xref: /openbmc/linux/kernel/sched/rt.c (revision d7a3d85e)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	ktime_t now;
22 	int overrun;
23 	int idle = 0;
24 
25 	for (;;) {
26 		now = hrtimer_cb_get_time(timer);
27 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
28 
29 		if (!overrun)
30 			break;
31 
32 		idle = do_sched_rt_period_timer(rt_b, overrun);
33 	}
34 
35 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
36 }
37 
38 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
39 {
40 	rt_b->rt_period = ns_to_ktime(period);
41 	rt_b->rt_runtime = runtime;
42 
43 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
44 
45 	hrtimer_init(&rt_b->rt_period_timer,
46 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
47 	rt_b->rt_period_timer.function = sched_rt_period_timer;
48 }
49 
50 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
51 {
52 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
53 		return;
54 
55 	if (hrtimer_active(&rt_b->rt_period_timer))
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
60 	raw_spin_unlock(&rt_b->rt_runtime_lock);
61 }
62 
63 #ifdef CONFIG_SMP
64 static void push_irq_work_func(struct irq_work *work);
65 #endif
66 
67 void init_rt_rq(struct rt_rq *rt_rq)
68 {
69 	struct rt_prio_array *array;
70 	int i;
71 
72 	array = &rt_rq->active;
73 	for (i = 0; i < MAX_RT_PRIO; i++) {
74 		INIT_LIST_HEAD(array->queue + i);
75 		__clear_bit(i, array->bitmap);
76 	}
77 	/* delimiter for bitsearch: */
78 	__set_bit(MAX_RT_PRIO, array->bitmap);
79 
80 #if defined CONFIG_SMP
81 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
82 	rt_rq->highest_prio.next = MAX_RT_PRIO;
83 	rt_rq->rt_nr_migratory = 0;
84 	rt_rq->overloaded = 0;
85 	plist_head_init(&rt_rq->pushable_tasks);
86 
87 #ifdef HAVE_RT_PUSH_IPI
88 	rt_rq->push_flags = 0;
89 	rt_rq->push_cpu = nr_cpu_ids;
90 	raw_spin_lock_init(&rt_rq->push_lock);
91 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
92 #endif
93 #endif /* CONFIG_SMP */
94 	/* We start is dequeued state, because no RT tasks are queued */
95 	rt_rq->rt_queued = 0;
96 
97 	rt_rq->rt_time = 0;
98 	rt_rq->rt_throttled = 0;
99 	rt_rq->rt_runtime = 0;
100 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
101 }
102 
103 #ifdef CONFIG_RT_GROUP_SCHED
104 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
105 {
106 	hrtimer_cancel(&rt_b->rt_period_timer);
107 }
108 
109 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
110 
111 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
112 {
113 #ifdef CONFIG_SCHED_DEBUG
114 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
115 #endif
116 	return container_of(rt_se, struct task_struct, rt);
117 }
118 
119 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
120 {
121 	return rt_rq->rq;
122 }
123 
124 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
125 {
126 	return rt_se->rt_rq;
127 }
128 
129 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
130 {
131 	struct rt_rq *rt_rq = rt_se->rt_rq;
132 
133 	return rt_rq->rq;
134 }
135 
136 void free_rt_sched_group(struct task_group *tg)
137 {
138 	int i;
139 
140 	if (tg->rt_se)
141 		destroy_rt_bandwidth(&tg->rt_bandwidth);
142 
143 	for_each_possible_cpu(i) {
144 		if (tg->rt_rq)
145 			kfree(tg->rt_rq[i]);
146 		if (tg->rt_se)
147 			kfree(tg->rt_se[i]);
148 	}
149 
150 	kfree(tg->rt_rq);
151 	kfree(tg->rt_se);
152 }
153 
154 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
155 		struct sched_rt_entity *rt_se, int cpu,
156 		struct sched_rt_entity *parent)
157 {
158 	struct rq *rq = cpu_rq(cpu);
159 
160 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
161 	rt_rq->rt_nr_boosted = 0;
162 	rt_rq->rq = rq;
163 	rt_rq->tg = tg;
164 
165 	tg->rt_rq[cpu] = rt_rq;
166 	tg->rt_se[cpu] = rt_se;
167 
168 	if (!rt_se)
169 		return;
170 
171 	if (!parent)
172 		rt_se->rt_rq = &rq->rt;
173 	else
174 		rt_se->rt_rq = parent->my_q;
175 
176 	rt_se->my_q = rt_rq;
177 	rt_se->parent = parent;
178 	INIT_LIST_HEAD(&rt_se->run_list);
179 }
180 
181 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
182 {
183 	struct rt_rq *rt_rq;
184 	struct sched_rt_entity *rt_se;
185 	int i;
186 
187 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
188 	if (!tg->rt_rq)
189 		goto err;
190 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
191 	if (!tg->rt_se)
192 		goto err;
193 
194 	init_rt_bandwidth(&tg->rt_bandwidth,
195 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
196 
197 	for_each_possible_cpu(i) {
198 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
199 				     GFP_KERNEL, cpu_to_node(i));
200 		if (!rt_rq)
201 			goto err;
202 
203 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
204 				     GFP_KERNEL, cpu_to_node(i));
205 		if (!rt_se)
206 			goto err_free_rq;
207 
208 		init_rt_rq(rt_rq);
209 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
210 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
211 	}
212 
213 	return 1;
214 
215 err_free_rq:
216 	kfree(rt_rq);
217 err:
218 	return 0;
219 }
220 
221 #else /* CONFIG_RT_GROUP_SCHED */
222 
223 #define rt_entity_is_task(rt_se) (1)
224 
225 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
226 {
227 	return container_of(rt_se, struct task_struct, rt);
228 }
229 
230 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
231 {
232 	return container_of(rt_rq, struct rq, rt);
233 }
234 
235 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
236 {
237 	struct task_struct *p = rt_task_of(rt_se);
238 
239 	return task_rq(p);
240 }
241 
242 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
243 {
244 	struct rq *rq = rq_of_rt_se(rt_se);
245 
246 	return &rq->rt;
247 }
248 
249 void free_rt_sched_group(struct task_group *tg) { }
250 
251 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
252 {
253 	return 1;
254 }
255 #endif /* CONFIG_RT_GROUP_SCHED */
256 
257 #ifdef CONFIG_SMP
258 
259 static int pull_rt_task(struct rq *this_rq);
260 
261 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
262 {
263 	/* Try to pull RT tasks here if we lower this rq's prio */
264 	return rq->rt.highest_prio.curr > prev->prio;
265 }
266 
267 static inline int rt_overloaded(struct rq *rq)
268 {
269 	return atomic_read(&rq->rd->rto_count);
270 }
271 
272 static inline void rt_set_overload(struct rq *rq)
273 {
274 	if (!rq->online)
275 		return;
276 
277 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
278 	/*
279 	 * Make sure the mask is visible before we set
280 	 * the overload count. That is checked to determine
281 	 * if we should look at the mask. It would be a shame
282 	 * if we looked at the mask, but the mask was not
283 	 * updated yet.
284 	 *
285 	 * Matched by the barrier in pull_rt_task().
