xref: /openbmc/linux/kernel/sched/rt.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 		     HRTIMER_MODE_REL_HARD);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		/*
62 		 * SCHED_DEADLINE updates the bandwidth, as a run away
63 		 * RT task with a DL task could hog a CPU. But DL does
64 		 * not reset the period. If a deadline task was running
65 		 * without an RT task running, it can cause RT tasks to
66 		 * throttle when they start up. Kick the timer right away
67 		 * to update the period.
68 		 */
69 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 		hrtimer_start_expires(&rt_b->rt_period_timer,
71 				      HRTIMER_MODE_ABS_PINNED_HARD);
72 	}
73 	raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75 
76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78 	struct rt_prio_array *array;
79 	int i;
80 
81 	array = &rt_rq->active;
82 	for (i = 0; i < MAX_RT_PRIO; i++) {
83 		INIT_LIST_HEAD(array->queue + i);
84 		__clear_bit(i, array->bitmap);
85 	}
86 	/* delimiter for bitsearch: */
87 	__set_bit(MAX_RT_PRIO, array->bitmap);
88 
89 #if defined CONFIG_SMP
90 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 	rt_rq->highest_prio.next = MAX_RT_PRIO;
92 	rt_rq->rt_nr_migratory = 0;
93 	rt_rq->overloaded = 0;
94 	plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 	/* We start is dequeued state, because no RT tasks are queued */
97 	rt_rq->rt_queued = 0;
98 
99 	rt_rq->rt_time = 0;
100 	rt_rq->rt_throttled = 0;
101 	rt_rq->rt_runtime = 0;
102 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104 
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110 
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112 
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 	return container_of(rt_se, struct task_struct, rt);
119 }
120 
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123 	return rt_rq->rq;
124 }
125 
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128 	return rt_se->rt_rq;
129 }
130 
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133 	struct rt_rq *rt_rq = rt_se->rt_rq;
134 
135 	return rt_rq->rq;
136 }
137 
138 void free_rt_sched_group(struct task_group *tg)
139 {
140 	int i;
141 
142 	if (tg->rt_se)
143 		destroy_rt_bandwidth(&tg->rt_bandwidth);
144 
145 	for_each_possible_cpu(i) {
146 		if (tg->rt_rq)
147 			kfree(tg->rt_rq[i]);
148 		if (tg->rt_se)
149 			kfree(tg->rt_se[i]);
150 	}
151 
152 	kfree(tg->rt_rq);
153 	kfree(tg->rt_se);
154 }
155 
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 		struct sched_rt_entity *rt_se, int cpu,
158 		struct sched_rt_entity *parent)
159 {
160 	struct rq *rq = cpu_rq(cpu);
161 
162 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 	rt_rq->rt_nr_boosted = 0;
164 	rt_rq->rq = rq;
165 	rt_rq->tg = tg;
166 
167 	tg->rt_rq[cpu] = rt_rq;
168 	tg->rt_se[cpu] = rt_se;
169 
170 	if (!rt_se)
171 		return;
172 
173 	if (!parent)
174 		rt_se->rt_rq = &rq->rt;
175 	else
176 		rt_se->rt_rq = parent->my_q;
177 
178 	rt_se->my_q = rt_rq;
179 	rt_se->parent = parent;
180 	INIT_LIST_HEAD(&rt_se->run_list);
181 }
182 
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185 	struct rt_rq *rt_rq;
186 	struct sched_rt_entity *rt_se;
187 	int i;
188 
189 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 	if (!tg->rt_rq)
191 		goto err;
192 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 	if (!tg->rt_se)
194 		goto err;
195 
196 	init_rt_bandwidth(&tg->rt_bandwidth,
197 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198 
199 	for_each_possible_cpu(i) {
200 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 				     GFP_KERNEL, cpu_to_node(i));
202 		if (!rt_rq)
203 			goto err;
204 
205 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 				     GFP_KERNEL, cpu_to_node(i));
207 		if (!rt_se)
208 			goto err_free_rq;
209 
210 		init_rt_rq(rt_rq);
211 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 	}
214 
215 	return 1;
216 
217 err_free_rq:
218 	kfree(rt_rq);
219 err:
220 	return 0;
221 }
222 
223 #else /* CONFIG_RT_GROUP_SCHED */
224 
225 #define rt_entity_is_task(rt_se) (1)
226 
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229 	return container_of(rt_se, struct task_struct, rt);
230 }
231 
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234 	return container_of(rt_rq, struct rq, rt);
235 }
236 
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239 	struct task_struct *p = rt_task_of(rt_se);
240 
241 	return task_rq(p);
242 }
243 
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246 	struct rq *rq = rq_of_rt_se(rt_se);
247 
248 	return &rq->rt;
249 }
250 
251 void free_rt_sched_group(struct task_group *tg) { }
252 
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 	return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258 
259 #ifdef CONFIG_SMP
260 
261 static void pull_rt_task(struct rq *this_rq);
262 
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265 	/* Try to pull RT tasks here if we lower this rq's prio */
266 	return rq->rt.highest_prio.curr > prev->prio;
267 }
268 
269 static inline int rt_overloaded(struct rq *rq)
270 {
271 	return atomic_read(&rq->rd->rto_count);
272 }
273 
274 static inline void rt_set_overload(struct rq *rq)
275 {
276 	if (!rq->online)
277 		return;
278 
279 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280 	/*
281 	 * Make sure the mask is visible before we set
282 	 * the overload count. That is checked to determine
283 	 * if we should look at the mask. It would be a shame
284 	 * if we looked at the mask, but the mask was not
285 	 * updated yet.
286 	 *
287 	 * Matched by the barrier in pull_rt_task().
288 	 */
289 	smp_wmb();
290 	atomic_inc(&rq->rd->rto_count);
291 }
292 
293 static inline void rt_clear_overload(struct rq *rq)
294 {
295 	if (!rq->online)
296 		return;
297 
298 	/* the order here really doesn't matter */
299 	atomic_dec(&rq->rd->rto_count);
300 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302 
303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 		if (!rt_rq->overloaded) {
307 			rt_set_overload(rq_of_rt_rq(rt_rq));
308 			rt_rq->overloaded = 1;
309 		}
310 	} else if (rt_rq->overloaded) {
311 		rt_clear_overload(rq_of_rt_rq(rt_rq));
312 		rt_rq->overloaded = 0;
313 	}
314 }
315 
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318 	struct task_struct *p;
319 
320 	if (!rt_entity_is_task(rt_se))
321 		return;
322 
323 	p = rt_task_of(rt_se);
324 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325 
326 	rt_rq->rt_nr_total++;
327 	if (p->nr_cpus_allowed > 1)
328 		rt_rq->rt_nr_migratory++;
329 
330 	update_rt_migration(rt_rq);
331 }
332 
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335 	struct task_struct *p;
336 
337 	if (!rt_entity_is_task(rt_se))
338 		return;
339 
340 	p = rt_task_of(rt_se);
341 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342 
343 	rt_rq->rt_nr_total--;
344 	if (p->nr_cpus_allowed > 1)
345 		rt_rq->rt_nr_migratory--;
346 
347 	update_rt_migration(rt_rq);
348 }
349 
350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352 	return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354 
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357 
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360 
361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363 	if (!has_pushable_tasks(rq))
364 		return;
365 
366 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368 
369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373 
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 	plist_node_init(&p->pushable_tasks, p->prio);
378 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 
380 	/* Update the highest prio pushable task */
381 	if (p->prio < rq->rt.highest_prio.next)
382 		rq->rt.highest_prio.next = p->prio;
383 }
384 
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 
389 	/* Update the new highest prio pushable task */
390 	if (has_pushable_tasks(rq)) {
391 		p = plist_first_entry(&rq->rt.pushable_tasks,
392 				      struct task_struct, pushable_tasks);
393 		rq->rt.highest_prio.next = p->prio;
394 	} else
395 		rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397 
398 #else
399 
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403 
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407 
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412 
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417 
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420 	return false;
421 }
422 
423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426 
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431 
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434 
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 	return rt_se->on_rq;
438 }
439 
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443  * settings.
444  *
445  * This check is only important for heterogeneous systems where uclamp_min value
446  * is higher than the capacity of a @cpu. For non-heterogeneous system this
447  * function will always return true.
448  *
449  * The function will return true if the capacity of the @cpu is >= the
450  * uclamp_min and false otherwise.
451  *
452  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453  * > uclamp_max.
