value observed.
1951 		 *
1952 		 * Matches WMB in rt_set_overload().
1953 		 */
1954 		next = atomic_read_acquire(&rd->rto_loop_next);
1955 
1956 		if (rd->rto_loop == next)
1957 			break;
1958 
1959 		rd->rto_loop = next;
1960 	}
1961 
1962 	return -1;
1963 }
1964 
1965 static inline bool rto_start_trylock(atomic_t *v)
1966 {
1967 	return !atomic_cmpxchg_acquire(v, 0, 1);
1968 }
1969 
1970 static inline void rto_start_unlock(atomic_t *v)
1971 {
1972 	atomic_set_release(v, 0);
1973 }
1974 
1975 static void tell_cpu_to_push(struct rq *rq)
1976 {
1977 	int cpu = -1;
1978 
1979 	/* Keep the loop going if the IPI is currently active */
1980 	atomic_inc(&rq->rd->rto_loop_next);
1981 
1982 	/* Only one CPU can initiate a loop at a time */
1983 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1984 		return;
1985 
1986 	raw_spin_lock(&rq->rd->rto_lock);
1987 
1988 	/*
1989 	 * The rto_cpu is updated under the lock, if it has a valid CPU
1990 	 * then the IPI is still running and will continue due to the
1991 	 * update to loop_next, and nothing needs to be done here.
1992 	 * Otherwise it is finishing up and an ipi needs to be sent.
1993 	 */
1994 	if (rq->rd->rto_cpu < 0)
1995 		cpu = rto_next_cpu(rq->rd);
1996 
1997 	raw_spin_unlock(&rq->rd->rto_lock);
1998 
1999 	rto_start_unlock(&rq->rd->rto_loop_start);
2000 
2001 	if (cpu >= 0) {
2002 		/* Make sure the rd does not get freed while pushing */
2003 		sched_get_rd(rq->rd);
2004 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2005 	}
2006 }
2007 
2008 /* Called from hardirq context */
2009 void rto_push_irq_work_func(struct irq_work *work)
2010 {
2011 	struct root_domain *rd =
2012 		container_of(work, struct root_domain, rto_push_work);
2013 	struct rq *rq;
2014 	int cpu;
2015 
2016 	rq = this_rq();
2017 
2018 	/*
2019 	 * We do not need to grab the lock to check for has_pushable_tasks.
2020 	 * When it gets updated, a check is made if a push is possible.
2021 	 */
2022 	if (has_pushable_tasks(rq)) {
2023 		raw_spin_lock(&rq->lock);
2024 		push_rt_tasks(rq);
2025 		raw_spin_unlock(&rq->lock);
2026 	}
2027 
2028 	raw_spin_lock(&rd->rto_lock);
2029 
2030 	/* Pass the IPI to the next rt overloaded queue */
2031 	cpu = rto_next_cpu(rd);
2032 
2033 	raw_spin_unlock(&rd->rto_lock);
2034 
2035 	if (cpu < 0) {
2036 		sched_put_rd(rd);
2037 		return;
2038 	}
2039 
2040 	/* Try the next RT overloaded CPU */
2041 	irq_work_queue_on(&rd->rto_push_work, cpu);
2042 }
2043 #endif /* HAVE_RT_PUSH_IPI */
2044 
2045 static void pull_rt_task(struct rq *this_rq)
2046 {
2047 	int this_cpu = this_rq->cpu, cpu;
2048 	bool resched = false;
2049 	struct task_struct *p;
2050 	struct rq *src_rq;
2051 	int rt_overload_count = rt_overloaded(this_rq);
2052 
2053 	if (likely(!rt_overload_count))
2054 		return;
2055 
2056 	/*
2057 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2058 	 * see overloaded we must also see the rto_mask bit.