286 	 */
287 	smp_wmb();
288 	atomic_inc(&rq->rd->rto_count);
289 }
290 
291 static inline void rt_clear_overload(struct rq *rq)
292 {
293 	if (!rq->online)
294 		return;
295 
296 	/* the order here really doesn't matter */
297 	atomic_dec(&rq->rd->rto_count);
298 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
299 }
300 
301 static void update_rt_migration(struct rt_rq *rt_rq)
302 {
303 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
304 		if (!rt_rq->overloaded) {
305 			rt_set_overload(rq_of_rt_rq(rt_rq));
306 			rt_rq->overloaded = 1;
307 		}
308 	} else if (rt_rq->overloaded) {
309 		rt_clear_overload(rq_of_rt_rq(rt_rq));
310 		rt_rq->overloaded = 0;
311 	}
312 }
313 
314 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
315 {
316 	struct task_struct *p;
317 
318 	if (!rt_entity_is_task(rt_se))
319 		return;
320 
321 	p = rt_task_of(rt_se);
322 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
323 
324 	rt_rq->rt_nr_total++;
325 	if (p->nr_cpus_allowed > 1)
326 		rt_rq->rt_nr_migratory++;
327 
328 	update_rt_migration(rt_rq);
329 }
330 
331 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
332 {
333 	struct task_struct *p;
334 
335 	if (!rt_entity_is_task(rt_se))
336 		return;
337 
338 	p = rt_task_of(rt_se);
339 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
340 
341 	rt_rq->rt_nr_total--;
342 	if (p->nr_cpus_allowed > 1)
343 		rt_rq->rt_nr_migratory--;
344 
345 	update_rt_migration(rt_rq);
346 }
347 
348 static inline int has_pushable_tasks(struct rq *rq)
349 {
350 	return !plist_head_empty(&rq->rt.pushable_tasks);
351 }
352 
353 static inline void set_post_schedule(struct rq *rq)
354 {
355 	/*
356 	 * We detect this state here so that we can avoid taking the RQ
357 	 * lock again later if there is no need to push
358 	 */
359 	rq->post_schedule = has_pushable_tasks(rq);
360 }
361 
362 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
363 {
364 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
365 	plist_node_init(&p->pushable_tasks, p->prio);
366 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
367 
368 	/* Update the highest prio pushable task */
369 	if (p->prio < rq->rt.highest_prio.next)
370 		rq->rt.highest_prio.next = p->prio;
371 }
372 
373 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
374 {
375 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376 
377 	/* Update the new highest prio pushable task */
378 	if (has_pushable_tasks(rq)) {
379 		p = plist_first_entry(&rq->rt.pushable_tasks,
380 				      struct task_struct, pushable_tasks);
381 		rq->rt.highest_prio.next = p->prio;
382 	} else
383 		rq->rt.highest_prio.next = MAX_RT_PRIO;
384 }
385 
386 #else
387 
388 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390 }
391 
392 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
393 {
394 }
395 
396 static inline
397 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
398 {
399 }
400 
401 static inline
402 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
403 {
404 }
405 
406 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
407 {
408 	return false;
409 }
410 
411 static inline int pull_rt_task(struct rq *this_rq)
412 {
413 	return 0;
414 }
415 
416 static inline void set_post_schedule(struct rq *rq)
417 {
418 }
419 #endif /* CONFIG_SMP */
420 
421 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
422 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
423 
424 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
425 {
426 	return !list_empty(&rt_se->run_list);
427 }
428 
429 #ifdef CONFIG_RT_GROUP_SCHED
430 
431 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
432 {
433 	if (!rt_rq->tg)
434 		return RUNTIME_INF;
435 
436 	return rt_rq->rt_runtime;
437 }
438 
439 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
440 {
441 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
442 }
443 
444 typedef struct task_group *rt_rq_iter_t;
445 
446 static inline struct task_group *next_task_group(struct task_group *tg)
447 {
448 	do {
449 		tg = list_entry_rcu(tg->list.next,
450 			typeof(struct task_group), list);
451 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
452 
453 	if (&tg->list == &task_groups)
454 		tg = NULL;
455 
456 	return tg;
457 }
458 
459 #define for_each_rt_rq(rt_rq, iter, rq)					\
460 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
461 		(iter = next_task_group(iter)) &&			\
462 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
463 
464 #define for_each_sched_rt_entity(rt_se) \
465 	for (; rt_se; rt_se = rt_se->parent)
466 
467 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
468 {
469 	return rt_se->my_q;
470 }
471 
472 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
473 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
474 
475 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
476 {
477 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
478 	struct rq *rq = rq_of_rt_rq(rt_rq);
479 	struct sched_rt_entity *rt_se;
480 
481 	int cpu = cpu_of(rq);
482 
483 	rt_se = rt_rq->tg->rt_se[cpu];
484 
485 	if (rt_rq->rt_nr_running) {
486 		if (!rt_se)
487 			enqueue_top_rt_rq(rt_rq);
488 		else if (!on_rt_rq(rt_se))
489 			enqueue_rt_entity(rt_se, false);
490 
491 		if (rt_rq->highest_prio.curr < curr->prio)
492 			resched_curr(rq);
493 	}
494 }
495 
496 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
497 {
498 	struct sched_rt_entity *rt_se;
499 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
500 
501 	rt_se = rt_rq->tg->rt_se[cpu];
502 
503 	if (!rt_se)
504 		dequeue_top_rt_rq(rt_rq);
505 	else if (on_rt_rq(rt_se))
506 		dequeue_rt_entity(rt_se);
507 }
508 
509 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
510 {
511 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
512 }
513 
514 static int rt_se_boosted(struct sched_rt_entity *rt_se)
515 {
516 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
517 	struct task_struct *p;
518 
519 	if (rt_rq)
520 		return !!rt_rq->rt_nr_boosted;
521 
522 	p = rt_task_of(rt_se);
523 	return p->prio != p->normal_prio;
524 }
525 
526 #ifdef CONFIG_SMP
527 static inline const struct cpumask *sched_rt_period_mask(void)
528 {
529 	return this_rq()->rd->span;
530 }
531 #else
532 static inline const struct cpumask *sched_rt_period_mask(void)
533 {
534 	return cpu_online_mask;
535 }
536 #endif
537 
538 static inline
539 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
540 {
541 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
542 }
543 
544 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
545 {
546 	return &rt_rq->tg->rt_bandwidth;
547 }
548 
549 #else /* !CONFIG_RT_GROUP_SCHED */
550 
551 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
552 {
553 	return rt_rq->rt_runtime;
554 }
555 
556 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
557 {
558 	return ktime_to_ns(def_rt_bandwidth.rt_period);
559 }
560 
561 typedef struct rt_rq *rt_rq_iter_t;
562 
563 #define for_each_rt_rq(rt_rq, iter, rq) \
564 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
565 
566 #define for_each_sched_rt_entity(rt_se) \
567 	for (; rt_se; rt_se = NULL)
568 
569 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
570 {
571 	return NULL;
572 }
573 
574 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
575 {
576 	struct rq *rq = rq_of_rt_rq(rt_rq);
577 
578 	if (!rt_rq->rt_nr_running)
579 		return;
580 
581 	enqueue_top_rt_rq(rt_rq);
582 	resched_curr(rq);
583 }
584 
585 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
586 {
587 	dequeue_top_rt_rq(rt_rq);
588 }
589 
590 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
591 {
592 	return rt_rq->rt_throttled;
593 }
594 
595 static inline const struct cpumask *sched_rt_period_mask(void)
596 {
597 	return cpu_online_mask;
598 }
599 
600 static inline
601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 	return &cpu_rq(cpu)->rt;
604 }
605 
606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 	return &def_rt_bandwidth;
609 }
610 
611 #endif /* CONFIG_RT_GROUP_SCHED */
612 
613 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
614 {
615 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616 
617 	return (hrtimer_active(&rt_b->rt_period_timer) ||
618 		rt_rq->rt_time < rt_b->rt_runtime);
619 }
620 
621 #ifdef CONFIG_SMP
622 /*
623  * We ran out of runtime, see if we can borrow some from our neighbours.
624  */
625 static int do_balance_runtime(struct rt_rq *rt_rq)
626 {
627 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
629 	int i, weight, more = 0;
630 	u64 rt_period;
631 
632 	weight = cpumask_weight(rd->span);
633 
634 	raw_spin_lock(&rt_b->rt_runtime_lock);
635 	rt_period = ktime_to_ns(rt_b->rt_period);
636 	for_each_cpu(i, rd->span) {
637 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
638 		s64 diff;
639 
640 		if (iter == rt_rq)
641 			continue;
642 
643 		raw_spin_lock(&iter->rt_runtime_lock);
644 		/*
645 		 * Either all rqs have inf runtime and there's nothing to steal
646 		 * or __disable_runtime() below sets a specific rq to inf to
647 		 * indicate its been disabled and disalow stealing.
648 		 */
649 		if (iter->rt_runtime == RUNTIME_INF)
650 			goto next;
651 
652 		/*
653 		 * From runqueues with spare time, take 1/n part of their
654 		 * spare time, but no more than our period.
655 		 */
656 		diff = iter->rt_runtime - iter->rt_time;
657 		if (diff > 0) {
658 			diff = div_u64((u64)diff, weight);
659 			if (rt_rq->rt_runtime + diff > rt_period)
660 				diff = rt_period - rt_rq->rt_runtime;
661 			iter->rt_runtime -= diff;
662 			rt_rq->rt_runtime += diff;
663 			more = 1;
664 			if (rt_rq->rt_runtime == rt_period) {
665 				raw_spin_unlock(&iter->rt_runtime_lock);
666 				break;
667 			}
668 		}
669 next:
670 		raw_spin_unlock(&iter->rt_runtime_lock);
671 	}
672 	raw_spin_unlock(&rt_b->rt_runtime_lock);
673 
674 	return more;
675 }
676 
677 /*
678  * Ensure this RQ takes back all the runtime it lend to its neighbours.