454  */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 	unsigned int min_cap;
458 	unsigned int max_cap;
459 	unsigned int cpu_cap;
460 
461 	/* Only heterogeneous systems can benefit from this check */
462 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 		return true;
464 
465 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467 
468 	cpu_cap = capacity_orig_of(cpu);
469 
470 	return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 	return true;
476 }
477 #endif
478 
479 #ifdef CONFIG_RT_GROUP_SCHED
480 
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 	if (!rt_rq->tg)
484 		return RUNTIME_INF;
485 
486 	return rt_rq->rt_runtime;
487 }
488 
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493 
494 typedef struct task_group *rt_rq_iter_t;
495 
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498 	do {
499 		tg = list_entry_rcu(tg->list.next,
500 			typeof(struct task_group), list);
501 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502 
503 	if (&tg->list == &task_groups)
504 		tg = NULL;
505 
506 	return tg;
507 }
508 
509 #define for_each_rt_rq(rt_rq, iter, rq)					\
510 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
511 		(iter = next_task_group(iter)) &&			\
512 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
513 
514 #define for_each_sched_rt_entity(rt_se) \
515 	for (; rt_se; rt_se = rt_se->parent)
516 
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519 	return rt_se->my_q;
520 }
521 
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524 
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 	struct rq *rq = rq_of_rt_rq(rt_rq);
529 	struct sched_rt_entity *rt_se;
530 
531 	int cpu = cpu_of(rq);
532 
533 	rt_se = rt_rq->tg->rt_se[cpu];
534 
535 	if (rt_rq->rt_nr_running) {
536 		if (!rt_se)
537 			enqueue_top_rt_rq(rt_rq);
538 		else if (!on_rt_rq(rt_se))
539 			enqueue_rt_entity(rt_se, 0);
540 
541 		if (rt_rq->highest_prio.curr < curr->prio)
542 			resched_curr(rq);
543 	}
544 }
545 
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548 	struct sched_rt_entity *rt_se;
549 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550 
551 	rt_se = rt_rq->tg->rt_se[cpu];
552 
553 	if (!rt_se) {
554 		dequeue_top_rt_rq(rt_rq);
555 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 	}
558 	else if (on_rt_rq(rt_se))
559 		dequeue_rt_entity(rt_se, 0);
560 }
561 
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566 
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 	struct task_struct *p;
571 
572 	if (rt_rq)
573 		return !!rt_rq->rt_nr_boosted;
574 
575 	p = rt_task_of(rt_se);
576 	return p->prio != p->normal_prio;
577 }
578 
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582 	return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587 	return cpu_online_mask;
588 }
589 #endif
590 
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596 
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599 	return &rt_rq->tg->rt_bandwidth;
600 }
601 
602 #else /* !CONFIG_RT_GROUP_SCHED */
603 
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606 	return rt_rq->rt_runtime;
607 }
608 
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611 	return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613 
614 typedef struct rt_rq *rt_rq_iter_t;
615 
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618 
619 #define for_each_sched_rt_entity(rt_se) \
620 	for (; rt_se; rt_se = NULL)
621 
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624 	return NULL;
625 }
626 
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629 	struct rq *rq = rq_of_rt_rq(rt_rq);
630 
631 	if (!rt_rq->rt_nr_running)
632 		return;
633 
634 	enqueue_top_rt_rq(rt_rq);
635 	resched_curr(rq);
636 }
637 
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640 	dequeue_top_rt_rq(rt_rq);
641 }
642 
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645 	return rt_rq->rt_throttled;
646 }
647 
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650 	return cpu_online_mask;
651 }
652 
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656 	return &cpu_rq(cpu)->rt;
657 }
658 
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661 	return &def_rt_bandwidth;
662 }
663 
664 #endif /* CONFIG_RT_GROUP_SCHED */
665 
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669 
670 	return (hrtimer_active(&rt_b->rt_period_timer) ||
671 		rt_rq->rt_time < rt_b->rt_runtime);
672 }
673 
674 #ifdef CONFIG_SMP
675 /*
676  * We ran out of runtime, see if we can borrow some from our neighbours.
677  */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 	int i, weight;
683 	u64 rt_period;
684 
685 	weight = cpumask_weight(rd->span);
686 
687 	raw_spin_lock(&rt_b->rt_runtime_lock);
688 	rt_period = ktime_to_ns(rt_b->rt_period);
689 	for_each_cpu(i, rd->span) {
690 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 		s64 diff;
692 
693 		if (iter == rt_rq)
694 			continue;
695 
696 		raw_spin_lock(&iter->rt_runtime_lock);
697 		/*
698 		 * Either all rqs have inf runtime and there's nothing to steal
699 		 * or __disable_runtime() below sets a specific rq to inf to
700 		 * indicate its been disabled and disalow stealing.
701 		 */
702 		if (iter->rt_runtime == RUNTIME_INF)
703 			goto next;
704 
705 		/*
706 		 * From runqueues with spare time, take 1/n part of their
707 		 * spare time, but no more than our period.
708 		 */
709 		diff = iter->rt_runtime - iter->rt_time;
710 		if (diff > 0) {
711 			diff = div_u64((u64)diff, weight);
712 			if (rt_rq->rt_runtime + diff > rt_period)
713 				diff = rt_period - rt_rq->rt_runtime;
714 			iter->rt_runtime -= diff;
715 			rt_rq->rt_runtime += diff;
716 			if (rt_rq->rt_runtime == rt_period) {
717 				raw_spin_unlock(&iter->rt_runtime_lock);
718 				break;
719 			}
720 		}
721 next:
722 		raw_spin_unlock(&iter->rt_runtime_lock);
723 	}
724 	raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726 
727 /*
728  * Ensure this RQ takes back all the runtime it lend to its neighbours.
729  */
730 static void __disable_runtime(struct rq *rq)
731 {
732 	struct root_domain *rd = rq->rd;
733 	rt_rq_iter_t iter;
734 	struct rt_rq *rt_rq;
735 
736 	if (unlikely(!scheduler_running))
737 		return;
738 
739 	for_each_rt_rq(rt_rq, iter, rq) {
740 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 		s64 want;
742 		int i;
743 
744 		raw_spin_lock(&rt_b->rt_runtime_lock);
745 		raw_spin_lock(&rt_rq->rt_runtime_lock);
746 		/*
747 		 * Either we're all inf and nobody needs to borrow, or we're
748 		 * already disabled and thus have nothing to do, or we have
749 		 * exactly the right amount of runtime to take out.
750 		 */
751 		if (rt_rq->rt_runtime == RUNTIME_INF ||
752 				rt_rq->rt_runtime == rt_b->rt_runtime)
753 			goto balanced;
754 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
755 
756 		/*
757 		 * Calculate the difference between what we started out with
758 		 * and what we current have, that's the amount of runtime
759 		 * we lend and now have to reclaim.
760 		 */
761 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
762 
763 		/*
764 		 * Greedy reclaim, take back as much as we can.
765 		 */
766 		for_each_cpu(i, rd->span) {
767 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 			s64 diff;
769 
770 			/*
771 			 * Can't reclaim from ourselves or disabled runqueues.
772 			 */
773 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 				continue;
775 
776 			raw_spin_lock(&iter->rt_runtime_lock);
777 			if (want > 0) {
778 				diff = min_t(s64, iter->rt_runtime, want);
779 				iter->rt_runtime -= diff;
780 				want -= diff;
781 			} else {
782 				iter->rt_runtime -= want;
783 				want -= want;
784 			}
785 			raw_spin_unlock(&iter->rt_runtime_lock);
786 
787 			if (!want)
788 				break;
789 		}
790 
791 		raw_spin_lock(&rt_rq->rt_runtime_lock);
792 		/*
793 		 * We cannot be left wanting - that would mean some runtime
794 		 * leaked out of the system.
795 		 */
796 		BUG_ON(want);
797 balanced:
798 		/*
799 		 * Disable all the borrow logic by pretending we have inf
800 		 * runtime - in which case borrowing doesn't make sense.
801 		 */
802 		rt_rq->rt_runtime = RUNTIME_INF;
803 		rt_rq->rt_throttled = 0;
804 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 		raw_spin_unlock(&rt_b->rt_runtime_lock);
806 
807 		/* Make rt_rq available for pick_next_task() */
808 		sched_rt_rq_enqueue(rt_rq);
809 	}
810 }
811 
812 static void __enable_runtime(struct rq *rq)
813 {
814 	rt_rq_iter_t iter;
815 	struct rt_rq *rt_rq;
816 
817 	if (unlikely(!scheduler_running))
818 		return;
819 
820 	/*
821 	 * Reset each runqueue's bandwidth settings
822 	 */
823 	for_each_rt_rq(rt_rq, iter, rq) {
824 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825 
826 		raw_spin_lock(&rt_b->rt_runtime_lock);
827 		raw_spin_lock(&rt_rq->rt_runtime_lock);
828 		rt_rq->rt_runtime = rt_b->rt_runtime;
829 		rt_rq->rt_time = 0;
830 		rt_rq->rt_throttled = 0;
831 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 		raw_spin_unlock(&rt_b->rt_runtime_lock);
833 	}
834 }
835 
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838 	if (!sched_feat(RT_RUNTIME_SHARE))
839 		return;
840 
841 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		do_balance_runtime(rt_rq);
844 		raw_spin_lock(&rt_rq->rt_runtime_lock);
845 	}
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850 
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853 	int i, idle = 1, throttled = 0;
854 	const struct cpumask *span;
855 
856 	span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858 	/*
859 	 * FIXME: isolated CPUs should really leave the root task group,
860 	 * whether they are isolcpus or were isolated via cpusets, lest
861 	 * the timer run on a CPU which does not service all runqueues,
862 	 * potentially leaving other CPUs indefinitely throttled.  If
863 	 * isolation is really required, the user will turn the throttle
864 	 * off to kill the perturbations it causes anyway.  Meanwhile,
865 	 * this maintains functionality for boot and/or troubleshooting.