2059 	 */
2060 	smp_rmb();
2061 
2062 	/* If we are the only overloaded CPU do nothing */
2063 	if (rt_overload_count == 1 &&
2064 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2065 		return;
2066 
2067 #ifdef HAVE_RT_PUSH_IPI
2068 	if (sched_feat(RT_PUSH_IPI)) {
2069 		tell_cpu_to_push(this_rq);
2070 		return;
2071 	}
2072 #endif
2073 
2074 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2075 		if (this_cpu == cpu)
2076 			continue;
2077 
2078 		src_rq = cpu_rq(cpu);
2079 
2080 		/*
2081 		 * Don't bother taking the src_rq->lock if the next highest
2082 		 * task is known to be lower-priority than our current task.
2083 		 * This may look racy, but if this value is about to go
2084 		 * logically higher, the src_rq will push this task away.
2085 		 * And if its going logically lower, we do not care
2086 		 */
2087 		if (src_rq->rt.highest_prio.next >=
2088 		    this_rq->rt.highest_prio.curr)
2089 			continue;
2090 
2091 		/*
2092 		 * We can potentially drop this_rq's lock in
2093 		 * double_lock_balance, and another CPU could
2094 		 * alter this_rq
2095 		 */
2096 		double_lock_balance(this_rq, src_rq);
2097 
2098 		/*
2099 		 * We can pull only a task, which is pushable
2100 		 * on its rq, and no others.
2101 		 */
2102 		p = pick_highest_pushable_task(src_rq, this_cpu);
2103 
2104 		/*
2105 		 * Do we have an RT task that preempts
2106 		 * the to-be-scheduled task?
2107 		 */
2108 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2109 			WARN_ON(p == src_rq->curr);
2110 			WARN_ON(!task_on_rq_queued(p));
2111 
2112 			/*
2113 			 * There's a chance that p is higher in priority
2114 			 * than what's currently running on its CPU.
2115 			 * This is just that p is wakeing up and hasn't
2116 			 * had a chance to schedule. We only pull
2117 			 * p if it is lower in priority than the
2118 			 * current task on the run queue
2119 			 */
2120 			if (p->prio < src_rq->curr->prio)
2121 				goto skip;
2122 
2123 			resched = true;
2124 
2125 			deactivate_task(src_rq, p, 0);
2126 			set_task_cpu(p, this_cpu);
2127 			activate_task(this_rq, p, 0);
2128 			/*
2129 			 * We continue with the search, just in
2130 			 * case there's an even higher prio task
2131 			 * in another runqueue. (low likelihood
2132 			 * but possible)
2133 			 */
2134 		}
2135 skip:
2136 		double_unlock_balance(this_rq, src_rq);
2137 	}
2138 
2139 	if (resched)
2140 		resched_curr(this_rq);
2141 }
2142 
2143 /*
2144  * If we are not running and we are not going to reschedule soon, we should
2145  * try to push tasks away now
2146  */
2147 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2148 {
2149 	if (!task_running(rq, p) &&
2150 	    !test_tsk_need_resched(rq->curr) &&
2151 	    p->nr_cpus_allowed > 1 &&
2152 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2153 	    (rq->curr->nr_cpus_allowed < 2 ||
2154 	     rq->curr->prio <= p->prio))
2155 		push_rt_tasks(rq);
2156 }
2157 
2158 /* Assumes rq->lock is held */
2159 static void rq_online_rt(struct rq *rq)
2160 {
2161 	if (rq->rt.overloaded)
2162 		rt_set_overload(rq);
2163 
2164 	__enable_runtime(rq);
2165 
2166 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2167 }
2168 
2169 /* Assumes rq->lock is held */
2170 static void rq_offline_rt(struct rq *rq)
2171 {
2172 	if (rq->rt.overloaded)
2173 		rt_clear_overload(rq);
2174 
2175 	__disable_runtime(rq);
2176 
2177 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2178 }
2179 
2180 /*
2181  * When switch from the rt queue, we bring ourselves to a position
2182  * that we might want to pull RT tasks from other runqueues.