679  */
680 static void __disable_runtime(struct rq *rq)
681 {
682 	struct root_domain *rd = rq->rd;
683 	rt_rq_iter_t iter;
684 	struct rt_rq *rt_rq;
685 
686 	if (unlikely(!scheduler_running))
687 		return;
688 
689 	for_each_rt_rq(rt_rq, iter, rq) {
690 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
691 		s64 want;
692 		int i;
693 
694 		raw_spin_lock(&rt_b->rt_runtime_lock);
695 		raw_spin_lock(&rt_rq->rt_runtime_lock);
696 		/*
697 		 * Either we're all inf and nobody needs to borrow, or we're
698 		 * already disabled and thus have nothing to do, or we have
699 		 * exactly the right amount of runtime to take out.
700 		 */
701 		if (rt_rq->rt_runtime == RUNTIME_INF ||
702 				rt_rq->rt_runtime == rt_b->rt_runtime)
703 			goto balanced;
704 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
705 
706 		/*
707 		 * Calculate the difference between what we started out with
708 		 * and what we current have, that's the amount of runtime
709 		 * we lend and now have to reclaim.
710 		 */
711 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
712 
713 		/*
714 		 * Greedy reclaim, take back as much as we can.
715 		 */
716 		for_each_cpu(i, rd->span) {
717 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
718 			s64 diff;
719 
720 			/*
721 			 * Can't reclaim from ourselves or disabled runqueues.
722 			 */
723 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
724 				continue;
725 
726 			raw_spin_lock(&iter->rt_runtime_lock);
727 			if (want > 0) {
728 				diff = min_t(s64, iter->rt_runtime, want);
729 				iter->rt_runtime -= diff;
730 				want -= diff;
731 			} else {
732 				iter->rt_runtime -= want;
733 				want -= want;
734 			}
735 			raw_spin_unlock(&iter->rt_runtime_lock);
736 
737 			if (!want)
738 				break;
739 		}
740 
741 		raw_spin_lock(&rt_rq->rt_runtime_lock);
742 		/*
743 		 * We cannot be left wanting - that would mean some runtime
744 		 * leaked out of the system.
745 		 */
746 		BUG_ON(want);
747 balanced:
748 		/*
749 		 * Disable all the borrow logic by pretending we have inf
750 		 * runtime - in which case borrowing doesn't make sense.
751 		 */
752 		rt_rq->rt_runtime = RUNTIME_INF;
753 		rt_rq->rt_throttled = 0;
754 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
755 		raw_spin_unlock(&rt_b->rt_runtime_lock);
756 
757 		/* Make rt_rq available for pick_next_task() */
758 		sched_rt_rq_enqueue(rt_rq);
759 	}
760 }
761 
762 static void __enable_runtime(struct rq *rq)
763 {
764 	rt_rq_iter_t iter;
765 	struct rt_rq *rt_rq;
766 
767 	if (unlikely(!scheduler_running))
768 		return;
769 
770 	/*
771 	 * Reset each runqueue's bandwidth settings
772 	 */
773 	for_each_rt_rq(rt_rq, iter, rq) {
774 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
775 
776 		raw_spin_lock(&rt_b->rt_runtime_lock);
777 		raw_spin_lock(&rt_rq->rt_runtime_lock);
778 		rt_rq->rt_runtime = rt_b->rt_runtime;
779 		rt_rq->rt_time = 0;
780 		rt_rq->rt_throttled = 0;
781 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
782 		raw_spin_unlock(&rt_b->rt_runtime_lock);
783 	}
784 }
785 
786 static int balance_runtime(struct rt_rq *rt_rq)
787 {
788 	int more = 0;
789 
790 	if (!sched_feat(RT_RUNTIME_SHARE))
791 		return more;
792 
793 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
794 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
795 		more = do_balance_runtime(rt_rq);
796 		raw_spin_lock(&rt_rq->rt_runtime_lock);
797 	}
798 
799 	return more;
800 }
801 #else /* !CONFIG_SMP */
802 static inline int balance_runtime(struct rt_rq *rt_rq)
803 {
804 	return 0;
805 }
806 #endif /* CONFIG_SMP */
807 
808 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
809 {
810 	int i, idle = 1, throttled = 0;
811 	const struct cpumask *span;
812 
813 	span = sched_rt_period_mask();
814 #ifdef CONFIG_RT_GROUP_SCHED
815 	/*
816 	 * FIXME: isolated CPUs should really leave the root task group,
817 	 * whether they are isolcpus or were isolated via cpusets, lest
818 	 * the timer run on a CPU which does not service all runqueues,
819 	 * potentially leaving other CPUs indefinitely throttled.  If
820 	 * isolation is really required, the user will turn the throttle
821 	 * off to kill the perturbations it causes anyway.  Meanwhile,
822 	 * this maintains functionality for boot and/or troubleshooting.
823 	 */
824 	if (rt_b == &root_task_group.rt_bandwidth)
825 		span = cpu_online_mask;
826 #endif
827 	for_each_cpu(i, span) {
828 		int enqueue = 0;
829 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
830 		struct rq *rq = rq_of_rt_rq(rt_rq);
831 
832 		raw_spin_lock(&rq->lock);
833 		if (rt_rq->rt_time) {
834 			u64 runtime;
835 
836 			raw_spin_lock(&rt_rq->rt_runtime_lock);
837 			if (rt_rq->rt_throttled)
838 				balance_runtime(rt_rq);
839 			runtime = rt_rq->rt_runtime;
840 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
841 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
842 				rt_rq->rt_throttled = 0;
843 				enqueue = 1;
844 
845 				/*
846 				 * When we're idle and a woken (rt) task is
847 				 * throttled check_preempt_curr() will set
848 				 * skip_update and the time between the wakeup
849 				 * and this unthrottle will get accounted as
850 				 * 'runtime'.
851 				 */
852 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
853 					rq_clock_skip_update(rq, false);
854 			}
855 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
856 				idle = 0;
857 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
858 		} else if (rt_rq->rt_nr_running) {
859 			idle = 0;
860 			if (!rt_rq_throttled(rt_rq))
861 				enqueue = 1;
862 		}
863 		if (rt_rq->rt_throttled)
864 			throttled = 1;
865 
866 		if (enqueue)
867 			sched_rt_rq_enqueue(rt_rq);
868 		raw_spin_unlock(&rq->lock);
869 	}
870 
871 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
872 		return 1;
873 
874 	return idle;
875 }
876 
877 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
878 {
879 #ifdef CONFIG_RT_GROUP_SCHED
880 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
881 
882 	if (rt_rq)
883 		return rt_rq->highest_prio.curr;
884 #endif
885 
886 	return rt_task_of(rt_se)->prio;
887 }
888 
889 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
890 {
891 	u64 runtime = sched_rt_runtime(rt_rq);
892 
893 	if (rt_rq->rt_throttled)
894 		return rt_rq_throttled(rt_rq);
895 
896 	if (runtime >= sched_rt_period(rt_rq))
897 		return 0;
898 
899 	balance_runtime(rt_rq);
900 	runtime = sched_rt_runtime(rt_rq);
901 	if (runtime == RUNTIME_INF)
902 		return 0;
903 
904 	if (rt_rq->rt_time > runtime) {
905 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
906 
907 		/*
908 		 * Don't actually throttle groups that have no runtime assigned
909 		 * but accrue some time due to boosting.
910 		 */
911 		if (likely(rt_b->rt_runtime)) {
912 			rt_rq->rt_throttled = 1;
913 			printk_deferred_once("sched: RT throttling activated\n");
914 		} else {
915 			/*
916 			 * In case we did anyway, make it go away,
917 			 * replenishment is a joke, since it will replenish us
918 			 * with exactly 0 ns.
919 			 */
920 			rt_rq->rt_time = 0;
921 		}
922 
923 		if (rt_rq_throttled(rt_rq)) {
924 			sched_rt_rq_dequeue(rt_rq);
925 			return 1;
926 		}
927 	}
928 
929 	return 0;
930 }
931 
932 /*
933  * Update the current task's runtime statistics. Skip current tasks that
934  * are not in our scheduling class.