866 	 */
867 	if (rt_b == &root_task_group.rt_bandwidth)
868 		span = cpu_online_mask;
869 #endif
870 	for_each_cpu(i, span) {
871 		int enqueue = 0;
872 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 		struct rq *rq = rq_of_rt_rq(rt_rq);
874 		int skip;
875 
876 		/*
877 		 * When span == cpu_online_mask, taking each rq->lock
878 		 * can be time-consuming. Try to avoid it when possible.
879 		 */
880 		raw_spin_lock(&rt_rq->rt_runtime_lock);
881 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 			rt_rq->rt_runtime = rt_b->rt_runtime;
883 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 		if (skip)
886 			continue;
887 
888 		raw_spin_lock(&rq->lock);
889 		update_rq_clock(rq);
890 
891 		if (rt_rq->rt_time) {
892 			u64 runtime;
893 
894 			raw_spin_lock(&rt_rq->rt_runtime_lock);
895 			if (rt_rq->rt_throttled)
896 				balance_runtime(rt_rq);
897 			runtime = rt_rq->rt_runtime;
898 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 				rt_rq->rt_throttled = 0;
901 				enqueue = 1;
902 
903 				/*
904 				 * When we're idle and a woken (rt) task is
905 				 * throttled check_preempt_curr() will set
906 				 * skip_update and the time between the wakeup
907 				 * and this unthrottle will get accounted as
908 				 * 'runtime'.
909 				 */
910 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 					rq_clock_cancel_skipupdate(rq);
912 			}
913 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 				idle = 0;
915 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 		} else if (rt_rq->rt_nr_running) {
917 			idle = 0;
918 			if (!rt_rq_throttled(rt_rq))
919 				enqueue = 1;
920 		}
921 		if (rt_rq->rt_throttled)
922 			throttled = 1;
923 
924 		if (enqueue)
925 			sched_rt_rq_enqueue(rt_rq);
926 		raw_spin_unlock(&rq->lock);
927 	}
928 
929 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 		return 1;
931 
932 	return idle;
933 }
934 
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
939 
940 	if (rt_rq)
941 		return rt_rq->highest_prio.curr;
942 #endif
943 
944 	return rt_task_of(rt_se)->prio;
945 }
946 
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949 	u64 runtime = sched_rt_runtime(rt_rq);
950 
951 	if (rt_rq->rt_throttled)
952 		return rt_rq_throttled(rt_rq);
953 
954 	if (runtime >= sched_rt_period(rt_rq))
955 		return 0;
956 
957 	balance_runtime(rt_rq);
958 	runtime = sched_rt_runtime(rt_rq);
959 	if (runtime == RUNTIME_INF)
960 		return 0;
961 
962 	if (rt_rq->rt_time > runtime) {
963 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964 
965 		/*
966 		 * Don't actually throttle groups that have no runtime assigned
967 		 * but accrue some time due to boosting.
968 		 */
969 		if (likely(rt_b->rt_runtime)) {
970 			rt_rq->rt_throttled = 1;
971 			printk_deferred_once("sched: RT throttling activated\n");
972 		} else {
973 			/*
974 			 * In case we did anyway, make it go away,
975 			 * replenishment is a joke, since it will replenish us
976 			 * with exactly 0 ns.
977 			 */
978 			rt_rq->rt_time = 0;
979 		}
980 
981 		if (rt_rq_throttled(rt_rq)) {
982 			sched_rt_rq_dequeue(rt_rq);
983 			return 1;
984 		}
985 	}
986 
987 	return 0;
988 }
989 
990 /*
991  * Update the current task's runtime statistics. Skip current tasks that
992  * are not in our scheduling class.
993  */
994 static void update_curr_rt(struct rq *rq)
995 {
996 	struct task_struct *curr = rq->curr;
997 	struct sched_rt_entity *rt_se = &curr->rt;
998 	u64 delta_exec;
999 	u64 now;
1000 
1001 	if (curr->sched_class != &rt_sched_class)
1002 		return;
1003 
1004 	now = rq_clock_task(rq);
1005 	delta_exec = now - curr->se.exec_start;
1006 	if (unlikely((s64)delta_exec <= 0))
1007 		return;
1008 
1009 	schedstat_set(curr->se.statistics.exec_max,
1010 		      max(curr->se.statistics.exec_max, delta_exec));
1011 
1012 	curr->se.sum_exec_runtime += delta_exec;
1013 	account_group_exec_runtime(curr, delta_exec);
1014 
1015 	curr->se.exec_start = now;
1016 	cgroup_account_cputime(curr, delta_exec);
1017 
1018 	if (!rt_bandwidth_enabled())
1019 		return;
1020 
1021 	for_each_sched_rt_entity(rt_se) {
1022 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1023 
1024 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1026 			rt_rq->rt_time += delta_exec;
1027 			if (sched_rt_runtime_exceeded(rt_rq))
1028 				resched_curr(rq);
1029 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1030 		}
1031 	}
1032 }
1033 
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036 {
1037 	struct rq *rq = rq_of_rt_rq(rt_rq);
1038 
1039 	BUG_ON(&rq->rt != rt_rq);
1040 
1041 	if (!rt_rq->rt_queued)
1042 		return;
1043 
1044 	BUG_ON(!rq->nr_running);
1045 
1046 	sub_nr_running(rq, rt_rq->rt_nr_running);
1047 	rt_rq->rt_queued = 0;
1048 
1049 }
1050 
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054 	struct rq *rq = rq_of_rt_rq(rt_rq);
1055 
1056 	BUG_ON(&rq->rt != rt_rq);
1057 
1058 	if (rt_rq->rt_queued)
1059 		return;
1060 
1061 	if (rt_rq_throttled(rt_rq))
1062 		return;
1063 
1064 	if (rt_rq->rt_nr_running) {
1065 		add_nr_running(rq, rt_rq->rt_nr_running);
1066 		rt_rq->rt_queued = 1;
1067 	}
1068 
1069 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 	cpufreq_update_util(rq, 0);
1071 }
1072 
1073 #if defined CONFIG_SMP
1074 
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078 	struct rq *rq = rq_of_rt_rq(rt_rq);
1079 
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081 	/*
1082 	 * Change rq's cpupri only if rt_rq is the top queue.
1083 	 */
1084 	if (&rq->rt != rt_rq)
1085 		return;
1086 #endif
1087 	if (rq->online && prio < prev_prio)
1088 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090 
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094 	struct rq *rq = rq_of_rt_rq(rt_rq);
1095 
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 	/*
1098 	 * Change rq's cpupri only if rt_rq is the top queue.
1099 	 */
1100 	if (&rq->rt != rt_rq)
1101 		return;
1102 #endif
1103 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106 
1107 #else /* CONFIG_SMP */
1108 
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 
1114 #endif /* CONFIG_SMP */
1115 
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 	int prev_prio = rt_rq->highest_prio.curr;
1121 
1122 	if (prio < prev_prio)
1123 		rt_rq->highest_prio.curr = prio;
1124 
1125 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127 
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 	int prev_prio = rt_rq->highest_prio.curr;
1132 
1133 	if (rt_rq->rt_nr_running) {
1134 
1135 		WARN_ON(prio < prev_prio);
1136 
1137 		/*
1138 		 * This may have been our highest task, and therefore
1139 		 * we may have some recomputation to do
1140 		 */
1141 		if (prio == prev_prio) {
1142 			struct rt_prio_array *array = &rt_rq->active;
1143 
1144 			rt_rq->highest_prio.curr =
1145 				sched_find_first_bit(array->bitmap);
1146 		}
1147 
1148 	} else
1149 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1150 
1151 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152 }
1153 
1154 #else
1155 
1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158 
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160 
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162 
1163 static void
1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166 	if (rt_se_boosted(rt_se))
1167 		rt_rq->rt_nr_boosted++;
1168 
1169 	if (rt_rq->tg)
1170 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171 }
1172 
1173 static void
1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176 	if (rt_se_boosted(rt_se))
1177 		rt_rq->rt_nr_boosted--;
1178 
1179 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180 }
1181 
1182 #else /* CONFIG_RT_GROUP_SCHED */
1183 
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 	start_rt_bandwidth(&def_rt_bandwidth);
1188 }
1189 
1190 static inline
1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192 
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1194 
1195 static inline
1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1199 
1200 	if (group_rq)
1201 		return group_rq->rt_nr_running;
1202 	else
1203 		return 1;
1204 }
1205 
1206 static inline
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208 {
1209 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 	struct task_struct *tsk;
1211 
1212 	if (group_rq)
1213 		return group_rq->rr_nr_running;
1214 
1215 	tsk = rt_task_of(rt_se);
1216 
1217 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1218 }
1219 
1220 static inline
1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222 {
1223 	int prio = rt_se_prio(rt_se);
1224 
1225 	WARN_ON(!rt_prio(prio));
1226 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228 
1229 	inc_rt_prio(rt_rq, prio);
1230 	inc_rt_migration(rt_se, rt_rq);
1231 	inc_rt_group(rt_se, rt_rq);
1232 }
1233 
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 	WARN_ON(!rt_rq->rt_nr_running);
1239 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241 
1242 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 	dec_rt_migration(rt_se, rt_rq);
1244 	dec_rt_group(rt_se, rt_rq);
1245 }
1246 
1247 /*
1248  * Change rt_se->run_list location unless SAVE && !MOVE
1249  *
1250  * assumes ENQUEUE/DEQUEUE flags match
1251  */
1252 static inline bool move_entity(unsigned int flags)
1253 {
1254 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 		return false;
1256 
1257 	return true;
1258 }
1259 
1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261 {
1262 	list_del_init(&rt_se->run_list);
1263 
1264 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1266 
1267 	rt_se->on_list = 0;
1268 }
1269 
1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1271 {
1272 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 	struct rt_prio_array *array = &rt_rq->active;
1274 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1275 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1276 
1277 	/*
1278 	 * Don't enqueue the group if its throttled, or when empty.