2183  */
2184 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2185 {
2186 	/*
2187 	 * If there are other RT tasks then we will reschedule
2188 	 * and the scheduling of the other RT tasks will handle
2189 	 * the balancing. But if we are the last RT task
2190 	 * we may need to handle the pulling of RT tasks
2191 	 * now.
2192 	 */
2193 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2194 		return;
2195 
2196 	rt_queue_pull_task(rq);
2197 }
2198 
2199 void __init init_sched_rt_class(void)
2200 {
2201 	unsigned int i;
2202 
2203 	for_each_possible_cpu(i) {
2204 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2205 					GFP_KERNEL, cpu_to_node(i));
2206 	}
2207 }
2208 #endif /* CONFIG_SMP */
2209 
2210 /*
2211  * When switching a task to RT, we may overload the runqueue
2212  * with RT tasks. In this case we try to push them off to
2213  * other runqueues.
2214  */
2215 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2216 {
2217 	/*
2218 	 * If we are already running, then there's nothing
2219 	 * that needs to be done. But if we are not running
2220 	 * we may need to preempt the current running task.
2221 	 * If that current running task is also an RT task
2222 	 * then see if we can move to another run queue.
2223 	 */
2224 	if (task_on_rq_queued(p) && rq->curr != p) {
2225 #ifdef CONFIG_SMP
2226 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2227 			rt_queue_push_tasks(rq);
2228 #endif /* CONFIG_SMP */
2229 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2230 			resched_curr(rq);
2231 	}
2232 }
2233 
2234 /*
2235  * Priority of the task has changed. This may cause
2236  * us to initiate a push or pull.
2237  */
2238 static void
2239 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2240 {
2241 	if (!task_on_rq_queued(p))
2242 		return;
2243 
2244 	if (rq->curr == p) {
2245 #ifdef CONFIG_SMP
2246 		/*
2247 		 * If our priority decreases while running, we
2248 		 * may need to pull tasks to this runqueue.
2249 		 */
2250 		if (oldprio < p->prio)
2251 			rt_queue_pull_task(rq);
2252 
2253 		/*
2254 		 * If there's a higher priority task waiting to run
2255 		 * then reschedule.
2256 		 */
2257 		if (p->prio > rq->rt.highest_prio.curr)
2258 			resched_curr(rq);
2259 #else
2260 		/* For UP simply resched on drop of prio */
2261 		if (oldprio < p->prio)
2262 			resched_curr(rq);
2263 #endif /* CONFIG_SMP */
2264 	} else {
2265 		/*
2266 		 * This task is not running, but if it is
2267 		 * greater than the current running task
2268 		 * then reschedule.
2269 		 */
2270 		if (p->prio < rq->curr->prio)
2271 			resched_curr(rq);
2272 	}
2273 }
2274 
2275 #ifdef CONFIG_POSIX_TIMERS
2276 static void watchdog(struct rq *rq, struct task_struct *p)
2277 {
2278 	unsigned long soft, hard;
2279 
2280 	/* max may change after cur was read, this will be fixed next tick */
2281 	soft = task_rlimit(p, RLIMIT_RTTIME);
2282 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2283 
2284 	if (soft != RLIM_INFINITY) {
2285 		unsigned long next;
2286 
2287 		if (p->rt.watchdog_stamp != jiffies) {
2288 			p->rt.timeout++;
2289 			p->rt.watchdog_stamp = jiffies;
2290 		}
2291 
2292 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2293 		if (p->rt.timeout > next) {
2294 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2295 						    p->se.sum_exec_runtime);
2296 		}
2297 	}
2298 }
2299 #else
2300 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2301 #endif
2302 
2303 /*
2304  * scheduler tick hitting a task of our scheduling class.
2305  *
2306  * NOTE: This function can be called remotely by the tick offload that
2307  * goes along full dynticks. Therefore no local assumption can be made
2308  * and everything must be accessed through the @rq and @curr passed in
2309  * parameters.