935  */
936 static void update_curr_rt(struct rq *rq)
937 {
938 	struct task_struct *curr = rq->curr;
939 	struct sched_rt_entity *rt_se = &curr->rt;
940 	u64 delta_exec;
941 
942 	if (curr->sched_class != &rt_sched_class)
943 		return;
944 
945 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
946 	if (unlikely((s64)delta_exec <= 0))
947 		return;
948 
949 	schedstat_set(curr->se.statistics.exec_max,
950 		      max(curr->se.statistics.exec_max, delta_exec));
951 
952 	curr->se.sum_exec_runtime += delta_exec;
953 	account_group_exec_runtime(curr, delta_exec);
954 
955 	curr->se.exec_start = rq_clock_task(rq);
956 	cpuacct_charge(curr, delta_exec);
957 
958 	sched_rt_avg_update(rq, delta_exec);
959 
960 	if (!rt_bandwidth_enabled())
961 		return;
962 
963 	for_each_sched_rt_entity(rt_se) {
964 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
965 
966 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
967 			raw_spin_lock(&rt_rq->rt_runtime_lock);
968 			rt_rq->rt_time += delta_exec;
969 			if (sched_rt_runtime_exceeded(rt_rq))
970 				resched_curr(rq);
971 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
972 		}
973 	}
974 }
975 
976 static void
977 dequeue_top_rt_rq(struct rt_rq *rt_rq)
978 {
979 	struct rq *rq = rq_of_rt_rq(rt_rq);
980 
981 	BUG_ON(&rq->rt != rt_rq);
982 
983 	if (!rt_rq->rt_queued)
984 		return;
985 
986 	BUG_ON(!rq->nr_running);
987 
988 	sub_nr_running(rq, rt_rq->rt_nr_running);
989 	rt_rq->rt_queued = 0;
990 }
991 
992 static void
993 enqueue_top_rt_rq(struct rt_rq *rt_rq)
994 {
995 	struct rq *rq = rq_of_rt_rq(rt_rq);
996 
997 	BUG_ON(&rq->rt != rt_rq);
998 
999 	if (rt_rq->rt_queued)
1000 		return;
1001 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1002 		return;
1003 
1004 	add_nr_running(rq, rt_rq->rt_nr_running);
1005 	rt_rq->rt_queued = 1;
1006 }
1007 
1008 #if defined CONFIG_SMP
1009 
1010 static void
1011 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1012 {
1013 	struct rq *rq = rq_of_rt_rq(rt_rq);
1014 
1015 #ifdef CONFIG_RT_GROUP_SCHED
1016 	/*
1017 	 * Change rq's cpupri only if rt_rq is the top queue.
1018 	 */
1019 	if (&rq->rt != rt_rq)
1020 		return;
1021 #endif
1022 	if (rq->online && prio < prev_prio)
1023 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1024 }
1025 
1026 static void
1027 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1028 {
1029 	struct rq *rq = rq_of_rt_rq(rt_rq);
1030 
1031 #ifdef CONFIG_RT_GROUP_SCHED
1032 	/*
1033 	 * Change rq's cpupri only if rt_rq is the top queue.
1034 	 */
1035 	if (&rq->rt != rt_rq)
1036 		return;
1037 #endif
1038 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1039 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1040 }
1041 
1042 #else /* CONFIG_SMP */
1043 
1044 static inline
1045 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1046 static inline
1047 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1048 
1049 #endif /* CONFIG_SMP */
1050 
1051 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1052 static void
1053 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1054 {
1055 	int prev_prio = rt_rq->highest_prio.curr;
1056 
1057 	if (prio < prev_prio)
1058 		rt_rq->highest_prio.curr = prio;
1059 
1060 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1061 }
1062 
1063 static void
1064 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1065 {
1066 	int prev_prio = rt_rq->highest_prio.curr;
1067 
1068 	if (rt_rq->rt_nr_running) {
1069 
1070 		WARN_ON(prio < prev_prio);
1071 
1072 		/*
1073 		 * This may have been our highest task, and therefore
1074 		 * we may have some recomputation to do
1075 		 */
1076 		if (prio == prev_prio) {
1077 			struct rt_prio_array *array = &rt_rq->active;
1078 
1079 			rt_rq->highest_prio.curr =
1080 				sched_find_first_bit(array->bitmap);
1081 		}
1082 
1083 	} else
1084 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1085 
1086 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1087 }
1088 
1089 #else
1090 
1091 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1092 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1093 
1094 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1095 
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 
1098 static void
1099 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1100 {
1101 	if (rt_se_boosted(rt_se))
1102 		rt_rq->rt_nr_boosted++;
1103 
1104 	if (rt_rq->tg)
1105 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1106 }
1107 
1108 static void
1109 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1110 {
1111 	if (rt_se_boosted(rt_se))
1112 		rt_rq->rt_nr_boosted--;
1113 
1114 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1115 }
1116 
1117 #else /* CONFIG_RT_GROUP_SCHED */
1118 
1119 static void
1120 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121 {
1122 	start_rt_bandwidth(&def_rt_bandwidth);
1123 }
1124 
1125 static inline
1126 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1127 
1128 #endif /* CONFIG_RT_GROUP_SCHED */
1129 
1130 static inline
1131 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1132 {
1133 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1134 
1135 	if (group_rq)
1136 		return group_rq->rt_nr_running;
1137 	else
1138 		return 1;
1139 }
1140 
1141 static inline
1142 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1143 {
1144 	int prio = rt_se_prio(rt_se);
1145 
1146 	WARN_ON(!rt_prio(prio));
1147 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1148 
1149 	inc_rt_prio(rt_rq, prio);
1150 	inc_rt_migration(rt_se, rt_rq);
1151 	inc_rt_group(rt_se, rt_rq);
1152 }
1153 
1154 static inline
1155 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1158 	WARN_ON(!rt_rq->rt_nr_running);
1159 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1160 
1161 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1162 	dec_rt_migration(rt_se, rt_rq);
1163 	dec_rt_group(rt_se, rt_rq);
1164 }
1165 
1166 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1167 {
1168 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1169 	struct rt_prio_array *array = &rt_rq->active;
1170 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1172 
1173 	/*
1174 	 * Don't enqueue the group if its throttled, or when empty.
1175 	 * The latter is a consequence of the former when a child group
1176 	 * get throttled and the current group doesn't have any other
1177 	 * active members.
1178 	 */
1179 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1180 		return;
1181 
1182 	if (head)
1183 		list_add(&rt_se->run_list, queue);
1184 	else
1185 		list_add_tail(&rt_se->run_list, queue);
1186 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1187 
1188 	inc_rt_tasks(rt_se, rt_rq);
1189 }
1190 
1191 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1192 {
1193 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1194 	struct rt_prio_array *array = &rt_rq->active;
1195 
1196 	list_del_init(&rt_se->run_list);
1197 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1198 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1199 
1200 	dec_rt_tasks(rt_se, rt_rq);
1201 }
1202 
1203 /*
1204  * Because the prio of an upper entry depends on the lower
1205  * entries, we must remove entries top - down.
1206  */
1207 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1208 {
1209 	struct sched_rt_entity *back = NULL;
1210 
1211 	for_each_sched_rt_entity(rt_se) {
1212 		rt_se->back = back;
1213 		back = rt_se;
1214 	}
1215 
1216 	dequeue_top_rt_rq(rt_rq_of_se(back));
1217 
1218 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1219 		if (on_rt_rq(rt_se))
1220 			__dequeue_rt_entity(rt_se);
1221 	}
1222 }
1223 
1224 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1225 {
1226 	struct rq *rq = rq_of_rt_se(rt_se);
1227 
1228 	dequeue_rt_stack(rt_se);
1229 	for_each_sched_rt_entity(rt_se)
1230 		__enqueue_rt_entity(rt_se, head);
1231 	enqueue_top_rt_rq(&rq->rt);
1232 }
1233 
1234 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1235 {
1236 	struct rq *rq = rq_of_rt_se(rt_se);
1237 
1238 	dequeue_rt_stack(rt_se);
1239 
1240 	for_each_sched_rt_entity(rt_se) {
1241 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1242 
1243 		if (rt_rq && rt_rq->rt_nr_running)
1244 			__enqueue_rt_entity(rt_se, false);
1245 	}
1246 	enqueue_top_rt_rq(&rq->rt);
1247 }
1248 
1249 /*
1250  * Adding/removing a task to/from a priority array:
1251  */
1252 static void
1253 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1254 {
1255 	struct sched_rt_entity *rt_se = &p->rt;
1256 
1257 	if (flags & ENQUEUE_WAKEUP)
1258 		rt_se->timeout = 0;
1259 
1260 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1261 
1262 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1263 		enqueue_pushable_task(rq, p);
1264 }
1265 
1266 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1267 {
1268 	struct sched_rt_entity *rt_se = &p->rt;
1269 
1270 	update_curr_rt(rq);
1271 	dequeue_rt_entity(rt_se);
1272 
1273 	dequeue_pushable_task(rq, p);
1274 }
1275 
1276 /*
1277  * Put task to the head or the end of the run list without the overhead of
1278  * dequeue followed by enqueue.