1279 	 * The latter is a consequence of the former when a child group
1280 	 * get throttled and the current group doesn't have any other
1281 	 * active members.
1282 	 */
1283 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 		if (rt_se->on_list)
1285 			__delist_rt_entity(rt_se, array);
1286 		return;
1287 	}
1288 
1289 	if (move_entity(flags)) {
1290 		WARN_ON_ONCE(rt_se->on_list);
1291 		if (flags & ENQUEUE_HEAD)
1292 			list_add(&rt_se->run_list, queue);
1293 		else
1294 			list_add_tail(&rt_se->run_list, queue);
1295 
1296 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1297 		rt_se->on_list = 1;
1298 	}
1299 	rt_se->on_rq = 1;
1300 
1301 	inc_rt_tasks(rt_se, rt_rq);
1302 }
1303 
1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 {
1306 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 	struct rt_prio_array *array = &rt_rq->active;
1308 
1309 	if (move_entity(flags)) {
1310 		WARN_ON_ONCE(!rt_se->on_list);
1311 		__delist_rt_entity(rt_se, array);
1312 	}
1313 	rt_se->on_rq = 0;
1314 
1315 	dec_rt_tasks(rt_se, rt_rq);
1316 }
1317 
1318 /*
1319  * Because the prio of an upper entry depends on the lower
1320  * entries, we must remove entries top - down.
1321  */
1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1323 {
1324 	struct sched_rt_entity *back = NULL;
1325 
1326 	for_each_sched_rt_entity(rt_se) {
1327 		rt_se->back = back;
1328 		back = rt_se;
1329 	}
1330 
1331 	dequeue_top_rt_rq(rt_rq_of_se(back));
1332 
1333 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 		if (on_rt_rq(rt_se))
1335 			__dequeue_rt_entity(rt_se, flags);
1336 	}
1337 }
1338 
1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1340 {
1341 	struct rq *rq = rq_of_rt_se(rt_se);
1342 
1343 	dequeue_rt_stack(rt_se, flags);
1344 	for_each_sched_rt_entity(rt_se)
1345 		__enqueue_rt_entity(rt_se, flags);
1346 	enqueue_top_rt_rq(&rq->rt);
1347 }
1348 
1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351 	struct rq *rq = rq_of_rt_se(rt_se);
1352 
1353 	dequeue_rt_stack(rt_se, flags);
1354 
1355 	for_each_sched_rt_entity(rt_se) {
1356 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357 
1358 		if (rt_rq && rt_rq->rt_nr_running)
1359 			__enqueue_rt_entity(rt_se, flags);
1360 	}
1361 	enqueue_top_rt_rq(&rq->rt);
1362 }
1363 
1364 /*
1365  * Adding/removing a task to/from a priority array:
1366  */
1367 static void
1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1369 {
1370 	struct sched_rt_entity *rt_se = &p->rt;
1371 
1372 	if (flags & ENQUEUE_WAKEUP)
1373 		rt_se->timeout = 0;
1374 
1375 	enqueue_rt_entity(rt_se, flags);
1376 
1377 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378 		enqueue_pushable_task(rq, p);
1379 }
1380 
1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383 	struct sched_rt_entity *rt_se = &p->rt;
1384 
1385 	update_curr_rt(rq);
1386 	dequeue_rt_entity(rt_se, flags);
1387 
1388 	dequeue_pushable_task(rq, p);
1389 }
1390 
1391 /*
1392  * Put task to the head or the end of the run list without the overhead of
1393  * dequeue followed by enqueue.
1394  */
1395 static void
1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1397 {
1398 	if (on_rt_rq(rt_se)) {
1399 		struct rt_prio_array *array = &rt_rq->active;
1400 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401 
1402 		if (head)
1403 			list_move(&rt_se->run_list, queue);
1404 		else
1405 			list_move_tail(&rt_se->run_list, queue);
1406 	}
1407 }
1408 
1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1410 {
1411 	struct sched_rt_entity *rt_se = &p->rt;
1412 	struct rt_rq *rt_rq;
1413 
1414 	for_each_sched_rt_entity(rt_se) {
1415 		rt_rq = rt_rq_of_se(rt_se);
1416 		requeue_rt_entity(rt_rq, rt_se, head);
1417 	}
1418 }
1419 
1420 static void yield_task_rt(struct rq *rq)
1421 {
1422 	requeue_task_rt(rq, rq->curr, 0);
1423 }
1424 
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1427 
1428 static int
1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1430 {
1431 	struct task_struct *curr;
1432 	struct rq *rq;
1433 	bool test;
1434 
1435 	/* For anything but wake ups, just return the task_cpu */
1436 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 		goto out;
1438 
1439 	rq = cpu_rq(cpu);
1440 
1441 	rcu_read_lock();
1442 	curr = READ_ONCE(rq->curr); /* unlocked access */
1443 
1444 	/*
1445 	 * If the current task on @p's runqueue is an RT task, then
1446 	 * try to see if we can wake this RT task up on another
1447 	 * runqueue. Otherwise simply start this RT task
1448 	 * on its current runqueue.
1449 	 *
1450 	 * We want to avoid overloading runqueues. If the woken
1451 	 * task is a higher priority, then it will stay on this CPU
1452 	 * and the lower prio task should be moved to another CPU.
1453 	 * Even though this will probably make the lower prio task
1454 	 * lose its cache, we do not want to bounce a higher task
1455 	 * around just because it gave up its CPU, perhaps for a
1456 	 * lock?
1457 	 *
1458 	 * For equal prio tasks, we just let the scheduler sort it out.
1459 	 *
1460 	 * Otherwise, just let it ride on the affined RQ and the
1461 	 * post-schedule router will push the preempted task away
1462 	 *
1463 	 * This test is optimistic, if we get it wrong the load-balancer
1464 	 * will have to sort it out.
1465 	 *
1466 	 * We take into account the capacity of the CPU to ensure it fits the
1467 	 * requirement of the task - which is only important on heterogeneous
1468 	 * systems like big.LITTLE.
1469 	 */
1470 	test = curr &&
1471 	       unlikely(rt_task(curr)) &&
1472 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473 
1474 	if (test || !rt_task_fits_capacity(p, cpu)) {
1475 		int target = find_lowest_rq(p);
1476 
1477 		/*
1478 		 * Don't bother moving it if the destination CPU is
1479 		 * not running a lower priority task.
1480 		 */
1481 		if (target != -1 &&
1482 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1483 			cpu = target;
1484 	}
1485 	rcu_read_unlock();
1486 
1487 out:
1488 	return cpu;
1489 }
1490 
1491 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1492 {
1493 	/*
1494 	 * Current can't be migrated, useless to reschedule,
1495 	 * let's hope p can move out.
1496 	 */
1497 	if (rq->curr->nr_cpus_allowed == 1 ||
1498 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL, NULL))
1499 		return;
1500 
1501 	/*
1502 	 * p is migratable, so let's not schedule it and
1503 	 * see if it is pushed or pulled somewhere else.
1504 	 */
1505 	if (p->nr_cpus_allowed != 1 &&
1506 	    cpupri_find(&rq->rd->cpupri, p, NULL, NULL))
1507 		return;
1508 
1509 	/*
1510 	 * There appear to be other CPUs that can accept
1511 	 * the current task but none can run 'p', so lets reschedule
1512 	 * to try and push the current task away:
1513 	 */
1514 	requeue_task_rt(rq, p, 1);
1515 	resched_curr(rq);
1516 }
1517 
1518 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1519 {
1520 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1521 		/*
1522 		 * This is OK, because current is on_cpu, which avoids it being
1523 		 * picked for load-balance and preemption/IRQs are still
1524 		 * disabled avoiding further scheduler activity on it and we've
1525 		 * not yet started the picking loop.
1526 		 */
1527 		rq_unpin_lock(rq, rf);
1528 		pull_rt_task(rq);
1529 		rq_repin_lock(rq, rf);
1530 	}
1531 
1532 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1533 }
1534 #endif /* CONFIG_SMP */
1535 
1536 /*
1537  * Preempt the current task with a newly woken task if needed:
1538  */
1539 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1540 {
1541 	if (p->prio < rq->curr->prio) {
1542 		resched_curr(rq);
1543 		return;
1544 	}
1545 
1546 #ifdef CONFIG_SMP
1547 	/*
1548 	 * If:
1549 	 *
1550 	 * - the newly woken task is of equal priority to the current task
1551 	 * - the newly woken task is non-migratable while current is migratable
1552 	 * - current will be preempted on the next reschedule
1553 	 *
1554 	 * we should check to see if current can readily move to a different
1555 	 * cpu.  If so, we will reschedule to allow the push logic to try
1556 	 * to move current somewhere else, making room for our non-migratable
1557 	 * task.