2310  */
2311 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2312 {
2313 	struct sched_rt_entity *rt_se = &p->rt;
2314 
2315 	update_curr_rt(rq);
2316 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2317 
2318 	watchdog(rq, p);
2319 
2320 	/*
2321 	 * RR tasks need a special form of timeslice management.
2322 	 * FIFO tasks have no timeslices.
2323 	 */
2324 	if (p->policy != SCHED_RR)
2325 		return;
2326 
2327 	if (--p->rt.time_slice)
2328 		return;
2329 
2330 	p->rt.time_slice = sched_rr_timeslice;
2331 
2332 	/*
2333 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2334 	 * the only element on the queue
2335 	 */
2336 	for_each_sched_rt_entity(rt_se) {
2337 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2338 			requeue_task_rt(rq, p, 0);
2339 			resched_curr(rq);
2340 			return;
2341 		}
2342 	}
2343 }
2344 
2345 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2346 {
2347 	/*
2348 	 * Time slice is 0 for SCHED_FIFO tasks
2349 	 */
2350 	if (task->policy == SCHED_RR)
2351 		return sched_rr_timeslice;
2352 	else
2353 		return 0;
2354 }
2355 
2356 const struct sched_class rt_sched_class = {
2357 	.next			= &fair_sched_class,
2358 	.enqueue_task		= enqueue_task_rt,
2359 	.dequeue_task		= dequeue_task_rt,
2360 	.yield_task		= yield_task_rt,
2361 
2362 	.check_preempt_curr	= check_preempt_curr_rt,
2363 
2364 	.pick_next_task		= pick_next_task_rt,
2365 	.put_prev_task		= put_prev_task_rt,
2366 	.set_next_task          = set_next_task_rt,
2367 
2368 #ifdef CONFIG_SMP
2369 	.select_task_rq		= select_task_rq_rt,
2370 
2371 	.set_cpus_allowed       = set_cpus_allowed_common,
2372 	.rq_online              = rq_online_rt,
2373 	.rq_offline             = rq_offline_rt,
2374 	.task_woken		= task_woken_rt,
2375 	.switched_from		= switched_from_rt,
2376 #endif
2377 
2378 	.task_tick		= task_tick_rt,
2379 
2380 	.get_rr_interval	= get_rr_interval_rt,
2381 
2382 	.prio_changed		= prio_changed_rt,
2383 	.switched_to		= switched_to_rt,
2384 
2385 	.update_curr		= update_curr_rt,
2386 
2387 #ifdef CONFIG_UCLAMP_TASK
2388 	.uclamp_enabled		= 1,
2389 #endif
2390 };
2391 
2392 #ifdef CONFIG_RT_GROUP_SCHED
2393 /*
2394  * Ensure that the real time constraints are schedulable.
2395  */
2396 static DEFINE_MUTEX(rt_constraints_mutex);
2397 
2398 /* Must be called with tasklist_lock held */
2399 static inline int tg_has_rt_tasks(struct task_group *tg)
2400 {
2401 	struct task_struct *g, *p;
2402 
2403 	/*
2404 	 * Autogroups do not have RT tasks; see autogroup_create().
2405 	 */
2406 	if (task_group_is_autogroup(tg))
2407 		return 0;
2408 
2409 	for_each_process_thread(g, p) {
2410 		if (rt_task(p) && task_group(p) == tg)
2411 			return 1;
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 struct rt_schedulable_data {
2418 	struct task_group *tg;
2419 	u64 rt_period;
2420 	u64 rt_runtime;
2421 };
2422 
2423 static int tg_rt_schedulable(struct task_group *tg, void *data)
2424 {
2425 	struct rt_schedulable_data *d = data;
2426 	struct task_group *child;
2427 	unsigned long total, sum = 0;
2428 	u64 period, runtime;
2429 
2430 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2431 	runtime = tg->rt_bandwidth.rt_runtime;
2432 
2433 	if (tg == d->tg) {
2434 		period = d->rt_period;
2435 		runtime = d->rt_runtime;
2436 	}
2437 
2438 	/*
2439 	 * Cannot have more runtime than the period.