1279  */
1280 static void
1281 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1282 {
1283 	if (on_rt_rq(rt_se)) {
1284 		struct rt_prio_array *array = &rt_rq->active;
1285 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1286 
1287 		if (head)
1288 			list_move(&rt_se->run_list, queue);
1289 		else
1290 			list_move_tail(&rt_se->run_list, queue);
1291 	}
1292 }
1293 
1294 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1295 {
1296 	struct sched_rt_entity *rt_se = &p->rt;
1297 	struct rt_rq *rt_rq;
1298 
1299 	for_each_sched_rt_entity(rt_se) {
1300 		rt_rq = rt_rq_of_se(rt_se);
1301 		requeue_rt_entity(rt_rq, rt_se, head);
1302 	}
1303 }
1304 
1305 static void yield_task_rt(struct rq *rq)
1306 {
1307 	requeue_task_rt(rq, rq->curr, 0);
1308 }
1309 
1310 #ifdef CONFIG_SMP
1311 static int find_lowest_rq(struct task_struct *task);
1312 
1313 static int
1314 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1315 {
1316 	struct task_struct *curr;
1317 	struct rq *rq;
1318 
1319 	/* For anything but wake ups, just return the task_cpu */
1320 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1321 		goto out;
1322 
1323 	rq = cpu_rq(cpu);
1324 
1325 	rcu_read_lock();
1326 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1327 
1328 	/*
1329 	 * If the current task on @p's runqueue is an RT task, then
1330 	 * try to see if we can wake this RT task up on another
1331 	 * runqueue. Otherwise simply start this RT task
1332 	 * on its current runqueue.
1333 	 *
1334 	 * We want to avoid overloading runqueues. If the woken
1335 	 * task is a higher priority, then it will stay on this CPU
1336 	 * and the lower prio task should be moved to another CPU.
1337 	 * Even though this will probably make the lower prio task
1338 	 * lose its cache, we do not want to bounce a higher task
1339 	 * around just because it gave up its CPU, perhaps for a
1340 	 * lock?
1341 	 *
1342 	 * For equal prio tasks, we just let the scheduler sort it out.
1343 	 *
1344 	 * Otherwise, just let it ride on the affined RQ and the
1345 	 * post-schedule router will push the preempted task away
1346 	 *
1347 	 * This test is optimistic, if we get it wrong the load-balancer
1348 	 * will have to sort it out.
1349 	 */
1350 	if (curr && unlikely(rt_task(curr)) &&
1351 	    (curr->nr_cpus_allowed < 2 ||
1352 	     curr->prio <= p->prio)) {
1353 		int target = find_lowest_rq(p);
1354 
1355 		/*
1356 		 * Don't bother moving it if the destination CPU is
1357 		 * not running a lower priority task.
1358 		 */
1359 		if (target != -1 &&
1360 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1361 			cpu = target;
1362 	}
1363 	rcu_read_unlock();
1364 
1365 out:
1366 	return cpu;
1367 }
1368 
1369 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1370 {
1371 	/*
1372 	 * Current can't be migrated, useless to reschedule,
1373 	 * let's hope p can move out.
1374 	 */
1375 	if (rq->curr->nr_cpus_allowed == 1 ||
1376 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1377 		return;
1378 
1379 	/*
1380 	 * p is migratable, so let's not schedule it and
1381 	 * see if it is pushed or pulled somewhere else.
1382 	 */
1383 	if (p->nr_cpus_allowed != 1
1384 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1385 		return;
1386 
1387 	/*
1388 	 * There appears to be other cpus that can accept
1389 	 * current and none to run 'p', so lets reschedule
1390 	 * to try and push current away:
1391 	 */
1392 	requeue_task_rt(rq, p, 1);
1393 	resched_curr(rq);
1394 }
1395 
1396 #endif /* CONFIG_SMP */
1397 
1398 /*
1399  * Preempt the current task with a newly woken task if needed:
1400  */
1401 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1402 {
1403 	if (p->prio < rq->curr->prio) {
1404 		resched_curr(rq);
1405 		return;
1406 	}
1407 
1408 #ifdef CONFIG_SMP
1409 	/*
1410 	 * If:
1411 	 *
1412 	 * - the newly woken task is of equal priority to the current task
1413 	 * - the newly woken task is non-migratable while current is migratable
1414 	 * - current will be preempted on the next reschedule
1415 	 *
1416 	 * we should check to see if current can readily move to a different
1417 	 * cpu.  If so, we will reschedule to allow the push logic to try
1418 	 * to move current somewhere else, making room for our non-migratable
1419 	 * task.
1420 	 */
1421 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1422 		check_preempt_equal_prio(rq, p);
1423 #endif
1424 }
1425 
1426 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1427 						   struct rt_rq *rt_rq)
1428 {
1429 	struct rt_prio_array *array = &rt_rq->active;
1430 	struct sched_rt_entity *next = NULL;
1431 	struct list_head *queue;
1432 	int idx;
1433 
1434 	idx = sched_find_first_bit(array->bitmap);
1435 	BUG_ON(idx >= MAX_RT_PRIO);
1436 
1437 	queue = array->queue + idx;
1438 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1439 
1440 	return next;
1441 }
1442 
1443 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1444 {
1445 	struct sched_rt_entity *rt_se;
1446 	struct task_struct *p;
1447 	struct rt_rq *rt_rq  = &rq->rt;
1448 
1449 	do {
1450 		rt_se = pick_next_rt_entity(rq, rt_rq);
1451 		BUG_ON(!rt_se);
1452 		rt_rq = group_rt_rq(rt_se);
1453 	} while (rt_rq);
1454 
1455 	p = rt_task_of(rt_se);
1456 	p->se.exec_start = rq_clock_task(rq);
1457 
1458 	return p;
1459 }
1460 
1461 static struct task_struct *
1462 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1463 {
1464 	struct task_struct *p;
1465 	struct rt_rq *rt_rq = &rq->rt;
1466 
1467 	if (need_pull_rt_task(rq, prev)) {
1468 		pull_rt_task(rq);
1469 		/*
1470 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1471 		 * means a dl or stop task can slip in, in which case we need
1472 		 * to re-start task selection.
1473 		 */
1474 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1475 			     rq->dl.dl_nr_running))
1476 			return RETRY_TASK;
1477 	}
1478 
1479 	/*
1480 	 * We may dequeue prev's rt_rq in put_prev_task().
1481 	 * So, we update time before rt_nr_running check.
1482 	 */
1483 	if (prev->sched_class == &rt_sched_class)
1484 		update_curr_rt(rq);
1485 
1486 	if (!rt_rq->rt_queued)
1487 		return NULL;
1488 
1489 	put_prev_task(rq, prev);
1490 
1491 	p = _pick_next_task_rt(rq);
1492 
1493 	/* The running task is never eligible for pushing */
1494 	dequeue_pushable_task(rq, p);
1495 
1496 	set_post_schedule(rq);
1497 
1498 	return p;
1499 }
1500 
1501 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1502 {
1503 	update_curr_rt(rq);
1504 
1505 	/*
1506 	 * The previous task needs to be made eligible for pushing
1507 	 * if it is still active
1508 	 */
1509 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1510 		enqueue_pushable_task(rq, p);
1511 }
1512 
1513 #ifdef CONFIG_SMP
1514 
1515 /* Only try algorithms three times */
1516 #define RT_MAX_TRIES 3
1517 
1518 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1519 {
1520 	if (!task_running(rq, p) &&
1521 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1522 		return 1;
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Return the highest pushable rq's task, which is suitable to be executed
1528  * on the cpu, NULL otherwise
1529  */
1530 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1531 {
1532 	struct plist_head *head = &rq->rt.pushable_tasks;
1533 	struct task_struct *p;
1534 
1535 	if (!has_pushable_tasks(rq))
1536 		return NULL;
1537 
1538 	plist_for_each_entry(p, head, pushable_tasks) {
1539 		if (pick_rt_task(rq, p, cpu))
1540 			return p;
1541 	}
1542 
1543 	return NULL;
1544 }
1545 
1546 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1547 
1548 static int find_lowest_rq(struct task_struct *task)
1549 {
1550 	struct sched_domain *sd;
1551 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1552 	int this_cpu = smp_processor_id();
1553 	int cpu      = task_cpu(task);
1554 
1555 	/* Make sure the mask is initialized first */
1556 	if (unlikely(!lowest_mask))
1557 		return -1;
1558 
1559 	if (task->nr_cpus_allowed == 1)
1560 		return -1; /* No other targets possible */
1561 
1562 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1563 		return -1; /* No targets found */
1564 
1565 	/*
1566 	 * At this point we have built a mask of cpus representing the
1567 	 * lowest priority tasks in the system.  Now we want to elect
1568 	 * the best one based on our affinity and topology.