1558 	 */
1559 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1560 		check_preempt_equal_prio(rq, p);
1561 #endif
1562 }
1563 
1564 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1565 {
1566 	p->se.exec_start = rq_clock_task(rq);
1567 
1568 	/* The running task is never eligible for pushing */
1569 	dequeue_pushable_task(rq, p);
1570 
1571 	if (!first)
1572 		return;
1573 
1574 	/*
1575 	 * If prev task was rt, put_prev_task() has already updated the
1576 	 * utilization. We only care of the case where we start to schedule a
1577 	 * rt task
1578 	 */
1579 	if (rq->curr->sched_class != &rt_sched_class)
1580 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1581 
1582 	rt_queue_push_tasks(rq);
1583 }
1584 
1585 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1586 						   struct rt_rq *rt_rq)
1587 {
1588 	struct rt_prio_array *array = &rt_rq->active;
1589 	struct sched_rt_entity *next = NULL;
1590 	struct list_head *queue;
1591 	int idx;
1592 
1593 	idx = sched_find_first_bit(array->bitmap);
1594 	BUG_ON(idx >= MAX_RT_PRIO);
1595 
1596 	queue = array->queue + idx;
1597 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1598 
1599 	return next;
1600 }
1601 
1602 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1603 {
1604 	struct sched_rt_entity *rt_se;
1605 	struct rt_rq *rt_rq  = &rq->rt;
1606 
1607 	do {
1608 		rt_se = pick_next_rt_entity(rq, rt_rq);
1609 		BUG_ON(!rt_se);
1610 		rt_rq = group_rt_rq(rt_se);
1611 	} while (rt_rq);
1612 
1613 	return rt_task_of(rt_se);
1614 }
1615 
1616 static struct task_struct *pick_next_task_rt(struct rq *rq)
1617 {
1618 	struct task_struct *p;
1619 
1620 	if (!sched_rt_runnable(rq))
1621 		return NULL;
1622 
1623 	p = _pick_next_task_rt(rq);
1624 	set_next_task_rt(rq, p, true);
1625 	return p;
1626 }
1627 
1628 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1629 {
1630 	update_curr_rt(rq);
1631 
1632 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1633 
1634 	/*
1635 	 * The previous task needs to be made eligible for pushing
1636 	 * if it is still active
1637 	 */
1638 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1639 		enqueue_pushable_task(rq, p);
1640 }
1641 
1642 #ifdef CONFIG_SMP
1643 
1644 /* Only try algorithms three times */
1645 #define RT_MAX_TRIES 3
1646 
1647 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1648 {
1649 	if (!task_running(rq, p) &&
1650 	    cpumask_test_cpu(cpu, p->cpus_ptr) &&
1651 	    rt_task_fits_capacity(p, cpu))
1652 		return 1;
1653 
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Return the highest pushable rq's task, which is suitable to be executed
1659  * on the CPU, NULL otherwise
1660  */
1661 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1662 {
1663 	struct plist_head *head = &rq->rt.pushable_tasks;
1664 	struct task_struct *p;
1665 
1666 	if (!has_pushable_tasks(rq))
1667 		return NULL;
1668 
1669 	plist_for_each_entry(p, head, pushable_tasks) {
1670 		if (pick_rt_task(rq, p, cpu))
1671 			return p;
1672 	}
1673 
1674 	return NULL;
1675 }
1676 
1677 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1678 
1679 static int find_lowest_rq(struct task_struct *task)
1680 {
1681 	struct sched_domain *sd;
1682 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1683 	int this_cpu = smp_processor_id();
1684 	int cpu      = task_cpu(task);
1685 
1686 	/* Make sure the mask is initialized first */
1687 	if (unlikely(!lowest_mask))
1688 		return -1;
1689 
1690 	if (task->nr_cpus_allowed == 1)
1691 		return -1; /* No other targets possible */
1692 
1693 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask,
1694 			 rt_task_fits_capacity))
1695 		return -1; /* No targets found */
1696 
1697 	/*
1698 	 * At this point we have built a mask of CPUs representing the
1699 	 * lowest priority tasks in the system.  Now we want to elect
1700 	 * the best one based on our affinity and topology.
1701 	 *
1702 	 * We prioritize the last CPU that the task executed on since
1703 	 * it is most likely cache-hot in that location.
1704 	 */
1705 	if (cpumask_test_cpu(cpu, lowest_mask))
1706 		return cpu;
1707 
1708 	/*
1709 	 * Otherwise, we consult the sched_domains span maps to figure
1710 	 * out which CPU is logically closest to our hot cache data.
1711 	 */
1712 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1713 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1714 
1715 	rcu_read_lock();
1716 	for_each_domain(cpu, sd) {
1717 		if (sd->flags & SD_WAKE_AFFINE) {
1718 			int best_cpu;
1719 
1720 			/*
1721 			 * "this_cpu" is cheaper to preempt than a
1722 			 * remote processor.
1723 			 */
1724 			if (this_cpu != -1 &&
1725 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1726 				rcu_read_unlock();
1727 				return this_cpu;
1728 			}
1729 
1730 			best_cpu = cpumask_first_and(lowest_mask,
1731 						     sched_domain_span(sd));
1732 			if (best_cpu < nr_cpu_ids) {
1733 				rcu_read_unlock();
1734 				return best_cpu;
1735 			}
1736 		}
1737 	}
1738 	rcu_read_unlock();
1739 
1740 	/*
1741 	 * And finally, if there were no matches within the domains
1742 	 * just give the caller *something* to work with from the compatible
1743 	 * locations.
1744 	 */
1745 	if (this_cpu != -1)
1746 		return this_cpu;
1747 
1748 	cpu = cpumask_any(lowest_mask);
1749 	if (cpu < nr_cpu_ids)
1750 		return cpu;
1751 
1752 	return -1;
1753 }
1754 
1755 /* Will lock the rq it finds */
1756 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1757 {
1758 	struct rq *lowest_rq = NULL;
1759 	int tries;
1760 	int cpu;
1761 
1762 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1763 		cpu = find_lowest_rq(task);
1764 
1765 		if ((cpu == -1) || (cpu == rq->cpu))
1766 			break;
1767 
1768 		lowest_rq = cpu_rq(cpu);
1769 
1770 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1771 			/*
1772 			 * Target rq has tasks of equal or higher priority,
1773 			 * retrying does not release any lock and is unlikely
1774 			 * to yield a different result.
1775 			 */
1776 			lowest_rq = NULL;
1777 			break;
1778 		}
1779 
1780 		/* if the prio of this runqueue changed, try again */
1781 		if (double_lock_balance(rq, lowest_rq)) {
1782 			/*
1783 			 * We had to unlock the run queue. In
1784 			 * the mean time, task could have
1785 			 * migrated already or had its affinity changed.
1786 			 * Also make sure that it wasn't scheduled on its rq.
1787 			 */
1788 			if (unlikely(task_rq(task) != rq ||
1789 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1790 				     task_running(rq, task) ||
1791 				     !rt_task(task) ||
1792 				     !task_on_rq_queued(task))) {
1793 
1794 				double_unlock_balance(rq, lowest_rq);
1795 				lowest_rq = NULL;
1796 				break;
1797 			}
1798 		}
1799 
1800 		/* If this rq is still suitable use it. */
1801 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1802 			break;
1803 
1804 		/* try again */
1805 		double_unlock_balance(rq, lowest_rq);
1806 		lowest_rq = NULL;
1807 	}
1808 
1809 	return lowest_rq;
1810 }
1811 
1812 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1813 {
1814 	struct task_struct *p;
1815 
1816 	if (!has_pushable_tasks(rq))
1817 		return NULL;
1818 
1819 	p = plist_first_entry(&rq->rt.pushable_tasks,
1820 			      struct task_struct, pushable_tasks);
1821 
1822 	BUG_ON(rq->cpu != task_cpu(p));
1823 	BUG_ON(task_current(rq, p));
1824 	BUG_ON(p->nr_cpus_allowed <= 1);
1825 
1826 	BUG_ON(!task_on_rq_queued(p));
1827 	BUG_ON(!rt_task(p));
1828 
1829 	return p;
1830 }
1831 
1832 /*
1833  * If the current CPU has more than one RT task, see if the non
1834  * running task can migrate over to a CPU that is running a task
1835  * of lesser priority.
1836  */
1837 static int push_rt_task(struct rq *rq)
1838 {
1839 	struct task_struct *next_task;
1840 	struct rq *lowest_rq;
1841 	int ret = 0;
1842 
1843 	if (!rq->rt.overloaded)
1844 		return 0;
1845 
1846 	next_task = pick_next_pushable_task(rq);
1847 	if (!next_task)
1848 		return 0;
1849 
1850 retry:
1851 	if (WARN_ON(next_task == rq->curr))
1852 		return 0;
1853 
1854 	/*
1855 	 * It's possible that the next_task slipped in of
1856 	 * higher priority than current. If that's the case
1857 	 * just reschedule current.
1858 	 */
1859 	if (unlikely(next_task->prio < rq->curr->prio)) {
1860 		resched_curr(rq);
1861 		return 0;
1862 	}
1863 
1864 	/* We might release rq lock */
1865 	get_task_struct(next_task);
1866 
1867 	/* find_lock_lowest_rq locks the rq if found */
1868 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1869 	if (!lowest_rq) {
1870 		struct task_struct *task;
1871 		/*
1872 		 * find_lock_lowest_rq releases rq->lock
1873 		 * so it is possible that next_task has migrated.