2440 	 */
2441 	if (runtime > period && runtime != RUNTIME_INF)
2442 		return -EINVAL;
2443 
2444 	/*
2445 	 * Ensure we don't starve existing RT tasks.
2446 	 */
2447 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2448 		return -EBUSY;
2449 
2450 	total = to_ratio(period, runtime);
2451 
2452 	/*
2453 	 * Nobody can have more than the global setting allows.
2454 	 */
2455 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2456 		return -EINVAL;
2457 
2458 	/*
2459 	 * The sum of our children's runtime should not exceed our own.
2460 	 */
2461 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2462 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2463 		runtime = child->rt_bandwidth.rt_runtime;
2464 
2465 		if (child == d->tg) {
2466 			period = d->rt_period;
2467 			runtime = d->rt_runtime;
2468 		}
2469 
2470 		sum += to_ratio(period, runtime);
2471 	}
2472 
2473 	if (sum > total)
2474 		return -EINVAL;
2475 
2476 	return 0;
2477 }
2478 
2479 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2480 {
2481 	int ret;
2482 
2483 	struct rt_schedulable_data data = {
2484 		.tg = tg,
2485 		.rt_period = period,
2486 		.rt_runtime = runtime,
2487 	};
2488 
2489 	rcu_read_lock();
2490 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2491 	rcu_read_unlock();
2492 
2493 	return ret;
2494 }
2495 
2496 static int tg_set_rt_bandwidth(struct task_group *tg,
2497 		u64 rt_period, u64 rt_runtime)
2498 {
2499 	int i, err = 0;
2500 
2501 	/*
2502 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2503 	 * kernel creating (and or operating) RT threads.
2504 	 */
2505 	if (tg == &root_task_group && rt_runtime == 0)
2506 		return -EINVAL;
2507 
2508 	/* No period doesn't make any sense. */
2509 	if (rt_period == 0)
2510 		return -EINVAL;
2511 
2512 	mutex_lock(&rt_constraints_mutex);
2513 	read_lock(&tasklist_lock);
2514 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2515 	if (err)
2516 		goto unlock;
2517 
2518 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2520 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2521 
2522 	for_each_possible_cpu(i) {
2523 		struct rt_rq *rt_rq = tg->rt_rq[i];
2524 
2525 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2526 		rt_rq->rt_runtime = rt_runtime;
2527 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2528 	}
2529 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2530 unlock:
2531 	read_unlock(&tasklist_lock);
2532 	mutex_unlock(&rt_constraints_mutex);
2533 
2534 	return err;
2535 }
2536 
2537 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2538 {
2539 	u64 rt_runtime, rt_period;
2540 
2541 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2542 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2543 	if (rt_runtime_us < 0)
2544 		rt_runtime = RUNTIME_INF;
2545 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2546 		return -EINVAL;
2547 
2548 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2549 }
2550 
2551 long sched_group_rt_runtime(struct task_group *tg)
2552 {
2553 	u64 rt_runtime_us;
2554 
2555 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2556 		return -1;
2557 
2558 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2559 	do_div(rt_runtime_us, NSEC_PER_USEC);
2560 	return rt_runtime_us;
2561 }
2562 
2563 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2564 {
2565 	u64 rt_runtime, rt_period;
2566 
2567 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2568 		return -EINVAL;
2569 
2570 	rt_period = rt_period_us * NSEC_PER_USEC;
2571 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2572 
2573 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2574 }
2575 
2576 long sched_group_rt_period(struct task_group *tg)
2577 {
2578 	u64 rt_period_us;