1569 	 *
1570 	 * We prioritize the last cpu that the task executed on since
1571 	 * it is most likely cache-hot in that location.
1572 	 */
1573 	if (cpumask_test_cpu(cpu, lowest_mask))
1574 		return cpu;
1575 
1576 	/*
1577 	 * Otherwise, we consult the sched_domains span maps to figure
1578 	 * out which cpu is logically closest to our hot cache data.
1579 	 */
1580 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1581 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1582 
1583 	rcu_read_lock();
1584 	for_each_domain(cpu, sd) {
1585 		if (sd->flags & SD_WAKE_AFFINE) {
1586 			int best_cpu;
1587 
1588 			/*
1589 			 * "this_cpu" is cheaper to preempt than a
1590 			 * remote processor.
1591 			 */
1592 			if (this_cpu != -1 &&
1593 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1594 				rcu_read_unlock();
1595 				return this_cpu;
1596 			}
1597 
1598 			best_cpu = cpumask_first_and(lowest_mask,
1599 						     sched_domain_span(sd));
1600 			if (best_cpu < nr_cpu_ids) {
1601 				rcu_read_unlock();
1602 				return best_cpu;
1603 			}
1604 		}
1605 	}
1606 	rcu_read_unlock();
1607 
1608 	/*
1609 	 * And finally, if there were no matches within the domains
1610 	 * just give the caller *something* to work with from the compatible
1611 	 * locations.
1612 	 */
1613 	if (this_cpu != -1)
1614 		return this_cpu;
1615 
1616 	cpu = cpumask_any(lowest_mask);
1617 	if (cpu < nr_cpu_ids)
1618 		return cpu;
1619 	return -1;
1620 }
1621 
1622 /* Will lock the rq it finds */
1623 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1624 {
1625 	struct rq *lowest_rq = NULL;
1626 	int tries;
1627 	int cpu;
1628 
1629 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1630 		cpu = find_lowest_rq(task);
1631 
1632 		if ((cpu == -1) || (cpu == rq->cpu))
1633 			break;
1634 
1635 		lowest_rq = cpu_rq(cpu);
1636 
1637 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1638 			/*
1639 			 * Target rq has tasks of equal or higher priority,
1640 			 * retrying does not release any lock and is unlikely
1641 			 * to yield a different result.
1642 			 */
1643 			lowest_rq = NULL;
1644 			break;
1645 		}
1646 
1647 		/* if the prio of this runqueue changed, try again */
1648 		if (double_lock_balance(rq, lowest_rq)) {
1649 			/*
1650 			 * We had to unlock the run queue. In
1651 			 * the mean time, task could have
1652 			 * migrated already or had its affinity changed.
1653 			 * Also make sure that it wasn't scheduled on its rq.
1654 			 */
1655 			if (unlikely(task_rq(task) != rq ||
1656 				     !cpumask_test_cpu(lowest_rq->cpu,
1657 						       tsk_cpus_allowed(task)) ||
1658 				     task_running(rq, task) ||
1659 				     !task_on_rq_queued(task))) {
1660 
1661 				double_unlock_balance(rq, lowest_rq);
1662 				lowest_rq = NULL;
1663 				break;
1664 			}
1665 		}
1666 
1667 		/* If this rq is still suitable use it. */
1668 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1669 			break;
1670 
1671 		/* try again */
1672 		double_unlock_balance(rq, lowest_rq);
1673 		lowest_rq = NULL;
1674 	}
1675 
1676 	return lowest_rq;
1677 }
1678 
1679 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1680 {
1681 	struct task_struct *p;
1682 
1683 	if (!has_pushable_tasks(rq))
1684 		return NULL;
1685 
1686 	p = plist_first_entry(&rq->rt.pushable_tasks,
1687 			      struct task_struct, pushable_tasks);
1688 
1689 	BUG_ON(rq->cpu != task_cpu(p));
1690 	BUG_ON(task_current(rq, p));
1691 	BUG_ON(p->nr_cpus_allowed <= 1);
1692 
1693 	BUG_ON(!task_on_rq_queued(p));
1694 	BUG_ON(!rt_task(p));
1695 
1696 	return p;
1697 }
1698 
1699 /*
1700  * If the current CPU has more than one RT task, see if the non
1701  * running task can migrate over to a CPU that is running a task
1702  * of lesser priority.
1703  */
1704 static int push_rt_task(struct rq *rq)
1705 {
1706 	struct task_struct *next_task;
1707 	struct rq *lowest_rq;
1708 	int ret = 0;
1709 
1710 	if (!rq->rt.overloaded)
1711 		return 0;
1712 
1713 	next_task = pick_next_pushable_task(rq);
1714 	if (!next_task)
1715 		return 0;
1716 
1717 retry:
1718 	if (unlikely(next_task == rq->curr)) {
1719 		WARN_ON(1);
1720 		return 0;
1721 	}
1722 
1723 	/*
1724 	 * It's possible that the next_task slipped in of
1725 	 * higher priority than current. If that's the case
1726 	 * just reschedule current.
1727 	 */
1728 	if (unlikely(next_task->prio < rq->curr->prio)) {
1729 		resched_curr(rq);
1730 		return 0;
1731 	}
1732 
1733 	/* We might release rq lock */
1734 	get_task_struct(next_task);
1735 
1736 	/* find_lock_lowest_rq locks the rq if found */
1737 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1738 	if (!lowest_rq) {
1739 		struct task_struct *task;
1740 		/*
1741 		 * find_lock_lowest_rq releases rq->lock
1742 		 * so it is possible that next_task has migrated.
1743 		 *
1744 		 * We need to make sure that the task is still on the same
1745 		 * run-queue and is also still the next task eligible for
1746 		 * pushing.
1747 		 */
1748 		task = pick_next_pushable_task(rq);
1749 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1750 			/*
1751 			 * The task hasn't migrated, and is still the next
1752 			 * eligible task, but we failed to find a run-queue
1753 			 * to push it to.  Do not retry in this case, since
1754 			 * other cpus will pull from us when ready.
1755 			 */
1756 			goto out;
1757 		}
1758 
1759 		if (!task)
1760 			/* No more tasks, just exit */
1761 			goto out;
1762 
1763 		/*
1764 		 * Something has shifted, try again.
1765 		 */
1766 		put_task_struct(next_task);
1767 		next_task = task;
1768 		goto retry;
1769 	}
1770 
1771 	deactivate_task(rq, next_task, 0);
1772 	set_task_cpu(next_task, lowest_rq->cpu);
1773 	activate_task(lowest_rq, next_task, 0);
1774 	ret = 1;
1775 
1776 	resched_curr(lowest_rq);
1777 
1778 	double_unlock_balance(rq, lowest_rq);
1779 
1780 out:
1781 	put_task_struct(next_task);
1782 
1783 	return ret;
1784 }
1785 
1786 static void push_rt_tasks(struct rq *rq)
1787 {
1788 	/* push_rt_task will return true if it moved an RT */
1789 	while (push_rt_task(rq))
1790 		;
1791 }
1792 
1793 #ifdef HAVE_RT_PUSH_IPI
1794 /*
1795  * The search for the next cpu always starts at rq->cpu and ends
1796  * when we reach rq->cpu again. It will never return rq->cpu.
1797  * This returns the next cpu to check, or nr_cpu_ids if the loop
1798  * is complete.
1799  *
1800  * rq->rt.push_cpu holds the last cpu returned by this function,
1801  * or if this is the first instance, it must hold rq->cpu.
1802  */
1803 static int rto_next_cpu(struct rq *rq)
1804 {
1805 	int prev_cpu = rq->rt.push_cpu;
1806 	int cpu;
1807 
1808 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1809 
1810 	/*
1811 	 * If the previous cpu is less than the rq's CPU, then it already
1812 	 * passed the end of the mask, and has started from the beginning.
1813 	 * We end if the next CPU is greater or equal to rq's CPU.