1874 		 *
1875 		 * We need to make sure that the task is still on the same
1876 		 * run-queue and is also still the next task eligible for
1877 		 * pushing.
1878 		 */
1879 		task = pick_next_pushable_task(rq);
1880 		if (task == next_task) {
1881 			/*
1882 			 * The task hasn't migrated, and is still the next
1883 			 * eligible task, but we failed to find a run-queue
1884 			 * to push it to.  Do not retry in this case, since
1885 			 * other CPUs will pull from us when ready.
1886 			 */
1887 			goto out;
1888 		}
1889 
1890 		if (!task)
1891 			/* No more tasks, just exit */
1892 			goto out;
1893 
1894 		/*
1895 		 * Something has shifted, try again.
1896 		 */
1897 		put_task_struct(next_task);
1898 		next_task = task;
1899 		goto retry;
1900 	}
1901 
1902 	deactivate_task(rq, next_task, 0);
1903 	set_task_cpu(next_task, lowest_rq->cpu);
1904 	activate_task(lowest_rq, next_task, 0);
1905 	ret = 1;
1906 
1907 	resched_curr(lowest_rq);
1908 
1909 	double_unlock_balance(rq, lowest_rq);
1910 
1911 out:
1912 	put_task_struct(next_task);
1913 
1914 	return ret;
1915 }
1916 
1917 static void push_rt_tasks(struct rq *rq)
1918 {
1919 	/* push_rt_task will return true if it moved an RT */
1920 	while (push_rt_task(rq))
1921 		;
1922 }
1923 
1924 #ifdef HAVE_RT_PUSH_IPI
1925 
1926 /*
1927  * When a high priority task schedules out from a CPU and a lower priority
1928  * task is scheduled in, a check is made to see if there's any RT tasks
1929  * on other CPUs that are waiting to run because a higher priority RT task
1930  * is currently running on its CPU. In this case, the CPU with multiple RT
1931  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1932  * up that may be able to run one of its non-running queued RT tasks.
1933  *
1934  * All CPUs with overloaded RT tasks need to be notified as there is currently
1935  * no way to know which of these CPUs have the highest priority task waiting
1936  * to run. Instead of trying to take a spinlock on each of these CPUs,
1937  * which has shown to cause large latency when done on machines with many
1938  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1939  * RT tasks waiting to run.
1940  *
1941  * Just sending an IPI to each of the CPUs is also an issue, as on large
1942  * count CPU machines, this can cause an IPI storm on a CPU, especially
1943  * if its the only CPU with multiple RT tasks queued, and a large number
1944  * of CPUs scheduling a lower priority task at the same time.
1945  *
1946  * Each root domain has its own irq work function that can iterate over
1947  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1948  * tassk must be checked if there's one or many CPUs that are lowering
1949  * their priority, there's a single irq work iterator that will try to
1950  * push off RT tasks that are waiting to run.
1951  *
1952  * When a CPU schedules a lower priority task, it will kick off the
1953  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1954  * As it only takes the first CPU that schedules a lower priority task
1955  * to start the process, the rto_start variable is incremented and if
1956  * the atomic result is one, then that CPU will try to take the rto_lock.
1957  * This prevents high contention on the lock as the process handles all
1958  * CPUs scheduling lower priority tasks.
1959  *
1960  * All CPUs that are scheduling a lower priority task will increment the
1961  * rt_loop_next variable. This will make sure that the irq work iterator
1962  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1963  * priority task, even if the iterator is in the middle of a scan. Incrementing
1964  * the rt_loop_next will cause the iterator to perform another scan.
1965  *
1966  */
1967 static int rto_next_cpu(struct root_domain *rd)
1968 {
1969 	int next;
1970 	int cpu;
1971 
1972 	/*
1973 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1974 	 * rt_next_cpu() will simply return the first CPU found in
1975 	 * the rto_mask.
1976 	 *
1977 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1978 	 * will return the next CPU found in the rto_mask.
1979 	 *
1980 	 * If there are no more CPUs left in the rto_mask, then a check is made
1981 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1982 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1983 	 * without any locking.
1984 	 */
1985 	for (;;) {
1986 
1987 		/* When rto_cpu is -1 this acts like cpumask_first() */
1988 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1989 
1990 		rd->rto_cpu = cpu;
1991 
1992 		if (cpu < nr_cpu_ids)
1993 			return cpu;
1994 
1995 		rd->rto_cpu = -1;
1996 
1997 		/*
1998 		 * ACQUIRE ensures we see the @rto_mask changes
1999 		 * made prior to the @next value observed.
2000 		 *
2001 		 * Matches WMB in rt_set_overload().
2002 		 */
2003 		next = atomic_read_acquire(&rd->rto_loop_next);
2004 
2005 		if (rd->rto_loop == next)
2006 			break;
2007 
2008 		rd->rto_loop = next;
2009 	}
2010 
2011 	return -1;
2012 }
2013 
2014 static inline bool rto_start_trylock(atomic_t *v)
2015 {
2016 	return !atomic_cmpxchg_acquire(v, 0, 1);
2017 }
2018 
2019 static inline void rto_start_unlock(atomic_t *v)
2020 {
2021 	atomic_set_release(v, 0);
2022 }
2023 
2024 static void tell_cpu_to_push(struct rq *rq)
2025 {
2026 	int cpu = -1;
2027 
2028 	/* Keep the loop going if the IPI is currently active */
2029 	atomic_inc(&rq->rd->rto_loop_next);
2030 
2031 	/* Only one CPU can initiate a loop at a time */
2032 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2033 		return;
2034 
2035 	raw_spin_lock(&rq->rd->rto_lock);
2036 
2037 	/*
2038 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2039 	 * then the IPI is still running and will continue due to the
2040 	 * update to loop_next, and nothing needs to be done here.
2041 	 * Otherwise it is finishing up and an ipi needs to be sent.
2042 	 */
2043 	if (rq->rd->rto_cpu < 0)
2044 		cpu = rto_next_cpu(rq->rd);
2045 
2046 	raw_spin_unlock(&rq->rd->rto_lock);
2047 
2048 	rto_start_unlock(&rq->rd->rto_loop_start);
2049 
2050 	if (cpu >= 0) {
2051 		/* Make sure the rd does not get freed while pushing */
2052 		sched_get_rd(rq->rd);
2053 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2054 	}
2055 }
2056 
2057 /* Called from hardirq context */
2058 void rto_push_irq_work_func(struct irq_work *work)
2059 {
2060 	struct root_domain *rd =
2061 		container_of(work, struct root_domain, rto_push_work);
2062 	struct rq *rq;
2063 	int cpu;
2064 
2065 	rq = this_rq();
2066 
2067 	/*
2068 	 * We do not need to grab the lock to check for has_pushable_tasks.
2069 	 * When it gets updated, a check is made if a push is possible.
2070 	 */
2071 	if (has_pushable_tasks(rq)) {
2072 		raw_spin_lock(&rq->lock);
2073 		push_rt_tasks(rq);
2074 		raw_spin_unlock(&rq->lock);
2075 	}
2076 
2077 	raw_spin_lock(&rd->rto_lock);
2078 
2079 	/* Pass the IPI to the next rt overloaded queue */
2080 	cpu = rto_next_cpu(rd);
2081 
2082 	raw_spin_unlock(&rd->rto_lock);
2083 
2084 	if (cpu < 0) {
2085 		sched_put_rd(rd);
2086 		return;
2087 	}
2088 
2089 	/* Try the next RT overloaded CPU */
2090 	irq_work_queue_on(&rd->rto_push_work, cpu);
2091 }
2092 #endif /* HAVE_RT_PUSH_IPI */
2093 
2094 static void pull_rt_task(struct rq *this_rq)
2095 {
2096 	int this_cpu = this_rq->cpu, cpu;
2097 	bool resched = false;
2098 	struct task_struct *p;
2099 	struct rq *src_rq;
2100 	int rt_overload_count = rt_overloaded(this_rq);
2101 
2102 	if (likely(!rt_overload_count))
2103 		return;
2104 
2105 	/*
2106 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2107 	 * see overloaded we must also see the rto_mask bit.
2108 	 */
2109 	smp_rmb();
2110 
2111 	/* If we are the only overloaded CPU do nothing */
2112 	if (rt_overload_count == 1 &&
2113 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2114 		return;
2115 
2116 #ifdef HAVE_RT_PUSH_IPI
2117 	if (sched_feat(RT_PUSH_IPI)) {
2118 		tell_cpu_to_push(this_rq);
2119 		return;
2120 	}
2121 #endif
2122 
2123 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2124 		if (this_cpu == cpu)
2125 			continue;
2126 
2127 		src_rq = cpu_rq(cpu);
2128 
2129 		/*
2130 		 * Don't bother taking the src_rq->lock if the next highest
2131 		 * task is known to be lower-priority than our current task.
2132 		 * This may look racy, but if this value is about to go
2133 		 * logically higher, the src_rq will push this task away.
2134 		 * And if its going logically lower, we do not care
2135 		 */
2136 		if (src_rq->rt.highest_prio.next >=
2137 		    this_rq->rt.highest_prio.curr)
2138 			continue;
2139 
2140 		/*
2141 		 * We can potentially drop this_rq's lock in
2142 		 * double_lock_balance, and another CPU could
2143 		 * alter this_rq
2144 		 */
2145 		double_lock_balance(this_rq, src_rq);
2146 
2147 		/*
2148 		 * We can pull only a task, which is pushable
2149 		 * on its rq, and no others.