2579 
2580 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2581 	do_div(rt_period_us, NSEC_PER_USEC);
2582 	return rt_period_us;
2583 }
2584 
2585 static int sched_rt_global_constraints(void)
2586 {
2587 	int ret = 0;
2588 
2589 	mutex_lock(&rt_constraints_mutex);
2590 	read_lock(&tasklist_lock);
2591 	ret = __rt_schedulable(NULL, 0, 0);
2592 	read_unlock(&tasklist_lock);
2593 	mutex_unlock(&rt_constraints_mutex);
2594 
2595 	return ret;
2596 }
2597 
2598 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2599 {
2600 	/* Don't accept realtime tasks when there is no way for them to run */
2601 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2602 		return 0;
2603 
2604 	return 1;
2605 }
2606 
2607 #else /* !CONFIG_RT_GROUP_SCHED */
2608 static int sched_rt_global_constraints(void)
2609 {
2610 	unsigned long flags;
2611 	int i;
2612 
2613 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2614 	for_each_possible_cpu(i) {
2615 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2616 
2617 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2618 		rt_rq->rt_runtime = global_rt_runtime();
2619 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2620 	}
2621 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2622 
2623 	return 0;
2624 }
2625 #endif /* CONFIG_RT_GROUP_SCHED */
2626 
2627 static int sched_rt_global_validate(void)
2628 {
2629 	if (sysctl_sched_rt_period <= 0)
2630 		return -EINVAL;
2631 
2632 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2633 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2634 		return -EINVAL;
2635 
2636 	return 0;
2637 }
2638 
2639 static void sched_rt_do_global(void)
2640 {
2641 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2642 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2643 }
2644 
2645 int sched_rt_handler(struct ctl_table *table, int write,
2646 		void __user *buffer, size_t *lenp,
2647 		loff_t *ppos)
2648 {
2649 	int old_period, old_runtime;
2650 	static DEFINE_MUTEX(mutex);
2651 	int ret;
2652 
2653 	mutex_lock(&mutex);
2654 	old_period = sysctl_sched_rt_period;
2655 	old_runtime = sysctl_sched_rt_runtime;
2656 
2657 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2658 
2659 	if (!ret && write) {
2660 		ret = sched_rt_global_validate();
2661 		if (ret)
2662 			goto undo;
2663 
2664 		ret = sched_dl_global_validate();
2665 		if (ret)
2666 			goto undo;
2667 
2668 		ret = sched_rt_global_constraints();
2669 		if (ret)
2670 			goto undo;
2671 
2672 		sched_rt_do_global();
2673 		sched_dl_do_global();
2674 	}
2675 	if (0) {
2676 undo:
2677 		sysctl_sched_rt_period = old_period;
2678 		sysctl_sched_rt_runtime = old_runtime;
2679 	}
2680 	mutex_unlock(&mutex);
2681 
2682 	return ret;
2683 }
2684 
2685 int sched_rr_handler(struct ctl_table *table, int write,
2686 		void __user *buffer, size_t *lenp,
2687 		loff_t *ppos)
2688 {
2689 	int ret;
2690 	static DEFINE_MUTEX(mutex);
2691 
2692 	mutex_lock(&mutex);
2693 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2694 	/*
2695 	 * Make sure that internally we keep jiffies.
2696 	 * Also, writing zero resets the timeslice to default:
2697 	 */
2698 	if (!ret && write) {
2699 		sched_rr_timeslice =
2700 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2701 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2702 	}
2703 	mutex_unlock(&mutex);
2704 
2705 	return ret;
2706 }
2707 
2708 #ifdef CONFIG_SCHED_DEBUG
2709 void print_rt_stats(struct seq_file *m, int cpu)
2710 {
2711 	rt_rq_iter_t iter;
2712 	struct rt_rq *rt_rq;
2713 
2714 	rcu_read_lock();
2715 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2716 		print_rt_rq(m, cpu, rt_rq);
2717 	rcu_read_unlock();
2718 }
2719 #endif /* CONFIG_SCHED_DEBUG */
2720