1814 	 */
1815 	if (prev_cpu < rq->cpu) {
1816 		if (cpu >= rq->cpu)
1817 			return nr_cpu_ids;
1818 
1819 	} else if (cpu >= nr_cpu_ids) {
1820 		/*
1821 		 * We passed the end of the mask, start at the beginning.
1822 		 * If the result is greater or equal to the rq's CPU, then
1823 		 * the loop is finished.
1824 		 */
1825 		cpu = cpumask_first(rq->rd->rto_mask);
1826 		if (cpu >= rq->cpu)
1827 			return nr_cpu_ids;
1828 	}
1829 	rq->rt.push_cpu = cpu;
1830 
1831 	/* Return cpu to let the caller know if the loop is finished or not */
1832 	return cpu;
1833 }
1834 
1835 static int find_next_push_cpu(struct rq *rq)
1836 {
1837 	struct rq *next_rq;
1838 	int cpu;
1839 
1840 	while (1) {
1841 		cpu = rto_next_cpu(rq);
1842 		if (cpu >= nr_cpu_ids)
1843 			break;
1844 		next_rq = cpu_rq(cpu);
1845 
1846 		/* Make sure the next rq can push to this rq */
1847 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1848 			break;
1849 	}
1850 
1851 	return cpu;
1852 }
1853 
1854 #define RT_PUSH_IPI_EXECUTING		1
1855 #define RT_PUSH_IPI_RESTART		2
1856 
1857 static void tell_cpu_to_push(struct rq *rq)
1858 {
1859 	int cpu;
1860 
1861 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1862 		raw_spin_lock(&rq->rt.push_lock);
1863 		/* Make sure it's still executing */
1864 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1865 			/*
1866 			 * Tell the IPI to restart the loop as things have
1867 			 * changed since it started.
1868 			 */
1869 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1870 			raw_spin_unlock(&rq->rt.push_lock);
1871 			return;
1872 		}
1873 		raw_spin_unlock(&rq->rt.push_lock);
1874 	}
1875 
1876 	/* When here, there's no IPI going around */
1877 
1878 	rq->rt.push_cpu = rq->cpu;
1879 	cpu = find_next_push_cpu(rq);
1880 	if (cpu >= nr_cpu_ids)
1881 		return;
1882 
1883 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1884 
1885 	irq_work_queue_on(&rq->rt.push_work, cpu);
1886 }
1887 
1888 /* Called from hardirq context */
1889 static void try_to_push_tasks(void *arg)
1890 {
1891 	struct rt_rq *rt_rq = arg;
1892 	struct rq *rq, *src_rq;
1893 	int this_cpu;
1894 	int cpu;
1895 
1896 	this_cpu = rt_rq->push_cpu;
1897 
1898 	/* Paranoid check */
1899 	BUG_ON(this_cpu != smp_processor_id());
1900 
1901 	rq = cpu_rq(this_cpu);
1902 	src_rq = rq_of_rt_rq(rt_rq);
1903 
1904 again:
1905 	if (has_pushable_tasks(rq)) {
1906 		raw_spin_lock(&rq->lock);
1907 		push_rt_task(rq);
1908 		raw_spin_unlock(&rq->lock);
1909 	}
1910 
1911 	/* Pass the IPI to the next rt overloaded queue */
1912 	raw_spin_lock(&rt_rq->push_lock);
1913 	/*
1914 	 * If the source queue changed since the IPI went out,
1915 	 * we need to restart the search from that CPU again.
1916 	 */
1917 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1918 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1919 		rt_rq->push_cpu = src_rq->cpu;
1920 	}
1921 
1922 	cpu = find_next_push_cpu(src_rq);
1923 
1924 	if (cpu >= nr_cpu_ids)
1925 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1926 	raw_spin_unlock(&rt_rq->push_lock);
1927 
1928 	if (cpu >= nr_cpu_ids)
1929 		return;
1930 
1931 	/*
1932 	 * It is possible that a restart caused this CPU to be
1933 	 * chosen again. Don't bother with an IPI, just see if we
1934 	 * have more to push.
1935 	 */
1936 	if (unlikely(cpu == rq->cpu))
1937 		goto again;
1938 
1939 	/* Try the next RT overloaded CPU */
1940 	irq_work_queue_on(&rt_rq->push_work, cpu);
1941 }
1942 
1943 static void push_irq_work_func(struct irq_work *work)
1944 {
1945 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1946 
1947 	try_to_push_tasks(rt_rq);
1948 }
1949 #endif /* HAVE_RT_PUSH_IPI */
1950 
1951 static int pull_rt_task(struct rq *this_rq)
1952 {
1953 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1954 	struct task_struct *p;
1955 	struct rq *src_rq;
1956 
1957 	if (likely(!rt_overloaded(this_rq)))
1958 		return 0;
1959 
1960 	/*
1961 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1962 	 * see overloaded we must also see the rto_mask bit.
1963 	 */
1964 	smp_rmb();
1965 
1966 #ifdef HAVE_RT_PUSH_IPI
1967 	if (sched_feat(RT_PUSH_IPI)) {
1968 		tell_cpu_to_push(this_rq);
1969 		return 0;
1970 	}
1971 #endif
1972 
1973 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1974 		if (this_cpu == cpu)
1975 			continue;
1976 
1977 		src_rq = cpu_rq(cpu);
1978 
1979 		/*
1980 		 * Don't bother taking the src_rq->lock if the next highest
1981 		 * task is known to be lower-priority than our current task.
1982 		 * This may look racy, but if this value is about to go
1983 		 * logically higher, the src_rq will push this task away.
1984 		 * And if its going logically lower, we do not care
1985 		 */
1986 		if (src_rq->rt.highest_prio.next >=
1987 		    this_rq->rt.highest_prio.curr)
1988 			continue;
1989 
1990 		/*
1991 		 * We can potentially drop this_rq's lock in
1992 		 * double_lock_balance, and another CPU could
1993 		 * alter this_rq
1994 		 */
1995 		double_lock_balance(this_rq, src_rq);
1996 
1997 		/*
1998 		 * We can pull only a task, which is pushable
1999 		 * on its rq, and no others.
2000 		 */
2001 		p = pick_highest_pushable_task(src_rq, this_cpu);
2002 
2003 		/*
2004 		 * Do we have an RT task that preempts
2005 		 * the to-be-scheduled task?
2006 		 */
2007 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2008 			WARN_ON(p == src_rq->curr);
2009 			WARN_ON(!task_on_rq_queued(p));
2010 
2011 			/*
2012 			 * There's a chance that p is higher in priority
2013 			 * than what's currently running on its cpu.
2014 			 * This is just that p is wakeing up and hasn't
2015 			 * had a chance to schedule. We only pull
2016 			 * p if it is lower in priority than the
2017 			 * current task on the run queue
2018 			 */
2019 			if (p->prio < src_rq->curr->prio)
2020 				goto skip;
2021 
2022 			ret = 1;
2023 
2024 			deactivate_task(src_rq, p, 0);
2025 			set_task_cpu(p, this_cpu);
2026 			activate_task(this_rq, p, 0);
2027 			/*
2028 			 * We continue with the search, just in
2029 			 * case there's an even higher prio task
2030 			 * in another runqueue. (low likelihood
2031 			 * but possible)
2032 			 */
2033 		}
2034 skip:
2035 		double_unlock_balance(this_rq, src_rq);
2036 	}
2037 
2038 	return ret;
2039 }
2040 
2041 static void post_schedule_rt(struct rq *rq)
2042 {
2043 	push_rt_tasks(rq);
2044 }
2045 
2046 /*
2047  * If we are not running and we are not going to reschedule soon, we should
2048  * try to push tasks away now
2049  */
2050 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2051 {
2052 	if (!task_running(rq, p) &&
2053 	    !test_tsk_need_resched(rq->curr) &&
2054 	    has_pushable_tasks(rq) &&
2055 	    p->nr_cpus_allowed > 1 &&
2056 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2057 	    (rq->curr->nr_cpus_allowed < 2 ||
2058 	     rq->curr->prio <= p->prio))
2059 		push_rt_tasks(rq);
2060 }
2061 
2062 static void set_cpus_allowed_rt(struct task_struct *p,
2063 				const struct cpumask *new_mask)
2064 {
2065 	struct rq *rq;
2066 	int weight;
2067 
2068 	BUG_ON(!rt_task(p));
2069 
2070 	if (!task_on_rq_queued(p))
2071 		return;
2072 
2073 	weight = cpumask_weight(new_mask);
2074 
2075 	/*
2076 	 * Only update if the process changes its state from whether it
2077 	 * can migrate or not.