2150 		 */
2151 		p = pick_highest_pushable_task(src_rq, this_cpu);
2152 
2153 		/*
2154 		 * Do we have an RT task that preempts
2155 		 * the to-be-scheduled task?
2156 		 */
2157 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2158 			WARN_ON(p == src_rq->curr);
2159 			WARN_ON(!task_on_rq_queued(p));
2160 
2161 			/*
2162 			 * There's a chance that p is higher in priority
2163 			 * than what's currently running on its CPU.
2164 			 * This is just that p is wakeing up and hasn't
2165 			 * had a chance to schedule. We only pull
2166 			 * p if it is lower in priority than the
2167 			 * current task on the run queue
2168 			 */
2169 			if (p->prio < src_rq->curr->prio)
2170 				goto skip;
2171 
2172 			resched = true;
2173 
2174 			deactivate_task(src_rq, p, 0);
2175 			set_task_cpu(p, this_cpu);
2176 			activate_task(this_rq, p, 0);
2177 			/*
2178 			 * We continue with the search, just in
2179 			 * case there's an even higher prio task
2180 			 * in another runqueue. (low likelihood
2181 			 * but possible)
2182 			 */
2183 		}
2184 skip:
2185 		double_unlock_balance(this_rq, src_rq);
2186 	}
2187 
2188 	if (resched)
2189 		resched_curr(this_rq);
2190 }
2191 
2192 /*
2193  * If we are not running and we are not going to reschedule soon, we should
2194  * try to push tasks away now
2195  */
2196 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2197 {
2198 	bool need_to_push = !task_running(rq, p) &&
2199 			    !test_tsk_need_resched(rq->curr) &&
2200 			    p->nr_cpus_allowed > 1 &&
2201 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2202 			    (rq->curr->nr_cpus_allowed < 2 ||
2203 			     rq->curr->prio <= p->prio);
2204 
2205 	if (need_to_push || !rt_task_fits_capacity(p, cpu_of(rq)))
2206 		push_rt_tasks(rq);
2207 }
2208 
2209 /* Assumes rq->lock is held */
2210 static void rq_online_rt(struct rq *rq)
2211 {
2212 	if (rq->rt.overloaded)
2213 		rt_set_overload(rq);
2214 
2215 	__enable_runtime(rq);
2216 
2217 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2218 }
2219 
2220 /* Assumes rq->lock is held */
2221 static void rq_offline_rt(struct rq *rq)
2222 {
2223 	if (rq->rt.overloaded)
2224 		rt_clear_overload(rq);
2225 
2226 	__disable_runtime(rq);
2227 
2228 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2229 }
2230 
2231 /*
2232  * When switch from the rt queue, we bring ourselves to a position
2233  * that we might want to pull RT tasks from other runqueues.
2234  */
2235 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2236 {
2237 	/*
2238 	 * If there are other RT tasks then we will reschedule
2239 	 * and the scheduling of the other RT tasks will handle
2240 	 * the balancing. But if we are the last RT task
2241 	 * we may need to handle the pulling of RT tasks
2242 	 * now.
2243 	 */
2244 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2245 		return;
2246 
2247 	rt_queue_pull_task(rq);
2248 }
2249 
2250 void __init init_sched_rt_class(void)
2251 {
2252 	unsigned int i;
2253 
2254 	for_each_possible_cpu(i) {
2255 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2256 					GFP_KERNEL, cpu_to_node(i));
2257 	}
2258 }
2259 #endif /* CONFIG_SMP */
2260 
2261 /*
2262  * When switching a task to RT, we may overload the runqueue
2263  * with RT tasks. In this case we try to push them off to
2264  * other runqueues.
2265  */
2266 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2267 {
2268 	/*
2269 	 * If we are already running, then there's nothing
2270 	 * that needs to be done. But if we are not running
2271 	 * we may need to preempt the current running task.
2272 	 * If that current running task is also an RT task
2273 	 * then see if we can move to another run queue.
2274 	 */
2275 	if (task_on_rq_queued(p) && rq->curr != p) {
2276 #ifdef CONFIG_SMP
2277 		bool need_to_push = rq->rt.overloaded ||
2278 				    !rt_task_fits_capacity(p, cpu_of(rq));
2279 
2280 		if (p->nr_cpus_allowed > 1 && need_to_push)
2281 			rt_queue_push_tasks(rq);
2282 #endif /* CONFIG_SMP */
2283 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2284 			resched_curr(rq);
2285 	}
2286 }
2287 
2288 /*
2289  * Priority of the task has changed. This may cause
2290  * us to initiate a push or pull.
2291  */
2292 static void
2293 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2294 {
2295 	if (!task_on_rq_queued(p))
2296 		return;
2297 
2298 	if (rq->curr == p) {
2299 #ifdef CONFIG_SMP
2300 		/*
2301 		 * If our priority decreases while running, we
2302 		 * may need to pull tasks to this runqueue.
2303 		 */
2304 		if (oldprio < p->prio)
2305 			rt_queue_pull_task(rq);
2306 
2307 		/*
2308 		 * If there's a higher priority task waiting to run
2309 		 * then reschedule.
2310 		 */
2311 		if (p->prio > rq->rt.highest_prio.curr)
2312 			resched_curr(rq);
2313 #else
2314 		/* For UP simply resched on drop of prio */
2315 		if (oldprio < p->prio)
2316 			resched_curr(rq);
2317 #endif /* CONFIG_SMP */
2318 	} else {
2319 		/*
2320 		 * This task is not running, but if it is
2321 		 * greater than the current running task
2322 		 * then reschedule.
2323 		 */
2324 		if (p->prio < rq->curr->prio)
2325 			resched_curr(rq);
2326 	}
2327 }
2328 
2329 #ifdef CONFIG_POSIX_TIMERS
2330 static void watchdog(struct rq *rq, struct task_struct *p)
2331 {
2332 	unsigned long soft, hard;
2333 
2334 	/* max may change after cur was read, this will be fixed next tick */
2335 	soft = task_rlimit(p, RLIMIT_RTTIME);
2336 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2337 
2338 	if (soft != RLIM_INFINITY) {
2339 		unsigned long next;
2340 
2341 		if (p->rt.watchdog_stamp != jiffies) {
2342 			p->rt.timeout++;
2343 			p->rt.watchdog_stamp = jiffies;
2344 		}
2345 
2346 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2347 		if (p->rt.timeout > next) {
2348 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2349 						    p->se.sum_exec_runtime);
2350 		}
2351 	}
2352 }
2353 #else
2354 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2355 #endif
2356 
2357 /*
2358  * scheduler tick hitting a task of our scheduling class.
2359  *
2360  * NOTE: This function can be called remotely by the tick offload that
2361  * goes along full dynticks. Therefore no local assumption can be made
2362  * and everything must be accessed through the @rq and @curr passed in
2363  * parameters.
2364  */
2365 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2366 {
2367 	struct sched_rt_entity *rt_se = &p->rt;
2368 
2369 	update_curr_rt(rq);
2370 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2371 
2372 	watchdog(rq, p);
2373 
2374 	/*
2375 	 * RR tasks need a special form of timeslice management.
2376 	 * FIFO tasks have no timeslices.
2377 	 */
2378 	if (p->policy != SCHED_RR)
2379 		return;
2380 
2381 	if (--p->rt.time_slice)
2382 		return;
2383 
2384 	p->rt.time_slice = sched_rr_timeslice;
2385 
2386 	/*
2387 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2388 	 * the only element on the queue
2389 	 */
2390 	for_each_sched_rt_entity(rt_se) {
2391 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2392 			requeue_task_rt(rq, p, 0);
2393 			resched_curr(rq);
2394 			return;
2395 		}
2396 	}
2397 }
2398 
2399 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2400 {
2401 	/*
2402 	 * Time slice is 0 for SCHED_FIFO tasks
2403 	 */
2404 	if (task->policy == SCHED_RR)
2405 		return sched_rr_timeslice;
2406 	else
2407 		return 0;
2408 }
2409 
2410 const struct sched_class rt_sched_class = {
2411 	.next			= &fair_sched_class,
2412 	.enqueue_task		= enqueue_task_rt,
2413 	.dequeue_task		= dequeue_task_rt,
2414 	.yield_task		= yield_task_rt,
2415 
2416 	.check_preempt_curr	= check_preempt_curr_rt,
2417 
2418 	.pick_next_task		= pick_next_task_rt,
2419 	.put_prev_task		= put_prev_task_rt,
2420 	.set_next_task          = set_next_task_rt,
2421 
2422 #ifdef CONFIG_SMP
2423 	.balance		= balance_rt,
2424 	.select_task_rq		= select_task_rq_rt,
2425 	.set_cpus_allowed       = set_cpus_allowed_common,
2426 	.rq_online              = rq_online_rt,
2427 	.rq_offline             = rq_offline_rt,
2428 	.task_woken		= task_woken_rt,
2429 	.switched_from		= switched_from_rt,
2430 #endif
2431 
2432 	.task_tick		= task_tick_rt,
2433 
2434 	.get_rr_interval	= get_rr_interval_rt,
2435 
2436 	.prio_changed		= prio_changed_rt,
2437 	.switched_to		= switched_to_rt,
2438 
2439 	.update_curr		= update_curr_rt,
2440 
2441 #ifdef CONFIG_UCLAMP_TASK
2442 	.uclamp_enabled		= 1,
2443 #endif
2444 };
2445 
2446 #ifdef CONFIG_RT_GROUP_SCHED
2447 /*
2448  * Ensure that the real time constraints are schedulable.
2449  */
2450 static DEFINE_MUTEX(rt_constraints_mutex);
2451 
2452 /* Must be called with tasklist_lock held */
2453 static inline int tg_has_rt_tasks(struct task_group *tg)
2454 {
2455 	struct task_struct *g, *p;
2456 
2457 	/*
2458 	 * Autogroups do not have RT tasks; see autogroup_create().
2459 	 */
2460 	if (task_group_is_autogroup(tg))
2461 		return 0;
2462 
2463 	for_each_process_thread(g, p) {
2464 		if (rt_task(p) && task_group(p) == tg)
2465 			return 1;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 struct rt_schedulable_data {
2472 	struct task_group *tg;
2473 	u64 rt_period;
2474 	u64 rt_runtime;
2475 };
2476 
2477 static int tg_rt_schedulable(struct task_group *tg, void *data)
2478 {
2479 	struct rt_schedulable_data *d = data;
2480 	struct task_group *child;
2481 	unsigned long total, sum = 0;
2482 	u64 period, runtime;
2483 
2484 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2485 	runtime = tg->rt_bandwidth.rt_runtime;
2486 
2487 	if (tg == d->tg) {
2488 		period = d->rt_period;
2489 		runtime = d->rt_runtime;
2490 	}
2491 
2492 	/*
2493 	 * Cannot have more runtime than the period.
2494 	 */
2495 	if (runtime > period && runtime != RUNTIME_INF)
2496 		return -EINVAL;
2497 
2498 	/*
2499 	 * Ensure we don't starve existing RT tasks.
2500 	 */
2501 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2502 		return -EBUSY;
2503 
2504 	total = to_ratio(period, runtime);
2505 
2506 	/*
2507 	 * Nobody can have more than the global setting allows.
2508 	 */
2509 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2510 		return -EINVAL;
2511 
2512 	/*
2513 	 * The sum of our children's runtime should not exceed our own.
2514 	 */
2515 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2516 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2517 		runtime = child->rt_bandwidth.rt_runtime;
2518 
2519 		if (child == d->tg) {
2520 			period = d->rt_period;
2521 			runtime = d->rt_runtime;
2522 		}
2523 
2524 		sum += to_ratio(period, runtime);
2525 	}
2526 
2527 	if (sum > total)
2528 		return -EINVAL;
2529 
2530 	return 0;
2531 }
2532 
2533 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2534 {
2535 	int ret;
2536 
2537 	struct rt_schedulable_data data = {
2538 		.tg = tg,
2539 		.rt_period = period,
2540 		.rt_runtime = runtime,
2541 	};
2542 
2543 	rcu_read_lock();
2544 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2545 	rcu_read_unlock();
2546 
2547 	return ret;
2548 }
2549 
2550 static int tg_set_rt_bandwidth(struct task_group *tg,
2551 		u64 rt_period, u64 rt_runtime)
2552 {
2553 	int i, err = 0;
2554 
2555 	/*
2556 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2557 	 * kernel creating (and or operating) RT threads.
2558 	 */
2559 	if (tg == &root_task_group && rt_runtime == 0)
2560 		return -EINVAL;
2561 
2562 	/* No period doesn't make any sense. */
2563 	if (rt_period == 0)
2564 		return -EINVAL;
2565 
2566 	mutex_lock(&rt_constraints_mutex);
2567 	read_lock(&tasklist_lock);
2568 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2569 	if (err)
2570 		goto unlock;
2571 
2572 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2573 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2574 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2575 
2576 	for_each_possible_cpu(i) {
2577 		struct rt_rq *rt_rq = tg->rt_rq[i];
2578 
2579 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2580 		rt_rq->rt_runtime = rt_runtime;
2581 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2582 	}
2583 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2584 unlock:
2585 	read_unlock(&tasklist_lock);
2586 	mutex_unlock(&rt_constraints_mutex);
2587 
2588 	return err;
2589 }
2590 
2591 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2592 {
2593 	u64 rt_runtime, rt_period;
2594 
2595 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2596 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2597 	if (rt_runtime_us < 0)
2598 		rt_runtime = RUNTIME_INF;
2599 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2600 		return -EINVAL;
2601 
2602 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2603 }
2604 
2605 long sched_group_rt_runtime(struct task_group *tg)
2606 {
2607 	u64 rt_runtime_us;
2608 
2609 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2610 		return -1;
2611 
2612 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2613 	do_div(rt_runtime_us, NSEC_PER_USEC);
2614 	return rt_runtime_us;
2615 }
2616 
2617 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2618 {
2619 	u64 rt_runtime, rt_period;
2620 
2621 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2622 		return -EINVAL;
2623 
2624 	rt_period = rt_period_us * NSEC_PER_USEC;
2625 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2626 
2627 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2628 }
2629 
2630 long sched_group_rt_period(struct task_group *tg)
2631 {
2632 	u64 rt_period_us;
2633 
2634 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2635 	do_div(rt_period_us, NSEC_PER_USEC);
2636 	return rt_period_us;
2637 }
2638 
2639 static int sched_rt_global_constraints(void)
2640 {
2641 	int ret = 0;
2642 
2643 	mutex_lock(&rt_constraints_mutex);
2644 	read_lock(&tasklist_lock);
2645 	ret = __rt_schedulable(NULL, 0, 0);
2646 	read_unlock(&tasklist_lock);
2647 	mutex_unlock(&rt_constraints_mutex);
2648 
2649 	return ret;
2650 }
2651 
2652 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2653 {
2654 	/* Don't accept realtime tasks when there is no way for them to run */
2655 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2656 		return 0;
2657 
2658 	return 1;
2659 }
2660 
2661 #else /* !CONFIG_RT_GROUP_SCHED */
2662 static int sched_rt_global_constraints(void)
2663 {
2664 	unsigned long flags;
2665 	int i;
2666 
2667 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2668 	for_each_possible_cpu(i) {
2669 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2670 
2671 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2672 		rt_rq->rt_runtime = global_rt_runtime();
2673 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2674 	}
2675 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2676 
2677 	return 0;
2678 }
2679 #endif /* CONFIG_RT_GROUP_SCHED */
2680 
2681 static int sched_rt_global_validate(void)
2682 {
2683 	if (sysctl_sched_rt_period <= 0)
2684 		return -EINVAL;
2685 
2686 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2687 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2688 		return -EINVAL;
2689 
2690 	return 0;
2691 }
2692 
2693 static void sched_rt_do_global(void)
2694 {
2695 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2696 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2697 }
2698 
2699 int sched_rt_handler(struct ctl_table *table, int write,
2700 		void __user *buffer, size_t *lenp,
2701 		loff_t *ppos)
2702 {
2703 	int old_period, old_runtime;
2704 	static DEFINE_MUTEX(mutex);
2705 	int ret;
2706 
2707 	mutex_lock(&mutex);
2708 	old_period = sysctl_sched_rt_period;
2709 	old_runtime = sysctl_sched_rt_runtime;
2710 
2711 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2712 
2713 	if (!ret && write) {
2714 		ret = sched_rt_global_validate();
2715 		if (ret)
2716 			goto undo;
2717 
2718 		ret = sched_dl_global_validate();
2719 		if (ret)
2720 			goto undo;
2721 
2722 		ret = sched_rt_global_constraints();
2723 		if (ret)
2724 			goto undo;
2725 
2726 		sched_rt_do_global();
2727 		sched_dl_do_global();
2728 	}
2729 	if (0) {
2730 undo:
2731 		sysctl_sched_rt_period = old_period;
2732 		sysctl_sched_rt_runtime = old_runtime;
2733 	}
2734 	mutex_unlock(&mutex);
2735 
2736 	return ret;
2737 }
2738 
2739 int sched_rr_handler(struct ctl_table *table, int write,
2740 		void __user *buffer, size_t *lenp,
2741 		loff_t *ppos)
2742 {
2743 	int ret;
2744 	static DEFINE_MUTEX(mutex);
2745 
2746 	mutex_lock(&mutex);
2747 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2748 	/*
2749 	 * Make sure that internally we keep jiffies.
2750 	 * Also, writing zero resets the timeslice to default:
2751 	 */
2752 	if (!ret && write) {
2753 		sched_rr_timeslice =
2754 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2755 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2756 	}
2757 	mutex_unlock(&mutex);
2758 
2759 	return ret;
2760 }
2761 
2762 #ifdef CONFIG_SCHED_DEBUG
2763 void print_rt_stats(struct seq_file *m, int cpu)
2764 {
2765 	rt_rq_iter_t iter;
2766 	struct rt_rq *rt_rq;
2767 
2768 	rcu_read_lock();
2769 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2770 		print_rt_rq(m, cpu, rt_rq);
2771 	rcu_read_unlock();
2772 }
2773 #endif /* CONFIG_SCHED_DEBUG */
2774