2078 	 */
2079 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
2080 		return;
2081 
2082 	rq = task_rq(p);
2083 
2084 	/*
2085 	 * The process used to be able to migrate OR it can now migrate
2086 	 */
2087 	if (weight <= 1) {
2088 		if (!task_current(rq, p))
2089 			dequeue_pushable_task(rq, p);
2090 		BUG_ON(!rq->rt.rt_nr_migratory);
2091 		rq->rt.rt_nr_migratory--;
2092 	} else {
2093 		if (!task_current(rq, p))
2094 			enqueue_pushable_task(rq, p);
2095 		rq->rt.rt_nr_migratory++;
2096 	}
2097 
2098 	update_rt_migration(&rq->rt);
2099 }
2100 
2101 /* Assumes rq->lock is held */
2102 static void rq_online_rt(struct rq *rq)
2103 {
2104 	if (rq->rt.overloaded)
2105 		rt_set_overload(rq);
2106 
2107 	__enable_runtime(rq);
2108 
2109 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2110 }
2111 
2112 /* Assumes rq->lock is held */
2113 static void rq_offline_rt(struct rq *rq)
2114 {
2115 	if (rq->rt.overloaded)
2116 		rt_clear_overload(rq);
2117 
2118 	__disable_runtime(rq);
2119 
2120 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2121 }
2122 
2123 /*
2124  * When switch from the rt queue, we bring ourselves to a position
2125  * that we might want to pull RT tasks from other runqueues.
2126  */
2127 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2128 {
2129 	/*
2130 	 * If there are other RT tasks then we will reschedule
2131 	 * and the scheduling of the other RT tasks will handle
2132 	 * the balancing. But if we are the last RT task
2133 	 * we may need to handle the pulling of RT tasks
2134 	 * now.
2135 	 */
2136 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2137 		return;
2138 
2139 	if (pull_rt_task(rq))
2140 		resched_curr(rq);
2141 }
2142 
2143 void __init init_sched_rt_class(void)
2144 {
2145 	unsigned int i;
2146 
2147 	for_each_possible_cpu(i) {
2148 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2149 					GFP_KERNEL, cpu_to_node(i));
2150 	}
2151 }
2152 #endif /* CONFIG_SMP */
2153 
2154 /*
2155  * When switching a task to RT, we may overload the runqueue
2156  * with RT tasks. In this case we try to push them off to
2157  * other runqueues.
2158  */
2159 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2160 {
2161 	int check_resched = 1;
2162 
2163 	/*
2164 	 * If we are already running, then there's nothing
2165 	 * that needs to be done. But if we are not running
2166 	 * we may need to preempt the current running task.
2167 	 * If that current running task is also an RT task
2168 	 * then see if we can move to another run queue.
2169 	 */
2170 	if (task_on_rq_queued(p) && rq->curr != p) {
2171 #ifdef CONFIG_SMP
2172 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
2173 		    /* Don't resched if we changed runqueues */
2174 		    push_rt_task(rq) && rq != task_rq(p))
2175 			check_resched = 0;
2176 #endif /* CONFIG_SMP */
2177 		if (check_resched && p->prio < rq->curr->prio)
2178 			resched_curr(rq);
2179 	}
2180 }
2181 
2182 /*
2183  * Priority of the task has changed. This may cause
2184  * us to initiate a push or pull.
2185  */
2186 static void
2187 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2188 {
2189 	if (!task_on_rq_queued(p))
2190 		return;
2191 
2192 	if (rq->curr == p) {
2193 #ifdef CONFIG_SMP
2194 		/*
2195 		 * If our priority decreases while running, we
2196 		 * may need to pull tasks to this runqueue.
2197 		 */
2198 		if (oldprio < p->prio)
2199 			pull_rt_task(rq);
2200 		/*
2201 		 * If there's a higher priority task waiting to run
2202 		 * then reschedule. Note, the above pull_rt_task
2203 		 * can release the rq lock and p could migrate.
2204 		 * Only reschedule if p is still on the same runqueue.
2205 		 */
2206 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2207 			resched_curr(rq);
2208 #else
2209 		/* For UP simply resched on drop of prio */
2210 		if (oldprio < p->prio)
2211 			resched_curr(rq);
2212 #endif /* CONFIG_SMP */
2213 	} else {
2214 		/*
2215 		 * This task is not running, but if it is
2216 		 * greater than the current running task
2217 		 * then reschedule.
2218 		 */
2219 		if (p->prio < rq->curr->prio)
2220 			resched_curr(rq);
2221 	}
2222 }
2223 
2224 static void watchdog(struct rq *rq, struct task_struct *p)
2225 {
2226 	unsigned long soft, hard;
2227 
2228 	/* max may change after cur was read, this will be fixed next tick */
2229 	soft = task_rlimit(p, RLIMIT_RTTIME);
2230 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2231 
2232 	if (soft != RLIM_INFINITY) {
2233 		unsigned long next;
2234 
2235 		if (p->rt.watchdog_stamp != jiffies) {
2236 			p->rt.timeout++;
2237 			p->rt.watchdog_stamp = jiffies;
2238 		}
2239 
2240 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2241 		if (p->rt.timeout > next)
2242 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2243 	}
2244 }
2245 
2246 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2247 {
2248 	struct sched_rt_entity *rt_se = &p->rt;
2249 
2250 	update_curr_rt(rq);
2251 
2252 	watchdog(rq, p);
2253 
2254 	/*
2255 	 * RR tasks need a special form of timeslice management.
2256 	 * FIFO tasks have no timeslices.
2257 	 */
2258 	if (p->policy != SCHED_RR)
2259 		return;
2260 
2261 	if (--p->rt.time_slice)
2262 		return;
2263 
2264 	p->rt.time_slice = sched_rr_timeslice;
2265 
2266 	/*
2267 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2268 	 * the only element on the queue
2269 	 */
2270 	for_each_sched_rt_entity(rt_se) {
2271 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2272 			requeue_task_rt(rq, p, 0);
2273 			resched_curr(rq);
2274 			return;
2275 		}
2276 	}
2277 }
2278 
2279 static void set_curr_task_rt(struct rq *rq)
2280 {
2281 	struct task_struct *p = rq->curr;
2282 
2283 	p->se.exec_start = rq_clock_task(rq);
2284 
2285 	/* The running task is never eligible for pushing */
2286 	dequeue_pushable_task(rq, p);
2287 }
2288 
2289 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2290 {
2291 	/*
2292 	 * Time slice is 0 for SCHED_FIFO tasks
2293 	 */
2294 	if (task->policy == SCHED_RR)
2295 		return sched_rr_timeslice;
2296 	else
2297 		return 0;
2298 }
2299 
2300 const struct sched_class rt_sched_class = {
2301 	.next			= &fair_sched_class,
2302 	.enqueue_task		= enqueue_task_rt,
2303 	.dequeue_task		= dequeue_task_rt,
2304 	.yield_task		= yield_task_rt,
2305 
2306 	.check_preempt_curr	= check_preempt_curr_rt,
2307 
2308 	.pick_next_task		= pick_next_task_rt,
2309 	.put_prev_task		= put_prev_task_rt,
2310 
2311 #ifdef CONFIG_SMP
2312 	.select_task_rq		= select_task_rq_rt,
2313 
2314 	.set_cpus_allowed       = set_cpus_allowed_rt,
2315 	.rq_online              = rq_online_rt,
2316 	.rq_offline             = rq_offline_rt,
2317 	.post_schedule		= post_schedule_rt,
2318 	.task_woken		= task_woken_rt,
2319 	.switched_from		= switched_from_rt,
2320 #endif
2321 
2322 	.set_curr_task          = set_curr_task_rt,
2323 	.task_tick		= task_tick_rt,
2324 
2325 	.get_rr_interval	= get_rr_interval_rt,
2326 
2327 	.prio_changed		= prio_changed_rt,
2328 	.switched_to		= switched_to_rt,
2329 
2330 	.update_curr		= update_curr_rt,
2331 };
2332 
2333 #ifdef CONFIG_SCHED_DEBUG
2334 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2335 
2336 void print_rt_stats(struct seq_file *m, int cpu)
2337 {
2338 	rt_rq_iter_t iter;
2339 	struct rt_rq *rt_rq;
2340 
2341 	rcu_read_lock();
2342 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2343 		print_rt_rq(m, cpu, rt_rq);
2344 	rcu_read_unlock();
2345 }
2346 #endif /* CONFIG_SCHED_DEBUG */
2347